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Theoretical neuroscience in the disciplinary landscape 
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with Baccus lab:  inferring  
hidden circuits in the retina 
w/ Niru Maheswaranathan and Lane McIntosh 
 
with Clandinin lab: unraveling the  
computations underlying fly motion  
vision from whole brain optical imaging 
w/ Jonathan Leong, Ben Poole and Jennifer Esch 
 
with the Giocomo lab: understanding 
the internal representations of space  
in the mouse entorhinal cortex  
w/ Kiah Hardcastle and Sam Ocko 
 
with the Shenoy lab: a theory of neural 
dimensionality, dynamics and measurement 
w/ Peiran Gao, Eric Trautmann, and Chris Stock 
 
with the Raymond lab: theories of how 
enhanced plasticity can either enhance 
or impair learning depending on experience  
w/ Subhaniel Lahiri, Barbara Vu, Grace Zhao 

      Neural circuits and behavior: theory, computation and experiment 



•  What does it mean to understand the brain (or a neural circuit?) 

•  We understand how the connectivity and dynamics of a neural 
circuit gives rise to behavior. 

•  And also how neural activity and synaptic learning rules conspire to 
self-organize useful connectivity that subserves behavior. 

•  It is a good start, but it is not enough, to develop a theory of either 
random networks that have no function. 

•  The field of machine learning has generated a plethora of learned 
neural networks that accomplish interesting functions. 

•  We know their connectivity, dynamics, learning rule, and 
developmental experience, *yet*, we do not have a meaningful 
understanding of how they learn and work! 

 Motivations for an alliance between theoretical neuroscience and                           
                                  theoretical machine learning 

On simplicity and complexity in the brave new world of large scale 
neuroscience, Peiran Gao and S. Ganguli, Curr. Op. in Neurobiology, 2015.



•  Applying deep learning to the brain: 
–  Recurrent neural networks for context dependent decision making 
–  Feed-forward networks for modeling the ventral visual stream 
–  State of the art models of retinal function 

•  Theory of deep learning: 
–  Optimization 
–  Expressivity 
–  Generalization 

•  Inspiration from neuroscience back to deep learning: 
–  Canonical cortical microcircuits 
–  Nested loop architectures 
–  Avoiding catastrophic forgetting through synaptic complexity 
–  Learning asymmetric recurrent generative models 

                                                Talk Outline 



               The shape of things to come… on monkeys and models  

Mante et.al. Context dependent
computation by recurrent 
dynamics in prefrontal cortex, 
Nature 2013  

A  behavioral task 

The monkey 
The model 



               The shape of things to come… on monkeys and models  

Yamins et.al. Performance
optimized hierarchical models 
predict performance
in higher visual cortex, PNAS 2014  



Deep neural network models of the 
retinal response to natural scenes!

Lane McIntosh and Niru Maheswaranathan, Aran Nayebi, 
Surya Ganguli and Stephen Baccus!

McIntosh, L.*, Maheswaranathan, N.*, Nayebi, A., Ganguli, S., 
Baccus, S.A. Deep Learning Models of the Retinal Response to 

Natural Scenes. NIPS 2016.!



A brief tour of the retina!

G!

P!

A!

H!
B!

microelectrode array

visual stimulus

From	  Rachel	  Wong’s	  Lab	  



Multielectrode array (MEA)!

Visual Stimulus!

Chichilnisky 2001
Baccus and Meister 2002

Pillow et al 2005, 2008

Stimulus

Response

Spatiotemporal Filter

Nonlinearity

Linear-Nonlinear models!



How well do linear-nonlinear models 
explain the retina in natural vision?!

Pearson correlation !
of 0.36!

see also!
Heitman et al., 2014!



Modeling ganglion cells with convolutional 
neural networks (CNNs)!

Train the model to minimize the error 
between predictions and recorded data!

CNNs!



Modeling ganglion cells with convolutional 
neural networks (CNNs)!

Models are complex, can easily !
over-fit training data!

Challenges!

trainability!
CNNs!



Modeling ganglion cells with convolutional 
neural networks (CNNs)!

No reason why the structure or features of 
learned CNNs would be similar to the retina!

Challenges!

neural structure!
CNNs!



Modeling ganglion cells with convolutional 
neural networks (CNNs)!

Algorithms identified by the model may not 
be the same as those used by the retina!

Challenges!

neural function!
CNNs!



CNNs capture substantially more retinal 
responses than previous models!

CNNs generalize better than !
simpler models!

CNN internal units correspond to 
interneurons in the retinal circuitry!

CNNs learn aspects of retinal variability, 
computation, and adaptation!



Convolutional neural network model!

… …

time
8 subunits 16 subunits

convolution

convolution

dense
responses

Three layers works best!!



CNNs approach retinal reliability!
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CNNs trained on less data outperform 
simpler models on more data!



Features bear striking resemblance to 
internal structure in retina!

CNN first layer pre-ReLU activity
Bipolar cell membrane potential

Intracellular data courtesy of
Pablo Jadzinsky and David Kastner



Most retinal neurons have sub-Poisson variability!
(while LNP models are Poisson)!



We can inject Gaussian noise into each 
hidden unit of our CNN model!



Model has lower variance than data!
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However model uncertainty has same 
scaling relationship as the retina!A B
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Capturing contrast adaptation from retinal 
responses to natural scenes!

Smirnakis et al., 1997
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Summary!
CNNs capture substantially more retinal 
responses than previous models.!
!
CNNs also generalize better to different 
stimuli classes.!

CNNs learn the internal, nonlinear 
structure of the retina!

Our CNN models reproduce principles of 
signal processing inside retina without 
having direct access to it!!

We can capture not only the mean 
response, but also how variability scales 
with the mean!



•  Applying deep learning to the brain: 
–  Recurrent neural networks for context dependent decision making 
–  Feed-forward networks for modeling the ventral visual stream 
–  State of the art models of retinal function 

•  Theory of deep learning: 
–  Optimization 
–  Expressivity 
–  Generalization 

•  Inspiration from neuroscience back to deep learning: 
–  Canonical cortical microcircuits 
–  Nested loop architectures 
–  Avoiding catastrophic forgetting through synaptic complexity 
–  Learning asymmetric recurrent generative models 

                                                Talk Outline 



Some of the theoretical puzzles of deep learning 

Generalizability: what principles do deep networks use to place 
probability / make decisions in regions of input space with little data?  

Trainability: if a good network solution exists with small training error, 
how do we find it?  And what makes a learning problem difficult? 

Expressivity: what kinds of functions can a deep network express that  
shallow networks cannot?  
 
Exponential expressivity in deep neural networks through transient chaos,  B. Poole, S. Lahiri,M. Raghu, 
J. Sohl-Dickstein, S. Ganguli,  NIPS 2016. 
 
 

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions, 
Physical Review X, 2016.   
 
Expressiveness, Memorization, Stability, and Flat versus sharp minima.  

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear 
neural networks ICLR 2014.  

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, Identifying and attacking the saddle 
point problem in high-dimensional non-convex optimization, NIPS 2014. 

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks, 
CogSci 2013.  



                       A Mathematical Theory of  
                        Semantic Development* 

Joint work with:  Andrew Saxe and Jay McClelland 

*AKA: The misadventures of an “applied physicist” 
           wandering around the psychology department 



                    What is “semantic cognition”? 

Human semantic cognition:  Our ability to  
       learn, recognize, comprehend and produce 
       inferences about properties of objects  
       and events in the world, especially properties 
       that are not present in the current perceptual  
       stimulus 

For example: 
 
              Does a cat have fur? 
              Do birds fly? 
               

Our ability to do this likely relies on our ability to form  
internal representations of categories in the world 



  Psychophysical tasks that probe semantic cognition 

Looking time studies: Can an infant distinguish between two 
   categories of objects? At what age? 

Property verification tasks:  Can a canary move? Can it sing? 
       Response latency => central and peripheral properties 

Inductive generalization: 

Category membership queries: Is a sparrow a bird?  An ostrich? 
        Response latency => typical / atypical category members 

     (A) Generalize familiar properties to novel objects: 
             i.e. a “blick” has feathers.  Does it fly?  Sing? 

   (B) Generalize novel properties to familiar objects: 
           i.e. a bird has gene “X”.  Does a crocodile have gene X? 
                                                    Does a dog? 



         The project that really keeps me up at night 

                        



Semantic Cognition Phenomena 



          A Network for Semantic Cognition 

Rogers and McClelland 



          Evolution of internal representations 

Rogers and McClelland 



      Categorical representations in human and monkey 

Kriegeskorte et. al. Neuron 2008 



      Categorical representations in human and monkey 

Kriegeskorte et. al. Neuron 2008 



          Evolution of internal representations 

Rogers and McClelland 



                        Theoretical questions 

What are the mathematical principles underlying the hierarchical 
self-organization of internal representations in the network?  

What are the relative roles of:     
        nonlinear input-output response 
        learning rule 
        input statistics  (second order?  higher order?) 

Why are some properties learned more quickly than others? 

What is a mathematical definition of category coherence, and  
How does it relate the speed of category learning? 

How can we explain changing patterns of inductive  
generalization over developmental time scales? 



Problem	  formula6on	  

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

We	  analyze	  a	  fully	  linear	  three	  layer	  network	  
	  

Learning hierarchical categories in deep neural networks
Andrew M. Saxe (asaxe@stanford.edu)

Department of Electrical Engineering
James L. McClelland (mcclelland@stanford.edu)

Department of Psychology
Surya Ganguli (sganguli@stanford.edu)

Department of Applied Physics
Stanford University, Stanford, CA 94305 USA

Abstract
A wide array of psychology experiments have revealed re-
markable regularities in the developmental time course of hu-
man cognition. For example, infants generally acquire broad
categorical distinctions (i.e., plant/animal) before finer-scale
distinctions (i.e., dog/cat), often exhibiting rapid, or stage-like
transitions. What are the theoretical principles underlying the
ability of neuronal networks to discover categorical structure
from experience? We develop a mathematical theory of hi-
erarchical category learning through an analysis of the learn-
ing dynamics of multilayer networks exposed to hierarchically
structured data. Our theory yields new exact solutions to the
nonlinear dynamics of error correcting learning in deep, three
layer networks. These solutions reveal that networks learn
input-output covariation structure on a time scale that is in-
versely proportional to its statistical strength. We further ana-
lyze the covariance structure of data sampled from hierarchical
probabilistic generative models, and show how such models
yield a hierarchy of input-output modes of differing statistical
strength, leading to a hierarchy of time-scales over which such
modes are learned. Our results reveal that even the second
order statistics of hierarchically structured data contain pow-
erful statistical signals sufficient to drive complex experimen-
tally observed phenomena in semantic development, including
progressive, coarse-to-fine differentiation of concepts and sud-
den, stage-like transitions in performance punctuating longer
dormant periods.
Keywords: neural networks; hierarchical generative models;
semantic cognition; learning dynamics

Introduction
Our world is characterized by a rich, nested hierarchical
structure of categories within categories, and one of the most
remarkable aspects of human semantic development is our
ability to learn and exploit this rich structure. Experimental
work has shown that infants and children acquire broad cate-
gorical distinctions before fine categorical distinctions (Keil,
1979; Mandler & McDonough, 1993), suggesting that hu-
man category learning is marked by a progressive differen-
tiation of concepts from broad to fine. Furthermore, humans
can exhibit stage-like transitions as they learn, rapidly moving
from ignorance to mastery (Inhelder & Piaget, 1958; Siegler,
1976).

