
 Theoretical Neuroscience and
 Deep Learning Theory

Surya Ganguli

Dept. of Applied Physics,
Neurobiology,

and Electrical Engineering

Stanford University

http://ganguli-gang.stanford.edu Twitter: @SuryaGanguli

Funding: Bio-X Neuroventures!
Burroughs Wellcome!

Genentech Foundation!
James S. McDonnell Foundation!

McKnight Foundation!
National Science Foundation!

 !
NIH!

Office of Naval Research!
Simons Foundation!
Sloan Foundation!
Swartz Foundation!

Stanford Terman Award!

Theoretical neuroscience in the disciplinary landscape

 Theoretical
Neuroscience

The physical / mathematical sciences
The experimental

 foundations

 The engineering sciences

Multielectrode
recordings

EEG

fMRI

2-photon imaging

High-throughput EM

Optogenetics

Molecular

Perturbations

Quantification of
behavior

Statistical
Mechanics

Pattern
Formation

Stochastic
Processes Dynamical

Systems Theory

High Dimensional
Data Analysis

 Machine
Learning Optimization

Theory
Signal

Processing

Control
Theory

Information
 Theory

with Baccus lab: inferring
hidden circuits in the retina
w/ Niru Maheswaranathan and Lane McIntosh

with Clandinin lab: unraveling the
computations underlying fly motion
vision from whole brain optical imaging
w/ Jonathan Leong, Ben Poole and Jennifer Esch

with the Giocomo lab: understanding
the internal representations of space
in the mouse entorhinal cortex
w/ Kiah Hardcastle and Sam Ocko

with the Shenoy lab: a theory of neural
dimensionality, dynamics and measurement
w/ Peiran Gao, Eric Trautmann, and Chris Stock

with the Raymond lab: theories of how
enhanced plasticity can either enhance
or impair learning depending on experience
w/ Subhaniel Lahiri, Barbara Vu, Grace Zhao

 Neural circuits and behavior: theory, computation and experiment

•  What does it mean to understand the brain (or a neural circuit?)

•  We understand how the connectivity and dynamics of a neural
circuit gives rise to behavior.

•  And also how neural activity and synaptic learning rules conspire to
self-organize useful connectivity that subserves behavior.

•  It is a good start, but it is not enough, to develop a theory of either
random networks that have no function.

•  The field of machine learning has generated a plethora of learned
neural networks that accomplish interesting functions.

•  We know their connectivity, dynamics, learning rule, and
developmental experience, *yet*, we do not have a meaningful
understanding of how they learn and work!

 Motivations for an alliance between theoretical neuroscience and
 theoretical machine learning

On simplicity and complexity in the brave new world of large scale
neuroscience, Peiran Gao and S. Ganguli, Curr. Op. in Neurobiology, 2015.

•  Applying deep learning to the brain:
–  Recurrent neural networks for context dependent decision making
–  Feed-forward networks for modeling the ventral visual stream
–  State of the art models of retinal function

•  Theory of deep learning:
–  Optimization
–  Expressivity
–  Generalization

•  Inspiration from neuroscience back to deep learning:
–  Canonical cortical microcircuits
–  Nested loop architectures
–  Avoiding catastrophic forgetting through synaptic complexity
–  Learning asymmetric recurrent generative models

 Talk Outline

 The shape of things to come… on monkeys and models

Mante et.al. Context dependent
computation by recurrent
dynamics in prefrontal cortex,
Nature 2013

A behavioral task

The monkey
The model

 The shape of things to come… on monkeys and models

Yamins et.al. Performance
optimized hierarchical models
predict performance
in higher visual cortex, PNAS 2014

Deep neural network models of the
retinal response to natural scenes!

Lane McIntosh and Niru Maheswaranathan, Aran Nayebi,
Surya Ganguli and Stephen Baccus!

McIntosh, L.*, Maheswaranathan, N.*, Nayebi, A., Ganguli, S.,
Baccus, S.A. Deep Learning Models of the Retinal Response to

Natural Scenes. NIPS 2016.!

A brief tour of the retina!

G!

P!

A!

H!
B!

microelectrode array

visual stimulus

From	 Rachel	 Wong’s	 Lab	

Multielectrode array (MEA)!

Visual Stimulus!

Chichilnisky 2001
Baccus and Meister 2002

Pillow et al 2005, 2008

Stimulus

Response

Spatiotemporal Filter

Nonlinearity

Linear-Nonlinear models!

How well do linear-nonlinear models
explain the retina in natural vision?!

Pearson correlation !
of 0.36!

see also!
Heitman et al., 2014!

Modeling ganglion cells with convolutional
neural networks (CNNs)!

Train the model to minimize the error
between predictions and recorded data!

CNNs!

Modeling ganglion cells with convolutional
neural networks (CNNs)!

Models are complex, can easily !
over-fit training data!

Challenges!

trainability!
CNNs!

Modeling ganglion cells with convolutional
neural networks (CNNs)!

No reason why the structure or features of
learned CNNs would be similar to the retina!

Challenges!

neural structure!
CNNs!

Modeling ganglion cells with convolutional
neural networks (CNNs)!

Algorithms identified by the model may not
be the same as those used by the retina!

Challenges!

neural function!
CNNs!

CNNs capture substantially more retinal
responses than previous models!

CNNs generalize better than !
simpler models!

CNN internal units correspond to
interneurons in the retinal circuitry!

CNNs learn aspects of retinal variability,
computation, and adaptation!

Convolutional neural network model!

… …

time
8 subunits 16 subunits

convolution

convolution

dense
responses

Three layers works best!!

CNNs approach retinal reliability!

CNN

CNN

E

A B

Pe
ar

so
n

Co
rre

la
tio

n
Co

ef
fic

ie
nt

White noise Natural scenes

CNN LN

D

CNN LN
0.0

0.2

0.6

0.8
Retinal reliability

C

Time (seconds)
6 7 8 9 10

Data

6
tri

al
s

Sp
ike

 R
as

te
rs

on
 H

el
d-

ou
t

Na
tu

ra
l S

ce
ne

s

0%

50%

100%

0% 50% 100%

ROC Curve for Naturalscenes

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

CNN

LN
GLM

GLMGLM

CNN

LN

GLM

6

4

2

0

8

Fi
rin

g
Ra

te
 (H

z)

0.4

LN models:!
Chichilnisky 2001!
GLMs: Pillow et al. 2008!

retinal PSTH-to-PSTH reliability!
retinal PSTH-to-PSTH reliability!

CNNs trained on less data outperform
simpler models on more data!

Features bear striking resemblance to
internal structure in retina!

CNN first layer pre-ReLU activity
Bipolar cell membrane potential

Intracellular data courtesy of
Pablo Jadzinsky and David Kastner

Most retinal neurons have sub-Poisson variability!
(while LNP models are Poisson)!

We can inject Gaussian noise into each
hidden unit of our CNN model!

Model has lower variance than data!
A B

0

0.02

0.04

0.06

0.08

Va
ria

nc
e

in
 S

pi
ke

 C
ou

nt

Mean Spike Count Mean Spike Count

0

0.4

0.8

1.2

1.6

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

C

0

0.02

0.04

0.06

Va
ria

nc
e

in
 S

pi
ke

 C
ou

nt

Mean Spike Count
0 0.2 0.4

Mean-Variance Relationship in Data
and Trained Models

Normalized Mean-Variance Relationship Injecting Noise after Training
0.08

N
or

m
al

iz
ed

 V
ar

ia
nc

e
in

 S
pi

ke
 C

ou
nt

A B

0

0.02

0.04

0.06

0.08

Va
ria

nc
e

in
 S

pi
ke

 C
ou

nt

Mean Spike Count Mean Spike Count

0

0.4

0.8

1.2

1.6

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

C

0

0.02

0.04

0.06

Va
ria

nc
e

in
 S

pi
ke

 C
ou

nt

Mean Spike Count
0 0.2 0.4

Mean-Variance Relationship in Data
and Trained Models

Normalized Mean-Variance Relationship Injecting Noise after Training
0.08

N
or

m
al

iz
ed

 V
ar

ia
nc

e
in

 S
pi

ke
 C

ou
nt

injected noise!
standard deviation!

Po
is

so
n

However model uncertainty has same
scaling relationship as the retina!A B

0

0.02

0.04

0.06

0.08

Va
ria

nc
e

in
 S

pi
ke

 C
ou

nt

Mean Spike Count Mean Spike Count

0

0.4

0.8

1.2

1.6

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

C

0

0.02

0.04

0.06

Va
ria

nc
e

in
 S

pi
ke

 C
ou

nt

Mean Spike Count
0 0.2 0.4

Mean-Variance Relationship in Data
and Trained Models

Normalized Mean-Variance Relationship Injecting Noise after Training
0.08

N
or

m
al

iz
ed

 V
ar

ia
nc

e
in

 S
pi

ke
 C

ou
nt

A B

0

0.02

0.04

0.06

0.08

Va
ria

nc
e

in
 S

pi
ke

 C
ou

nt

Mean Spike Count Mean Spike Count

0

0.4

0.8

1.2

1.6

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

C

0

0.02

0.04

0.06

Va
ria

nc
e

in
 S

pi
ke

 C
ou

nt
Mean Spike Count

0 0.2 0.4

Mean-Variance Relationship in Data
and Trained Models

Normalized Mean-Variance Relationship Injecting Noise after Training
0.08

N
or

m
al

iz
ed

 V
ar

ia
nc

e
in

 S
pi

ke
 C

ou
nt

injected noise!
standard deviation!

Capturing contrast adaptation from retinal
responses to natural scenes!

Smirnakis et al., 1997

0

Fi
rin

g
R

at
e

(s
pi

ke
s/

s)

0

4

2

42
Time (s)

St
im

ul
us

In
te

ns
ity

RNN

6

LSTM

A B Full Field Flicker

0

Fi
rin

g
R

at
e

(s
pi

ke
s/

s)

0

4

2

42
Time (s)

St
im

ul
us

In
te

ns
ity

RNN

6

LSTM

A B Full Field Flicker

Aran Nayebi!

Summary!
CNNs capture substantially more retinal
responses than previous models.!
!
CNNs also generalize better to different
stimuli classes.!

CNNs learn the internal, nonlinear
structure of the retina!

Our CNN models reproduce principles of
signal processing inside retina without
having direct access to it!!

We can capture not only the mean
response, but also how variability scales
with the mean!

•  Applying deep learning to the brain:
–  Recurrent neural networks for context dependent decision making
–  Feed-forward networks for modeling the ventral visual stream
–  State of the art models of retinal function

•  Theory of deep learning:
–  Optimization
–  Expressivity
–  Generalization

•  Inspiration from neuroscience back to deep learning:
–  Canonical cortical microcircuits
–  Nested loop architectures
–  Avoiding catastrophic forgetting through synaptic complexity
–  Learning asymmetric recurrent generative models

 Talk Outline

Some of the theoretical puzzles of deep learning

Generalizability: what principles do deep networks use to place
probability / make decisions in regions of input space with little data?

Trainability: if a good network solution exists with small training error,
how do we find it? And what makes a learning problem difficult?

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Exponential expressivity in deep neural networks through transient chaos, B. Poole, S. Lahiri,M. Raghu,
J. Sohl-Dickstein, S. Ganguli, NIPS 2016.

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions,
Physical Review X, 2016.

Expressiveness, Memorization, Stability, and Flat versus sharp minima.

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks ICLR 2014.

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization, NIPS 2014.

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks,
CogSci 2013.

 A Mathematical Theory of
 Semantic Development*

Joint work with: Andrew Saxe and Jay McClelland

*AKA: The misadventures of an “applied physicist”
 wandering around the psychology department

 What is “semantic cognition”?

Human semantic cognition: Our ability to
 learn, recognize, comprehend and produce
 inferences about properties of objects
 and events in the world, especially properties
 that are not present in the current perceptual
 stimulus

For example:

 Does a cat have fur?
 Do birds fly?

Our ability to do this likely relies on our ability to form
internal representations of categories in the world

 Psychophysical tasks that probe semantic cognition

Looking time studies: Can an infant distinguish between two
 categories of objects? At what age?

Property verification tasks: Can a canary move? Can it sing?
 Response latency => central and peripheral properties

Inductive generalization:

Category membership queries: Is a sparrow a bird? An ostrich?
 Response latency => typical / atypical category members

 (A) Generalize familiar properties to novel objects:
 i.e. a “blick” has feathers. Does it fly? Sing?

