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Theoretical neuroscience in the disciplinary landscape
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[ Neural circuits and behavior: theory, computation and experiment ]

with Baccus lab: inferring

hidden circuits in the retina
w/ Niru Maheswaranathan and Lane Mclntosh
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with Clandinin lab: unraveling the
computations underlying fly motion

vision from whole brain optical imaging
w/ Jonathan Leong, Ben Poole and Jennifer Esch

GCL

with the Giocomo lab: understanding
the internal representations of space

in the mouse entorhinal cortex
w/ Kiah Hardcastle and Sam Ocko

with the Shenoy lab: a theory of neural

dimensionality, dynamics and measurement
w/ Peiran Gao, Eric Trautmann, and Chris Stock

! : !

S ><~ _— -

with the Raymond lab: theories of how
enhanced plasticity can either enhance

or impair learning depending on experience
w/ Subhaniel Lahiri, Barbara Vu, Grace Zhao

GCQ

Vestibular
input

Eye N
movement




Motivations for an alliance between theoretical neuroscience and
theoretical machine learning

« What does it mean to understand the brain (or a neural circuit?)

* We understand how the connectivity and dynamics of a neural
circuit gives rise to behavior.

 And also how neural activity and synaptic learning rules conspire to
self-organize useful connectivity that subserves behavior.

e Itis a good start, but it is not enough, to develop a theory of either
random networks that have no function.

* The field of machine learning has generated a plethora of learned
neural networks that accomplish interesting functions.

* We know their connectivity, dynamics, learning rule, and
developmental experience, *yet*, we do not have a meaningful
understanding of how they learn and work!

On simplicity and complexity in the brave new world of large scale
neuroscience, Peiran Gao and S. Ganguli, Curr. Op. in Neurobiology, 2015.



Talk Outline

* Applying deep learning to the brain:
— Recurrent neural networks for context dependent decision making
— Feed-forward networks for modeling the ventral visual stream
— State of the art models of retinal function

« Theory of deep learning:
— Optimization
— EXxpressivity
— Generalization

» Inspiration from neuroscience back to deep learning:
— Canonical cortical microcircuits
— Nested loop architectures
— Avoiding catastrophic forgetting through synaptic complexity
— Learning asymmetric recurrent generative models



The shape of things to come..

. on monkeys and models

Mante et.al. Context dependent

A behavioral task
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[ The shape of things to come... on monkeys and models

Yamins et.al. Performance
optimized hierarchical models
predict performance

in higher visual cortex, PNAS 2014
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Deep neural network models of the
retinal response to natural scenes

Lane Mclintosh and Niru Maheswaranathan, Aran Nayebi,
Surya Ganguli and Stephen Baccus

Mclntosh, L.*, Maheswaranathan, N.*, Nayebi, A., Ganguli, S.,
Baccus, S.A. Deep Learning Models of the Retinal Response to
Natural Scenes. NIPS 2016.



A brief tour of the retina

microelectrode array

From Rachel Wong’s Lab



Linear-Nonlinear models

Stimulus
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Modeling ganglion cells with convolutional
neural networks (CNNSs)

Train the model to minimize the error
between predictions and recorded data



Modeling ganglion cells with convolutional
neural networks (CNNSs)

Challenges

VM
N>

trainability

2

Models are complex, can easily
over-fit training data



Modeling ganglion cells with convolutional
neural networks (CNNSs)

Challenges

neural structure

No reason why the structure or features of
learned CNNs would be similar to the retina



Modeling ganglion cells with convolutional
neural networks (CNNSs)

Challenges

neural function

Algorithms identified by the model may not
be the same as those used by the retina



CNNSs capture substantially more retinal
responses than previous models

CNNSs generalize better than
simpler models

CNN internal units correspond to
interneurons in the retinal circuitry

CNNs learn aspects of retinal variability,
| | ” | computation, and adaptation




Convolutional neural network model

convolution
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Pearson Correlation Coefficient

CNNSs approach retinal reliability

White noise Natural scenes

retinal PSTH-to-PSTH reliability

0.6

0.4

0.2
LN models:
Chichilnisky 2001

0.0 GLMs: Pillow et al. 2008



CNNs trained on less data outperform
simpler models on more data

A Performance on white noise given limited data
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Features bear striking resemblance to
internal structure in retina

CNN filters trained on white noise

conv1
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Intracellular data courtesy of
Pablo Jadzinsky and David Kastner
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Most retinal neurons have sub-Poisson variability
(while LNP models are Poisson)

Variance of Spike Count

Mean Spike Count



We can inject Gaussian noise into each
hidden unit of our CNN model

input layer
hidden layer 1 hidden layer 2



Model has lower variance than data

Mean-Variance Relationship in Data
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However model uncertainty has same
scaling relationship as the retina

Normalized Mean-Variance Relationship
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Capturing contrast adaptation from retinal
responses to natural scenes
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Summary

White noise Natural scenes
e CNNs capture substantially more retinal
retinal PSTH-to-PSTH reliability .
R responses than previous models.
8 0.6+ I trial-to-trial reliability
8 CNNSs also generalize better to different
g o b U
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Our CNN models reproduce principles of
signal processing inside retina without
having direct access to it!



Talk Outline

* Applying deep learning to the brain:
— Recurrent neural networks for context dependent decision making
— Feed-forward networks for modeling the ventral visual stream
— State of the art models of retinal function

« Theory of deep learning:
— Optimization
— EXxpressivity
— Generalization

» Inspiration from neuroscience back to deep learning:
— Canonical cortical microcircuits
— Nested loop architectures
— Avoiding catastrophic forgetting through synaptic complexity
— Learning asymmetric recurrent generative models



Some of the theoretical puzzles of deep learning

Trainability: if a good network solution exists with small training error,
how do we find it? And what makes a learning problem difficult?

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks ICLR 2014.

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks,
CogSci 2013.

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, ldentifying and attacking the saddle
point problem in high-dimensional non-convex optimization, NIPS 2014.

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Exponential expressivity in deep neural networks through transient chaos, B. Poole, S. Lahiri,M. Raghu,
J. Sohl-Dickstein, S. Ganguli, NIPS 2016.

Generalizability: what principles do deep networks use to place
probability / make decisions in regions of input space with little data?

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions,
Physical Review X, 2016.

Expressiveness, Memorization, Stability, and Flat versus sharp minima.



A Mathematical Theory of
Semantic Development®

Joint work with:  Andrew Saxe and Jay McClelland

*AKA: The misadventures of an “applied physicist”
wandering around the psychology department




What is “semantic cognition™?

Human semantic cognition: Our ability to
learn, recognize, comprehend and produce
inferences about properties of objects
and events in the world, especially properties
that are not present in the current perceptual
stimulus

For example:

Does a cat have fur?
Do birds fly?

Our ability to do this likely relies on our ability to form
internal representations of categories in the world



[ Psychophysical tasks that probe semantic cognition ]

Looking time studies: Can an infant distinguish between two
categories of objects? At what age?

Property verification tasks: Can a canary move? Can it sing?
Response latency => central and peripheral properties

Category membership queries: Is a sparrow a bird? An ostrich?
Response latency => typical / atypical category members

Inductive generalization:

(A) Generalize familiar properties to novel objects:
i.e. a “blick” has feathers. Does it fly? Sing?

(B) Generalize novel properties to familiar objects:
i.e. a bird has gene “X”. Does a crocodile have gene X?
Does a dog?