Many neural network simulations have captured aspects of
these broad patterns of semantic development (Rogers & Mc-
Clelland, 2004; Rumelhart & Todd, 1993; McClelland, 1995;
Plunkett & Sinha, 1992; Quinn & Johnson, 1997). The inter-
nal representations of such networks exhibit both progressive
differentiation and stage like transitions.

However the theoretical basis for the ability of neuronal
networks to exhibit such strikingly rich nonlinear behavior re-

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3

Figure 1: The three layer network analyzed in this work.

mains elusive. What are the essential principles that underly
such behavior? What aspects of statistical structure in the
input are responsible for driving such dynamics? For exam-
ple, must networks exploit nonlinearities in their input-output
map to detect higher order statistical regularities to drive such
learning?

Here we analyze the learning dynamics of a linear 3 layer
network and find, surprisingly, that it can exhibit highly non-
linear learning dynamics, including rapid stage-like transi-
tions. Furthermore, when exposed to hierarchically struc-
tured data sampled from a hierarchical probabilistic model,
the network exhibits progressive differentiation of concepts
from broad to fine. Since such linear networks are sensitive
only to the second order statistics of inputs and outputs, this
yields the intriguing result that merely second order patterns
of covariation in hierarchically structured data contain statis-
tical signals powerful enough to drive certain nontrivial, high
level aspects of semantic development in deep networks.

Gradient descent dynamics in multilayer
neural networks

We examine learning in a three layer network (input layer 1,
hidden layer 2, and output layer 3) with linear activation func-
tions, simplifying the network model of Rumelhart and Todd
(1993), in which input units correspond to items e.g, Canary,
Rose and output units correspond to possible predicates or at-
tributes Can Fly, Has Petals that may or may not apply to each
item. Let Ni be the number of neurons in layer i, W 21 be an
N2⇥N1 matrix of synaptic connections from layer 1 to 2, and
similarly, W 32 an N3 ⇥N2 matrix of connections from layer 2
to 3. The input-output map of the network is y = W 32W 21x,
where x is an N1 dimensional column vector representing in-
puts to the network, and y is an N2 dimensional column vector
representing the network output (see Fig. 1).

Items	  Proper6es	  



Nontrivial	  learning	  dynamics	  
Plateaus	  and	  sudden	  

transitions	  
Faster	  convergence	  from	  

pretrained	  initial	  conditions	  
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•  Build	  intui6ons	  for	  nonlinear	  case	  by	  analyzing	  linear	  case	  



Learning	  dynamics	  
•  Network	  is	  trained	  on	  a	  set	  of	  items	  and	  their	  proper6es	  

•  Weights	  adjusted	  using	  standard	  backpropaga6on:	  
–  Change	  each	  weight	  to	  reduce	  the	  error	  between	  desired	  network	  

output	  and	  current	  network	  output	  

•  Highlights	  the	  error-‐correc6ve	  aspect	  of	  this	  learning	  process	  
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

tic gradient descent; each time an example µ is presented, the
weights W 32 and W 21 are adjusted by a small amount in the
direction that minimizes the squared error

��yµ �W 32W 21xµ
��2

between the desired feature output, and the network’s feature
output. This gradient descent procedure yields the standard
back propagation learning rule

DW 21 = lW 32T
(yµ � ŷµ)xµT (3)

DW 32 = l(yµ � ŷµ)hµT , (4)

for each example µ, where ŷµ =W 32W 21xµ denotes the output
of the network in response to input example xµ, hµ = W 21xµ

is the hidden unit activity, and l is a small learning rate.
Here W 32T

(yµ � ŷµ) in (3) corresponds to the signal back-
propagated to the hidden units through the hidden-to-output
weights. These equations emphasize that the learning pro-
cess works by comparing the network’s current output ŷµ to
the desired target output yµ, and adjusting weights based on
this error term.

By a substitution and rearrangement, however, we can
equivalently write these equations as

DW 21 = lW 32T �
yµxµT �W 32W 21xµxµT � (5)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

. (6)

This form emphasizes two crucial aspects of the learning dy-
namics. First, it highlights the importance of the statistics
of the training set. In particular, the training set enters only
through two terms, one related to the input-output correla-
tions yµxµT and the other related to the input correlations
xµxµT . Indeed, if l is sufficiently small so that weights change
only a small amount per epoch, we can rewrite these equa-
tions in a batch update form by averaging over the training
set to obtain the mean change in weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (7)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (8)

where S11 ⌘ Âµ=1 xµxµT ⌘ E[xxT ] is an N1 ⇥N1 input corre-
lation matrix, S31 is the N3 ⇥N1 input-output correlation ma-
trix defined previously, and t ⌘ P

l . Hence we see that linear
networks are sensitive only to the second order statistics of
inputs and outputs. In general the learning process is driven
by both the input and input-output correlation matrices. Here
we take the simplifying assumption that these input corre-
lations are insignificant; formally, we assume S11 = I, the
identity matrix. Concretely, this assumption corresponds to
the supposition that input representations for different items
are highly differentiated from, or orthogonal to each other.
While this is unlikely to hold exactly in any natural domain,
we take this assumption for two reasons. First, it was used in
prior simulation studies (Rogers & McClelland, 2004), and
hence our attempt to understand their results is not limited
by this assumption. Second, Rogers and McClelland (2004)

have shown that relaxing this assumption to incorporate more
complex input correlations leaves intact the basic phenom-
ena of progressive differentiation and stage-like transitions
in learning. Nevertheless, understanding the impact of input
correlations is an important direction for further work.

Second, the form of Eqns. (7)-(8) highlights the coupling
between the two equations: to know how to change W 21 we
must know W 32, and visa versa, since each appears in the
update equation for the other. This coupling is the crucial
element added by the addition of a hidden layer, and as we
shall see, it qualitatively changes the learning dynamics of
the network compared to a “shallow” network with no hid-
den layer. Intuitively, this coupling complicates the learn-
ing procedure since both weight matrices must cooperate to
produce the correct answer; but crucially, it enables knowl-
edge sharing between different items, by assigning them sim-
ilar hidden unit representations. Without this coupling, the
network would learn each item-property association indepen-
dently, and would not be sensitive to shared structure in the
training set.

The temporal dynamics of learning To understand the
connection between learning dynamics and training set statis-
tics, then, we can solve Eqns. (7)-(8). We have found a class
of exact solutions (whose derivation will be presented else-
where) that describe the weights of the network over time
during learning, as a function of the training set. In partic-
ular, the composite mapping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (9)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (10)

That is, the network learns about the N2 strongest input-
output modes identified by the singular value decomposi-
tion, progressively incorporating each mode into its repre-
sentation. The coefficient a(t,sa,a0) describes how strongly
input-output mode a has been learned by time t, starting
from some small initial value of a0. As can be seen from
Fig. 3, this function is a sigmoidal curve, capturing the fact
that the network initially knows nothing about a particular
dimension (the animal-plant dimension, say), but over time
learns the importance of this dimension and incorporates it
into its representation, ultimately reaching the correct asso-
ciation strength sa. At this point the network correctly maps
items onto the animal-plant dimension using the object an-
alyzer vector vaT , and generates the corresponding correct
features using the feature synthesizer vector ua.

Eqns. (9)-(10) describe the fundamental connection be-
tween the structure of a training set and learning dynamics.
In particular, the dynamics depends on the singular value
decomposition of the input-output correlation matrix of the
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

Items:	  Canary,	  Salmon,	  Oak,	  Rose	  
Proper6es:	  Move,	  Fly,	  Swim,	  Bark,	  Petals	  
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The	  network’s	  input-‐output	  map	  is	  exactly	  
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)

•  Each	  mode	  evolves	  
independently	  

•  Each	  mode	  is	  learned	  in	  
1me	  
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Figure 3: Close agreement between theoretically predicted
time course and numerical simulations. Simulations were
performed with a dataset sampled from the hierarchical diffu-
sion process described in detail in a later section, with D = 3
hierarchical levels, binary branching, flip probability e = 0.1,
and N = 10,000 sampled features. This data set had 3 unique
singular values. Red traces show ten simulations of the singu-
lar value dynamics of W 32(t)W 21(t) in Eqns. (3)-(4) starting
from different random initializations, and blue traces show
theoretical curves obtained from (8).

As can be seen from Fig. 3, for a0 < s, this function is a
sigmoidal curve that starts at a0 when t = 0, and asymptot-
ically rises to s as t ! •. Thus for small initial conditions
a0

a, the weight trajectory (7) describes an evolving network
whose input-output mapping successively builds up the first
N2 modes of the SVD of S31 in (6). This result is the so-
lution to (3)-(4) for a special class of initial conditions on
the weights W 21 and W 32. However this analytic solution
is a good approximation to the time evolution the network’s
input-output map for random small initial conditions, as con-
firmed in Fig. 3.

Eqns. (7)-(8) reveal a number of important properties of
the learning dynamics. What is the final outcome of learning?
As t ! •, the weight matrices converge to the best rank N2
approximation of S31.

More importantly, what is the timescale of learning? Each
pair of output (ua) and input (va) modes are learned in (7) on
a different time scale, governed by the singular value sa. To
estimate this time scale, we can assume a small initial condi-
tion a0 = e and ask when a(t) in (8) is within e of the final
value s, i.e. a(t) = s� e; then the timescale of learning in the
limit e ! 0 is

t(s,e) = t
s

ln
s
e
. (9)

This is O(t/s) up to a logarithmic factor. Thus the time re-
quired to learn an input-output mode is inversely related to its
statistical strength, quantified through its singular value.