 (B) Generalize novel properties to familiar objects:
 i.e. a bird has gene “X”. Does a crocodile have gene X?
 Does a dog?

 The project that really keeps me up at night

Semantic Cognition Phenomena

 A Network for Semantic Cognition

Rogers and McClelland

 Evolution of internal representations

Rogers and McClelland

 Categorical representations in human and monkey

Kriegeskorte et. al. Neuron 2008

 Categorical representations in human and monkey

Kriegeskorte et. al. Neuron 2008

 Evolution of internal representations

Rogers and McClelland

 Theoretical questions

What are the mathematical principles underlying the hierarchical
self-organization of internal representations in the network?

What are the relative roles of:
 nonlinear input-output response
 learning rule
 input statistics (second order? higher order?)

Why are some properties learned more quickly than others?

What is a mathematical definition of category coherence, and
How does it relate the speed of category learning?

How can we explain changing patterns of inductive
generalization over developmental time scales?

Problem	 formula6on	

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

We	 analyze	 a	 fully	 linear	 three	 layer	 network	
	

Learning hierarchical categories in deep neural networks
Andrew M. Saxe (asaxe@stanford.edu)

Department of Electrical Engineering
James L. McClelland (mcclelland@stanford.edu)

Department of Psychology
Surya Ganguli (sganguli@stanford.edu)

Department of Applied Physics
Stanford University, Stanford, CA 94305 USA

Abstract
A wide array of psychology experiments have revealed re-
markable regularities in the developmental time course of hu-
man cognition. For example, infants generally acquire broad
categorical distinctions (i.e., plant/animal) before finer-scale
distinctions (i.e., dog/cat), often exhibiting rapid, or stage-like
transitions. What are the theoretical principles underlying the
ability of neuronal networks to discover categorical structure
from experience? We develop a mathematical theory of hi-
erarchical category learning through an analysis of the learn-
ing dynamics of multilayer networks exposed to hierarchically
structured data. Our theory yields new exact solutions to the
nonlinear dynamics of error correcting learning in deep, three
layer networks. These solutions reveal that networks learn
input-output covariation structure on a time scale that is in-
versely proportional to its statistical strength. We further ana-
lyze the covariance structure of data sampled from hierarchical
probabilistic generative models, and show how such models
yield a hierarchy of input-output modes of differing statistical
strength, leading to a hierarchy of time-scales over which such
modes are learned. Our results reveal that even the second
order statistics of hierarchically structured data contain pow-
erful statistical signals sufficient to drive complex experimen-
tally observed phenomena in semantic development, including
progressive, coarse-to-fine differentiation of concepts and sud-
den, stage-like transitions in performance punctuating longer
dormant periods.
Keywords: neural networks; hierarchical generative models;
semantic cognition; learning dynamics

Introduction
Our world is characterized by a rich, nested hierarchical
structure of categories within categories, and one of the most
remarkable aspects of human semantic development is our
ability to learn and exploit this rich structure. Experimental
work has shown that infants and children acquire broad cate-
gorical distinctions before fine categorical distinctions (Keil,
1979; Mandler & McDonough, 1993), suggesting that hu-
man category learning is marked by a progressive differen-
tiation of concepts from broad to fine. Furthermore, humans
can exhibit stage-like transitions as they learn, rapidly moving
from ignorance to mastery (Inhelder & Piaget, 1958; Siegler,
1976).

Many neural network simulations have captured aspects of
these broad patterns of semantic development (Rogers & Mc-
Clelland, 2004; Rumelhart & Todd, 1993; McClelland, 1995;
Plunkett & Sinha, 1992; Quinn & Johnson, 1997). The inter-
nal representations of such networks exhibit both progressive
differentiation and stage like transitions.

However the theoretical basis for the ability of neuronal
networks to exhibit such strikingly rich nonlinear behavior re-

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

Figure 1: The three layer network analyzed in this work.

mains elusive. What are the essential principles that underly
such behavior? What aspects of statistical structure in the
input are responsible for driving such dynamics? For exam-
ple, must networks exploit nonlinearities in their input-output
map to detect higher order statistical regularities to drive such
learning?

Here we analyze the learning dynamics of a linear 3 layer
network and find, surprisingly, that it can exhibit highly non-
linear learning dynamics, including rapid stage-like transi-
tions. Furthermore, when exposed to hierarchically struc-
tured data sampled from a hierarchical probabilistic model,
the network exhibits progressive differentiation of concepts
from broad to fine. Since such linear networks are sensitive
only to the second order statistics of inputs and outputs, this
yields the intriguing result that merely second order patterns
of covariation in hierarchically structured data contain statis-
tical signals powerful enough to drive certain nontrivial, high
level aspects of semantic development in deep networks.

Gradient descent dynamics in multilayer
neural networks

We examine learning in a three layer network (input layer 1,
hidden layer 2, and output layer 3) with linear activation func-
tions, simplifying the network model of Rumelhart and Todd
(1993), in which input units correspond to items e.g, Canary,
Rose and output units correspond to possible predicates or at-
tributes Can Fly, Has Petals that may or may not apply to each
item. Let Ni be the number of neurons in layer i, W 21 be an
N2⇥N1 matrix of synaptic connections from layer 1 to 2, and
similarly, W 32 an N3 ⇥N2 matrix of connections from layer 2
to 3. The input-output map of the network is y = W 32W 21x,
where x is an N1 dimensional column vector representing in-
puts to the network, and y is an N2 dimensional column vector
representing the network output (see Fig. 1).

Items	 Proper6es	

Nontrivial	 learning	 dynamics	
Plateaus	 and	 sudden	

transitions	
Faster	 convergence	 from	

pretrained	 initial	 conditions	

0 50 100 150 200 250 300 350 400 450 500
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 104

Epochs
Tr

ai
ni

ng
 e

rro
r

Student Version of MATLAB

Random	 ICs	
Pretrained	

Tr
ai
ni
ng
	 e
rr
or
	

Epochs	

0 50 100 150 200 250 300 350 400 450 500
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 104

Epochs

Tr
ai

ni
ng

 e
rro

r

Student Version of MATLAB

Tr
ai
ni
ng
	 e
rr
or
	

Epochs	

•  Build	 intui6ons	 for	 nonlinear	 case	 by	 analyzing	 linear	 case	

Learning	 dynamics	
•  Network	 is	 trained	 on	 a	 set	 of	 items	 and	 their	 proper6es	

•  Weights	 adjusted	 using	 standard	 backpropaga6on:	
–  Change	 each	 weight	 to	 reduce	 the	 error	 between	 desired	 network	

output	 and	 current	 network	 output	

•  Highlights	 the	 error-‐correc6ve	 aspect	 of	 this	 learning	 process	

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

tic gradient descent; each time an example µ is presented, the
weights W 32 and W 21 are adjusted by a small amount in the
direction that minimizes the squared error

��yµ �W 32W 21xµ
��2

between the desired feature output, and the network’s feature
output. This gradient descent procedure yields the standard
back propagation learning rule

DW 21 = lW 32T
(yµ � ŷµ)xµT (3)

DW 32 = l(yµ � ŷµ)hµT , (4)

for each example µ, where ŷµ =W 32W 21xµ denotes the output
of the network in response to input example xµ, hµ = W 21xµ

is the hidden unit activity, and l is a small learning rate.
Here W 32T

(yµ � ŷµ) in (3) corresponds to the signal back-
propagated to the hidden units through the hidden-to-output
weights. These equations emphasize that the learning pro-
cess works by comparing the network’s current output ŷµ to
the desired target output yµ, and adjusting weights based on
this error term.

By a substitution and rearrangement, however, we can
equivalently write these equations as

DW 21 = lW 32T �
yµxµT �W 32W 21xµxµT � (5)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

. (6)

This form emphasizes two crucial aspects of the learning dy-
namics. First, it highlights the importance of the statistics
of the training set. In particular, the training set enters only
through two terms, one related to the input-output correla-
tions yµxµT and the other related to the input correlations
xµxµT . Indeed, if l is sufficiently small so that weights change
only a small amount per epoch, we can rewrite these equa-
tions in a batch update form by averaging over the training
set to obtain the mean change in weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (7)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (8)

where S11 ⌘ Âµ=1 xµxµT ⌘ E[xxT] is an N1 ⇥N1 input corre-
lation matrix, S31 is the N3 ⇥N1 input-output correlation ma-
trix defined previously, and t ⌘ P

l . Hence we see that linear
networks are sensitive only to the second order statistics of
inputs and outputs. In general the learning process is driven
by both the input and input-output correlation matrices. Here
we take the simplifying assumption that these input corre-
lations are insignificant; formally, we assume S11 = I, the
identity matrix. Concretely, this assumption corresponds to
the supposition that input representations for different items
are highly differentiated from, or orthogonal to each other.
While this is unlikely to hold exactly in any natural domain,
we take this assumption for two reasons. First, it was used in
prior simulation studies (Rogers & McClelland, 2004), and
hence our attempt to understand their results is not limited
by this assumption. Second, Rogers and McClelland (2004)

have shown that relaxing this assumption to incorporate more
complex input correlations leaves intact the basic phenom-
ena of progressive differentiation and stage-like transitions
in learning. Nevertheless, understanding the impact of input
correlations is an important direction for further work.

Second, the form of Eqns. (7)-(8) highlights the coupling
between the two equations: to know how to change W 21 we
must know W 32, and visa versa, since each appears in the
update equation for the other. This coupling is the crucial
element added by the addition of a hidden layer, and as we
shall see, it qualitatively changes the learning dynamics of
the network compared to a “shallow” network with no hid-
den layer. Intuitively, this coupling complicates the learn-
ing procedure since both weight matrices must cooperate to
produce the correct answer; but crucially, it enables knowl-
edge sharing between different items, by assigning them sim-
ilar hidden unit representations. Without this coupling, the
network would learn each item-property association indepen-
dently, and would not be sensitive to shared structure in the
training set.

The temporal dynamics of learning To understand the
connection between learning dynamics and training set statis-
tics, then, we can solve Eqns. (7)-(8). We have found a class
of exact solutions (whose derivation will be presented else-
where) that describe the weights of the network over time
during learning, as a function of the training set. In partic-
ular, the composite mapping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (9)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (10)

That is, the network learns about the N2 strongest input-
output modes identified by the singular value decomposi-
tion, progressively incorporating each mode into its repre-
sentation. The coefficient a(t,sa,a0) describes how strongly
input-output mode a has been learned by time t, starting
from some small initial value of a0. As can be seen from
Fig. 3, this function is a sigmoidal curve, capturing the fact
that the network initially knows nothing about a particular
dimension (the animal-plant dimension, say), but over time
learns the importance of this dimension and incorporates it
into its representation, ultimately reaching the correct asso-
ciation strength sa. At this point the network correctly maps
items onto the animal-plant dimension using the object an-
alyzer vector vaT , and generates the corresponding correct
features using the feature synthesizer vector ua.

Eqns. (9)-(10) describe the fundamental connection be-
tween the structure of a training set and learning dynamics.
In particular, the dynamics depends on the singular value
decomposition of the input-output correlation matrix of the

Learning	 dynamics	
In	 linear	 networks,	 there	 is	 an	 equivalent	 formula6on	 that	
highlights	 the	 role	 of	 the	 sta6s6cs	 of	 the	 training	 environment:	
	

	
	
	

Equivalent	 dynamics:	
	
	
	
	
	
	
•  Learning	 driven	 only	 by	 correla6ons	 in	 the	 training	 data	
•  Equa6ons	 coupled	 and	 nonlinear	
	
	
	
	
	
	

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Input	 correla6ons:	
Input-‐output	 correla6ons:	

Decomposing	 input-‐output	 correla6ons	

Σ31 U S VT

Input-output
correlation matrix

Feature synthesizer
vectors Singular values Object analyzer

vectors

=

Items

Pr
op

er
tie

s

Items

=

Modes

M
od

es

C S O R 1 2 3

P
B

S
F

M

C S O R
Modes

1 2 3

M
od

es

Pr
op

er
tie

s

P
B

S
F

M
 1	

-‐1	

0	

The	 learning	 dynamics	 can	 be	 expressed	 using	 the	 SVD	 of	
	
	
Mode	 α	 links	 a	 set	 of	 coherently	 covarying	 proper6es	 	 	 	 	 	 	 to	
a	 set	 of	 coherently	 covarying	 items	 	 	 	 	 	 	 	 	 with	 strength	 	

Items
Pr

op
er

tie
s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=
Pr

op
er

tie
s

P
B

S
F

M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=
Pr

op
er

tie
s

P
B

S
F

M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=
Pr

op
er

tie
s

P
B

S
F

M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items:	 Canary,	 Salmon,	 Oak,	 Rose	
Proper6es:	 Move,	 Fly,	 Swim,	 Bark,	 Petals	

Analy6cal	 learning	 trajectory	

0 200 400 600
0

50

100

150

200

t (Epochs)

In
pu

t−
ou

tp
ut

 m
od

e
st

re
ng

th

Simulation
Theory

The	 network’s	 input-‐output	 map	 is	 exactly	
	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 where	
	
for	 a	 special	 class	 of	 ini6al	 condi6ons	 and	 	 	 	 	 	 	 	 	 	 	 	 	 .	 	
	