The project that really keeps me up at night




Semantic Cognitio

n Phenomena

Table 1. Six key phenomena in the study of semantic abilities

Rogers & McClelland: Précis of Semantic Cognition

Phenomenon

Example

Progressive differentiation of
concepts

Category coherence

Domain-specific attribute
weighting

Iusory correlations

Conceptual reorganization

The importance of causal
knowledge

Children acquire broader semantic distinctions earlier than more fine-grained distinctions.
For example, when perceptual similarity among items is controlled, infants differentiate
animals from furniture around 7-9 months of age, but do not make finer-grained
distinctions (e.g., between fish and birds or chairs and tables) until somewhat later (Pauen
2002a; Mandler et al. 1991); and a similar pattern of coarse-to-fine conceptual
differentiation can be observed between the ages of 4 and 10 in verbal assessments of
knowledge about which predicates can appropriately apply to which nouns (Keil 1989).

Some groupings of objects (e.g., “the set of all things that are dogs”) seem to provide a useful
basis for naming and inductive generalization, whereas other groupings (e.g., “the set of all
things that are blue”) do not. How does the semantic system “know” which groupings of
objects should be used for purposes of naming and inductive generalization, and which
should not?

Some properties seem of central importance to a given concept, whereas others do not. For
instance, “being cold inside” seems important to the concept refrigerator, whereas “being
white” does not. Furthermore, properties that are central to some concepts may be
unimportant for others — although having a white color may seem unimportant for
refrigerator, it seems more critical to the concept polar bear. What are the mechanisms that
support domain-specific attribute weighting?

Children and adults sometimes attest to beliefs that directly contradict their own experience.
For example, when shown a photograph of a kiwi bird - a furry-looking animal with eyes but
no discernible feet — children may assert that the animal can move “because it has feet,”
even while explicitly stating that they can see no feet in the photograph. Such illusory
correlations appear to indicate some organizing force behind children’s inferences that goes
beyond “mere” associative learning. What mechanisms promote illusory correlations?

Children’s inductive projection of biological facts to various different plants and animals
changes dramatically between the ages of 4 and 10. For some researchers, these changing
patterns of induction indicate changes to the implicit theories that children bring to bear on
explaining biological facts. What mechanism gives rise to changing induction profiles over
development?

A variety of evidence now indicates that, in various kinds of semantic induction tasks, children
and adults strongly weight causally central properties over other salient but non-causal
properties. Why are people sensitive to causal properties?




A Network for Semantic Cognition
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Evolution of internal representations
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Categorical representations in human and monkey
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{ Categorical representations in human and monkey J
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Evolution of internal representations
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[ Theoretical questions ]

B \What are the mathematical principles underlying the hierarchical
self-organization of internal representations in the network?

B What are the relative roles of:
nonlinear input-output response
learning rule
input statistics (second order? higher order?)

B What is a mathematical definition of category coherence, and
How does it relate the speed of category learning?

B \Why are some properties learned more quickly than others?

B How can we explain changing patterns of inductive
generalization over developmental time scales?



Problem formulation

We analyze a fully linear three layer network y = W32w2ly
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Nontrivial learning dynamics

Plateaus and sudden Faster convergence from
transitions pretrained initial conditions
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e Build intuitions for nonlinear case by analyzing linear case



Learning dynamics

 Network is trained on a set of items and their properties
{x* Y} u=1,..P.

* Weights adjusted using standard backpropagation:

— Change each weight to reduce the error between desired network
output and current network output

AW = R (T
AW = A=) R

* Highlights the error-corrective aspect of this learning process



Learning dynamics

In linear networks, there is an equivalent formulation that
highlights the role of the statistics of the training environment:

Input correlations: > = E[xxT]
Input-output correlations: y3l — Eb;xT]

Equivalent dynamics:

T%Wﬂ _ w3l (231 —W32W21Z“)
T%W32 = (231 _ W32W21211) W21T

* Learning driven only by correlations in the training data
* Equations coupled and nonlinear



Properties

Decomposing input-output correlations

The learning dynamics can be expressed using the SVD of X3!
N
y31 _ y33¢3ty 11l _ i 5T
a=1

Mode a links a set of coherently covarying properties u™ to
a set of coherently covarying items v*! with strength Sa

U S v’
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Analytical learning trajectory

The network’s input-output map is exactly

W2 W' (1) =Y a(t,sa,dg) u®v*

A —
where af(t,s,ap) 1T/

for a special class of initial conditions and £!! = 1.
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Take home messages, so far:

Stronger statistical structure is learned faster!
Strength of structure: Learning Time
Singular value 1 / Singular value

(Singular vectors:
object analyzers and
feature synthesizers)

Next: what does all this have to do with the hierarchical
Differentiation of concepts?



Learning hierarchical structure

The preceding analysis describes dynamics in response to a
specific dataset

Can we move beyond specific datasets to general principles
when a neural network is exposed to hierarchical structure?

We consider training a neural network with data generated by
a hierarchical generative model



Connecting hierarchical generative
models and neural network learning

World Agent

Noooooo0




A hierarchical branching diffusion process

Generative model defined
by a tree of nested
categories

Branching factor B,

Feature values diffuse
down tree with small
probability € of changing
along each link

Sampled independently
N times to produce
N features

ltem 1 Item 2 ltem P



Object analyzer vectors

Assume our network is
trained on an infinite amount
of data drawn from this model

Modes
o0 ~J N W N w [\ —_

Can analytically compute SVD
of the input-output
correlation matrix: T ems T

The object analyzer vectors
mirror the tree structure

[tems
o0 ~ N W N w [\) —_—

1 2 3 4 5 6 7 8 03
Items



Singular values

The singular values are a decreasing function of the hierarchy level.
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Progressive differentiation

Hence the network must exhibit progressive
differentiation on any dataset generated by this class of
hierarchical diffusion processes:

 Network learns input-output modes in time

O(t/s)

 Singular values of broader hierarchical distinctions
are larger than those of finer distinctions

* Input-output modes correspond exactly to the
hierarchical distinctions in the underlying tree



Progressive differentiation
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Progressive differentiation
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Conclusion

* Progressive differentiation of hierarchical
structure is a general feature of learning in

deep neural networks

e Deep (but not shallow) networks exhibit
stage-like transitions during learning

e Second order statistics of data are sufficient
to drive hierarchical differentiation



Other work

Can analytically understand design principles governing many
phenomena previously simulated

* |llusory correlations early in learning Basic level effects

*  Familiarity and typicality effects * Category coherence
* Perceptual correlations
* Practice effects

* Inductive property judgments
 ‘Distinctive’ feature effects

Our framework connects probabilistic models and neural
networks, analytically linking structured environments to
learning dynamics.



Why are some properties distinctive, or learned faster?

A property = vector across items
An object analyzer = vector across items

If a property is similar to an object analyzer with large
singular value then (and only then) will it be learned quickly.

That property is distinctive for the category associated with
that object analyzer (i.e. move for animals versus plant)

w3l = U S V'
Input.-output . Feature synthesizer Singular values Object analyzer
correlation matrix vectors vectors
Items Modes Modes Items
C S O R 1 2 3 1 2 3 C S O R
1
S "
(& (3
- 2 k= 0
8 > =
] =
) o -1
& ~
=~
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B
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Properties: Move, Fly, Swim, Bark, Petals
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Why are some items more typical members of a category?
(i.e. sparrow versus ostrich for the category bird)

An item = vector across properties
A category feature synthesizer = vector across properties

If an item is similar to the feature synthesizer for a category, then it is a
typical member of that category.