Finally, these dynamics reveal stage-like transitions in
learning performance. Intuitively, this property arises from
the sigmoidal transition in (8) from a state in which the net-
work does not represent a particular input-output relation at

all, to a state in which the network fully incorporates that rela-
tion. To formalize this, we begin with the sigmoidal learning
curve in (8). If we assume the initial strength of the mode a0
satisfies a0 < s/2, where s is its final learned value, we can
define the transition time to be the time at which the mode is
half learned (i.e. a(thalf) = s/2). This yields

thalf =
t
2s

log
✓

s
a0

�1
◆
. (10)

We can then define the transition period ttrans as the time re-
quired for a linear approximation to a(t,s,a0) at thalf to rise
from zero to s. This yields a transition time to go from a state
of no learning to almost full learning given by ttrans = 2t

s .
Thus, by starting with a very small initial condition in the
weights (i.e. a0), it is clear that one can make the ratio
ttrans/thalf arbitrarily small. Hence the learning dynamics
of (3)-(4) can indeed exhibit sharp stage-like transitions con-
sisting of long periods of dormancy ended by an abrupt tran-
sition to mastery. Interestingly, we can prove that single layer
networks are not capable of such stage-like transitions. Thus
their existence is an emergent property of nonlinear learning
dynamics in deep networks with at least one hidden layer, and
does not require nonlinearity in the input-output map of the
network.

Summary of learning dynamics The preceding analyses
have established a number of crucial features of gradient de-
scent learning in a simple linear network, making explicit the
relationship between the statistical structure of training ex-
amples and the dynamics of learning. In particular, for an ar-
bitrary input-output task the network will ultimately come to
represent the closest rank N2 approximation to the full input-
output correlation matrix. Furthermore, the learning dynam-
ics depend crucially on the singular values of the input-output
correlation matrix. Each input-output mode is learned in time
inversely proportional to its associated singular value, yield-
ing the intuitive result that stronger input-output associations
are learned before weaker ones.

The singular values and vectors of
hierarchically generated data

In this section we introduce a hierarchical probabilistic gener-
ative model of items and their attributes that, when sampled,
produces a dataset that can be supplied to our neural network.
Using this, we will be able to explicitly link hierarchical tax-
onomies of categories to the dynamics of network learning.
A key result in the following is that our network must exhibit
progressive differentiation with respect to any of the underly-
ing hierarchical taxonomies allowed by our generative model.

Hierarchical feature vectors from a branching diffusion
process To understand the time course of learning of hier-
archical structure, we propose a simple generative model of
hierarchical data {xµ,yµ}, and compute for this model the sta-
tistical properties (sa,ua,va) which drive learning. We first
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)



	  Origin	  of	  the	  rapid	  learning	  transi6on:	  	  
saddle	  point	  dynamics	  in	  synap6c	  weight	  space	  
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Take	  home	  messages,	  so	  far:	  

Stronger	  sta6s6cal	  structure	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  learned	  faster!	  

Strength	  of	  structure:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Learning	  Time	  
	  
	  
Singular	  value	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  /	  Singular	  value	  
	  
(Singular	  vectors:	  
object	  analyzers	  and	  
feature	  synthesizers)	  
	  
Next:	  what	  does	  all	  this	  have	  to	  do	  with	  the	  hierarchical	  	  
Differen6a6on	  of	  concepts?	  
	  



Learning	  hierarchical	  structure	  

•  The	  preceding	  analysis	  describes	  dynamics	  in	  response	  to	  a	  
specific	  dataset	  

•  Can	  we	  move	  beyond	  specific	  datasets	  to	  general	  principles	  
when	  a	  neural	  network	  is	  exposed	  to	  hierarchical	  structure?	  

•  We	  consider	  training	  a	  neural	  network	  with	  data	  generated	  by	  
a	  hierarchical	  genera1ve	  model	  



Connec1ng	  hierarchical	  genera1ve	  
models	  and	  neural	  network	  learning	  

…

…

W 21W 32

x ∈ RN1h ∈ RN2y ∈ RN3
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Figure 2: Example singular value decomposition for a toy
dataset. Left: The learning environment is specified by an
input-output correlation matrix. This example dataset has
four items: Canary, Salmon, Oak, and Rose. The two animals
share the property that they can Move, while the two plants
cannot. In addition each item has a unique property: can Fly,
can Swim, has Bark, and has Petals, respectively. Right: The
SVD decomposes S31 into input-output modes that link a set
of coherently covarying properties (output singular vectors in
the columns of U) to a set of coherently covarying items (in-
put singular vectors in the rows of V T ). The overall strength
of this link is given by the singular values lying along the di-
agonal of S. In this toy example, mode 1 distinguishes plants
from animals; mode 2 birds from fish; and mode 3 flowers
from trees.

We wish to train the network to learn a particular input-
output map from a set of P training examples {xµ,yµ} ,µ =
1, . . . ,P. The input vector xµ, identifies item µ while each yµ

is a set of attributes to be associated to this item. Training
is accomplished in an online fashion via stochastic gradient
descent; each time an example µ is presented, the weights
W 32 and W 21 are adjusted by a small amount in the direction
that minimizes the squared error

��yµ �W 32W 21xµ
��2 between

the desired feature output, and the network’s feature output.
This gradient descent procedure yields the learning rule

DW 21 = lW 32T �yµxµT �W 32W 21xµxµT � (1)

DW 32 = l
�
yµxµT �W 32W 21xµxµT �W 21T

, (2)

for each example µ, where l is a small learning rate. We
imagine that training is divided into a sequence of learning
epochs, and in each epoch, the above rules are followed for
all P examples in random order. As long as l is sufficiently
small so that the weights change by only a small amount per
learning epoch, we can average (1)-(2) over all P examples
and take a continuous time limit to obtain the mean change in
weights per learning epoch,

t d
dt

W 21 = W 32T �S31 �W 32W 21S11� (3)

t d
dt

W 32 =
�
S31 �W 32W 21S11�W 21T

, (4)

where S11 ⌘ E[xxT ] is an N1 ⇥N1 input correlation matrix,

S31 ⌘ E[yxT ] (5)

is an N3⇥N1 input-output correlation matrix, and t⌘ P
l . Here

t measures time in units of learning epochs; as t varies from
0 to 1, the network has seen P examples corresponding to
one learning epoch. We note that, although the network we
analyze is completely linear with the simple input-output map
y = W 32W 21x, the gradient descent learning dynamics given
in Eqns. (3)-(4) are highly nonlinear.

Decomposing the input-output correlations Our funda-
mental goal is to understand the dynamics of learning in (3)-
(4) as a function of the input statistics S11 and S31. In general,
the outcome of learning will reflect an interplay between the
perceptual correlations in the input patterns, described by S11,
and the input-output correlations described by S31. To begin,
though, we consider the case of orthogonal input representa-
tions where each item is designated by a single active input
unit, as used by (Rumelhart & Todd, 1993) and (Rogers &
McClelland, 2004). In this case, S11 corresponds to the iden-
tity matrix. Under this scenario, the only aspect of the train-
ing examples that drives learning is the second order input-
output correlation matrix S31. We consider its singular value
decomposition (SVD)

S31 =U33S31V 11T
=

N1

Â
a=1

sauavaT , (6)

which will play a central role in understanding how the ex-
amples drive learning. The SVD decomposes any rectangu-
lar matrix into the product of three matrices. Here V 11 is
an N1 ⇥N1 orthogonal matrix whose columns contain input-
analyzing singular vectors va that reflect independent modes
of variation in the input, U33 is an N3 ⇥N3 orthogonal ma-
trix whose columns contain output-analyzing singular vectors
ua that reflect independent modes of variation in the output,
and S31 is an N3 ⇥N1 matrix whose only nonzero elements
are on the diagonal; these elements are the singular values
sa,a = 1, . . . ,N1 ordered so that s1 � s2 � · · · � sN1 . An ex-
ample SVD of a toy dataset is given in Fig. 2. As can be
seen, the SVD extracts coherently covarying items and prop-
erties from this dataset, with various modes picking out the
underlying hierarchy present in the toy environment.

The temporal dynamics of learning A central result of
this work is that we have described the full time course of
learning by solving the nonlinear dynamical equations (3)-(4)
for orthogonal input representations (S11 = I), and arbitrary
input-output correlation S31. In particular, we find a class
of exact solutions (whose derivation will be presented else-
where) for W 21(t) and W 32(t) such that the composite map-
ping at any time t is given by

W 32(t)W 21(t) =
N2

Â
a=1

a(t,sa,a0
a)uavaT , (7)

where the function a(t,s,a0) governing the strength of each
input-output mode is given by

a(t,s,a0) =
se2st/t

e2st/t �1+ s/a0
. (8)
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Progressive	  differen6a6on	  

Hence	  the	  network	  must	  exhibit	  progressive	  
differen6a6on	  on	  any	  dataset	  generated	  by	  this	  class	  of	  
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Figure 3: Close agreement between theoretically predicted
time course and numerical simulations. Simulations were
performed with a dataset sampled from the hierarchical diffu-
sion process described in detail in a later section, with D = 3
hierarchical levels, binary branching, flip probability e = 0.1,
and N = 10,000 sampled features. This data set had 3 unique
singular values. Red traces show ten simulations of the singu-
lar value dynamics of W 32(t)W 21(t) in Eqns. (3)-(4) starting
from different random initializations, and blue traces show
theoretical curves obtained from (8).

As can be seen from Fig. 3, for a0 < s, this function is a
sigmoidal curve that starts at a0 when t = 0, and asymptot-
ically rises to s as t ! •. Thus for small initial conditions
a0

a, the weight trajectory (7) describes an evolving network
whose input-output mapping successively builds up the first
N2 modes of the SVD of S31 in (6). This result is the so-
lution to (3)-(4) for a special class of initial conditions on
the weights W 21 and W 32. However this analytic solution
is a good approximation to the time evolution the network’s
input-output map for random small initial conditions, as con-
firmed in Fig. 3.

Eqns. (7)-(8) reveal a number of important properties of
the learning dynamics. What is the final outcome of learning?
As t ! •, the weight matrices converge to the best rank N2
approximation of S31.

More importantly, what is the timescale of learning? Each
pair of output (ua) and input (va) modes are learned in (7) on
a different time scale, governed by the singular value sa. To
estimate this time scale, we can assume a small initial condi-
tion a0 = e and ask when a(t) in (8) is within e of the final
value s, i.e. a(t) = s� e; then the timescale of learning in the
limit e ! 0 is

t(s,e) = t
s

ln
s
e
. (9)

This is O(t/s) up to a logarithmic factor. Thus the time re-
quired to learn an input-output mode is inversely related to its
statistical strength, quantified through its singular value.