	

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

•  Each	 mode	 evolves	
independently	

•  Each	 mode	 is	 learned	 in	
1me	

0 200 400 600
0

50

100

150

200

t (Epochs)

In
pu

t−
ou

tp
ut

 m
od

e
st

re
ng

th

Simulation
Theory

Figure 3: Close agreement between theoretically predicted
time course and numerical simulations. Simulations were
performed with a dataset sampled from the hierarchical diffu-
sion process described in detail in a later section, with D = 3
hierarchical levels, binary branching, flip probability e = 0.1,
and N = 10,000 sampled features. This data set had 3 unique
singular values. Red traces show ten simulations of the singu-
lar value dynamics of W 32(t)W 21(t) in Eqns. (3)-(4) starting
from different random initializations, and blue traces show
theoretical curves obtained from (8).

As can be seen from Fig. 3, for a0 < s, this function is a
sigmoidal curve that starts at a0 when t = 0, and asymptot-
ically rises to s as t ! •. Thus for small initial conditions
a0

a, the weight trajectory (7) describes an evolving network
whose input-output mapping successively builds up the first
N2 modes of the SVD of S31 in (6). This result is the so-
lution to (3)-(4) for a special class of initial conditions on
the weights W 21 and W 32. However this analytic solution
is a good approximation to the time evolution the network’s
input-output map for random small initial conditions, as con-
firmed in Fig. 3.

Eqns. (7)-(8) reveal a number of important properties of
the learning dynamics. What is the final outcome of learning?
As t ! •, the weight matrices converge to the best rank N2
approximation of S31.

More importantly, what is the timescale of learning? Each
pair of output (ua) and input (va) modes are learned in (7) on
a different time scale, governed by the singular value sa. To
estimate this time scale, we can assume a small initial condi-
tion a0 = e and ask when a(t) in (8) is within e of the final
value s, i.e. a(t) = s� e; then the timescale of learning in the
limit e ! 0 is

t(s,e) = t
s

ln
s
e
. (9)

This is O(t/s) up to a logarithmic factor. Thus the time re-
quired to learn an input-output mode is inversely related to its
statistical strength, quantified through its singular value.

Finally, these dynamics reveal stage-like transitions in
learning performance. Intuitively, this property arises from
the sigmoidal transition in (8) from a state in which the net-
work does not represent a particular input-output relation at

all, to a state in which the network fully incorporates that rela-
tion. To formalize this, we begin with the sigmoidal learning
curve in (8). If we assume the initial strength of the mode a0
satisfies a0 < s/2, where s is its final learned value, we can
define the transition time to be the time at which the mode is
half learned (i.e. a(thalf) = s/2). This yields

thalf =
t
2s

log
✓

s
a0

�1
◆
. (10)

We can then define the transition period ttrans as the time re-
quired for a linear approximation to a(t,s,a0) at thalf to rise
from zero to s. This yields a transition time to go from a state
of no learning to almost full learning given by ttrans = 2t

s .
Thus, by starting with a very small initial condition in the
weights (i.e. a0), it is clear that one can make the ratio
ttrans/thalf arbitrarily small. Hence the learning dynamics
of (3)-(4) can indeed exhibit sharp stage-like transitions con-
sisting of long periods of dormancy ended by an abrupt tran-
sition to mastery. Interestingly, we can prove that single layer
networks are not capable of such stage-like transitions. Thus
their existence is an emergent property of nonlinear learning
dynamics in deep networks with at least one hidden layer, and
does not require nonlinearity in the input-output map of the
network.

Summary of learning dynamics The preceding analyses
have established a number of crucial features of gradient de-
scent learning in a simple linear network, making explicit the
relationship between the statistical structure of training ex-
amples and the dynamics of learning. In particular, for an ar-
bitrary input-output task the network will ultimately come to
represent the closest rank N2 approximation to the full input-
output correlation matrix. Furthermore, the learning dynam-
ics depend crucially on the singular values of the input-output
correlation matrix. Each input-output mode is learned in time
inversely proportional to its associated singular value, yield-
ing the intuitive result that stronger input-output associations
are learned before weaker ones.

The singular values and vectors of
hierarchically generated data

In this section we introduce a hierarchical probabilistic gener-
ative model of items and their attributes that, when sampled,
produces a dataset that can be supplied to our neural network.
Using this, we will be able to explicitly link hierarchical tax-
onomies of categories to the dynamics of network learning.
A key result in the following is that our network must exhibit
progressive differentiation with respect to any of the underly-
ing hierarchical taxonomies allowed by our generative model.

Hierarchical feature vectors from a branching diffusion
process To understand the time course of learning of hier-
archical structure, we propose a simple generative model of
hierarchical data {xµ,yµ}, and compute for this model the sta-
tistical properties (sa,ua,va) which drive learning. We first

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

	 Origin	 of	 the	 rapid	 learning	 transi6on:	 	
saddle	 point	 dynamics	 in	 synap6c	 weight	 space	

0 200 400 600
0

50

100

150

200

t (Epochs)

In
pu

t−
ou

tp
ut

 m
od

e
st

re
ng

th

Simulation
Theory

Take	 home	 messages,	 so	 far:	

Stronger	 sta6s6cal	 structure	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 is	 learned	 faster!	

Strength	 of	 structure:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Learning	 Time	
	
	
Singular	 value	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 /	 Singular	 value	
	
(Singular	 vectors:	
object	 analyzers	 and	
feature	 synthesizers)	
	
Next:	 what	 does	 all	 this	 have	 to	 do	 with	 the	 hierarchical	 	
Differen6a6on	 of	 concepts?	
	

Learning	 hierarchical	 structure	

•  The	 preceding	 analysis	 describes	 dynamics	 in	 response	 to	 a	
specific	 dataset	

•  Can	 we	 move	 beyond	 specific	 datasets	 to	 general	 principles	
when	 a	 neural	 network	 is	 exposed	 to	 hierarchical	 structure?	

•  We	 consider	 training	 a	 neural	 network	 with	 data	 generated	 by	
a	 hierarchical	 genera1ve	 model	

Connec1ng	 hierarchical	 genera1ve	
models	 and	 neural	 network	 learning	

…

…

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items

Pr
op

er
tie

s

Items

Σ31

=

U S VT

Modes

M
od

es

+

0

-

C S O R 1 2 3

3
2

1

P
B

S
F

M

C S O R
Modes

1 2 3

Input-output
correlation matrix

Output
singular vectors Singular values Input

singular vectors

M
od

es

=

Pr
op

er
tie

s
P

B
S

F
M

Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

World	 Agent	

A	 hierarchical	 branching	 diffusion	 process	

…
Branching factor B0

…

B1

Genera6ve	 model	 defined	
by	 a	 tree	 of	 nested	
categories	
	
Feature	 values	 diffuse	
down	 tree	 with	 small	
probability	 ε	 of	 changing	
along	 each	 link	
	
Sampled	 independently	
N	 6mes	 to	 produce	 	
N	 features	

Item	 1	 Item	 2	 Item	 P	

Object	 analyzer	 vectors	

M
od

es

Items

Ite
m

s

Items
0.3	

1	

1	

-‐1	

+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 -1 -1 -1 -1

+1 +1 -1 -1 0 0 0 0

0 0 0 0 +1 +1 -1 -1

+1 -1 0 0 0 0 0 0

0 0 +1 -1 0 0 0 0

0 0 0 0 +1 -1 0 0

0 0 0 0 0 0 +1 -1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Assume	 our	 network	 is	
trained	 on	 an	 infinite	 amount	
of	 data	 drawn	 from	 this	 model	
	
Can	 analy6cally	 compute	 SVD	
of	 the	 input-‐output	
correla6on	 matrix:	
	
The	 object	 analyzer	 vectors	
mirror	 the	 tree	 structure	
	
	

Singular	 values	

0 1 2 3 4 5
0

10

20

30

40

50

Hierarchicy level

Si
ng

ul
ar

 v
al

ue

Simulation
Theory

The	 singular	 values	 are	 a	 decreasing	 func1on	 of	 the	 hierarchy	 level.	
	
	

Progressive	 differen6a6on	

Hence	 the	 network	 must	 exhibit	 progressive	
differen6a6on	 on	 any	 dataset	 generated	 by	 this	 class	 of	
hierarchical	 diffusion	 processes:	
	
•  Network	 learns	 input-‐output	 modes	 in	 6me	
	
	
•  	 Singular	 values	 of	 broader	 hierarchical	 dis6nc6ons	

are	 larger	 than	 those	 of	 finer	 dis6nc6ons	

•  Input-‐output	 modes	 correspond	 exactly	 to	 the	
hierarchical	 dis6nc6ons	 in	 the	 underlying	 tree	

0 200 400 600
0

50

100

150

200

t (Epochs)

In
pu

t−
ou

tp
ut

 m
od

e
st

re
ng

th

Simulation
Theory

Figure 3: Close agreement between theoretically predicted
time course and numerical simulations. Simulations were
performed with a dataset sampled from the hierarchical diffu-
sion process described in detail in a later section, with D = 3
hierarchical levels, binary branching, flip probability e = 0.1,
and N = 10,000 sampled features. This data set had 3 unique
singular values. Red traces show ten simulations of the singu-
lar value dynamics of W 32(t)W 21(t) in Eqns. (3)-(4) starting
from different random initializations, and blue traces show
theoretical curves obtained from (8).

As can be seen from Fig. 3, for a0 < s, this function is a
sigmoidal curve that starts at a0 when t = 0, and asymptot-
ically rises to s as t ! •. Thus for small initial conditions
a0

a, the weight trajectory (7) describes an evolving network
whose input-output mapping successively builds up the first
N2 modes of the SVD of S31 in (6). This result is the so-
lution to (3)-(4) for a special class of initial conditions on
the weights W 21 and W 32. However this analytic solution
is a good approximation to the time evolution the network’s
input-output map for random small initial conditions, as con-
firmed in Fig. 3.

Eqns. (7)-(8) reveal a number of important properties of
the learning dynamics. What is the final outcome of learning?
As t ! •, the weight matrices converge to the best rank N2
approximation of S31.

More importantly, what is the timescale of learning? Each
pair of output (ua) and input (va) modes are learned in (7) on
a different time scale, governed by the singular value sa. To
estimate this time scale, we can assume a small initial condi-
tion a0 = e and ask when a(t) in (8) is within e of the final
value s, i.e. a(t) = s� e; then the timescale of learning in the
limit e ! 0 is

t(s,e) = t
s

ln
s
e
. (9)

This is O(t/s) up to a logarithmic factor. Thus the time re-
quired to learn an input-output mode is inversely related to its
statistical strength, quantified through its singular value.

Finally, these dynamics reveal stage-like transitions in
learning performance. Intuitively, this property arises from
the sigmoidal transition in (8) from a state in which the net-
work does not represent a particular input-output relation at

all, to a state in which the network fully incorporates that rela-
tion. To formalize this, we begin with the sigmoidal learning
curve in (8). If we assume the initial strength of the mode a0
satisfies a0 < s/2, where s is its final learned value, we can
define the transition time to be the time at which the mode is
half learned (i.e. a(thalf) = s/2). This yields

thalf =
t
2s

log
✓

s
a0

�1
◆
. (10)

We can then define the transition period ttrans as the time re-
quired for a linear approximation to a(t,s,a0) at thalf to rise
from zero to s. This yields a transition time to go from a state
of no learning to almost full learning given by ttrans = 2t

s .
Thus, by starting with a very small initial condition in the
weights (i.e. a0), it is clear that one can make the ratio
ttrans/thalf arbitrarily small. Hence the learning dynamics
of (3)-(4) can indeed exhibit sharp stage-like transitions con-
sisting of long periods of dormancy ended by an abrupt tran-
sition to mastery. Interestingly, we can prove that single layer
networks are not capable of such stage-like transitions. Thus
their existence is an emergent property of nonlinear learning
dynamics in deep networks with at least one hidden layer, and
does not require nonlinearity in the input-output map of the
network.