Category membership verification easier for typical versus atypical items.

31 = U S v’
Input.-output . Feature synthesizer Singular values Object analyzer
correlation matrix vectors vectors
Items Modes Modes Items
1 2 3 1 2 3
=
8 8
. E 2
5 = =
4 p=
Q )
o, = S
s ~
& q
— ltems: Canary, Salmon, Oak, Rose
= Properties: Move, Fly, Swim, Bark, Petals




How is inductive generalization achieved by neural networks?
Inferring familiar properties of a novel item.

Given a new partially described object = vector across subset of properties
What are the rest of the object’s properties?

i.e. a “blick” has feathers. Does it fly? Sing?

Partial property vector UT
\ Neural network internal
representation
U
Filled in property vector
31 T
> = U S vV

Input-output Feature synthesizer
correlation matrix vectors

Object analyzer

Singular values
vectors



How is inductive generalization achieved by neural networks?
Inferring which familiar objects have a novel property.

Given a new property = vector across subset of items
Which other items have this property?

i.e. A bird has gene X. Does a crocodile? A dog?

/VT Partial item vector
\V
Filled in item vector

w3l U S v’

Input-output Feature synthesizer
correlation matrix vectors

Neural network internal
representation

Object analyzer

Singular values
vectors



What is a category and what makes it “coherent?”

A simple proposal: A category is a subset of objects sharing
a subset of features important for that category.

A conceptual Gordian knot bedeviling the field of category learning in
psychology: How does one learn a category?

[Identify the objects that ] [ |dentify the features that J

belong to the category

are important for the category

But must know which features But must know which objects
are important for the category belong to the category

Some categories make
more “sense”, or are
more “coherent” than
others.

i.e. “incoherent” = the set of all things that are blue
i.e. “coherent” = the set of all things that are dogs
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A simple proposal: A category is a subset of objects sharing
a subset of features important for that category.

A conceptual Gordian knot bedeviling the field of category learning in
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What is a category and what makes it “coherent?”

A simple proposal: A category is a subset of objects sharing
a subset of features important for that category.
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What is a category and what makes it “coherent?”

Toy model for statistical structure
of the world:

N, = Total number of objects
N; = Total number of features

K, = Number of objects in a category
K: = Number of features important

30 400 500 €0

If an object is in a category and a feature is important for that category, then
the probability this object has that feature is p.

Otherwise, the probability any other object has any feature is g < p.

For what values of N, K, N; K; pand g p—4 K,K¢ > - /NoNf
can a category be learned? \/ q(1—q)
How fast can it be learned? Learning time is

inversely related.



What is a category and what makes it “coherent?”

i.e. “incoherent” = the set of all things that are blue
i.e. “coherent” = the set of all things that are dogs

A natural definition category coherence Branching factor B,
is the singular value associated with
object analyzers and feature synthesizers

For hierarchically structured data:
ltem 1 Item 2 ltem P

Coherence = similarity of descendants — similarity to nearest out-category
Mathematical Theorem: Coherent categories are learned faster!
The category coherence of any one category is an emergent property of the

entire statistical structure of the world: in particular the structure of individual
categories and their relations to each other!



Towards a theory of deep learning dynamics

— The dynamics of learning in deep networks is non-
trivial - i.e. plateaus and sudden transitions to
better performance

— How does training time scale with depth?
— How should the learning rate scale with depth?

— How do different weight initializations impact
learning speed?

— We will find that weight initializations with critical
dynamics can aid deep learning and generalization.



Nontrivial learning dynamics

Plateaus and sudden Faster convergence from
transitions pretrained initial conditions

- Random ICs |
2’ 5 Pretrained |
[l o
oo - qL) 2
£ a0
c c
£ ==
. ‘©

1 =

.

Epochs -
Epochs

e Build intuitions for nonlinear case by analyzing linear case



Deeper networks

* Can generalize to arbitrary depth network

* Each effective singular value a evolves

independently
d ~ ~ T | 1/Learning
T—a=(N,-1)a’ AN (5~ q) rate
dl‘ s | Singular value
N, | # layers

- In deep networks, combined gradientis ©(V/7)

O —O—O——Q  a= [[ W,



Deep linear learning speed

* Intuition (see paper for details):
— Gradientnorm O (Nz )
— Learningrate O (1/Nl ) (N,= # layers)
— Learning time O (1)

* Deep learning can be fast with the right ICs.

Saxe, McClelland, Ganguli ICLR 2014



MNIST learning speeds

Trained deep linear nets on MNIST

Depths ranging from 3 to 100

0000006800000 D
VAR W O TRV S BN A A B A B
Alrz2R2azzplz222J
3333%3333333333
HAMY ¢+ Q¥ Y S g4
S FssCSSss85SsSS
6066666006 6EG6GCEE
77F71277 172177727
§L 8293859887 8&8%8 &
2597793998949 979

1000 hidden units/layer (overcomplete)
Decoupled initial conditions with fixed initial mode

strength

Batch gradient descent on squared error

Optimized learning rates for each depth

Calculated epoch at which error falls below fixed

threshold



MNIST depth dependence

Time to criterion Optimal learning rate

x 107

1.2

1t

Optimal learning rate
o
(0))

0 50 100 0 50 100
NI (Number of layers) NI (Number of layers)

Depth Depth



Deep linear networks

Deep learning can be fast with decoupled ICs and O(1) initial mode strength.
How to find these?

Answer: Pre-training and random orthogonal initializations can find these
special initial conditions that allow depth independent training times!!

But scaled random Gaussian initial conditions on weights cannot.



Depth-independent training time

* Deep linear networks on MNIST
e Scaled random Gaussian initialization (Glorot & Bengio, 2010)

Time to criterion Optimal learning rate
200 2% 10”
— Glorot
150 [| — Pretrained 1.5}
| — Orthogonal

a
o
o

)

Optimal learning rate
—r

Epochs to reach error threshold
—
o
o

o
o

o

50 100 50 100
Depth Depth

o

* Pretrained and orthogonal have fast depth-independent
training times!



Random vs orthogonal

* (Gaussian preserves norim of random vector on average

1 layer net 5 layer net 100 layer net

N,-1=1 . N-1=5 . N,-1=100
10000 o X 10 g X 10

Frequency

0 . 0
3 0 2 4 6 0 5 10 15 20

N1
Singular values of W™ =] [W'

i=1

* Attenuates on subspace of high dimension
* Amplifies on subspace of low dimension



Random vs orthogonal

* Glorot preserves norm of random vector on average

1 layer net 5 layer net 100 layer net

N,-1=1 . N-1=5 . N,-1=100
10000 2 X 10 6 X 10

Frequency

0 . 0
3 0 2 4 6 0 5 10 15 20

N1
Singular values of W™ =] [W'

i=1
* Orthogonal preserves norm of all vectors exactly

All singular values of W' =1



Deeper network learning dynamics

* Jacobian that back-propagates gradients can explode or
decay

f(WDhD) f(WD_l p-1) f(thl) f(Wlx)

O o O
8 wP O ow Yow 8
<« (e —() < Q<
O O o O @
- £(x) o © 2
y € R h, ER™ xRV




Extensive Criticality yields
Dynamical Isometry in nonlinear nets

Suggests initialization for nonlinear nets

* near-isometry on subspace of large dimension

N,

 Singular values of end-to-end Jacobian "' (z™) = é;cil
€T

J

N1

concentrated around 1.