Finally, these dynamics reveal stage-like transitions in
learning performance. Intuitively, this property arises from
the sigmoidal transition in (8) from a state in which the net-
work does not represent a particular input-output relation at

all, to a state in which the network fully incorporates that rela-
tion. To formalize this, we begin with the sigmoidal learning
curve in (8). If we assume the initial strength of the mode a0
satisfies a0 < s/2, where s is its final learned value, we can
define the transition time to be the time at which the mode is
half learned (i.e. a(thalf) = s/2). This yields

thalf =
t
2s

log
✓

s
a0

�1
◆
. (10)

We can then define the transition period ttrans as the time re-
quired for a linear approximation to a(t,s,a0) at thalf to rise
from zero to s. This yields a transition time to go from a state
of no learning to almost full learning given by ttrans = 2t

s .
Thus, by starting with a very small initial condition in the
weights (i.e. a0), it is clear that one can make the ratio
ttrans/thalf arbitrarily small. Hence the learning dynamics
of (3)-(4) can indeed exhibit sharp stage-like transitions con-
sisting of long periods of dormancy ended by an abrupt tran-
sition to mastery. Interestingly, we can prove that single layer
networks are not capable of such stage-like transitions. Thus
their existence is an emergent property of nonlinear learning
dynamics in deep networks with at least one hidden layer, and
does not require nonlinearity in the input-output map of the
network.

Summary of learning dynamics The preceding analyses
have established a number of crucial features of gradient de-
scent learning in a simple linear network, making explicit the
relationship between the statistical structure of training ex-
amples and the dynamics of learning. In particular, for an ar-
bitrary input-output task the network will ultimately come to
represent the closest rank N2 approximation to the full input-
output correlation matrix. Furthermore, the learning dynam-
ics depend crucially on the singular values of the input-output
correlation matrix. Each input-output mode is learned in time
inversely proportional to its associated singular value, yield-
ing the intuitive result that stronger input-output associations
are learned before weaker ones.

The singular values and vectors of
hierarchically generated data

In this section we introduce a hierarchical probabilistic gener-
ative model of items and their attributes that, when sampled,
produces a dataset that can be supplied to our neural network.
Using this, we will be able to explicitly link hierarchical tax-
onomies of categories to the dynamics of network learning.
A key result in the following is that our network must exhibit
progressive differentiation with respect to any of the underly-
ing hierarchical taxonomies allowed by our generative model.

Hierarchical feature vectors from a branching diffusion
process To understand the time course of learning of hier-
archical structure, we propose a simple generative model of
hierarchical data {xµ,yµ}, and compute for this model the sta-
tistical properties (sa,ua,va) which drive learning. We first
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Figure 4: Statistical structure of hierarchical data. (a) Ex-
ample hierarchical diffusion process with D = 4 levels and
branching factor B = 2. To sample one feature’s value across
items, the root node is randomly set to ±1; next this value dif-
fuses to children nodes, where its sign is flipped with a small
probability e. The leaf node assignments yield the value of
this feature on each item. To generate more features, the pro-
cess is repeated independently N times. (b) Analytically de-
rived input singular vectors (up to a scaling) of the resulting
data, ordered top-to-bottom by singular value. Mode 1 is a
level 0 function on the tree, mode 2 is level 1, 3 and 4 are
level 2, while modes 5 through 8 are level 3. Singular modes
corresponding to broad distinctions (higher levels) have the
largest singular values, and hence will be learned first. (c)
The output covariance of the data consists of hierarchically
organized blocks.

address the output data yµ,µ = 1, . . . ,P. Each yµ is an N-
dimensional feature vector where each feature i in example
µ takes the value yµ

i =±1. The value of each feature i across
all examples arises from a branching diffusion process occur-
ring on a tree (see e.g. Fig. 4A). Each feature i undergoes its
own diffusion process on the tree, independent of any other
feature j. This entire process, described below, yields a hier-
archical structure on the set of examples µ = 1, . . . ,P, which
are in one-to-one correspondence with the leaves of the tree.

The tree has a fixed topology, with D levels indexed by
l = 0, . . . ,D� 1, with Ml total nodes at level l. We take for
simplicity a regular branching structure, so that every node at
level l has exactly Bl descendants. Thus Ml = M0Pl�1

k=0Bl .
The tree has a single root node at the top (M0 = 1), and
again P leaves at the bottom, one per example in the dataset
(MD�1 = P).

Given a single feature component i, its value across P ex-
amples is determined as follows. First draw a random vari-
able h(0) associated with the root node at the top of the tree.
The variable h(0) takes the values ±1 with equal probability
1
2 . Next, for each of the B0 descendants below the root node
at level 1, pick a random variable h(1)

i , for i = 1, . . . ,B0. This
variable h(1)

i takes the value h(0) with probability 1� e and
�h(0) with probability e. The process continues down the
tree: each of Bl�1 nodes at level l with a common ancestor
at level l �1 is assigned its ancestor’s value with probability
1� e, or is assigned the negative of its ancestor’s value with
probability e. Thus the original feature value at the root, h(0),
diffuses down the tree with a small probability e of changing
at each level along any path to a leaf. The final values at the
P leaves constitute the feature values yµ

i for µ = 1, . . . ,P. This
process is repeated independently for N feature components.

In order to understand the dimensions of variation in the
feature vectors, we consider the inner product, or overlap,
between two example feature vectors. This inner product,
normalized by the number of features N, has a well-defined
limit as N ! •. Furthermore, due to the hierarchical diffu-
sive process which generates the data, the normalized inner
product only depends on the level of the tree at which the first
common ancestor of the two leaves associated with the two
examples arises. Therefore we can make the definition

qk =
1
N

N

Â
i=1

yµ1
i yµ2

i , (11)

where again, the first common ancestor of leaves µ1 and µ2
arises at level k. It is possible to explicitly compute qk for the
generative model described above, which yields

qk = (1�4e(1� e))D�1�k. (12)

It is clear that the overlap qk strictly decreases as the level
k of the last common ancestor decreases (i.e. the distance
up the tree to the last common ancestor increases). Thus
pairs of examples with a more recent common ancestor have
stronger overlap than pairs of examples with a more distant
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Figure 4: Statistical structure of hierarchical data. (a) Ex-
ample hierarchical diffusion process with D = 4 levels and
branching factor B = 2. To sample one feature’s value across
items, the root node is randomly set to ±1; next this value dif-
fuses to children nodes, where its sign is flipped with a small
probability e. The leaf node assignments yield the value of
this feature on each item. To generate more features, the pro-
cess is repeated independently N times. (b) Analytically de-
rived input singular vectors (up to a scaling) of the resulting
data, ordered top-to-bottom by singular value. Mode 1 is a
level 0 function on the tree, mode 2 is level 1, 3 and 4 are
level 2, while modes 5 through 8 are level 3. Singular modes
corresponding to broad distinctions (higher levels) have the
largest singular values, and hence will be learned first. (c)
The output covariance of the data consists of hierarchically
organized blocks.

address the output data yµ,µ = 1, . . . ,P. Each yµ is an N-
dimensional feature vector where each feature i in example
µ takes the value yµ

i =±1. The value of each feature i across
all examples arises from a branching diffusion process occur-
ring on a tree (see e.g. Fig. 4A). Each feature i undergoes its
own diffusion process on the tree, independent of any other
feature j. This entire process, described below, yields a hier-
archical structure on the set of examples µ = 1, . . . ,P, which
are in one-to-one correspondence with the leaves of the tree.

The tree has a fixed topology, with D levels indexed by
l = 0, . . . ,D� 1, with Ml total nodes at level l. We take for
simplicity a regular branching structure, so that every node at
level l has exactly Bl descendants. Thus Ml = M0Pl�1

k=0Bl .
The tree has a single root node at the top (M0 = 1), and
again P leaves at the bottom, one per example in the dataset
(MD�1 = P).

Given a single feature component i, its value across P ex-
amples is determined as follows. First draw a random vari-
able h(0) associated with the root node at the top of the tree.
The variable h(0) takes the values ±1 with equal probability
1
2 . Next, for each of the B0 descendants below the root node
at level 1, pick a random variable h(1)

i , for i = 1, . . . ,B0. This
variable h(1)

i takes the value h(0) with probability 1� e and
�h(0) with probability e. The process continues down the
tree: each of Bl�1 nodes at level l with a common ancestor
at level l �1 is assigned its ancestor’s value with probability
1� e, or is assigned the negative of its ancestor’s value with
probability e. Thus the original feature value at the root, h(0),
diffuses down the tree with a small probability e of changing
at each level along any path to a leaf. The final values at the
P leaves constitute the feature values yµ

i for µ = 1, . . . ,P. This
process is repeated independently for N feature components.

In order to understand the dimensions of variation in the
feature vectors, we consider the inner product, or overlap,
between two example feature vectors. This inner product,
normalized by the number of features N, has a well-defined
limit as N ! •. Furthermore, due to the hierarchical diffu-
sive process which generates the data, the normalized inner
product only depends on the level of the tree at which the first
common ancestor of the two leaves associated with the two
examples arises. Therefore we can make the definition

qk =
1
N

N

Â
i=1

yµ1
i yµ2

i , (11)

where again, the first common ancestor of leaves µ1 and µ2
arises at level k. It is possible to explicitly compute qk for the
generative model described above, which yields

qk = (1�4e(1� e))D�1�k. (12)

It is clear that the overlap qk strictly decreases as the level
k of the last common ancestor decreases (i.e. the distance
up the tree to the last common ancestor increases). Thus
pairs of examples with a more recent common ancestor have
stronger overlap than pairs of examples with a more distant
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Figure 3.9: Learned distribution of predicates in representation space. The shading is illustrative, and suggests
characteristics of the regions of the representation space to which particular predicates may apply. More general
names apply to items in a broader region of the space.Rogers	  &	  McClelland,	  2004	  
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Conclusion	  

•  Progressive	  differen1a1on	  of	  hierarchical	  
structure	  is	  a	  general	  feature	  of	  learning	  in	  
deep	  neural	  networks	  

•  Deep	  (but	  not	  shallow)	  networks	  exhibit	  
stage-‐like	  transi1ons	  during	  learning	  

•  Second	  order	  sta6s6cs	  of	  data	  are	  sufficient	  
to	  drive	  hierarchical	  differen6a6on	  	  



Other	  work	  

Can	  analy6cally	  understand	  design	  principles	  governing	  many	  
phenomena	  previously	  simulated	  
	  
•  Illusory	  correla6ons	  early	  in	  learning	  
•  Familiarity	  and	  typicality	  effects	  
•  Induc6ve	  property	  judgments	  
•  ‘Dis6nc6ve’	  feature	  effects	  
	  

Our	  framework	  connects	  probabilis1c	  models	  and	  neural	  
networks,	  analy6cally	  linking	  structured	  environments	  to	  
learning	  dynamics.	  
	  

•  Basic	  level	  effects	  
•  Category	  coherence	  
•  Perceptual	  correla6ons	  	  
•  Prac6ce	  effects	  



Why	  are	  some	  proper6es	  dis6nc6ve,	  or	  learned	  faster?	  
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A property                  = vector across items!
An object analyzer     = vector across items!
!
If a property is similar to an object analyzer with large!
singular value then (and only then) will it be learned quickly.!
!
That property is distinctive for the category associated with !
that object analyzer  (i.e. move for animals versus plant) !