Summary of learning dynamics The preceding analyses
have established a number of crucial features of gradient de-
scent learning in a simple linear network, making explicit the
relationship between the statistical structure of training ex-
amples and the dynamics of learning. In particular, for an ar-
bitrary input-output task the network will ultimately come to
represent the closest rank N2 approximation to the full input-
output correlation matrix. Furthermore, the learning dynam-
ics depend crucially on the singular values of the input-output
correlation matrix. Each input-output mode is learned in time
inversely proportional to its associated singular value, yield-
ing the intuitive result that stronger input-output associations
are learned before weaker ones.

The singular values and vectors of
hierarchically generated data

In this section we introduce a hierarchical probabilistic gener-
ative model of items and their attributes that, when sampled,
produces a dataset that can be supplied to our neural network.
Using this, we will be able to explicitly link hierarchical tax-
onomies of categories to the dynamics of network learning.
A key result in the following is that our network must exhibit
progressive differentiation with respect to any of the underly-
ing hierarchical taxonomies allowed by our generative model.

Hierarchical feature vectors from a branching diffusion
process To understand the time course of learning of hier-
archical structure, we propose a simple generative model of
hierarchical data {xµ,yµ}, and compute for this model the sta-
tistical properties (sa,ua,va) which drive learning. We first

Progressive	 differen6a6on	

Student Version of MATLAB

+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 -1 -1 -1 -1

+1 +1 -1 -1 0 0 0 0

0 0 0 0 +1 +1 -1 -1

+1 -1 0 0 0 0 0 0

0 0 +1 -1 0 0 0 0

0 0 0 0 +1 -1 0 0

0 0 0 0 0 0 +1 -1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

M
od

es

Items

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
It

em
s

Items

(a)

(b)

(c)

0.3$

1$

1$

&1$

Figure 4: Statistical structure of hierarchical data. (a) Ex-
ample hierarchical diffusion process with D = 4 levels and
branching factor B = 2. To sample one feature’s value across
items, the root node is randomly set to ±1; next this value dif-
fuses to children nodes, where its sign is flipped with a small
probability e. The leaf node assignments yield the value of
this feature on each item. To generate more features, the pro-
cess is repeated independently N times. (b) Analytically de-
rived input singular vectors (up to a scaling) of the resulting
data, ordered top-to-bottom by singular value. Mode 1 is a
level 0 function on the tree, mode 2 is level 1, 3 and 4 are
level 2, while modes 5 through 8 are level 3. Singular modes
corresponding to broad distinctions (higher levels) have the
largest singular values, and hence will be learned first. (c)
The output covariance of the data consists of hierarchically
organized blocks.

address the output data yµ,µ = 1, . . . ,P. Each yµ is an N-
dimensional feature vector where each feature i in example
µ takes the value yµ

i =±1. The value of each feature i across
all examples arises from a branching diffusion process occur-
ring on a tree (see e.g. Fig. 4A). Each feature i undergoes its
own diffusion process on the tree, independent of any other
feature j. This entire process, described below, yields a hier-
archical structure on the set of examples µ = 1, . . . ,P, which
are in one-to-one correspondence with the leaves of the tree.

The tree has a fixed topology, with D levels indexed by
l = 0, . . . ,D� 1, with Ml total nodes at level l. We take for
simplicity a regular branching structure, so that every node at
level l has exactly Bl descendants. Thus Ml = M0Pl�1

k=0Bl .
The tree has a single root node at the top (M0 = 1), and
again P leaves at the bottom, one per example in the dataset
(MD�1 = P).

Given a single feature component i, its value across P ex-
amples is determined as follows. First draw a random vari-
able h(0) associated with the root node at the top of the tree.
The variable h(0) takes the values ±1 with equal probability
1
2 . Next, for each of the B0 descendants below the root node
at level 1, pick a random variable h(1)

i , for i = 1, . . . ,B0. This
variable h(1)

i takes the value h(0) with probability 1� e and
�h(0) with probability e. The process continues down the
tree: each of Bl�1 nodes at level l with a common ancestor
at level l �1 is assigned its ancestor’s value with probability
1� e, or is assigned the negative of its ancestor’s value with
probability e. Thus the original feature value at the root, h(0),
diffuses down the tree with a small probability e of changing
at each level along any path to a leaf. The final values at the
P leaves constitute the feature values yµ

i for µ = 1, . . . ,P. This
process is repeated independently for N feature components.

In order to understand the dimensions of variation in the
feature vectors, we consider the inner product, or overlap,
between two example feature vectors. This inner product,
normalized by the number of features N, has a well-defined
limit as N ! •. Furthermore, due to the hierarchical diffu-
sive process which generates the data, the normalized inner
product only depends on the level of the tree at which the first
common ancestor of the two leaves associated with the two
examples arises. Therefore we can make the definition

qk =
1
N

N

Â
i=1

yµ1
i yµ2

i , (11)

where again, the first common ancestor of leaves µ1 and µ2
arises at level k. It is possible to explicitly compute qk for the
generative model described above, which yields

qk = (1�4e(1� e))D�1�k. (12)

It is clear that the overlap qk strictly decreases as the level
k of the last common ancestor decreases (i.e. the distance
up the tree to the last common ancestor increases). Thus
pairs of examples with a more recent common ancestor have
stronger overlap than pairs of examples with a more distant

Time	
+	

0	

salmon	

sunfish	

canary	
robin	

daisy	

rose	

oak	
pine	

Progressive	 differen6a6on	

Student Version of MATLAB

+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 -1 -1 -1 -1

+1 +1 -1 -1 0 0 0 0

0 0 0 0 +1 +1 -1 -1

+1 -1 0 0 0 0 0 0

0 0 +1 -1 0 0 0 0

0 0 0 0 +1 -1 0 0

0 0 0 0 0 0 +1 -1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

M
od

es

Items

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

It
em

s

Items

(a)

(b)

(c)

0.3$

1$

1$

&1$

Figure 4: Statistical structure of hierarchical data. (a) Ex-
ample hierarchical diffusion process with D = 4 levels and
branching factor B = 2. To sample one feature’s value across
items, the root node is randomly set to ±1; next this value dif-
fuses to children nodes, where its sign is flipped with a small
probability e. The leaf node assignments yield the value of
this feature on each item. To generate more features, the pro-
cess is repeated independently N times. (b) Analytically de-
rived input singular vectors (up to a scaling) of the resulting
data, ordered top-to-bottom by singular value. Mode 1 is a
level 0 function on the tree, mode 2 is level 1, 3 and 4 are
level 2, while modes 5 through 8 are level 3. Singular modes
corresponding to broad distinctions (higher levels) have the
largest singular values, and hence will be learned first. (c)
The output covariance of the data consists of hierarchically
organized blocks.

address the output data yµ,µ = 1, . . . ,P. Each yµ is an N-
dimensional feature vector where each feature i in example
µ takes the value yµ

i =±1. The value of each feature i across
all examples arises from a branching diffusion process occur-
ring on a tree (see e.g. Fig. 4A). Each feature i undergoes its
own diffusion process on the tree, independent of any other
feature j. This entire process, described below, yields a hier-
archical structure on the set of examples µ = 1, . . . ,P, which
are in one-to-one correspondence with the leaves of the tree.

The tree has a fixed topology, with D levels indexed by
l = 0, . . . ,D� 1, with Ml total nodes at level l. We take for
simplicity a regular branching structure, so that every node at
level l has exactly Bl descendants. Thus Ml = M0Pl�1

k=0Bl .
The tree has a single root node at the top (M0 = 1), and
again P leaves at the bottom, one per example in the dataset
(MD�1 = P).

Given a single feature component i, its value across P ex-
amples is determined as follows. First draw a random vari-
able h(0) associated with the root node at the top of the tree.
The variable h(0) takes the values ±1 with equal probability
1
2 . Next, for each of the B0 descendants below the root node
at level 1, pick a random variable h(1)

i , for i = 1, . . . ,B0. This
variable h(1)

i takes the value h(0) with probability 1� e and
�h(0) with probability e. The process continues down the
tree: each of Bl�1 nodes at level l with a common ancestor
at level l �1 is assigned its ancestor’s value with probability
1� e, or is assigned the negative of its ancestor’s value with
probability e. Thus the original feature value at the root, h(0),
diffuses down the tree with a small probability e of changing
at each level along any path to a leaf. The final values at the
P leaves constitute the feature values yµ

i for µ = 1, . . . ,P. This
process is repeated independently for N feature components.

In order to understand the dimensions of variation in the
feature vectors, we consider the inner product, or overlap,
between two example feature vectors. This inner product,
normalized by the number of features N, has a well-defined
limit as N ! •. Furthermore, due to the hierarchical diffu-
sive process which generates the data, the normalized inner
product only depends on the level of the tree at which the first
common ancestor of the two leaves associated with the two
examples arises. Therefore we can make the definition

qk =
1
N

N

Â
i=1

yµ1
i yµ2

i , (11)

where again, the first common ancestor of leaves µ1 and µ2
arises at level k. It is possible to explicitly compute qk for the
generative model described above, which yields

qk = (1�4e(1� e))D�1�k. (12)

It is clear that the overlap qk strictly decreases as the level
k of the last common ancestor decreases (i.e. the distance
up the tree to the last common ancestor increases). Thus
pairs of examples with a more recent common ancestor have
stronger overlap than pairs of examples with a more distant

Time	
+	

0	

salmon	

sunfish	

canary	
robin	

daisy	

rose	

oak	
pine	

CHAPTER 3. LATENT HIERARCHIES IN DISTRIBUTED REPRESENTATIONS 63

Fish

Bird

ANIMAL

PLANT

Tree

Flower

pine

sunfish

salmon

canary

robin

daisy

rose

oak

Figure 3.9: Learned distribution of predicates in representation space. The shading is illustrative, and suggests
characteristics of the regions of the representation space to which particular predicates may apply. More general
names apply to items in a broader region of the space.Rogers	 &	 McClelland,	 2004	

Simula1on	 Analy1cs	

Conclusion	

•  Progressive	 differen1a1on	 of	 hierarchical	
structure	 is	 a	 general	 feature	 of	 learning	 in	
deep	 neural	 networks	

•  Deep	 (but	 not	 shallow)	 networks	 exhibit	
stage-‐like	 transi1ons	 during	 learning	

•  Second	 order	 sta6s6cs	 of	 data	 are	 sufficient	
to	 drive	 hierarchical	 differen6a6on	 	

Other	 work	

Can	 analy6cally	 understand	 design	 principles	 governing	 many	
phenomena	 previously	 simulated	
	
•  Illusory	 correla6ons	 early	 in	 learning	
•  Familiarity	 and	 typicality	 effects	
•  Induc6ve	 property	 judgments	
•  ‘Dis6nc6ve’	 feature	 effects	
	

Our	 framework	 connects	 probabilis1c	 models	 and	 neural	
networks,	 analy6cally	 linking	 structured	 environments	 to	
learning	 dynamics.	
	

•  Basic	 level	 effects	
•  Category	 coherence	
•  Perceptual	 correla6ons	 	
•  Prac6ce	 effects	

Why	 are	 some	 proper6es	 dis6nc6ve,	 or	 learned	 faster?	

Σ31 U S VT

Input-output
correlation matrix

Feature synthesizer
vectors Singular values Object analyzer

vectors

=

Items

Pr
op

er
tie

s

Items

=

Modes

M
od

es

C S O R 1 2 3

P
B

S
F

M

C S O R
Modes

1 2 3

M
od

es

Pr
op

er
tie

s

P
B

S
F

M
 1	

-‐1	

0	

Items:	 Canary,	 Salmon,	 Oak,	 Rose	
Proper6es:	 Move,	 Fly,	 Swim,	 Bark,	 Petals	

A property = vector across items!
An object analyzer = vector across items!
!
If a property is similar to an object analyzer with large!
singular value then (and only then) will it be learned quickly.!
!
That property is distinctive for the category associated with !
that object analyzer (i.e. move for animals versus plant) !