Scale orthogonal matrices by gain g to counteract contractive
nonlinearity

Singular values
of J

Frequency

100 a=02 60 40 i 100 400
} 40 % 300
50 E. 2 |20 50 200
, 10 100
% 1 ° - 0 2 4 6 K 2 03 04 % o5 1 15 2 % 2 % 6
0 3e-5 0 6e-5 0.4 0 2 0 6

(] 0.1 0.
0

Gain g=0.9 g=0.95 g=1 g=1.05 g=1.1

Just beyond edge of chaos (g>1) may be good initialization



Dynamic Isometry Initialization

* g>1 speeds up 30 layer nonlinear nets

* Tanh network, softmax output, 500 units/layer
* No regularization (weight decay, sparsity, dropout, etc)

MNIST Classification error, epoch 1500 | Train Test
Error (%) | Error (%)
Gaussian (g=1, random) 2.3 3.4
g=1.1, random 1.5 3.0
g=1, orthogonal 2.8 3.5
Dynamic Isometry (g=1.1, orthogonal) 0.095 2.1

* Dynamic isometry reduces test error by 1.4% pts



Summary

Deep linear nets have nontrivial nonlinear learning dynamics.

Learning time inversely proportional to strength of input-output
correlations.

With the right initial weight conditions, number of training epochs
can remain finite as depth increases.

Dynamically critical networks just beyond the edge of chaos enjoy
depth-independent learning times.



Beyond learning: criticality and
generalization

* Deep networks + large gain factor g train exceptionally quickly
* Butlarge g incurs heavy cost in generalization performance

L 0.0

®)

L 0.0!

LILJ e

=t .~ Test error

2 R I I

Z 0.0:

= - Train error |
1 1.4 1.8

Gain g

* Suggests small initial weights regularize towards smoother functions



Some of the theoretical puzzles of deep learning

Trainability: if a good network solution exists with small training error,
how do we find it? And what makes a learning problem difficult?

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks ICLR 2014.

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks,
CogSci 2013.

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, ldentifying and attacking the saddle
point problem in high-dimensional non-convex optimization, NIPS 2014.

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Exponential expressivity in deep neural networks through transient chaos, B. Poole, S. Lahiri,M. Raghu,
J. Sohl-Dickstein, S. Ganguli, NIPS 2016.

Generalizability: what principles do deep networks use to place
probability / make decisions in regions of input space with little data?

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions,
Physical Review X, 2016.

Expressiveness, Memorization, Stability, and Flat versus sharp minima.



High dimensional nonconvex optimization

It is often thought that local minima at high error stand as
as a major impediment to non-convex optimization.

In random non-convex error surfaces over
high dimensional spaces, local minima at high
error are exponentially rare in the dimensionality.

Instead saddle points proliferate.

We developed an algorithm that rapidly escapes saddle points
in high dimensional spaces.

Identifying and attacking the saddle point problem in high dimensional non-convex optimization.
Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, Yoshua Bengio. NIPS 2014

A. Choromanska, M. B. Henaff, M. Mathieu, G. Ben Arous, Y. LeCun, The Loss Surfaces of Multilayer Networks,
in the International Conference on Artificial Intelligence and Statistics (AISTATS), 2015 pdf



General properties of error landscapes in
high dimensions

From statistical physics:

Consider a random Gaussian error
landscape over N variables.

Let x be a critical point.

Let E be its error level.

Let f be the fraction of negative curvature
directions.

A

v

E

Bray and Dean, Physical Review Letters, 2007



Properties of Error Landscapes on the
Synaptic Weight Space of a Deep Neural Net

MNIST CIFAR-10
<30 ° 10? =3 Error 0.32% 3\"360 ) 10? 3 Error43.54%
=~ P 10 S0 Eror2349%| w 10,1 § S0 Error 48.08%
. 20 PS . 10o " Error 28.23% 5 55 o° - 10_1 E Avuwr Error 61.49%
: <107 £ 50 K A BRI
© 10 21072t . . bt oo i B R
£ olf 3E 2 H £ 45 107, F4 =5
® .# 107 |+ T ST LRI © 10 550 EF GuE G
~ O 107 40 107
0.00 0.12 0.25 0.0 0.5 1.0 1.5 2.0 0.05 0.10 0.15 0.20 0.0 0.5 1.0 1.5 2.0
Index of critical point o Eigenvalue \ Index of critical point « Eigenvalue A

Qualitatively consistent with the
statistical physics theory of random error landscapes



How to descend saddle points

Newton’s Method

Arx = —H 'Vf(x)

Saddle Free Newton’s Method

Az = —|H| 7' V f(x)

Intuition: saddle points attract Newton’s method, but
repel saddle free Newton’s method.

Derivation: minimize a linear approximation to f(x) within a trust region
in which the linear and quadratic approximations agree



Performance of saddle free Newton in
learning deep neural networks.

Deep Autoencoder Recurrent Neural Network

10 (1 100 102 3.5 11 35 10%° — |
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100 //4“mw”"“““””Nluw/,/,,, %, 2.0 2.0 10%°
10—1 })‘ . } % 1. £ 1.5 101.0 -
. kloo s i min % 1. E _ 10 o T

10 '4,," 107 i ”V“ k 0.5 i 0.5 10 mﬂ
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When stochastic gradient descent appears to plateau, switching to saddle
Free newton escapes the plateau.



Some of the theoretical puzzles of deep learning

Trainability: if a good network solution exists with small training error,
how do we find it? And what makes a learning problem difficult?

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks ICLR 2014.

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks,
CogSci 2013.

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, ldentifying and attacking the saddle
point problem in high-dimensional non-convex optimization, NIPS 2014.

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Exponential expressivity in deep neural networks through transient chaos, B. Poole, S. Lahiri,M. Raghu,
J. Sohl-Dickstein, S. Ganguli, under review, NIPS 2016.

Generalizability: what principles do deep networks use to place
probability / make decisions in regions of input space with little data?

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions,
Physical Review X, 2016.

Expressiveness, Memorization, Stability, and Flat versus sharp minima.



A theory of deep neural expressivity
through transient chaos

Stanford Google

Subhaneil Maithra Jascha
Ben Poole Lahiri Raghu Sohl-Dickstein

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Exponential expressivity in deep neural networks through transient chaos, B. Poole, S. Lahiri,M. Raghu,
J. Sohl-Dickstein, S. Ganguli, NIPS 2016.

On the expressive power of deep neural networks, M.Raghu, B. Poole,J. Kleinberg, J. Sohl-Dickstein, S.
Ganguli, under review, ICML 2017.



Seminal works on the expressive power of depth

Networks with one hidden layer are universal function approximators.
So why do we need depth?

Universal function approximation theorems yield no guarantees on the size
of the hidden layer needed to approximate a function well.

Overall idea: there exist certain (special?) functions that can be computed:
a) efficiently using a deep network (poly # of neurons in input dimension)
b) but not by a shallow network (requires exponential # of neurons)

Intellectual traditions in boolean circuit theory: parity function is such a
function for boolean circuits.