Why	  are	  some	  items	  more	  typical	  members	  of	  a	  category?	  
(i.e.	  sparrow	  versus	  ostrich	  for	  the	  category	  bird)	  
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An  item                                        = vector across properties!
A category feature synthesizer    = vector across properties!
!
If an item is similar to the feature synthesizer for a category, then it is a 
typical member of that category. !
!
Category membership verification easier for typical versus atypical items. !



How	  is	  induc6ve	  generaliza6on	  achieved	  by	  neural	  networks?	  
Inferring	  familiar	  proper6es	  of	  a	  novel	  item.	  
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Given a new partially described object = vector across subset of properties!
What are the rest of the object’s properties?!
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Filled in property vector!
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How	  is	  induc6ve	  generaliza6on	  achieved	  by	  neural	  networks?	  
Inferring	  which	  familiar	  objects	  have	  a	  novel	  property.	  	  
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vectors 
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Given a new property      =  vector across subset of items!
Which other items have this property?!
!
i.e.  A bird has gene X.  Does a crocodile? A dog?!

Partial item vector !

Neural network internal 
representation!

Filled in item vector!
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What	  is	  a	  category	  and	  what	  makes	  it	  “coherent?”	  

i.e. “incoherent” = the set of all things that are blue!
i.e. “coherent”    = the set of all things that are dogs!

A simple proposal:  A category is a subset of objects sharing !
a subset of features important for that category.   !
!
A conceptual Gordian knot bedeviling the field of category learning in 
psychology:  How does one learn a category?!

Identify the objects that !
belong to the category!

But must know which features!
 are important for the category!

   Identify the features that !
are important for the category!

But must know which objects 
belong to the category!

Some categories make 
more “sense”, or are 
more “coherent” than 
others.!
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What	  is	  a	  category	  and	  what	  makes	  it	  “coherent?”	  
A simple proposal:  A category is a subset of objects sharing !
a subset of features important for that category.   !
!
A conceptual Gordian knot bedeviling the field of category learning in 
psychology:  How does one learn a category?!
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What	  is	  a	  category	  and	  what	  makes	  it	  “coherent?”	  
A simple proposal:  A category is a subset of objects sharing !
a subset of features important for that category.   !
!
A conceptual Gordian knot bedeviling the field of category learning in 
psychology:  How does one learn a category?!



What	  is	  a	  category	  and	  what	  makes	  it	  “coherent?”	  

If an object is in a category and a feature is important for that category, then!
the probability this object has that feature is p.!
!
Otherwise, the probability any other object has any feature is q < p. !
!
For what values of No, Ko, Nf,  Kf , p and q !
can a category be learned?!
!
!
How fast can it be learned?                                Learning time is!
                                                                            inversely related.!

p� qp
q(1� q)

K
o

K
f

�
p

N
o

N
f

Toy model for statistical structure !
of the world: !
!
No = Total number of objects        !
Nf =  Total number of features!
!
Ko =  Number of objects in a category!
Kf  =  Number of features important !



What	  is	  a	  category	  and	  what	  makes	  it	  “coherent?”	  

i.e. “incoherent” = the set of all things that are blue!
i.e. “coherent”    = the set of all things that are dogs!
!
A natural definition category coherence !
is the singular value associated with!
object analyzers and feature synthesizers !
!
!
!
For hierarchically structured data:!
!
!
Coherence = similarity of descendants – similarity to nearest out-category !
!
Mathematical Theorem: Coherent categories are learned faster!!
!
The category coherence of any one category is an emergent property of the 
entire statistical structure of the world: in particular the structure of individual 
categories and their relations to each other!!

…
Branching factor B0 

…

B1 

Item	  1	   Item	  2	   Item	  P	  



Towards	  a	  theory	  of	  deep	  learning	  dynamics	  
	  

– The	  dynamics	  of	  learning	  in	  deep	  networks	  is	  non-‐
trivial	  –	  i.e.	  plateaus	  and	  sudden	  transitions	  to	  
better	  performance	  

– How	  does	  training	  time	  scale	  with	  depth?	  

– How	  should	  the	  learning	  rate	  scale	  with	  depth?	  

– How	  do	  different	  weight	  initializations	  impact	  
learning	  speed?	  

– We	  will	  Aind	  that	  weight	  initializations	  with	  critical	  
dynamics	  can	  aid	  deep	  learning	  and	  generalization.	  

	  



Nontrivial	  learning	  dynamics	  
Plateaus	  and	  sudden	  

transitions	  
Faster	  convergence	  from	  

pretrained	  initial	  conditions	  
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•  Build	  intui6ons	  for	  nonlinear	  case	  by	  analyzing	  linear	  case	  



Deeper	  networks	  
•  Can	  generalize	  to	  arbitrary	  depth	  network	  

•  Each	  effective	  singular	  value	  a	  evolves	  
independently	  

	  
•  In	  deep	  networks,	  combined	  gradient	  is	  

τ
d
dt
a = (Nl −1)a

2−2 (Nl−1)(s− a)
τ	   1/Learning	  

rate	  

s	   Singular	  value	  

Nl	   #	  layers	  

O Nl τ( )

w1	  w2	  wNl-‐1	  

a =
Nl�1Y

i=1

Wi



Deep	  linear	  learning	  speed	  
•  Intuition	  (see	  paper	  for	  details):	  
	  

– Gradient	  norm	  

– Learning	  rate	  

– Learning	  time	  

•  Deep	  learning	  can	  be	  fast	  with	  the	  right	  ICs.	  

O Nl( )

O 1 Nl( )

O 1( )

(Nl	  =	  #	  layers)	  

Saxe,	  McClelland,	  Ganguli	  ICLR	  2014	  



MNIST	  learning	  speeds	  

•  Trained	  deep	  linear	  nets	  on	  MNIST	  

•  Depths	  ranging	  from	  3	  to	  100	  
•  1000	  hidden	  units/layer	  (overcomplete)	  
•  Decoupled	  initial	  conditions	  with	  Aixed	  initial	  mode	  
strength	  

•  Batch	  gradient	  descent	  on	  squared	  error	  
•  Optimized	  learning	  rates	  for	  each	  depth	  

•  Calculated	  epoch	  at	  which	  error	  falls	  below	  Aixed	  
threshold	  



MNIST	  depth	  dependence	  
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Deep	  linear	  networks	  

•  Deep	  learning	  can	  be	  fast	  with	  decoupled	  ICs	  and	  O(1)	  initial	  mode	  strength.	  
How	  to	  7ind	  these?	  

•  Answer:	  	  Pre-‐training	  and	  random	  orthogonal	  initializations	  can	  Aind	  these	  
special	  initial	  conditions	  that	  allow	  depth	  independent	  training	  times!!	  

•  But	  scaled	  random	  Gaussian	  initial	  conditions	  on	  weights	  cannot.	  	  



Depth-‐independent	  training	  time	  

Time	  to	  criterion	   Op1mal	  learning	  rate	  

•  Deep	  linear	  networks	  on	  MNIST	  
•  Scaled	  random	  Gaussian	  ini6aliza6on	  (Glorot	  &	  Bengio,	  2010)	  

•  Pretrained	  and	  orthogonal	  have	  fast	  depth-‐independent	  
training	  6mes!	  



Random	  vs	  orthogonal	  
•  Gaussian	  preserves	  norm	  of	  random	  vector	  on	  average	  

•  Attenuates	  on	  subspace	  of	  high	  dimension	  
•  Ampli6ies	  on	  subspace	  of	  low	  dimension	  
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All	  singular	  values	  of	  Wtot =1

•  Glorot	  preserves	  norm	  of	  random	  vector	  on	  average	  

•  Orthogonal	  preserves	  norm	  of	  all	  vectors	  exactly	  



Deeper	  network	  learning	  dynamics	  
•  Jacobian	  that	  back-‐propagates	  gradients	  can	  explode	  or	  
decay	  

	   x ∈ RN1y ∈ RND+1

.	  .	  .	  

h2 ∈ RN3
x	  

W 1W 2WD

f (W 1x)f (WDhD )

f (x)

f (W 2h1)f (WD−1hD−1)



Extensive	  Criticality	  yields	  	  
Dynamical	  Isometry	  in	  nonlinear	  nets	  
Suggests	  initialization	  for	  nonlinear	  nets	  
•  near-‐isometry	  on	  subspace	  of	  large	  dimension	  
•  Singular	  values	  of	  end-‐to-‐end	  Jacobian	  
	  	  	  	  	  concentrated	  around	  1.	  	  
Scale	  orthogonal	  matrices	  by	  gain	  g	  to	  counteract	  contractive	  
nonlinearity	  
	  
	  
	  
	  
Just	  beyond	  edge	  of	  chaos	  (g>1)	  may	  be	  good	  initialization	  
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have shown that for linear networks, orthogonal initializations achieve exact dynamical isometry with all
singular values at 1, while greedy pre-training achieves it approximately.

We note that the discrepancy in learning times between the scaled Gaussian initialization and the orthogonal
or pre-training initializations is modest for the depths of around 6 used in large scale applications, but is
magnified at larger depths (Fig. 6A left). This may explain the modest improvement in learning times with
greedy pre-training versus random scaled Gaussian initializations observed in applications (see discussion in
Supplementary Appendix D). We predict that this modest improvement will be magnified at higher depths,
even in nonlinear networks. Finally, we note that in recurrent networks, which can be thought of as infinitely
deep feed-forward networks with tied weights, a very promising approach is a modification to the training
objective that partially promotes dynamical isometry for the set of gradients currently being back-propagated
[24].

4 Achieving approximate dynamical isometry in nonlinear networks

We have shown above that deep random orthogonal linear networks achieve perfect dynamical isometry.
Here we show that nonlinear versions of these networks can also achieve good dynamical isometry proper-
ties. Consider the nonlinear feedforward dynamics

xl+1
i

=

X

j

gW (l+1,l)
ij

�(xl

j

), (20)

where xl

i

denotes the activity of neuron i in layer l, W (l+1,l)
ij

is a random orthogonal connectivity matrix from
layer l to l + 1, g is a scalar gain factor, and �(x) is any nonlinearity that saturates as x ! ±1. We show
in Supplementary appendix G that there exists a critical value g

c

of the gain g such that if g < g
c

, activity
will decay away to zero as it propagates through the layers, while if g > g

c

, the strong linear positive gain
will combat the damping due to the saturating nonlinearity, and activity will propagate indefinitely without
decay, no matter how deep the network is. When the nonlinearity is odd (�(x) = ��(�x)), so that the mean
activity in each layer is approximately 0, these dynamical properties can be quantitatively captured by the
neural population variance in layer l,

ql ⌘ 1

N

NX

i=1

(xl

i

)

2. (21)

Thus lim

l!1 ql ! 0 for g < g
c

and lim

l!1 ql ! q1(g) > 0 for g > g
c

. When �(x) = tanh(x), we
compute g

c

= 1 and numerically compute q1(g) in Fig. 8 in Supplementary appendix G. Thus these non-
linear feedforward networks exhibit a phase-transition at the critical gain; above the critical gain, infinitely
deep networks exhibit chaotic percolating activity propagation, so we call the critical gain g

c

the edge of
chaos, in analogy with terminology for recurrent networks.