Why	 are	 some	 items	 more	 typical	 members	 of	 a	 category?	
(i.e.	 sparrow	 versus	 ostrich	 for	 the	 category	 bird)	

Σ31 U S VT

Input-output
correlation matrix

Feature synthesizer
vectors Singular values Object analyzer

vectors

=

Items

Pr
op

er
tie

s

Items

=

Modes

M
od

es

C S O R 1 2 3

P
B

S
F

M

C S O R
Modes

1 2 3

M
od

es

Pr
op

er
tie

s

P
B

S
F

M
 1	

-‐1	

0	

Items:	 Canary,	 Salmon,	 Oak,	 Rose	
Proper6es:	 Move,	 Fly,	 Swim,	 Bark,	 Petals	

An item = vector across properties!
A category feature synthesizer = vector across properties!
!
If an item is similar to the feature synthesizer for a category, then it is a
typical member of that category. !
!
Category membership verification easier for typical versus atypical items. !

How	 is	 induc6ve	 generaliza6on	 achieved	 by	 neural	 networks?	
Inferring	 familiar	 proper6es	 of	 a	 novel	 item.	

Σ31 U S VT

Input-output
correlation matrix

Feature synthesizer
vectors Singular values Object analyzer

vectors

=

Given a new partially described object = vector across subset of properties!
What are the rest of the object’s properties?!
!
i.e. a “blick” has feathers. Does it fly? Sing?!

Partial property vector !

Neural network internal
representation!

Filled in property vector!

UT

U

How	 is	 induc6ve	 generaliza6on	 achieved	 by	 neural	 networks?	
Inferring	 which	 familiar	 objects	 have	 a	 novel	 property.	 	

Σ31 U S VT

Input-output
correlation matrix

Feature synthesizer
vectors Singular values Object analyzer

vectors

=

Given a new property = vector across subset of items!
Which other items have this property?!
!
i.e. A bird has gene X. Does a crocodile? A dog?!

Partial item vector !

Neural network internal
representation!

Filled in item vector!

VT

V

What	 is	 a	 category	 and	 what	 makes	 it	 “coherent?”	

i.e. “incoherent” = the set of all things that are blue!
i.e. “coherent” = the set of all things that are dogs!

A simple proposal: A category is a subset of objects sharing !
a subset of features important for that category. !
!
A conceptual Gordian knot bedeviling the field of category learning in
psychology: How does one learn a category?!

Identify the objects that !
belong to the category!

But must know which features!
 are important for the category!

 Identify the features that !
are important for the category!

But must know which objects
belong to the category!

Some categories make
more “sense”, or are
more “coherent” than
others.!

What	 is	 a	 category	 and	 what	 makes	 it	 “coherent?”	
A simple proposal: A category is a subset of objects sharing !
a subset of features important for that category. !
!
A conceptual Gordian knot bedeviling the field of category learning in
psychology: How does one learn a category?!

What	 is	 a	 category	 and	 what	 makes	 it	 “coherent?”	
A simple proposal: A category is a subset of objects sharing !
a subset of features important for that category. !
!
A conceptual Gordian knot bedeviling the field of category learning in
psychology: How does one learn a category?!

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

Objects	 Features	

What	 is	 a	 category	 and	 what	 makes	 it	 “coherent?”	
A simple proposal: A category is a subset of objects sharing !
a subset of features important for that category. !
!
A conceptual Gordian knot bedeviling the field of category learning in
psychology: How does one learn a category?!

What	 is	 a	 category	 and	 what	 makes	 it	 “coherent?”	
A simple proposal: A category is a subset of objects sharing !
a subset of features important for that category. !
!
A conceptual Gordian knot bedeviling the field of category learning in
psychology: How does one learn a category?!

What	 is	 a	 category	 and	 what	 makes	 it	 “coherent?”	
A simple proposal: A category is a subset of objects sharing !
a subset of features important for that category. !
!
A conceptual Gordian knot bedeviling the field of category learning in
psychology: How does one learn a category?!

What	 is	 a	 category	 and	 what	 makes	 it	 “coherent?”	

If an object is in a category and a feature is important for that category, then!
the probability this object has that feature is p.!
!
Otherwise, the probability any other object has any feature is q < p. !
!
For what values of No, Ko, Nf, Kf , p and q !
can a category be learned?!
!
!
How fast can it be learned? Learning time is!
 inversely related.!

p� qp
q(1� q)

K
o

K
f

�
p

N
o

N
f

Toy model for statistical structure !
of the world: !
!
No = Total number of objects !
Nf = Total number of features!
!
Ko = Number of objects in a category!
Kf = Number of features important !

What	 is	 a	 category	 and	 what	 makes	 it	 “coherent?”	

i.e. “incoherent” = the set of all things that are blue!
i.e. “coherent” = the set of all things that are dogs!
!
A natural definition category coherence !
is the singular value associated with!
object analyzers and feature synthesizers !
!
!
!
For hierarchically structured data:!
!
!
Coherence = similarity of descendants – similarity to nearest out-category !
!
Mathematical Theorem: Coherent categories are learned faster!!
!
The category coherence of any one category is an emergent property of the
entire statistical structure of the world: in particular the structure of individual
categories and their relations to each other!!

…
Branching factor B0

…

B1

Item	 1	 Item	 2	 Item	 P	

Towards	 a	 theory	 of	 deep	 learning	 dynamics	
	

– The	 dynamics	 of	 learning	 in	 deep	 networks	 is	 non-‐
trivial	 –	 i.e.	 plateaus	 and	 sudden	 transitions	 to	
better	 performance	

– How	 does	 training	 time	 scale	 with	 depth?	

– How	 should	 the	 learning	 rate	 scale	 with	 depth?	

– How	 do	 different	 weight	 initializations	 impact	
learning	 speed?	

– We	 will	 Aind	 that	 weight	 initializations	 with	 critical	
dynamics	 can	 aid	 deep	 learning	 and	 generalization.	

	

Nontrivial	 learning	 dynamics	
Plateaus	 and	 sudden	

transitions	
Faster	 convergence	 from	

pretrained	 initial	 conditions	

0 50 100 150 200 250 300 350 400 450 500
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 104

Epochs
Tr

ai
ni

ng
 e

rro
r

Student Version of MATLAB

Random	 ICs	
Pretrained	

Tr
ai
ni
ng
	 e
rr
or
	

Epochs	

0 50 100 150 200 250 300 350 400 450 500
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 104

Epochs

Tr
ai

ni
ng

 e
rro

r

Student Version of MATLAB

Tr
ai
ni
ng
	 e
rr
or
	

Epochs	

•  Build	 intui6ons	 for	 nonlinear	 case	 by	 analyzing	 linear	 case	

Deeper	 networks	
•  Can	 generalize	 to	 arbitrary	 depth	 network	

•  Each	 effective	 singular	 value	 a	 evolves	
independently	

	
•  In	 deep	 networks,	 combined	 gradient	 is	

τ
d
dt
a = (Nl −1)a

2−2 (Nl−1)(s− a)
τ	 1/Learning	

rate	

s	 Singular	 value	

Nl	 #	 layers	

O Nl τ()

w1	 w2	 wNl-‐1	

a =
Nl�1Y

i=1

Wi

Deep	 linear	 learning	 speed	
•  Intuition	 (see	 paper	 for	 details):	
	

– Gradient	 norm	

– Learning	 rate	

– Learning	 time	

•  Deep	 learning	 can	 be	 fast	 with	 the	 right	 ICs.	

O Nl()

O 1 Nl()

O 1()

(Nl	 =	 #	 layers)	

Saxe,	 McClelland,	 Ganguli	 ICLR	 2014	

MNIST	 learning	 speeds	

•  Trained	 deep	 linear	 nets	 on	 MNIST	

•  Depths	 ranging	 from	 3	 to	 100	
•  1000	 hidden	 units/layer	 (overcomplete)	
•  Decoupled	 initial	 conditions	 with	 Aixed	 initial	 mode	
strength	

•  Batch	 gradient	 descent	 on	 squared	 error	
•  Optimized	 learning	 rates	 for	 each	 depth	

•  Calculated	 epoch	 at	 which	 error	 falls	 below	 Aixed	
threshold	

MNIST	 depth	 dependence	

0 50 100
0

50

100

150

200

250

Nl (Number of layers)

Le
ar

ni
ng

 ti
m

e
(E

po
ch

s)

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2
x 10−4

O
pt

im
al

 le
ar

ni
ng

 ra
te

Nl (Number of layers)

Time	 to	 criterion	 Op1mal	 learning	 rate	

Depth	 Depth	

Deep	 linear	 networks	

•  Deep	 learning	 can	 be	 fast	 with	 decoupled	 ICs	 and	 O(1)	 initial	 mode	 strength.	
How	 to	 7ind	 these?	

•  Answer:	 	 Pre-‐training	 and	 random	 orthogonal	 initializations	 can	 Aind	 these	
special	 initial	 conditions	 that	 allow	 depth	 independent	 training	 times!!	

•  But	 scaled	 random	 Gaussian	 initial	 conditions	 on	 weights	 cannot.	 	

Depth-‐independent	 training	 time	

Time	 to	 criterion	 Op1mal	 learning	 rate	

•  Deep	 linear	 networks	 on	 MNIST	
•  Scaled	 random	 Gaussian	 ini6aliza6on	 (Glorot	 &	 Bengio,	 2010)	

•  Pretrained	 and	 orthogonal	 have	 fast	 depth-‐independent	
training	 6mes!	

Random	 vs	 orthogonal	
•  Gaussian	 preserves	 norm	 of	 random	 vector	 on	 average	

•  Attenuates	 on	 subspace	 of	 high	 dimension	
•  Ampli6ies	 on	 subspace	 of	 low	 dimension	

1	 layer	 net	 5	 layer	 net	 100	 layer	 net	

Singular	 values	 of	

Fr
eq

ue
nc
y	

Wtot = Wi

i=1

Nl−1

∏

Random	 vs	 orthogonal	

1	 layer	 net	 5	 layer	 net	 100	 layer	 net	

Singular	 values	 of	

Fr
eq

ue
nc
y	

Wtot = Wi

i=1

Nl−1

∏

All	 singular	 values	 of	 Wtot =1

•  Glorot	 preserves	 norm	 of	 random	 vector	 on	 average	

•  Orthogonal	 preserves	 norm	 of	 all	 vectors	 exactly	

Deeper	 network	 learning	 dynamics	
•  Jacobian	 that	 back-‐propagates	 gradients	 can	 explode	 or	
decay	

	 x ∈ RN1y ∈ RND+1

.	 .	 .	

h2 ∈ RN3
x	

W 1W 2WD

f (W 1x)f (WDhD)

f (x)

f (W 2h1)f (WD−1hD−1)

Extensive	 Criticality	 yields	 	
Dynamical	 Isometry	 in	 nonlinear	 nets	
Suggests	 initialization	 for	 nonlinear	 nets	
•  near-‐isometry	 on	 subspace	 of	 large	 dimension	
•  Singular	 values	 of	 end-‐to-‐end	 Jacobian	
	 	 	 	 	 concentrated	 around	 1.	 	
Scale	 orthogonal	 matrices	 by	 gain	 g	 to	 counteract	 contractive	
nonlinearity	
	
	
	
	
Just	 beyond	 edge	 of	 chaos	 (g>1)	 may	 be	 good	 initialization	
	

0 1 2 3
x 10−5

0

50

100
q = 0.2

g
=

0.
9

0 2 4 6
x 10−3

0

20

40

60

g
=

0.
95

0 0.1 0.2 0.3 0.4
0

10

20

30

40

g
=

1

0 0.5 1 1.5 2
0

50

100

g
=

1.
05

0 2 4 6
0

100

200

300

400

g
=

1.
1

0 1 2 3
x 10−5

0

10

20

30

40
q = 1

0 1 2 3 4
x 10−3

0

10

20

30

40

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

0 1 2 3 4
0

100

200

300

400

0 1 2 3
x 10−5

0

10

20

30

40
q = 4

0 1 2 3 4
x 10−3

0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

150

0 1 2 3
0

200

400

600

have shown that for linear networks, orthogonal initializations achieve exact dynamical isometry with all
singular values at 1, while greedy pre-training achieves it approximately.

We note that the discrepancy in learning times between the scaled Gaussian initialization and the orthogonal
or pre-training initializations is modest for the depths of around 6 used in large scale applications, but is
magnified at larger depths (Fig. 6A left). This may explain the modest improvement in learning times with
greedy pre-training versus random scaled Gaussian initializations observed in applications (see discussion in
Supplementary Appendix D). We predict that this modest improvement will be magnified at higher depths,
even in nonlinear networks. Finally, we note that in recurrent networks, which can be thought of as infinitely
deep feed-forward networks with tied weights, a very promising approach is a modification to the training
objective that partially promotes dynamical isometry for the set of gradients currently being back-propagated
[24].