Seminal works on the expressive power of depth

Nonlinearity Measure of Functional Complexity
Rectified Linear Unit (RelLu) Number of linear regions
There exists a function computable by a deep network where the number
of linear regions is exponential in the depth.

To approximate this function with a shallow network, one would require
exponentially many more neurons.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio.
On the number of linear regions of deep neural networks, NIPS 2014




Seminal works on the expressive power of depth

Nonlinearity Measure of Functional Complexity
Sum-product network Number of monomials

There exists a function computable by a deep network where the number
of unique monomials is exponential in the depth.

To approximate this function with a shallow network, one would require
exponentially many more neurons.

03 = Mil} + piilh = z129 + 2374 = f(21, 22, T3, T4)

p1 =1

h| ) x3 T4

Olivier Delalleau and Yoshua Bengio. Shallow vs. deep sum-product networks, NIPS 2011.




Questions

How natural are these functions from the perspective of Al?

Are such functions rare curiosities?

Or is this phenomenon much more generic than these specific examples?
In some sense, is any function computed by a generic deep network

not efficiently computable by a shallow network?

If so we would like a theory of deep neural expressivity that demonstrates
this for
1) Arbitrary nonlinearities

2) A natural, general measure of functional complexity.




Limitations of prior work

Theoretical technique Nonlinearity Measure of Functional
Complexity
Combinatorics/ RelLU Number of linear regions

Hyperplane Arrangements
Polynomial expansion Sum-product Number of monomials

Algebraic topology Pfaffian Sum of betti numbers

Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A comparison between
shallow and deep architectures. Neural Networks and Learning Systems, IEEE Transactions on, 2014.

ler

Riemannian geometry + Arbitrary Extrinsic
Dynamical mean field theory Curvature

We will show that even in generic, random deep neural networks, measures
of functional curvature grow exponentially with depth but not width!

More over the origins of this exponential growth can be traced to chaos theory.




Another perspective on the advantage of depth: disentangling

(a) (b) IT space

o )

V1 space
Y
\i) |

Slngle V1 unit Single IT unit

Response
Response

Pose Pose

How can we mathematically formalize the notion of disentangling
in deep networks?

How do we use this mathematical formalization to quantitatively assess the
disentangling power of deep versus shallow networks?

We will show that deep networks can disentangle manifolds whose
curvature grows exponentially with depth!




A maximum entropy ensemble of deep random networks

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

— I N ~ N; = number of neurons in layer 1
s | D =depth(l=1,...,D)
: z z
_ x' = ¢(h’)
=9 ¢ = h! = Wix!7! + bl
Structure: i.i.d. random Gaussian weights and biases:

T NI-1
b: « N(0,0})

2
W, N(O 0“’)




Emergent, deterministic signal propagation
In random neural networks

hidden layer 1 hidden layer 2 hidden layer 3

— AN N; = number of neurons in layer 1
:‘- = = , WS S /./ : output layer
D =depth(l=1,...,D)
: : I _ z
oo x! = o(h)
= ¢ =¥ = h! = W!x!~t 4 b

Question: how do simple input manifolds propagate through the layers?

A single point: When does its length grow or shrink and how fast?
A pair of points: Do they become more similar or more different, and
how fast?

A smooth manifold: How does its curvature and volume change?



Propagation of a single point through a deep network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

NN N = number of neurons in layer 1
N D =depth(l=1,...,D)
N o h! = W!x'"! + b’
1
l 1\2
l l I—1 l = —
h! = Wl o(h™1) + b =5 ;(hz)

2
ql — V(ql_1 | Ow, 0p) = Ji/ ngb(\/ql_lz) +a§

A recursion relation for the length of a point as it propagates through the network



Propagation of a single point through a deep network

A iterative length map B
[—1 :
. V (q ow, Ub) dynamics of ¢

':E ~
i

Bo

c

9

4=

= o/

o

)

= —

o &= |

0 5) 10 15 0 1 2 3 4 5) 6
input length (¢'~1) iteration (1)
CE— O'w = 1.3 [ —— O'w = 2.5 L} O'w = 4.0

Op — 0.3



Propagation of a single point through a deep network

C length at fixed point
q (ow,0p)
38
4
c 3 19
2
1 0
0 1 2 3
Op
Ow <1 o, =0:

Ow>1 op,=0 or

0'57502

D average iterations

to convergence

5 6
4

e 3 3
2
1 0




Propagation of two points through a deep network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer
VY

" — _——

XO, 1 output layer

v

0,2

- —~

—

A

The geometry of two points in a hidden layer | is captured

by the two by two matrix of inner products:
Ny

1
dhy = 5 DB B  abe {12,
1=1

Of particular interest: the correlation [ Cﬁz
coefficient or cosine of the angle €12 = \/ I \/ I
between the two points: 411V 422




A theory of correlation propagation in a deep network

input layer hidden layer 1 hidden layer 2 hidden layer 3
XO ) 1 —_—> 555:}::{5//’ \\\‘(/}//, \\\*:’(/{/ ((((( put layer
S >
— -\\\\\ L
Ny
The geometry of two points: ¢, = ~ Zhl 0.0y h!(x%%) 4, b e {1,2}.
l
l
: - . I d12
Correlation coefficient between two points: C12 = z 7
ViV dh

iy = C(5 4 7Y s | g, on) = o2 / D21 D2y (1) & (us) + 02,

[—1 [—1
Uy = \/ 411 <1, U2 = \/ 4s9 [012 Z1 + \/1 — 012 ] )

A recursion relation for the correlation coeff. between two points in a deep net!



Propagation of Correlations through a deep network

>

output corr. (ct)

I __
Cla = C(C12 , 4 ¢ | 0w, o)
T g
iterative correlation map dynamics of ¢
1.0 1.0
X
S
0.5 g
(T
E
o
O
0.0
0.0 0.5 1.0

input corr. (c!~1) iteration (1)

— Oy = 1.3 e gy = 2.5 e 0y, =4.0  0p = 0.3

Interpretation: , is a
/ Dz \/ z)] multiplicative stretch factor:

x4 < 1: nearby points come closer together
%1 > 1: nearby points are driven apart




Propagation of two points through a deep network

C

Ow

correlation at fixed point D
c* (Ow,0p)
5 1.0 5 3
4 4
2
3 0.5 < 3
1
2 2
1 0.0 1 0
o 1 2 3 4 o 1 2 3 4
b b
: . l
Small o, relative to o3, :  x1 < 1 Cio — 1
. : . l *
Intermediate o, relative toop:  x1 > 1 Cio — C

Large o, relative to o :  x1 > 1 cl12 — 0




Propagation of a manifold through a deep network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

x"(0) e o

output layer

v

e —~

—

A

The geometry of the manifold is captured by the similarity matrix -
How similar two points are in internal representation space):

q'(61,02) = N, - Zhl h;[x"(62)]

Or autocorrelation function: ¢ (Af) = /d@ ¢' (6,0 + AB)




Propagation of a manifold through a deep network

h'(0) = \/W [uo cos(f) +u’ sin(@)} Agreat circle

input manifold

|
correlation(c,

—-04 -0.2 00 0.2 04
offset (A6)




Propagation of a manifold through a deep network

g layer O i layer 2 layer 4
] (1] 60
0 w 0
20 g 2 2

0 ‘ / D 2 3 0 ﬁ 3
2 < 20 2 -
0 0 0 : /
60 60 0

& w0 2 0 2 0 Ly 0 2 a 2 0 w -3 -2 0 0 0 2 = w =
layer 6 layer 8 layer 10
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Riemannian geometry |: Euclidean length

. h(d)
0 oh(0)
00
ah(@) 8h(9) Metric on manifold coordinate 6
gE(e) — . induced by Euclidean metric in
00 o internal representation space h.