Now we are interested in how errors at the final layer N
l

backpropagate back to earlier layers, and whether
or not these gradients explode or decay with depth. To quantify this, for simplicity we consider the end to
end Jacobian

JNl,1
ij

(xNl
) ⌘ @xNl

i

@x1
j

����
x

Nl

, (22)

which captures how input perturbations propagate to the output. If the singular value distribution of this
Jacobian is well-behaved, with few extremely large or small singular values, then the backpropagation of
gradients will also be well-behaved, and exhibit little explosion or decay. The Jacobian is evaluated at a
particular point xNl in the space of output layer activations, and this point is in turn obtained by iterating
(20) starting from an initial input layer activation vector x1. Thus the singular value distribution of the
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•  g>1	  speeds	  up	  30	  layer	  nonlinear	  nets	  

•  Dynamic	  isometry	  reduces	  test	  error	  by	  1.4%	  pts	  

Dynamic	  Isometry	  Initialization	  

MNIST	  Classifica6on	  error,	  epoch	  1500	   Train	  	  
Error	  (%)	  

Test	  	  
Error	  (%)	  

Gaussian	  (g=1,	  random)	   2.3	   3.4	  

g=1.1,	  random	   1.5	   3.0	  

g=1,	  orthogonal	   2.8	   3.5	  

Dynamic	  Isometry	  (g=1.1,	  orthogonal)	   0.095	   2.1	  

•  Tanh	  network,	  sonmax	  output,	  500	  units/layer	  
•  No	  regulariza6on	  (weight	  decay,	  sparsity,	  dropout,	  etc)	  



Summary	  
•  Deep	  linear	  nets	  have	  nontrivial	  nonlinear	  learning	  dynamics.	  

•  Learning	  time	  inversely	  proportional	  to	  strength	  of	  input-‐output	  
correlations.	  

•  With	  the	  right	  initial	  weight	  conditions,	  number	  of	  training	  epochs	  
can	  remain	  Ainite	  as	  depth	  increases.	  	  

•  Dynamically	  critical	  networks	  just	  beyond	  the	  edge	  of	  chaos	  enjoy	  
depth-‐independent	  learning	  times.	  



Beyond	  learning:	  criticality	  and	  
generalization	  

•  Deep	  networks	  +	  large	  gain	  factor	  g	  train	  exceptionally	  quickly	  	  
•  But	  large	  g	  incurs	  heavy	  cost	  in	  generalization	  performance	  

	  
•  Suggests	  small	  initial	  weights	  regularize	  towards	  smoother	  functions	  
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Some of the theoretical puzzles of deep learning 

Generalizability: what principles do deep networks use to place 
probability / make decisions in regions of input space with little data?  

Trainability: if a good network solution exists with small training error, 
how do we find it?  And what makes a learning problem difficult? 

Expressivity: what kinds of functions can a deep network express that  
shallow networks cannot?  
 
Exponential expressivity in deep neural networks through transient chaos,  B. Poole, S. Lahiri,M. Raghu, 
J. Sohl-Dickstein, S. Ganguli,  NIPS 2016. 
 
 

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions, 
Physical Review X, 2016.   
 
Expressiveness, Memorization, Stability, and Flat versus sharp minima.  

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear 
neural networks ICLR 2014.  

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, Identifying and attacking the saddle 
point problem in high-dimensional non-convex optimization, NIPS 2014. 

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks, 
CogSci 2013.  



High dimensional nonconvex optimization

It is often thought that local minima at high error stand as 
as a major impediment to non-convex optimization.

In random non-convex error surfaces over
high dimensional spaces, local minima at high
error are exponentially rare in the dimensionality.  

Instead saddle points proliferate.

We developed an algorithm that rapidly escapes saddle points 
in high dimensional spaces.   

Identifying and attacking the saddle point problem in high dimensional non-convex optimization.
Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, Yoshua Bengio.  NIPS 2014

A. Choromanska, M. B. Henaff, M. Mathieu, G. Ben Arous, Y. LeCun, The Loss Surfaces of Multilayer Networks, 
in the International Conference on Artificial Intelligence and Statistics (AISTATS), 2015 pdf 
 



General properties of error landscapes in 
high dimensions 

From statistical physics:

Consider a random Gaussian error 
landscape over N variables.

Let x be a critical point.
Let E be its error level.
Let f be the fraction of negative curvature 
directions. 

Bray and Dean, Physical Review Letters, 2007  
E

f



Properties of Error Landscapes on the!
Synaptic Weight Space of a Deep Neural Net

Qualitatively consistent with the 
statistical physics theory of random error landscapes



How to descend saddle points

Newton’s Method

Saddle Free Newton’s Method

Intuition: saddle points attract Newton’s method, but  
                                  repel saddle free Newton’s method.

Derivation:  minimize a linear approximation to f(x) within a trust region
                  in which the linear and quadratic approximations agree

�x = �H�1 rf(x)

�x = �|H|�1 rf(x)



Performance of saddle free Newton in 
learning deep neural networks.

When stochastic gradient descent appears to plateau, switching to saddle 
Free newton escapes the plateau.



Some of the theoretical puzzles of deep learning 

Generalizability: what principles do deep networks use to place 
probability / make decisions in regions of input space with little data?  

Trainability: if a good network solution exists with small training error, 
how do we find it?  And what makes a learning problem difficult? 

Expressivity: what kinds of functions can a deep network express that  
shallow networks cannot?  
 
Exponential expressivity in deep neural networks through transient chaos,  B. Poole, S. Lahiri,M. Raghu, 
J. Sohl-Dickstein, S. Ganguli, under review, NIPS 2016. 
 
 

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions, 
Physical Review X, 2016.   
 
Expressiveness, Memorization, Stability, and Flat versus sharp minima.  

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear 
neural networks ICLR 2014.  

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, Identifying and attacking the saddle 
point problem in high-dimensional non-convex optimization, NIPS 2014. 

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks, 
CogSci 2013.  



        A theory of deep neural expressivity  
                    through transient chaos 

Stanford                                                  Google 

Ben Poole 
     Jascha 
Sohl-Dickstein 

    Subhaneil  
       Lahiri 

     Maithra  
     Raghu 

Expressivity: what kinds of functions can a deep network express that  
shallow networks cannot?  
 
Exponential expressivity in deep neural networks through transient chaos,  B. Poole, S. Lahiri,M. Raghu, 
J. Sohl-Dickstein, S. Ganguli,  NIPS 2016. 
 
On the expressive power of deep neural networks,  M.Raghu, B. Poole,J. Kleinberg, J. Sohl-Dickstein, S. 
Ganguli, under review, ICML 2017. 
 
 



                     Seminal works on the expressive power of depth 

Overall idea: there exist certain (special?) functions that can be computed: 
  
    a) efficiently using a deep network (poly # of neurons in input dimension) 
 
    b) but not by a shallow network (requires exponential # of neurons) 
 
Intellectual traditions in boolean circuit theory: parity function is such a 
function for boolean circuits. 

Networks with one hidden layer are universal function approximators. 
 
So why do we need depth? 
 
Universal function approximation theorems yield no guarantees on the size  
of the hidden layer needed to approximate a function well.  
 
 



                     Seminal works on the expressive power of depth 

            Nonlinearity                       Measure of Functional Complexity  
 
  Rectified Linear Unit (ReLu)             Number of linear regions 
 
 
There exists a function computable by a deep network where the number 
of linear regions is exponential in the depth.  
 
To approximate this function with a shallow network, one would require 
exponentially many more neurons. 

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. 
On the number of linear regions of deep neural networks, NIPS 2014 



                     Seminal works on the expressive power of depth 

            Nonlinearity                       Measure of Functional Complexity  
 
      Sum-product network                         Number of monomials 
 
There exists a function computable by a deep network where the number 
of unique monomials is exponential in the depth.  
 
To approximate this function with a shallow network, one would require 
exponentially many more neurons. 

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks, NIPS 2011. 



                                                   Questions 

 
 
How natural are these functions from the perspective of AI? 
 
Are such functions rare curiosities? 
 
Or is this phenomenon much more generic than these specific examples? 
 
In some sense, is any function computed by a generic deep network 
not efficiently computable by a shallow network? 
 
 
If so we would like a theory of deep neural expressivity that demonstrates 
this for  
                    1)  Arbitrary nonlinearities 
 
                    2)  A natural, general measure of functional complexity.  
 
 
 
 



                                     Limitations of prior work 

Theoretical technique                 Nonlinearity              Measure of Functional                            
                                                                                             Complexity  
 
Combinatorics/                                ReLU                    Number of linear regions 
Hyperplane Arrangements  
 
Polynomial expansion                 Sum-product             Number of monomials 
 
Algebraic topology                          Pfaffian                   Sum of betti numbers 
 
 
 
 
Riemannian geometry +               Arbitrary                          Extrinsic  
Dynamical mean field theory                                                Curvature    
 
We will show that even in generic, random deep neural networks, measures 
of functional curvature grow exponentially with depth but not width!  
 
More over the origins of this exponential growth can be traced to chaos theory.    
 
 

Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A comparison between 
shallow and deep architectures. Neural Networks and Learning Systems, IEEE Transactions on, 2014.  

ier 



   Another perspective on the advantage of depth: disentangling 

How can we mathematically formalize the notion of disentangling  
in deep networks? 
 
How do we use this mathematical formalization to quantitatively assess the 
disentangling power of deep versus shallow networks?  
 
We will show that deep networks can disentangle manifolds whose 
curvature grows exponentially with depth! 



A maximum entropy ensemble of deep random networks 

Structure:              i.i.d. random Gaussian weights and biases: 

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)
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           Emergent, deterministic signal propagation  
                     in random neural networks 

Question:  how do simple input manifolds propagate through the layers?              
 
A single point:            When does its length grow or shrink and how fast? 
 
A pair of points:          Do they become more similar or more different, and 
                                   how fast? 
 
A smooth manifold:    How does its curvature and volume change?  

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)
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Propagation of a single point through a deep network  

Nl = number of neurons in layer l

D = depth(l = 1, . . . , D)
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A recursion relation for the length of a point as it propagates through the network 



Propagation of a single point through a deep network  

�b = 0.3



Propagation of a single point through a deep network  

�w < 1 �b = 0 : ql ! 0

�w > 1 �b = 0 or �b 6= 0 : ql ! q⇤



   Propagation of two points through a deep network  
 

qlab =
1

Nl

NlX

i=1

h

l
i(x

0,a)hl
i(x

0,b) a, b 2 {1, 2}.