4 Achieving approximate dynamical isometry in nonlinear networks

We have shown above that deep random orthogonal linear networks achieve perfect dynamical isometry.
Here we show that nonlinear versions of these networks can also achieve good dynamical isometry proper-
ties. Consider the nonlinear feedforward dynamics

xl+1
i

=

X

j

gW (l+1,l)
ij

�(xl

j

), (20)

where xl

i

denotes the activity of neuron i in layer l, W (l+1,l)
ij

is a random orthogonal connectivity matrix from
layer l to l + 1, g is a scalar gain factor, and �(x) is any nonlinearity that saturates as x ! ±1. We show
in Supplementary appendix G that there exists a critical value g

c

of the gain g such that if g < g
c

, activity
will decay away to zero as it propagates through the layers, while if g > g

c

, the strong linear positive gain
will combat the damping due to the saturating nonlinearity, and activity will propagate indefinitely without
decay, no matter how deep the network is. When the nonlinearity is odd (�(x) = ��(�x)), so that the mean
activity in each layer is approximately 0, these dynamical properties can be quantitatively captured by the
neural population variance in layer l,

ql ⌘ 1

N

NX

i=1

(xl

i

)

2. (21)

Thus lim

l!1 ql ! 0 for g < g
c

and lim

l!1 ql ! q1(g) > 0 for g > g
c

. When �(x) = tanh(x), we
compute g

c

= 1 and numerically compute q1(g) in Fig. 8 in Supplementary appendix G. Thus these non-
linear feedforward networks exhibit a phase-transition at the critical gain; above the critical gain, infinitely
deep networks exhibit chaotic percolating activity propagation, so we call the critical gain g

c

the edge of
chaos, in analogy with terminology for recurrent networks.

Now we are interested in how errors at the final layer N
l

backpropagate back to earlier layers, and whether
or not these gradients explode or decay with depth. To quantify this, for simplicity we consider the end to
end Jacobian

JNl,1
ij

(xNl
) ⌘ @xNl

i

@x1
j

����
x

Nl

, (22)

which captures how input perturbations propagate to the output. If the singular value distribution of this
Jacobian is well-behaved, with few extremely large or small singular values, then the backpropagation of
gradients will also be well-behaved, and exhibit little explosion or decay. The Jacobian is evaluated at a
particular point xNl in the space of output layer activations, and this point is in turn obtained by iterating
(20) starting from an initial input layer activation vector x1. Thus the singular value distribution of the

12

0 1 2 3
x 10−5

0

50

100
q = 0.2

g
=

0.
9

0 2 4 6
x 10−3

0

20

40

60

g
=

0.
95

0 0.1 0.2 0.3 0.4
0

10

20

30

40

g
=

1

0 0.5 1 1.5 2
0

50

100

g
=

1.
05

0 2 4 6
0

100

200

300

400

g
=

1.
1

0 1 2 3
x 10−5

0

10

20

30

40
q = 1

0 1 2 3 4
x 10−3

0

10

20

30

40

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

0 1 2 3 4
0

100

200

300

400

0 1 2 3
x 10−5

0

10

20

30

40
q = 4

0 1 2 3 4
x 10−3

0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

150

0 1 2 3
0

200

400

600

0 1 2 3
x 10−5

0

50

100
q = 0.2

g
=

0.
9

0 2 4 6
x 10−3

0

20

40

60

g
=

0.
95

0 0.1 0.2 0.3 0.4
0

10

20

30

40

g
=

1

0 0.5 1 1.5 2
0

50

100

g
=

1.
05

0 2 4 6
0

100

200

300

400

g
=

1.
1

0 1 2 3
x 10−5

0

10

20

30

40
q = 1

0 1 2 3 4
x 10−3

0

10

20

30

40

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

0 1 2 3 4
0

100

200

300

400

0 1 2 3
x 10−5

0

10

20

30

40
q = 4

0 1 2 3 4
x 10−3

0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

150

0 1 2 3
0

200

400

600

0 1 2 3
x 10−5

0

50

100
q = 0.2

g
=

0.
9

0 2 4 6
x 10−3

0

20

40

60

g
=

0.
95

0 0.1 0.2 0.3 0.4
0

10

20

30

40

g
=

1

0 0.5 1 1.5 2
0

50

100

g
=

1.
05

0 2 4 6
0

100

200

300

400

g
=

1.
1

0 1 2 3
x 10−5

0

10

20

30

40
q = 1

0 1 2 3 4
x 10−3

0

10

20

30

40

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

0 1 2 3 4
0

100

200

300

400

0 1 2 3
x 10−5

0

10

20

30

40
q = 4

0 1 2 3 4
x 10−3

0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

150

0 1 2 3
0

200

400

600

0 1 2 3
x 10−5

0

50

100
q = 0.2

g
=

0.
9

0 2 4 6
x 10−3

0

20

40

60

g
=

0.
95

0 0.1 0.2 0.3 0.4
0

10

20

30

40

g
=

1

0 0.5 1 1.5 2
0

50

100

g
=

1.
05

0 2 4 6
0

100

200

300

400

g
=

1.
1

0 1 2 3
x 10−5

0

10

20

30

40
q = 1

0 1 2 3 4
x 10−3

0

10

20

30

40

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

0 1 2 3 4
0

100

200

300

400

0 1 2 3
x 10−5

0

10

20

30

40
q = 4

0 1 2 3 4
x 10−3

0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

40

0 0.5 1 1.5
0

50

100

150

0 1 2 3
0

200

400

600

g=0.9	 g=0.95	 g=1	 g=1.05	 g=1.1	

0	 3e-‐5	 0	 6e-‐5	 0	 0.4	 0	 2	 0	 6	

Fr
eq

ue
nc
y	

Gain	

Singular	 values	
of	 J	

•  g>1	 speeds	 up	 30	 layer	 nonlinear	 nets	

•  Dynamic	 isometry	 reduces	 test	 error	 by	 1.4%	 pts	

Dynamic	 Isometry	 Initialization	

MNIST	 Classifica6on	 error,	 epoch	 1500	 Train	 	
Error	 (%)	

Test	 	
Error	 (%)	

Gaussian	 (g=1,	 random)	 2.3	 3.4	

g=1.1,	 random	 1.5	 3.0	

g=1,	 orthogonal	 2.8	 3.5	

Dynamic	 Isometry	 (g=1.1,	 orthogonal)	 0.095	 2.1	

•  Tanh	 network,	 sonmax	 output,	 500	 units/layer	
•  No	 regulariza6on	 (weight	 decay,	 sparsity,	 dropout,	 etc)	

Summary	
•  Deep	 linear	 nets	 have	 nontrivial	 nonlinear	 learning	 dynamics.	

•  Learning	 time	 inversely	 proportional	 to	 strength	 of	 input-‐output	
correlations.	

•  With	 the	 right	 initial	 weight	 conditions,	 number	 of	 training	 epochs	
can	 remain	 Ainite	 as	 depth	 increases.	 	

•  Dynamically	 critical	 networks	 just	 beyond	 the	 edge	 of	 chaos	 enjoy	
depth-‐independent	 learning	 times.	

Beyond	 learning:	 criticality	 and	
generalization	

•  Deep	 networks	 +	 large	 gain	 factor	 g	 train	 exceptionally	 quickly	 	
•  But	 large	 g	 incurs	 heavy	 cost	 in	 generalization	 performance	

	
•  Suggests	 small	 initial	 weights	 regularize	 towards	 smoother	 functions	

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

g

er
ro

r

train
test

Student Version of MATLAB

M
N
IS
T	
Er
ro
r	

Gain	 g	

Test	 error	

Train	 error	

1	 1.4	 1.8	

Some of the theoretical puzzles of deep learning

Generalizability: what principles do deep networks use to place
probability / make decisions in regions of input space with little data?

Trainability: if a good network solution exists with small training error,
how do we find it? And what makes a learning problem difficult?

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Exponential expressivity in deep neural networks through transient chaos, B. Poole, S. Lahiri,M. Raghu,
J. Sohl-Dickstein, S. Ganguli, NIPS 2016.

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions,
Physical Review X, 2016.

Expressiveness, Memorization, Stability, and Flat versus sharp minima.

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks ICLR 2014.

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization, NIPS 2014.

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks,
CogSci 2013.

High dimensional nonconvex optimization

It is often thought that local minima at high error stand as
as a major impediment to non-convex optimization.

In random non-convex error surfaces over
high dimensional spaces, local minima at high
error are exponentially rare in the dimensionality.

Instead saddle points proliferate.

We developed an algorithm that rapidly escapes saddle points
in high dimensional spaces.

Identifying and attacking the saddle point problem in high dimensional non-convex optimization.
Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, Yoshua Bengio. NIPS 2014

A. Choromanska, M. B. Henaff, M. Mathieu, G. Ben Arous, Y. LeCun, The Loss Surfaces of Multilayer Networks,
in the International Conference on Artificial Intelligence and Statistics (AISTATS), 2015 pdf

General properties of error landscapes in
high dimensions

From statistical physics:

Consider a random Gaussian error
landscape over N variables.

Let x be a critical point.
Let E be its error level.
Let f be the fraction of negative curvature
directions.

Bray and Dean, Physical Review Letters, 2007
E

f

Properties of Error Landscapes on the!
Synaptic Weight Space of a Deep Neural Net

Qualitatively consistent with the
statistical physics theory of random error landscapes

How to descend saddle points

Newton’s Method

Saddle Free Newton’s Method

Intuition: saddle points attract Newton’s method, but
 repel saddle free Newton’s method.

Derivation: minimize a linear approximation to f(x) within a trust region
 in which the linear and quadratic approximations agree

�x = �H�1 rf(x)

�x = �|H|�1 rf(x)

Performance of saddle free Newton in
learning deep neural networks.

When stochastic gradient descent appears to plateau, switching to saddle
Free newton escapes the plateau.

Some of the theoretical puzzles of deep learning

Generalizability: what principles do deep networks use to place
probability / make decisions in regions of input space with little data?

Trainability: if a good network solution exists with small training error,
how do we find it? And what makes a learning problem difficult?

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Exponential expressivity in deep neural networks through transient chaos, B. Poole, S. Lahiri,M. Raghu,
J. Sohl-Dickstein, S. Ganguli, under review, NIPS 2016.

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions,
Physical Review X, 2016.

Expressiveness, Memorization, Stability, and Flat versus sharp minima.

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks ICLR 2014.

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization, NIPS 2014.

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks,
CogSci 2013.

 A theory of deep neural expressivity
 through transient chaos

Stanford Google

Ben Poole
 Jascha
Sohl-Dickstein

 Subhaneil
 Lahiri

 Maithra
 Raghu

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Exponential expressivity in deep neural networks through transient chaos, B. Poole, S. Lahiri,M. Raghu,
J. Sohl-Dickstein, S. Ganguli, NIPS 2016.

On the expressive power of deep neural networks, M.Raghu, B. Poole,J. Kleinberg, J. Sohl-Dickstein, S.
Ganguli, under review, ICML 2017.

 Seminal works on the expressive power of depth

Overall idea: there exist certain (special?) functions that can be computed:

 a) efficiently using a deep network (poly # of neurons in input dimension)

 b) but not by a shallow network (requires exponential # of neurons)

Intellectual traditions in boolean circuit theory: parity function is such a
function for boolean circuits.

Networks with one hidden layer are universal function approximators.

So why do we need depth?

Universal function approximation theorems yield no guarantees on the size
of the hidden layer needed to approximate a function well.

 Seminal works on the expressive power of depth

 Nonlinearity Measure of Functional Complexity

 Rectified Linear Unit (ReLu) Number of linear regions

There exists a function computable by a deep network where the number
of linear regions is exponential in the depth.

To approximate this function with a shallow network, one would require
exponentially many more neurons.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio.
On the number of linear regions of deep neural networks, NIPS 2014

 Seminal works on the expressive power of depth

 Nonlinearity Measure of Functional Complexity

 Sum-product network Number of monomials

There exists a function computable by a deep network where the number
of unique monomials is exponential in the depth.

To approximate this function with a shallow network, one would require
exponentially many more neurons.

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks, NIPS 2011.

 Questions

How natural are these functions from the perspective of AI?

Are such functions rare curiosities?

Or is this phenomenon much more generic than these specific examples?