Length element: if one moves from
_ E © to ©+ dO along the manifold,
g (9)d6’ then one moves a distance dLE
in internal representation space




Riemannian geometry |l: Extrinsic Gaussian Curvature

osculating circle

h(6) Point on the curve
8h(9) Tangent or velocity

V(H) - 06 vector

a(f) = 8\(;599) Acceleration vector

The velocity and acceleration vector span a 2 dimensional plane in N dim space.

Within this plane, there is a unique circle that touches the curve at h(0), with the
same velocity and acceleration.

The Gaussian curvature k(0) is the inverse of the radius of this circle.

(v-v)(a-a)—(v-a)?
(v-v)3

k(0) =




Riemannian geometry llI:
The Gauss map and Grassmannian length

tangent vectors Grassmanian
The unit
A point on /\ tangent vector
>
0
v(0) € SV
A A Metric on manifold coordinate 0
V(0 V(6 . .
gG(e) — 0 ( ) : 0 ( ) induced by metric on the Grassmannian:
00 00 how quickly unit tangent vector changes

Length element: if one moves from
0 to ®+ dO along the manifold,
then one moves a distance dL®
Along the Grassmanian

G _ 2 FE Grassmannian length, Gaussian curvature
g7 (0) = r(0) (0) and Euclidean length



An example: the great circle

h' (0) = v/ Ngq [uo cos(6) + ul Siﬂ(@)] A great circle

input manifold

Euclidean Gaussian Grassmannian
length Curvature Length

9" () = Ng 5(0) = 1/v/Nq g (0) =1

Lr = 27T\/N7q LY =2m
Behavior under isotropic linear expansion via multiplicative stretch y,:
LY — \/xi L" K LY — L%
X1 VX1
¥ <1 Contraction Increase Constant

w1 > 1 Expansion Decrease Constant



Theory of curvature propagation in deep networks

_E,l—1 gE,l _ q*\ e 2 | 2\
v =ab [ D= (o (Vi)

)2 = gX2 L pi-1y 12 _ L || xe=02 | Dz[¢" (VE2))’
— + — (K e w
(") X1 Xl( ) | (R v \’ / y

?
T Modification of existing curvature due to stretch

Addition of new curvature due to nonlinearity

Local Gaussian Grassmannian
Stretch Curvature Length
Ordered:  x,<1 Contraction Explosion Constant
Chaotic: ¥ > 1 Expansion Attentuation + Exponential

Addition Growth



Curvature propagation: theory and experiment

curvature k(6)
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Unlike linear expansion, deep neural signal propagation can:

1) exponentially expand length,
2) without diluting Gaussian curvature,
3) thereby yielding exponential growth of Grassmannian length.

As a result, the circle will become space filling as it winds around at
a constant rate of curvature to explore many dimensions!



Exponential expressivity is not achievable by shallow nets

x"(0) l

S

N,

Consider a shallow network with 1 hidden layer x!, one input layer x%, with x! = ¢(W!x%) + bl,
and a linear readout layer. How complex can the hidden representation be as a function of its width
N1, relative to the results above for depth? We prove a general upper bound on L (see SM):

Theorem 1. Suppose ¢(h) is monotonically non-decreasing with bounded dynamic range R, i.e.
maxp, ¢(h) — miny, ¢(h) = R. Further suppose that x°(0) is a curve in input space such that no 1D
projection of Oyx(0) changes sign more than s times over the range of 0. Then for any choice of W*
and b! the Euclidean length of x'(0), satisfies L¥ < N1(1+ s)R.




Boundary disentangling: theory

(a) (b) IT space

B ©

V1 space

"

2 Single V1 unit ? Single IT unit
C c
()] ()]
o o
Pose Pose

How can we mathematically formalize the notion of disentangling
in deep networks?

How do we use this mathematical formalization to quantitatively assess the
disentangling power of deep versus shallow networks?




Boundary disentangling: theory

Yy = Sgﬂ(ﬁ . x” — ﬁo) A linear classifier in the top layer

D - Implements a hyperplane decision
(B-x fo) =0 boundary in final layer

0\ D/ 0 B Yielding a curved co-dimension 1
G(x")=(B-x"(x")—Bo) =0 decision boundary in the input layer

Its curvature at a point is characterized by N-1
principal curvatures:

K1(X") > ko(xX") 2 > ky—1(X")

They are the eigenvalues of:
= 0*G
H=||VG||;'P P
‘ | ‘ ‘2 aXaXT

P_1_vave




Boundary disentangling: experiment

— K41 —— K43
103
102
10t
109
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principal curvature
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wWw N = O
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layer

The principal curvatures of decision boundaries in the chaotic regime
grow exponentially with depth!

Thus exponentially curved manifolds in input space can be flattened to
hyperplanes even by deep random networks!




Summary

We have combined Riemannian geometry with dynamical mean field theory
to study the emergent deterministic properties of signal propagation in deep
nonlinear nets.

We derived analytic recursion relations for Euclidean length, correlations,
curvature, and Grassmannian length as simple input manifolds propagate
forward through the network.

We obtain an excellent quantitative match between theory and simulations.

Our results reveal the existence of a transient chaotic phase in which the
network expands input manifolds without straightening them out, leading to
“space filling” curves that explore many dimensions while turning at a
constant rate. The number of turns grows exponentially with depth.

Such exponential growth does not happen with width in a shallow net.
Chaotic deep random networks can also take exponentially curved N-1

Dimensional decision boundaries in the input and flatten them into
Hyperplane decision boundaries in the final layer: exponential disentangling!



Some of the theoretical puzzles of deep learning

Trainability: if a good network solution exists with small training error,
how do we find it? And what makes a learning problem difficult?

A. Saxe, J. McClelland, S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks ICLR 2014.

A. Saxe, J. McClelland, S. Ganguli, Learning hierarchical category structure in deep neural networks,
CogSci 2013.

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, ldentifying and attacking the saddle
point problem in high-dimensional non-convex optimization, NIPS 2014.

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Exponential expressivity in deep neural networks through transient chaos, B. Poole, S. Lahiri,M. Raghu,
J. Sohl-Dickstein, S. Ganguli, under review, NIPS 2016.

Generalizability: what principles do deep networks use to place
probability / make decisions in regions of input space with little data?

M. Advani and S. Ganguli, Statistical Mechanics of Optimal Convex Inference in High Dimensions,
Physical Review X, 2016.

Expressiveness, Memorization, Stability, and Flat versus sharp minima.



Statistical mechanics of high dimensional data analysis

N = dimensionality of data M = number of data points

Classical Statistics

%o
°, e N ~O(1)
© . M -> o
) ! o->0
8 | °°°

a=N/M

Modern Statistics

1\
N -> o ® ©
M -> oo ><
o~ 0(1) )

Machine Learning and Data Analysis
Learn statistical parameters by maximizing log
likelihood of data given parameters.

Statistical Physics of Quenched Disorder
Energy = - log Prob ( data | parameters)
Data = quenched disorder

Parameters = thermal degrees of freedom

Statistical mechanics of compressed sensing, S. Ganguli and H. Sompolinsky, PRL 2010.