The geometry of two points in a hidden layer l is captured  
by the two by two matrix of inner products: 

cl12 =
ql12p

ql11
p
ql22

Of particular interest: the correlation 
coefficient or cosine of the angle  
between the two points:  

x

0,1

x

0,2



 A theory of correlation propagation in a deep network 

qlab =
1

Nl

NlX

i=1

h

l
i(x

0,a)hl
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0,b) a, b 2 {1, 2}.The geometry of two points: 

cl12 =
ql12p

ql11
p
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Correlation coefficient between two points:  
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A recursion relation for the correlation coeff. between two points in a deep net! 
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   Propagation of correlations through a deep network  
 

�b = 0.3

cl12 =
1

q⇤
C(cl�1

12 , q⇤, q⇤ |�w,�b)

�1 ⌘ @cl12
@cl�1

12

�����
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Z
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⇥
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�⇤2 Interpretation: χ1 is a 
multiplicative stretch factor: 

 χ1 < 1 :  nearby points come closer together 
 χ1 > 1 :  nearby points are driven apart 



   Propagation of two points through a deep network  
 

Small �w relative to �b : �1 < 1 cl12 ! 1

Intermediate �w relative to �b : �1 > 1 cl12 ! c⇤

Large �w relative to �b : �1 > 1 cl12 ! 0



   Propagation of a manifold through a deep network  
 

The geometry of the manifold is captured by the similarity matrix - 
How similar two points are in internal representation space):  

Or autocorrelation function: 

x
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   Propagation of a manifold through a deep network  
 
h1

(✓) =
p

N1q⇤
⇥
u0

cos(✓) + u1
sin(✓)

⇤ A great circle  
input manifold 



   Propagation of a manifold through a deep network  
 



         Riemannian geometry I: Euclidean length 

✓

h(✓)

gE(✓) =
@h(✓)

@✓
· @h(✓)

@✓

Metric on manifold coordinate θ
induced by Euclidean metric in  
internal representation space h.  

@h(✓)

@✓

dLE =
q

gE(✓)d✓

Length element: if one moves from  
Θ  to Θ+ dΘ along the manifold, 
then one moves a distance dLE  

in internal representation space 



Riemannian geometry II: Extrinsic Gaussian Curvature 

h(✓)

v(✓) =
@h(✓)

@✓

a(✓) =
@v(✓)

@✓

Point on the curve 

Tangent or velocity 
vector 

Acceleration vector 

The velocity and acceleration vector span a 2 dimensional plane in N dim space. 
 
Within this plane, there is a unique circle that touches the curve at h(θ), with the 
same velocity and acceleration.  
 
The Gaussian curvature κ(θ) is the inverse of the radius of this circle.  

(✓) =

s
(v · v)(a · a)� (v · a)2

(v · v)3



                       Riemannian geometry III:   
       The Gauss map and Grassmannian length 

✓
v̂(✓) 2 SN�1

A point on  
the curve 

The unit 
tangent vector 
at that point  

Metric on manifold coordinate θ
induced by metric on the Grassmannian: 
how quickly unit tangent vector changes 

Length element: if one moves from  
Θ  to Θ+ dΘ along the manifold, 
then one moves a distance dLG  

Along the Grassmanian 

gG(✓) =
@v̂(✓)

@✓
· @v̂(✓)

@✓

dLG =
q

gG(✓)d✓

gG(✓) = (✓)2gE(✓) Grassmannian length, Gaussian curvature 
and Euclidean length 



                   An example: the great circle 

A great circle  
input manifold 

gE(✓) = Nq

LE = 2⇡
p

Nq

(✓) = 1/
p

Nq gG(✓) = 1

LG = 2⇡

Euclidean  
   length 

Gaussian 
Curvature 

Grassmannian 
      Length 

Behavior under isotropic linear expansion via multiplicative stretch χ1: 

h1
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LG ! LG
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   length 
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p
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 χ1 < 1 
 
 χ1 > 1 

Contraction                     Increase                           Constant 

Expansion                      Decrease                          Constant 



  Theory of curvature propagation in deep networks 
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Ordered:      χ1 < 1 
 
Chaotic:       χ1 > 1 

  Local      
Stretch 

Gaussian  
Curvature       

Grassmannian  
      Length       

Contraction          Explosion               Constant 

Expansion         Attentuation +        Exponential 
                             Addition                  Growth 

 Modification of existing curvature due to stretch 
 
 Addition of new curvature due to nonlinearity  



     Curvature propagation: theory and experiment 

Unlike linear expansion, deep neural signal propagation can: 
        
             1)  exponentially expand length,  
             2)  without diluting Gaussian curvature, 
             3) thereby yielding exponential growth of Grassmannian length.  
 
As a result, the circle will become space filling as it winds around at  
a constant rate of curvature to explore many dimensions! 



  Exponential expressivity is not achievable by shallow nets 

 N1 

x

0(✓)



                    Boundary disentangling: theory 

How can we mathematically formalize the notion of disentangling  
in deep networks? 
 
How do we use this mathematical formalization to quantitatively assess the 
disentangling power of deep versus shallow networks?  



                    Boundary disentangling: theory 

y = sgn(� · xD � �0) A linear classifier in the top layer 

(� · xD � �0) = 0 Implements a hyperplane decision  
boundary in final layer 

G(x0) = (� · xD(x0)� �0) = 0
Yielding a curved co-dimension 1 
decision boundary in the input layer 

1(x
⇤) � 2(x

⇤) � · · · � N�1(x
⇤)

Its curvature at a point is characterized by N-1 
principal curvatures:  

H = ||~rG||�1
2 P

@2G

@x@xT
P

P = I� drGdrG
T

They are the eigenvalues of:  



               Boundary disentangling: experiment 

The principal curvatures of decision boundaries in the chaotic regime  
grow exponentially with depth! 
 
Thus exponentially curved manifolds in input space can be flattened to  
hyperplanes even by deep random networks! 



                                 Summary 
We have combined Riemannian geometry with dynamical mean field theory 
to study the emergent deterministic properties of signal propagation in deep 
nonlinear nets. 
 
We derived analytic recursion relations for Euclidean length, correlations, 
curvature, and Grassmannian length as simple input manifolds propagate 
forward through the network. 
 
We obtain an excellent quantitative match between theory and simulations. 
 
Our results reveal the existence of a transient chaotic phase in which the 
network expands input manifolds without straightening them out, leading to 
“space filling” curves that explore many dimensions while turning at a  
constant rate.  The number of turns grows exponentially with depth.  
 
Such exponential growth does not happen with width in a shallow net. 
 
Chaotic deep random networks can also take exponentially curved N-1 
Dimensional decision boundaries in the input and flatten them into  
Hyperplane decision boundaries in the final layer: exponential disentangling! 
 
 
 
 
 
 
                                (see Poggio’s talk later today!) 
 
Are such functions rare curiosities? 
 
Or is in some sense any function computed by a generic deep network 
not efficiently computable by a shallow network? 
 
 
If so we would like a theory of deep neural expressivity that demonstrates this 
for  
                    1)  Arbitrary nonlinearities 
 
                    2)  A natural, general measure of functional complexity.  
 
 
 
 



Some of the theoretical puzzles of deep learning 

Generalizability: what principles do deep networks use to place 
probability / make decisions in regions of input space with little data?  

Trainability: if a good network solution exists with small training error, 
how do we find it?  And what makes a learning problem difficult? 

Expressivity: what kinds of functions can a deep network express that  
shallow networks cannot?  
 
Exponential expressivity in deep neural networks through transient chaos,  B. Poole, S. Lahiri,M. Raghu, 
J. Sohl-Dickstein, S. Ganguli, under review, NIPS 2016. 
 
 

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions, 
Physical Review X, 2016.   
 
Expressiveness, Memorization, Stability, and Flat versus sharp minima.  

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear 
neural networks ICLR 2014.  

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, Identifying and attacking the saddle 
point problem in high-dimensional non-convex optimization, NIPS 2014. 

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks, 
CogSci 2013.  



Statistical mechanics of high dimensional data analysis 
N = dimensionality of data  M = number of data points α = N / M

Classical Statistics Modern Statistics 

N  ~ O(1)
M -> ∞
 α -> 0

N -> ∞ 
M -> ∞
 α ~ 0(1)

Machine Learning and Data Analysis
Learn statistical parameters by maximizing log      
likelihood of data given parameters. 

Statistical Physics of Quenched Disorder
Energy  = - log Prob ( data | parameters)
Data = quenched disorder
Parameters = thermal degrees of freedom

Statistical mechanics of compressed sensing, S. Ganguli and H. Sompolinsky, PRL 2010.

Short-term memory in neuronal networks through dynamical compressed sensing, NIPS 2010.

Compressed sensing, sparsity and dimensionality in neuronal information processing and data analysis, S. 
Ganguli and H. Sompolinsky,  Annual Reviews of Neuroscience, 2012

Statistical mechanics of optimal convex inference in high dimensions, M. Advani and S. Ganguli, Physical Review 
X, 2016.

An equivalence between high dimensional Bayes optimal inference and M-estimation, NIPS 2016. 

Random projections of random manifolds, S. Lahiri, P. Gao, S. Ganguli, http://arxiv.org/abs/1607.04331.



Optimal inference in high dimensions

Generative model and measurements

 P dim signal   s0  ~  Ps
 N measurements with noise  ε  ~  Pε
 α = N/P = measurement density 

Estimation algorithm

ρ = loss function
σ = regularizer
qs = L2 estimation error

Example algorithms



Optimal inference in high dimensions
Question: For a given signal distribution Ps , noise distribution Pε , and measurement 
density α,  what is the best loss function ρ and regularizer σ? 

For log-concave signal and noise:  the optimal loss and regularizer are nonlinearly smoothed 
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!



Optimal inference in high dimensions
Question: For a given signal distribution Ps , noise distribution Pε , and measurement 
density α,  what is the best loss function ρ and regularizer σ? 

For log-concave signal and noise:  the optimal loss and regularizer are nonlinearly smoothed 
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!

M. Advani and S. Ganguli, An equivalence 
between high dimensional Bayes optimal 
inference and M-estimation, NIPS 2016.
 
M. Advani and S. Ganguli, Statistical mechanics of 
optimal convex inference in high dimensions, 
Physical Review X, 6, 031034, 2016.

Also prior work by the groups of Montanari and
El-Karoui



More generally: upper bounds on generalization error

Complexity based upper bounds:

✏gen  ✏train +Rn

Rn = Rademacher Complexity

How well you memorize a data set with
random labels of size n. 

Perfect memorization = 1 
For linear classes, as n becomes larger than dimension, Rn -> O(1/n1/2)

Stability based upper bounds:

If your learned function is robust to changes in the dataset, then you will not over fit!