In some sense, is any function computed by a generic deep network
not efficiently computable by a shallow network?

If so we would like a theory of deep neural expressivity that demonstrates
this for
 1) Arbitrary nonlinearities

 2) A natural, general measure of functional complexity.

 Limitations of prior work

Theoretical technique Nonlinearity Measure of Functional
 Complexity

Combinatorics/ ReLU Number of linear regions
Hyperplane Arrangements

Polynomial expansion Sum-product Number of monomials

Algebraic topology Pfaffian Sum of betti numbers

Riemannian geometry + Arbitrary Extrinsic
Dynamical mean field theory Curvature

We will show that even in generic, random deep neural networks, measures
of functional curvature grow exponentially with depth but not width!

More over the origins of this exponential growth can be traced to chaos theory.

Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A comparison between
shallow and deep architectures. Neural Networks and Learning Systems, IEEE Transactions on, 2014.

ier

 Another perspective on the advantage of depth: disentangling

How can we mathematically formalize the notion of disentangling
in deep networks?

How do we use this mathematical formalization to quantitatively assess the
disentangling power of deep versus shallow networks?

We will show that deep networks can disentangle manifolds whose
curvature grows exponentially with depth!

A maximum entropy ensemble of deep random networks

Structure: i.i.d. random Gaussian weights and biases:

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)

x

l
= �(hl

)

h

l
= W

l
x

l�1
+ b

l

Wl
ij N

✓
0,

�2
w

N l�1

◆

bl
i N (0,�2

b)

 Emergent, deterministic signal propagation
 in random neural networks

Question: how do simple input manifolds propagate through the layers?

A single point: When does its length grow or shrink and how fast?

A pair of points: Do they become more similar or more different, and
 how fast?

A smooth manifold: How does its curvature and volume change?

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)

x

l
= �(hl

)

h

l
= W

l
x

l�1
+ b

l

Propagation of a single point through a deep network

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)

x

l
= �(hl

)

h

l
= W

l
x

l�1
+ b

l

hl = Wl �(hl�1) + bl ql =
1

Nl

NlX

i=1

(hl
i)

2

ql = V(ql�1 |�w,�b) ⌘ �2
w

Z
Dz �

⇣p
ql�1z

⌘2
+ �2

b

A recursion relation for the length of a point as it propagates through the network

Propagation of a single point through a deep network

�b = 0.3

Propagation of a single point through a deep network

�w < 1 �b = 0 : ql ! 0

�w > 1 �b = 0 or �b 6= 0 : ql ! q⇤

 Propagation of two points through a deep network

qlab =
1

Nl

NlX

i=1

h

l
i(x

0,a)hl
i(x

0,b) a, b 2 {1, 2}.

The geometry of two points in a hidden layer l is captured
by the two by two matrix of inner products:

cl12 =
ql12p

ql11
p
ql22

Of particular interest: the correlation
coefficient or cosine of the angle
between the two points:

x

0,1

x

0,2

 A theory of correlation propagation in a deep network

qlab =
1

Nl

NlX

i=1

h

l
i(x

0,a)hl
i(x

0,b) a, b 2 {1, 2}.The geometry of two points:

cl12 =
ql12p

ql11
p
ql22

Correlation coefficient between two points:

ql12 = C(cl�1
12 , ql�1

11 , ql�1
22 |�ww,�b) ⌘ �2

w

Z
Dz1 Dz2 � (u1)� (u2) + �2

b ,

u1 =
q

ql�1
11 z1, u2 =

q
ql�1
22

cl�1
12 z1 +

q
1� (cl�1

12)2z2

�
,

A recursion relation for the correlation coeff. between two points in a deep net!

x

0,1

x

0,2

 Propagation of correlations through a deep network

�b = 0.3

cl12 =
1

q⇤
C(cl�1

12 , q⇤, q⇤ |�w,�b)

�1 ⌘ @cl12
@cl�1

12

�����
c=1

= �2
w

Z
Dz

⇥
�0 �pq⇤z

�⇤2 Interpretation: χ1 is a
multiplicative stretch factor:

 χ1 < 1 : nearby points come closer together
 χ1 > 1 : nearby points are driven apart

 Propagation of two points through a deep network

Small �w relative to �b : �1 < 1 cl12 ! 1

Intermediate �w relative to �b : �1 > 1 cl12 ! c⇤

Large �w relative to �b : �1 > 1 cl12 ! 0

 Propagation of a manifold through a deep network

The geometry of the manifold is captured by the similarity matrix -
How similar two points are in internal representation space):

Or autocorrelation function:

x

0(✓)

ql(✓1, ✓2) =
1

Nl

NlX

i=1

h

l
i[x

0(✓1)]h
l
i[x

0(✓2)]

ql(�✓) =

Z
d✓ ql(✓, ✓ +�✓)

 Propagation of a manifold through a deep network

h1

(✓) =
p

N1q⇤
⇥
u0

cos(✓) + u1
sin(✓)

⇤ A great circle
input manifold

 Propagation of a manifold through a deep network

 Riemannian geometry I: Euclidean length

✓

h(✓)

gE(✓) =
@h(✓)

@✓
· @h(✓)

@✓

Metric on manifold coordinate θ
induced by Euclidean metric in
internal representation space h.

@h(✓)

@✓

dLE =
q

gE(✓)d✓

Length element: if one moves from
Θ  to Θ+ dΘ along the manifold,
then one moves a distance dLE

in internal representation space

Riemannian geometry II: Extrinsic Gaussian Curvature

h(✓)

v(✓) =
@h(✓)

@✓

a(✓) =
@v(✓)

@✓

Point on the curve

Tangent or velocity
vector

Acceleration vector

The velocity and acceleration vector span a 2 dimensional plane in N dim space.

Within this plane, there is a unique circle that touches the curve at h(θ), with the
same velocity and acceleration.

The Gaussian curvature κ(θ) is the inverse of the radius of this circle.

(✓) =

s
(v · v)(a · a)� (v · a)2

(v · v)3

 Riemannian geometry III:
 The Gauss map and Grassmannian length

✓
v̂(✓) 2 SN�1

A point on
the curve

The unit
tangent vector
at that point

Metric on manifold coordinate θ
induced by metric on the Grassmannian:
how quickly unit tangent vector changes

Length element: if one moves from
Θ  to Θ+ dΘ along the manifold,
then one moves a distance dLG

Along the Grassmanian

gG(✓) =
@v̂(✓)

@✓
· @v̂(✓)

@✓

dLG =
q

gG(✓)d✓

gG(✓) = (✓)2gE(✓) Grassmannian length, Gaussian curvature
and Euclidean length

 An example: the great circle

A great circle
input manifold

gE(✓) = Nq

LE = 2⇡
p

Nq

(✓) = 1/
p

Nq gG(✓) = 1

LG = 2⇡

Euclidean
 length

Gaussian
Curvature

Grassmannian
 Length

Behavior under isotropic linear expansion via multiplicative stretch χ1:

h1
(✓) =

p
Nq

⇥
u0

cos(✓) + u1
sin(✓)

⇤

LG ! LG

Increase
 length

 Decrease
Curvature

Remain
Invariant

LE ! p
�1 LE ! 1

p
�1

 χ1 < 1

 χ1 > 1

Contraction Increase Constant

Expansion Decrease Constant

 Theory of curvature propagation in deep networks

�2 = �2
w

Z
Dz

⇥
�00 �pq⇤z

�⇤2

�1 = �2
w

Z
Dz

⇥
�0 �pq⇤z

�⇤2ḡE,l = �1 ḡ
E,l�1

(̄l)2 = 3
�2

�2
1

+
1

�1
(̄l�1)2

ḡE,1 = q⇤

(̄1)2 =
1

q⇤

Ordered: χ1 < 1

Chaotic: χ1 > 1

 Local
Stretch

Gaussian
Curvature

Grassmannian
 Length

Contraction Explosion Constant

Expansion Attentuation + Exponential
 Addition Growth

 Modification of existing curvature due to stretch

 Addition of new curvature due to nonlinearity

 Curvature propagation: theory and experiment

Unlike linear expansion, deep neural signal propagation can:

 1) exponentially expand length,
 2) without diluting Gaussian curvature,
 3) thereby yielding exponential growth of Grassmannian length.

As a result, the circle will become space filling as it winds around at
a constant rate of curvature to explore many dimensions!

 Exponential expressivity is not achievable by shallow nets

 N1

x

0(✓)

 Boundary disentangling: theory

How can we mathematically formalize the notion of disentangling
in deep networks?

How do we use this mathematical formalization to quantitatively assess the
disentangling power of deep versus shallow networks?

 Boundary disentangling: theory

y = sgn(� · xD � �0) A linear classifier in the top layer

(� · xD � �0) = 0 Implements a hyperplane decision
boundary in final layer

G(x0) = (� · xD(x0)� �0) = 0
Yielding a curved co-dimension 1
decision boundary in the input layer

1(x
⇤) � 2(x

⇤) � · · · � N�1(x
⇤)

Its curvature at a point is characterized by N-1
principal curvatures:

H = ||~rG||�1
2 P

@2G

@x@xT
P

P = I� drGdrG
T

They are the eigenvalues of:

 Boundary disentangling: experiment

The principal curvatures of decision boundaries in the chaotic regime
grow exponentially with depth!

Thus exponentially curved manifolds in input space can be flattened to
hyperplanes even by deep random networks!

 Summary
We have combined Riemannian geometry with dynamical mean field theory
to study the emergent deterministic properties of signal propagation in deep
nonlinear nets.

We derived analytic recursion relations for Euclidean length, correlations,
curvature, and Grassmannian length as simple input manifolds propagate
forward through the network.

We obtain an excellent quantitative match between theory and simulations.

Our results reveal the existence of a transient chaotic phase in which the
network expands input manifolds without straightening them out, leading to
“space filling” curves that explore many dimensions while turning at a
constant rate. The number of turns grows exponentially with depth.

Such exponential growth does not happen with width in a shallow net.

Chaotic deep random networks can also take exponentially curved N-1
Dimensional decision boundaries in the input and flatten them into
Hyperplane decision boundaries in the final layer: exponential disentangling!

 (see Poggio’s talk later today!)

Are such functions rare curiosities?

Or is in some sense any function computed by a generic deep network
not efficiently computable by a shallow network?

If so we would like a theory of deep neural expressivity that demonstrates this
for
 1) Arbitrary nonlinearities

 2) A natural, general measure of functional complexity.

Some of the theoretical puzzles of deep learning

Generalizability: what principles do deep networks use to place
probability / make decisions in regions of input space with little data?

Trainability: if a good network solution exists with small training error,
how do we find it? And what makes a learning problem difficult?

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Exponential expressivity in deep neural networks through transient chaos, B. Poole, S. Lahiri,M. Raghu,
J. Sohl-Dickstein, S. Ganguli, under review, NIPS 2016.

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions,
Physical Review X, 2016.

Expressiveness, Memorization, Stability, and Flat versus sharp minima.

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks ICLR 2014.

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, Identifying and attacking the saddle
point problem in high-dimensional non-convex optimization, NIPS 2014.

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks,
CogSci 2013.

Statistical mechanics of high dimensional data analysis
N = dimensionality of data M = number of data points α = N / M

Classical Statistics Modern Statistics

N ~ O(1)
M -> ∞
 α -> 0

N -> ∞
M -> ∞
 α ~ 0(1)

Machine Learning and Data Analysis
Learn statistical parameters by maximizing log
likelihood of data given parameters.

Statistical Physics of Quenched Disorder
Energy = - log Prob (data | parameters)
Data = quenched disorder
Parameters = thermal degrees of freedom

Statistical mechanics of compressed sensing, S. Ganguli and H. Sompolinsky, PRL 2010.

Short-term memory in neuronal networks through dynamical compressed sensing, NIPS 2010.

Compressed sensing, sparsity and dimensionality in neuronal information processing and data analysis, S.
Ganguli and H. Sompolinsky, Annual Reviews of Neuroscience, 2012

Statistical mechanics of optimal convex inference in high dimensions, M. Advani and S. Ganguli, Physical Review
X, 2016.

An equivalence between high dimensional Bayes optimal inference and M-estimation, NIPS 2016.

Random projections of random manifolds, S. Lahiri, P. Gao, S. Ganguli, http://arxiv.org/abs/1607.04331.