Short-term memory in neuronal networks through dynamical compressed sensing, NIPS 2010.

Compressed sensing, sparsity and dimensionality in neuronal information processing and data analysis, S.
Ganguli and H. Sompolinsky, Annual Reviews of Neuroscience, 2012

Statistical mechanics of optimal convex inference in high dimensions, M. Advani and S. Ganguli, Physical Review

X, 2016.

An equivalence between high dimensional Bayes optimal inference and M-estimation, NIPS 2016.

Random projections of random manifolds, S. Lahiri, P. Gao, S. Ganguli, http:/ /arxiv.org/abs/1607.04331.




Optimal inference in high dimensions

g0y Xy —> Yy =X, - gV + €, Generative model and measurements
N _J
I P dim signal s° ~ P,
N N measurements with noise ¢ ~ P,
S o = N/P = measurement density
§=arg msin Z P(YM —x, - s) 4+ Z a(sj) Estimation algorithm
7 J

p = loss function
O = regularizer

%Z (5 — SJQ)z = qs(a, p, 7, Pe, P) q, = L, estimation error
J

Least squares: p(e) = € o(s) =0

Maximum likelihood: p(e) = — log Pc(€) o(s) =0
Ridge regression: p(e) = € o(s) = s?

LASSO: p(e) = € o(s) = A1]s]
Elastic Net: p(e) = €2 o(s) = Aq|s| + Aps?
Example algorithms MAP: p(e) = —log Pc(¢) o(s) = —log Ps(s)



Optimal inference in high dimensions

Question: For a given signal distribution P, , noise distribution P, ,and measurement
density a, what is the best loss function p and regularizer o?

Optimal Loss Function: p°P*
P, x eIl akl a>1

1
05
0
2 0 2 Optimal Regularizer: o°P*
¢ a1 a>1
P, oc e 15l
1
05
0
o S
-2 0 2

Larger Measurement Density

For log-concave signal and noise: the optimal loss and regularizer are nonlinearly smoothed
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!



Optimal inference in high dimensions

Question: For a given signal distribution P, , noise distribution P, ,and measurement
density o, what is the best loss function p and regularizer ¢?

A. Normallzed MSE

1l £ SR ——— maAP M.Advani and S. Ganguli,An equivalence
Quadratic | between high dimensional Bayes optimal

_ _ Optir.nal inference and M-estimation, NIPS 2016.

0.8\

M.Advani and S. Ganguli, Statistical mechanics of

optimal convex inference in high dimensions,
Physical Review X, 6,031034,2016.

rel 1S &Ry

04l N Ty

Also prior work by the groups of Montanari and
El-Karoui
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For log-concave signal and noise: the optimal loss and regularizer are nonlinearly smoothed
versions of MAP where the smoothing increases as the measurement density decreases.

MAP is optimal at high measurement density.

Ridge regression is optimal at low measurement density independent of signal and noise!

No inference algorithm can out-perform our optimal algorithm!




More generally: upper bounds on generalization error

Complexity based upper bounds: R,, = Rademacher Complexity

How well you memorize a data set with
random labels of size n.

€gen < €train + R

Perfect memorization = |
For linear classes, as n becomes larger than dimension, R -> O(1/n'?)

Stability based upper bounds:
€gen < Etrain + €(W/0 examplei) — e(w/example 1)

If your learned function is robust to changes in the dataset, then you will not over fit!




Recent observations on generalization in deep nets

Complexity based upper bounds: R, = Rademacher Complexity

< LR How well you memorize a data set with
€gen = €train n random labels of size n.

Perfect memorization: R, = |
For linear classes, as n becomes larger than dimension, R -> O(1/n'?)

Zhang et. al. Understanding deep learning requires rethinking generalization.
Arpit et.al. A closer look at memorization in deep Networks

Stability based upper bounds:

€gen < Etrain + €(W/0 example 7) — e(w/example 7)

If your learned function is robust to changes in the dataset, then you will not over fit!

Keskar et. al. On large batch training for deep learning: generalization gap and sharp minima.
Dinh et. al. Sharp minima can generalize for deep nets.



Talk Outline

* Applying deep learning to the brain:
— Recurrent neural networks for context dependent decision making
— Feed-forward networks for modeling the ventral visual stream
— State of the art models of retinal function

« Theory of deep learning:
— Optimization
— EXxpressivity
— Generalization

» Inspiration from neuroscience back to deep learning:
— Canonical cortical microcircuits
— Nested loop architectures
— Avoiding catastrophic forgetting through synaptic complexity
— Learning asymmetric recurrent generative models



[ There are more things in heaven and earth... }

a Inputs
L3IT L5A/B IT L6 IT PT CT

-» Cortical feedback

-» Matrix-type thalamus
Core-type thalamus

- Cortical feedforward

Area A Area B

A

Douglas and Martin, Canonical circuits of the L2/3 |
neocortex, Ann. Rev. Neurosci 2004.

Da Costa and Martin, Whose cortical column
Would that be? Front. In Neuroanatomy, 2010.

A

‘%A’@
Y

Harris and Shephard, The neocortical circuit:
Themes and variation, Nat. Neuro 2015

-<——— excitatory projection
e—— inhibitory projection

o
¢

Shephard, Synaptic organization
of the brain, 5t ed., 2009 (al)

Thal



[ There are more things in heaven and earth... }

Neural control

Exploration of nested loop architectures

O

Scott, Optimal Feedback Control and the Neural
Basis of Volitional Control, Nature Neurosci. 2004.

Musculoskeletal mechanics

Todorov, Optimality principles in sensorimotor control, Nature Neurosci 2004.

Scott, The computational and neural basis of
voluntary motor control and planning, Trends in Cog. Sci 2012.



There are more things in heaven and earth...

What is a synapse from neuron j to neuron i?

E Theorist: W, or J; . size of postsynaptic potential

B Experimentalist: AMPA, NMDA, CAMKII, MAPK, CREB,
MHC-I, second messengers, membrane protein regulation,
intracellular trafficking, new protein synthesis ..........

Legend

@ MAGUKs ) Adaptors | Scaffoldurs

Coba et. al.
Science Signalling 2009

wclectide-binding protein 3
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( Memory capacity with scalar analog synapses )

Consider the number of associations a neuron J(k)
with N afferent synapses can store.
E(k) o(k)

o(k) = sgn (J - E(x) - 6)
An online learning rule to store the desired association:
J(k+1) = e J(k) + o(k) E(x)

i.e. 1) Allows analog weights to decay slightly (forget the past inputs)
2) Add in the new association to the weight (learn a new input).

Memory capacity: How far back into the past can synapses reliably
recall previously stored associations?

Answer: If T is O(N) then the past O(N) associations can be recalled.

Problem: This solution relies on individual synapses to reliably
maintain O(N) distinguishable analog states.



{ Memory capacity with binary synapses

What about real synapses which can -
take only a finite number of £(k) a(k)
distinguishable values for their strength?

For binary synapses each synapse J. = +1 or -1. So you can no longer
add an association to synaptic weights without running into boundaries.

q q

o9 o9

Potentiation Depression



Memory capacity with binary synapses

q q
Ji=-1 Ji=+1 Ji=‘1 Ji=+1
Potentiation Depression

g = prob a synapse changes strength under appropriate conditions
N = number of synapses

Memory Capacity
qg=0(1) log N Quickly learn, quickly forget
q = O(N-"72) N1/2 Sluggish to learn, slow to forget

Fusi and Amit



[Synaptic complexity: from scalars to dynamical systems}

Experiment Theory

We must expand our theoretical conception of
a synapse from that of a simple scalar value to
an entire (stochastic) dynamical system in its own right.