✏gen  ✏train + ✏(w/o examplei)� ✏(w/example i)



Recent observations on generalization in deep nets

Complexity based upper bounds:

✏gen  ✏train +Rn

Rn = Rademacher Complexity

How well you memorize a data set with
random labels of size n. 

Zhang et. al. Understanding deep learning requires rethinking generalization. 
Arpit et. al.   A closer look at memorization in deep Networks

Stability based upper bounds:

If your learned function is robust to changes in the dataset, then you will not over fit!

✏gen  ✏train + ✏(w/o example i)� ✏(w/example i)

Perfect memorization: Rn = 1 
For linear classes, as n becomes larger than dimension, Rn -> O(1/n1/2)

Keskar et. al. On large batch training for deep learning: generalization gap and sharp minima. 
Dinh et. al. Sharp minima can generalize for deep nets. 



•  Applying deep learning to the brain: 
–  Recurrent neural networks for context dependent decision making 
–  Feed-forward networks for modeling the ventral visual stream 
–  State of the art models of retinal function 

•  Theory of deep learning: 
–  Optimization 
–  Expressivity 
–  Generalization 

•  Inspiration from neuroscience back to deep learning: 
–  Canonical cortical microcircuits 
–  Nested loop architectures 
–  Avoiding catastrophic forgetting through synaptic complexity 
–  Learning asymmetric recurrent generative models 

                                                Talk Outline 



        There are more things in heaven and earth… 

Douglas and Martin, Canonical circuits of the 
neocortex, Ann. Rev. Neurosci 2004. 
 
Da Costa and Martin, Whose cortical column 
Would that be? Front. In Neuroanatomy, 2010. 
 
Harris and Shephard, The neocortical circuit: 
Themes and variation, Nat. Neuro 2015 
 
Shephard, Synaptic organization  
of the brain, 5th ed., 2009 



        There are more things in heaven and earth… 

Exploration of nested loop architectures 
 
 
 
 
 
 
 
 
Scott, Optimal Feedback Control and the Neural  
Basis of Volitional Control, Nature Neurosci. 2004. 
 
Todorov, Optimality principles in sensorimotor control, Nature Neurosci 2004. 
 
Scott, The computational and neural basis of 
voluntary motor control and planning, Trends in Cog. Sci  2012. 



Coba et. al. 
Science Signalling 2009 

Experimentalist:  AMPA, NMDA, CAMKII, MAPK, CREB, 
   MHC-I, second messengers, membrane protein regulation, 
   intracellular trafficking, new protein synthesis ………. 

Theorist:           Wij   or  Jij    ~   size of postsynaptic potential  

What is a synapse from neuron j to neuron i? 

        There are more things in heaven and earth… 



         Shatz Lab

      Han-Mi Lee

      Raymond Lab

Barbara Nguyen-Vu 
Grace Zhao 
Aparna Suvrathan

      Ganguli Lab

     Subhaneil Lahiri
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               The functional contribution of synaptic 
                  complexity to learning and memory 



          Memory capacity with scalar analog synapses 

Consider the number of associations a neuron 
with N afferent synapses can store.   

                        

ξ(κ) 

J(k) 

σ(k) 
σ(k)  =  sgn (J . ξ(κ) − θ)   

Memory capacity:  How far back into the past can synapses reliably  
                                recall previously stored associations? 

An online learning rule to store the desired association: 

J(k+1) = e-1/τ J(k) +  σ(k) ξ(κ) 

i.e.  1) Allows analog weights to decay slightly (forget the past inputs) 
       2) Add in the new association to the weight (learn a new input).   

Answer:  If τ is O(N) then the past O(N) associations can be recalled.                    

Problem:  This solution relies on individual synapses to reliably  
                 maintain O(N) distinguishable analog states.                    



                   Memory capacity with binary synapses 

What about real synapses which can  
take only a finite number of  
distinguishable values for their strength? 

For binary synapses each synapse Ji = +1 or -1.  So you can no longer 
add an association to synaptic weights without running into boundaries. 

Ji=-1  Ji=+1  

q 

Ji=-1  Ji=+1  

q 

Potentiation  Depression 

ξ(κ) 

J 

σ(k) 



                   Memory capacity with binary synapses 

Ji=-1  Ji=+1  

q 

Ji=-1  Ji=+1  

q 

Potentiation  Depression 

q = prob a synapse changes strength under appropriate conditions 
N = number of synapses 

q = O(1)               log N                 Quickly learn, quickly forget 
q = O(N-1/2)             N1/2                 Sluggish to learn, slow to forget    

Memory Capacity 

Fusi and Amit 
92 



  Synaptic complexity: from scalars to dynamical systems 

                        

 Experiment 

        We must expand our theoretical conception of  
     a synapse from that of a simple scalar value to  
an entire (stochastic) dynamical system in its own right.   

 Theory 

              This yields a large universe of  
synaptic models to explore and understand. 



Theoretical approach:  
 
A synapse is an arbitrary stochastic  
dynamical system with M internal states. 
 
Some internal states correspond to a  
strong synapse, others a weak synapse. 
 
A candidate potentiation (depression) 
event induces an arbitrary stochastic  
transition between states.   
           
 

Montgomery 
and Madison 
Neuron 
2002 

Mpot Mdep 

              Framework for synaptic dynamical systems 



A continuous stream of memories are 
stored (at poisson rate r) in a population 
of N synapses with M internal states. 
 
The memory stored at time t=0 demands 
that some synapses potentiate, while 
others depress, yielding an ideal  
synaptic weight vector wideal.  
  
The storage of future memories after 
t=0 changes the weight vector to w(t).  
 
An upper bound on the quality of memory  
retrieval of any memory readout using  
neural activity is given by the SNR curve:           
 

Each choice of 
 
N,  M,  Mpot  and Mdep 
 
yields a different memory 
curve.  

              Ideal observer measure of memory capacity: SNR 

Fusi et. al. 2005, Fusi et. al. 2007, Barrett and van Rossum,2008 



       Two example synaptic molecular networks  

To elucidate the functional contribution of molecular complexity to 
memory, we want to not simply understand individual models, but  
understand the space of all possible models within this family.   

Cascade Model Serial Model 

Leibold and Kempter 
2008 

Fusi et. al.  
2005 



How does the structure of a synaptic  
dynamical system (Mpot  and Mdep) 

determine its function, or memory 
curve SNR(t)? 
 
 
What are the fundamental limits of 
achievable memory over all possible 
choices of synaptic dynamical systems? 
 
 
What is the structural organization of 
synaptic dynamical systems that achieve 
these limits?  
 
 
What theoretical principles can control 
combinatorial explosion in the number 
of possible models as M increases? 
          
 

Mpot Mdep 

     Towards a general theory of synaptic complexity  



     Imposing a theoretical order on synaptic dynamics 

As the synaptic population undergoes  
continuous modification, the internal 
state stochastically wanders around 
according to a forgetting process:  

Mforget  =   fpot   *   Mpot    +    fdep  *   Mpot 

  + 

This forgetting process has: 

An equilibrium probability distribution of state occupancy: 
And a mean first passage time matrix from state i to j:          Tij 

Starting from state i, the average time it takes 
to get to the potentiated states, weighted by their 
equilibrium probability.   
 
Order states from left to right in order  
of decreasing    



                        

Topological ordering from first passage times 

 large; takes a long time to  
 reach potentiated states  small; takes a short time to  

 reach potentiated states 



               Optimal synapses have a simple structure in this order 

⇒  The area under the memory curve of any synaptic dynamical system can 
never exceed O(N1/2 M). 

Consider optimizing the area under the memory curve: 
 
When states are placed in this order, 
 
(a) Mpot  should only go from left to right 

(b) Mdep  should only go from right to left 

(c) We can remove shortcuts in both Mpot and Mdep while 
 (1) preserving the order 

      (2) preserving the equilibrium distribution 
      (3) increasing the area 

⇒   The area under the memory curve of any synaptic dynamical system is 
bounded by that of a chain with the same equilibrium distribution.  

Also, we show that the area of a chain cannot exceed O(N1/2 M) for any choice 
of transition rates along the chain.   



         A frontier beyond whose bourn no curve can cross  
Area bound implies a maximal achievable memory at any finite time given N 
synapses with M internal states:   

Chains with different transition rates come close to the frontier at late times. 

Various measures of memory (area, frontier, lifetime)  grow linearly with 
the number of internal states M, but grow only as the square root of  
the number of synapses N.  

Lahiri and Ganguli,  NIPS 2014, outstanding paper award (3/1400) 



    The dividends of understanding synaptic complexity 

        A theory of 
complex synapses 

                       A framework for interpreting  
                       molecular neurobiology data 

 Neurobiology 

 Mathematics  Technology 

New theorems about  
      perturbations  
to stochastic processes. 

The next generation of  
artificial neural networks? 

         (Under review: cerebellar learning with complex synapses) 

                      (Spatiotemporal credit assignment) 
                              (Learning as message passing) 

                       
                                      (Tighter bounds) 



A potential route to cognitive enhancement?

                                Enhance synaptic plasticity

Enhance learning

Tang et. al. Nature 1999
Malleret et. al. Cell 2001
Guan et. al. Nature 2009

Impair Learning

Migaud et. al. Nature 1998
Hayashi et. al. Neuron 2004
Koekkoek et. al. Neuron 2005 

       Shatz Lab

Knockout  MHC-I in 
cerebellum

Enhanced LTD

      Raymond Lab

Measure WT and KO
VOR learning

Observe both enhanced
and impaired learning

      Ganguli Lab

Theoretical framework
to elucidate principles
of plasticity sufficient
to explain learning 
patterns



Continual learning through synaptic intelligence

Illustration of catastrophic forgetting:  solving task 2 impairs learning on solving task 1.

Idea: each synapse computes its “importance” in solving previous tasks.  In future tasks 
unimportant synapses are allowed to change. 

Friedemann Zenke,  Ben Poole, Surya Ganguli Continual Learning Through Synaptic 
Intelligence, ICML 2017. 

  



Continual learning through synaptic intelligence

Friedemann Zenke,  Ben Poole, Surya Ganguli Continual Learning Through Synaptic 
Intelligence, ICML 2017.   

Split MNIST

Permuted MNIST



                                Summary 

Generalizability: what principles do deep networks use to place 
probability / make decisions in regions of input space with little data?  
 
 
Interpretability :  once we have a trained network, how do we understand 
what it does? How is the training data embedded in the weights?  
 
 
Biological Plausibility: how can we do what we do within the constraints 
of neurobiology?  How can we interpret specific architectures used by the 
brain? 
  
 
 
  

Trainability: if a good network solution exists with small training error, 
how do we find it?  And what makes a learning problem difficult? 

Expressivity: what kinds of functions can a deep network express that  
shallow networks cannot?  
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         The project that really keeps me up at night 

                        