Optimal inference in high dimensions

Generative model and measurements

 P dim signal s0 ~ Ps
 N measurements with noise ε ~ Pε
 α = N/P = measurement density

Estimation algorithm

ρ = loss function
σ = regularizer
qs = L2 estimation error

Example algorithms

Optimal inference in high dimensions
Question: For a given signal distribution Ps , noise distribution Pε , and measurement
density α, what is the best loss function ρ and regularizer σ?

For log-concave signal and noise: the optimal loss and regularizer are nonlinearly smoothed
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!

Optimal inference in high dimensions
Question: For a given signal distribution Ps , noise distribution Pε , and measurement
density α, what is the best loss function ρ and regularizer σ?

For log-concave signal and noise: the optimal loss and regularizer are nonlinearly smoothed
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!

M. Advani and S. Ganguli, An equivalence
between high dimensional Bayes optimal
inference and M-estimation, NIPS 2016.

M. Advani and S. Ganguli, Statistical mechanics of
optimal convex inference in high dimensions,
Physical Review X, 6, 031034, 2016.

Also prior work by the groups of Montanari and
El-Karoui

More generally: upper bounds on generalization error

Complexity based upper bounds:

✏gen ✏train +Rn

Rn = Rademacher Complexity

How well you memorize a data set with
random labels of size n.

Perfect memorization = 1
For linear classes, as n becomes larger than dimension, Rn -> O(1/n1/2)

Stability based upper bounds:

If your learned function is robust to changes in the dataset, then you will not over fit!

✏gen ✏train + ✏(w/o examplei)� ✏(w/example i)

Recent observations on generalization in deep nets

Complexity based upper bounds:

✏gen ✏train +Rn

Rn = Rademacher Complexity

How well you memorize a data set with
random labels of size n.

Zhang et. al. Understanding deep learning requires rethinking generalization.
Arpit et. al. A closer look at memorization in deep Networks

Stability based upper bounds:

If your learned function is robust to changes in the dataset, then you will not over fit!

✏gen ✏train + ✏(w/o example i)� ✏(w/example i)

Perfect memorization: Rn = 1
For linear classes, as n becomes larger than dimension, Rn -> O(1/n1/2)

Keskar et. al. On large batch training for deep learning: generalization gap and sharp minima.
Dinh et. al. Sharp minima can generalize for deep nets.

•  Applying deep learning to the brain:
–  Recurrent neural networks for context dependent decision making
–  Feed-forward networks for modeling the ventral visual stream
–  State of the art models of retinal function

•  Theory of deep learning:
–  Optimization
–  Expressivity
–  Generalization

•  Inspiration from neuroscience back to deep learning:
–  Canonical cortical microcircuits
–  Nested loop architectures
–  Avoiding catastrophic forgetting through synaptic complexity
–  Learning asymmetric recurrent generative models

 Talk Outline

 There are more things in heaven and earth…

Douglas and Martin, Canonical circuits of the
neocortex, Ann. Rev. Neurosci 2004.

Da Costa and Martin, Whose cortical column
Would that be? Front. In Neuroanatomy, 2010.

Harris and Shephard, The neocortical circuit:
Themes and variation, Nat. Neuro 2015

Shephard, Synaptic organization
of the brain, 5th ed., 2009

 There are more things in heaven and earth…

Exploration of nested loop architectures

Scott, Optimal Feedback Control and the Neural
Basis of Volitional Control, Nature Neurosci. 2004.

Todorov, Optimality principles in sensorimotor control, Nature Neurosci 2004.

Scott, The computational and neural basis of
voluntary motor control and planning, Trends in Cog. Sci 2012.

Coba et. al.
Science Signalling 2009

Experimentalist: AMPA, NMDA, CAMKII, MAPK, CREB,
 MHC-I, second messengers, membrane protein regulation,
 intracellular trafficking, new protein synthesis ……….

Theorist: Wij or Jij ~ size of postsynaptic potential

What is a synapse from neuron j to neuron i?

 There are more things in heaven and earth…

 Shatz Lab

 Han-Mi Lee

 Raymond Lab

Barbara Nguyen-Vu
Grace Zhao
Aparna Suvrathan

 Ganguli Lab

 Subhaneil Lahiri

Funding: Bio-X Neuroventures!
Burroughs Wellcome!
Genentech Foundation!
James S. McDonnell Foundation!
McKnight Foundation!
National Science Foundation!

Office of Naval Research!
Simons Foundation!
Sloan Foundation!
Swartz Foundation!
Terman Award!

 The functional contribution of synaptic
 complexity to learning and memory

 Memory capacity with scalar analog synapses

Consider the number of associations a neuron
with N afferent synapses can store.

ξ(κ)

J(k)

σ(k)
σ(k) = sgn (J . ξ(κ) − θ)

Memory capacity: How far back into the past can synapses reliably
 recall previously stored associations?

An online learning rule to store the desired association:

J(k+1) = e-1/τ J(k) + σ(k) ξ(κ)

i.e. 1) Allows analog weights to decay slightly (forget the past inputs)
 2) Add in the new association to the weight (learn a new input).

Answer: If τ is O(N) then the past O(N) associations can be recalled.

Problem: This solution relies on individual synapses to reliably
 maintain O(N) distinguishable analog states.

 Memory capacity with binary synapses

What about real synapses which can
take only a finite number of
distinguishable values for their strength?

For binary synapses each synapse Ji = +1 or -1. So you can no longer
add an association to synaptic weights without running into boundaries.

Ji=-1 Ji=+1

q

Ji=-1 Ji=+1

q

Potentiation Depression

ξ(κ)

J

σ(k)

 Memory capacity with binary synapses

Ji=-1 Ji=+1

q

Ji=-1 Ji=+1

q

Potentiation Depression

q = prob a synapse changes strength under appropriate conditions
N = number of synapses

q = O(1) log N Quickly learn, quickly forget
q = O(N-1/2) N1/2 Sluggish to learn, slow to forget

Memory Capacity

Fusi and Amit
92

 Synaptic complexity: from scalars to dynamical systems

 Experiment

 We must expand our theoretical conception of
 a synapse from that of a simple scalar value to
an entire (stochastic) dynamical system in its own right.

 Theory

 This yields a large universe of
synaptic models to explore and understand.

Theoretical approach:

A synapse is an arbitrary stochastic
dynamical system with M internal states.

Some internal states correspond to a
strong synapse, others a weak synapse.

A candidate potentiation (depression)
event induces an arbitrary stochastic
transition between states.

Montgomery
and Madison
Neuron
2002

Mpot Mdep

 Framework for synaptic dynamical systems

A continuous stream of memories are
stored (at poisson rate r) in a population
of N synapses with M internal states.

The memory stored at time t=0 demands
that some synapses potentiate, while
others depress, yielding an ideal
synaptic weight vector wideal.

The storage of future memories after
t=0 changes the weight vector to w(t).

An upper bound on the quality of memory
retrieval of any memory readout using
neural activity is given by the SNR curve:

Each choice of

N, M, Mpot and Mdep

yields a different memory
curve.

 Ideal observer measure of memory capacity: SNR

Fusi et. al. 2005, Fusi et. al. 2007, Barrett and van Rossum,2008

 Two example synaptic molecular networks

To elucidate the functional contribution of molecular complexity to
memory, we want to not simply understand individual models, but
understand the space of all possible models within this family.

Cascade Model Serial Model

Leibold and Kempter
2008

Fusi et. al.
2005

How does the structure of a synaptic
dynamical system (Mpot and Mdep)

determine its function, or memory
curve SNR(t)?

What are the fundamental limits of
achievable memory over all possible
choices of synaptic dynamical systems?

What is the structural organization of
synaptic dynamical systems that achieve
these limits?

What theoretical principles can control
combinatorial explosion in the number
of possible models as M increases?

Mpot Mdep

 Towards a general theory of synaptic complexity

 Imposing a theoretical order on synaptic dynamics

As the synaptic population undergoes
continuous modification, the internal
state stochastically wanders around
according to a forgetting process:

Mforget = fpot * Mpot + fdep * Mpot

 +

This forgetting process has:

An equilibrium probability distribution of state occupancy:
And a mean first passage time matrix from state i to j: Tij

Starting from state i, the average time it takes
to get to the potentiated states, weighted by their
equilibrium probability.

Order states from left to right in order
of decreasing

Topological ordering from first passage times

 large; takes a long time to
 reach potentiated states small; takes a short time to

 reach potentiated states

 Optimal synapses have a simple structure in this order

⇒  The area under the memory curve of any synaptic dynamical system can
never exceed O(N1/2 M).

Consider optimizing the area under the memory curve:

When states are placed in this order,

(a) Mpot should only go from left to right

(b) Mdep should only go from right to left

(c) We can remove shortcuts in both Mpot and Mdep while
 (1) preserving the order

 (2) preserving the equilibrium distribution
 (3) increasing the area

⇒  The area under the memory curve of any synaptic dynamical system is
bounded by that of a chain with the same equilibrium distribution.

Also, we show that the area of a chain cannot exceed O(N1/2 M) for any choice
of transition rates along the chain.

 A frontier beyond whose bourn no curve can cross
Area bound implies a maximal achievable memory at any finite time given N
synapses with M internal states:

Chains with different transition rates come close to the frontier at late times.

Various measures of memory (area, frontier, lifetime) grow linearly with
the number of internal states M, but grow only as the square root of
the number of synapses N.

Lahiri and Ganguli, NIPS 2014, outstanding paper award (3/1400)

 The dividends of understanding synaptic complexity

 A theory of
complex synapses

 A framework for interpreting
 molecular neurobiology data

 Neurobiology

 Mathematics Technology

New theorems about
 perturbations
to stochastic processes.

The next generation of
artificial neural networks?

 (Under review: cerebellar learning with complex synapses)

 (Spatiotemporal credit assignment)
 (Learning as message passing)

 (Tighter bounds)

A potential route to cognitive enhancement?

 Enhance synaptic plasticity

Enhance learning

Tang et. al. Nature 1999
Malleret et. al. Cell 2001
Guan et. al. Nature 2009

Impair Learning

Migaud et. al. Nature 1998
Hayashi et. al. Neuron 2004
Koekkoek et. al. Neuron 2005

 Shatz Lab

Knockout MHC-I in
cerebellum

Enhanced LTD

 Raymond Lab

Measure WT and KO
VOR learning

Observe both enhanced
and impaired learning

 Ganguli Lab

Theoretical framework
to elucidate principles
of plasticity sufficient
to explain learning
patterns

Continual learning through synaptic intelligence

Illustration of catastrophic forgetting: solving task 2 impairs learning on solving task 1.

Idea: each synapse computes its “importance” in solving previous tasks. In future tasks
unimportant synapses are allowed to change.

Friedemann Zenke, Ben Poole, Surya Ganguli Continual Learning Through Synaptic
Intelligence, ICML 2017.

Continual learning through synaptic intelligence

Friedemann Zenke, Ben Poole, Surya Ganguli Continual Learning Through Synaptic
Intelligence, ICML 2017.

Split MNIST

Permuted MNIST

 Summary

Generalizability: what principles do deep networks use to place
probability / make decisions in regions of input space with little data?

Interpretability : once we have a trained network, how do we understand
what it does? How is the training data embedded in the weights?

Biological Plausibility: how can we do what we do within the constraints
of neurobiology? How can we interpret specific architectures used by the
brain?

Trainability: if a good network solution exists with small training error,
how do we find it? And what makes a learning problem difficult?

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

References

• Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks, Cog Sci. 2013.

• Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear neural
networks, ICLR 2014.

• Identifying and attacking the saddle point problem in high dimensional non-convex optimization, Yann
Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, Yoshua Bengio, NIPS 2014.

• A memory frontier for complex synapses, S. Lahiri and S. Ganguli, NIPS 2013.

• M. Advani and S. Ganguli, Statistical mechanics of optimal convex inference in high dimensions, Physical
Review X 2016.

• Exponential expressivity in deep neural networks through transient chaos, B. Poole, S. Lahiri,M. Raghu, J. Sohl-
Dickstein, S. Ganguli, under review, NIPS 2016.

• Deep information propagation, S. Schoenholz, J. Gilmer, S. Ganguli, J. Sohl-Dickstein, ICLR 2017.

• On the expressive power of deep neural networks, M.Raghu, B. Poole,J. Kleinberg, J. Sohl-Dickstein, S.
Ganguli, ICML 2017.

• Continual learning through synaptic intelligence, F. Zenke, B. Poole, and S. Ganguli, ICML 2017.

• http://ganguli-gang.stanford.edu Twitter: @SuryaGanguli

 The project that really keeps me up at night