This yields a large universe of
synaptic models to explore and understand.




[ Framework for synaptic dynamical systems ]

Possible molecular states

@ strong state
@ weak state

Potentiation Depression

Theoretical approach:

A synapse is an arbitrary stochastic
dynamical system with M internal states.

Some internal states correspond to a
strong synapse, others a weak synapse.

A candidate potentiation (depression)
event induces an arbitrary stochastic
transition between states.

Montgomery
and Madison
Neuron

2002




[Ideal observer measure of memory capacity: SNR]

A continuous stream of memories are
stored (at poisson rate r) in a population

of N synapses with M internal states. —5.

The memory stored at time t=0 demands

that some synapses potentiate, while —A. z
others depress, yielding an ideal 35
synaptic weight vector wideal.

The storage of future memories after Each choice of
t=0 changes the weight vector to w(t).

pot dep
An upper bound on the quality of memory Ny Wil L gl
retrieval of any memory readout using yields a different memory
neural activity is given by the SNR curve: curve.

SNR(t) = <V_|7ideal ' W(t» — <V_|7ideal ' W(OO»
v/ Var (Wigeg - W(c0))
Fusi et. al. 2005, Fusi et. al. 2007, Barrett and van Rossum,2008



[ Two example synaptic molecular networks }

Serial Model Cascade Model

Leibold and Kempter Fusi et. al.

Zoot:::::::: 00

o

—— Cascade
—— Serial

107}

10

10 10° 10°
Time

0

! 10

To elucidate the functional contribution of molecular complexity to
memory, we want to not simply understand individual models, but
understand the space of all possible models within this family.



[Towards a general theory of synaptic complexity ]

Possible molecular states

@ strong state
@ weak state

Potentiation Depression

How does the structure of a synaptic
dynamical system (MPOt ang Mdep)
determine its function, or memory
curve SNR(t)?

What are the fundamental limits of
achievable memory over all possible
choices of synaptic dynamical systems?

What is the structural organization of
synaptic dynamical systems that achieve
these limits?

What theoretical principles can control
combinatorial explosion in the number
of possible models as M increases?



( Imposing a theoretical order on synaptic dynamics J

As the synaptic population undergoes o
continuous modification, the internal LA
state stochastically wanders around ¥ "“,‘"‘}_‘t‘;;o
according to a forgetting process: é‘: o

Mforget _ fpot % Mpot + fdep % Mpot
This forgetting process has:

An equilibrium probability distribution of state occupancy: p?’
And a mean first passage time matrix from state i to j: Tij

pot Z T, p>° Starting from state i, the average time it takes
—t A to get to the potentiated states, weighted by their

J€PO equilibrium probability.

Order states from Ieft to right in order

of decreasing M



Topological ordering from first passage times ]

large; takes a long time to
reach potentiated states

small; takes a short time to
reach potentiated states



[ Optimal synapses have a simple structure in this order J

Consider optimizing the area under the memory curve:

When states are placed in this order,

(b)

(a)MpOt should only go from left to right
(b)Mdep should only go from right to left

(C)We can remove shortcuts in both IMPOt and M98P while

(1) preserving the order
(2) preserving the equilibrium distribution
(3) increasing the area

OO XD

= The area under the memory curve of any synaptic dynamical system is
bounded by that of a chain with the same equilibrium distribution.

Also, we show that the area of a chain cannot exceed O(N'2M) for any choice
of transition rates along the chain.

= The area under the memory curve of any synaptic dynamical system can
never exceed O(N"2M).



( A frontier beyond whose bourn no curve can cross J

Area bound implies a maximal achievable memory at any finite time given N
synapses with M internal states:

10" \/Ne—rt/l(iw—l)

SN VN(M —1)/ert
10° R
» ——envelope
% - = =numerical search
—hand designed
107} I
rt =M —1
Area bound active ' | =
Initial SNR bound active -
107 g '
10° 10° 10" 10° 10°

Time
Chains with different transition rates come close to the frontier at late times.
Various measures of memory (area, frontier, lifetime) grow linearly with

the number of internal states M, but grow only as the square root of

the number of synapses N.
Lahiri and Ganguli, NIPS 2014, outstanding paper award (3/1400)



{ The dividends of understanding synaptic complexity }

(Under review: cerebellar learning with complex synapses)

A framework for interpreting
molecular neurobiology data

Neurobiology

A theory of
omplex synapses
Technology Mathematics
New theorems about
The next generation of perturbations
artificial neural networks? to stochastic processes.

(Spatiotemporal credit assignment)
(Learning as message passing) (Tighter bounds)



[ A potential route to cognitive enhancement? ]

Enhance synaptic plasticity

/\

Enhance learning Impair Learning

Tang et. al. Nature 1999 Migaud et. al. Nature 1998

Hayashi et. al. Neuron 2004
gj;lsr:tt. (:;: al\lT.aifi 22%%19 Koekkoek et. al. Neuron 2005
Shatz Lab Raymond Lab Ganguli Lab
Knockout MHC-I in | Measure WT and KO Theoretical framework
cerebellum VOR learning to elucidate principles
of plasticity sufficient
Enhanced LTD Observe both enhanced | to explain learning

and impaired learning patterns



Continual learning through synaptic intelligence

Task 1

L,.(6)

Contro| == Consolidation
llustration ot catastrophic torgetting: solving task 2 impairs learning on solving task 1.

Idea: each synapse computes its “importance” in solving previous tasks. In future tasks
unimportant synapses are allowed to change.

Friedemann Zenke, Ben Poole, Surya Ganguli Continual Learning Through Synaptic
Intelligence, ICML 2017.




Continual learning through synaptic intelligence

Accuracy

Fraction correct

Split MNIST

Task 1 (0O or 1)

Task 2 (2 or 3)

N
o

0.5

Task 3 (4 or 5)

Task 4 (6 or 7)

Task 5 (8 or 9)

Average

' chance‘

Permuted MNIST

L T S
0.75 — —™— Ours (c=0.1)

—#&— EWC

—&— SGD

—&— SGD w/ dropout
0.50 —

| | | | |
2 4 6 8 10
Number of tasks

> 1.0
©
S 0.8
3
o 0.6
c
O 04
©
T 0.2
©
> 0.0

Il Fine tuning 1 From scratch

I Consolidation

.Task 1l .Task 2 Task 3 Task4 Task5 Task 6 .
‘CIFAR10|

| CIFAR100, 10 classes per task

Friedemann Zenke, Ben Poole, Surya Ganguli Continual Learning Through Synaptic

Intelligence, ICML 2017.



Summary

Trainability: if a good network solution exists with small training error,
how do we find it? And what makes a learning problem difficult?

Expressivity: what kinds of functions can a deep network express that
shallow networks cannot?

Generalizability: what principles do deep networks use to place
probability / make decisions in regions of input space with little data?

Interpretability : once we have a trained network, how do we understand
what it does? How is the training data embedded in the weights?

Biological Plausibility: how can we do what we do within the constraints
of neurobiology? How can we interpret specific architectures used by the
brain?
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The project that really keeps me up at night




