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Abstract. Recent experimental work has suggested that the neural firing rate can be interpreted
as a fractional derivative, at least when signal variation induces neural adaptation. Here, we show
that the actual neural spike-train itself can be consideredas the fractional derivative, provided
that the neural signal is approximated by a sum of power-law kernels. A simple standard thresh-
olding spiking neuron suffices to carry out such an approximation, given a suitable refractory
response. Empirically, we find that the online approximation of signals with a sum of power-law
kernels is beneficial for encoding signals with slowly varying components, like long-memory
self-similar signals. For such signals, the online power-law kernel approximation typically re-
quired less than half the number of spikes for similar SNR as compared to sums of similar but
exponentially decaying kernels. As power-law kernels can be accurately approximated using
sums or cascades of weighted exponentials, we demonstrate that the corresponding decoding of
spike-trains by a receiving neuron allows for natural and transparent temporal signal filtering by
tuning the weights of the decoding kernel.

1 Introduction

A key issue in computational neuroscience is the interpretation of neural signaling, as expressed by
a neuron’s sequence of action potentials. An emerging notion is that neurons may in fact encode
information at multiple timescales simultaneously [1,2,3,4]: the precise timing of spikes may be con-
veying high-frequency information, and slower measures, like the rate of spiking, may be relating
low-frequency information. Such multi-timescale encoding comes naturally, at least for sensory neu-
rons, as the statistics of the outside world often exhibit self-similar multi-timescale features [5] and
the magnitude of natural signals can extend over several orders. Since neurons are limited in the rate
and resolution with which they can emit spikes, the mapping of large dynamic-range signals into
spike-trains is an integral part of attempts at understanding neural coding.

Experiments have extensively demonstrated that neurons adapt their response when facing persis-
tent changes in signal magnitude. Typically, adaptation changes the relation between the magnitude
of the signal and the neuron’s discharge rate. Since adaptation thus naturally relates to neural coding,
it has been extensively scrutinized [6,7,8]. Importantly,adaptation is found to additionally exhibit fea-
tures like dynamic gain control, when the standard deviation but not the mean of the signal changes
[1], and long-range time-dependent changes in the spike-rate response are found in response to large
magnitude signal steps, with the changes following a power-law decay (e.g. [9]).

Tying the notions of self-similar multi-scale natural signals and adaptive neural coding together,
it has recently been suggested that neuronal adaptation allows neuronal spiking to communicate a
fractional derivative of the actual computed signal [10,4]. Fractional derivatives are a generalization
of standard ‘integer’ derivatives (‘first order’, ‘second order’), to real valued derivatives (e.g. ‘0.5th
order’). A key feature of such derivatives is that they are non-local, and rather convey information
over essentially a large part of the signal spectrum [10].

Here, we show how neural spikes can encode temporal signals when the spike-trainitself is taken
as the fractional derivative of the signal. We show that thisis the case for a signal approximated
by a sum of shifted power-law kernels starting at respectivetimes ti and decaying proportional to
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1/(t− ti)
β . Then, the fractional derivative of this approximated signal corresponds to a sum of spikes

at timesti, provided that the order of fractional differentiationα is equal to1− β: a spike-trainis the
α = 0.2 fractional derivative of a signal approximated by a sum of power-law kernels with exponent
β = 0.8. Such signal encoding with power-law kernels can be carriedout for example with simple
standard thresholding spiking neurons with a refractory reset following a power-law.

As fractional derivatives contain information over many time-ranges, they are naturally suited
for predicting signals. This links to notions of predictivecoding, where neurons communicate devi-
ations from expected signals rather than the signal itself.Predictive coding has been suggested as a
key feature of neuronal processing in e.g. the retina [11]. For self-similar scale-free signals, future
signals may be influenced by past signals over very extended time-ranges: so-called long-memory.
For example, fractional Brownian motion (fBm) can exhibit long-memory, depending on their Hurst-
parameterH . ForH > 0.5 fBM models which exhibit long-range dependence (long-memory) where
the autocorrelation-function follows a power-law decay [12]. The long-memory nature of signals
approximated with sums of power-law kernels naturally extends this signal approximation into the
future along the autocorrelation of the signal, at least forself-similar1/fγ like signals. The key “pre-
dictive” assumption we make is that a neuron’s spike-train up to timet contains all the information
that the past signal contributes to the future signalt′ > t.

The correspondence between a spike-train as a fractional derivative and a signal approximated as
a sum of power-law kernels is only exact when spike-trains are taken as a sum of Dirac-δ functions
and the power-law kernels as1/tβ. As both responses are singular, neurons would only be able to
approximate this. We show empirically how sums of (approximated)1/tβ power-law kernels can
accurately approximate long-memory fBm signals via simpledifference thresholding, in an online
greedy fashion. Thus encodings signals, we show that the power-law kernels approximate synthe-
sized signals with about half the number of spikes to obtain the same Signal-to-Noise-Ratio, when
compared to the same encoding method using similar but exponentially decaying kernels.

We further demonstrate the approximation of sine wave modulated white-noise signals with sums
of power-law kernels. The resulting spike-trains, expressed as “instantaneous spike-rate”, exhibit the
phase-presession as in [4], with suppression of activity onthe “back” of the sine-wave modulation,
and stronger suppression for lower values of the power-law exponent (corresponding to a higher
order forour fractional derivative). We find the effect is stronger when encoding the actual sine wave
envelope, mimicking the difference between thalamic and cortical neurons reported in [4]. This may
suggest that these cortical neurons are more concerned withencoding the sine wave envelope.

The power-law approximation also allows for the transparent and straightforward implementa-
tion of temporal signal filtering by a post-synaptic, receiving neuron. Since neuraldecoding by a
receiving neuron corresponds to adding a power-law kernel for each received spike, modifying this
receiving power-law kernel then corresponds to a temporal filtering operation, effectively exploiting
the wide-spectrum nature of power-law kernels. This is particularly relevant, since, as has been am-
ply noted [9,13], power-law dynamics can be closely approximated by a weighted sum or cascade of
exponential kernels. Temporal filtering would then correspond to simply tuning the weights for this
sum or cascade. We illustrate this notion with an encoding/decoding example for both a high-pass
and low-pass filter.

2 Power-law Signal Encoding

Neural processing can often be reduced to a Linear-Non-Linear (LNL) filtering operation on incom-
ing signals [14] (figure 1), where inputs are linearly weighted and then passed through a non-linearity
to yield the neural activation. As this computation yields analog activations, and neurons communi-
cate through spikes, the additional problem faced by spiking neurons is to decode the incoming signal
and then encode the computed LNL filter again into a spike-train. The standard spiking neuron model



Fig. 1. Linear-Non-Linear filter, with spike-decoding front-end and spike-encoding back-end.

is that of Linear-Nonlinear-Poisson spiking, where spikeshave a stochastic relationship to the com-
puted activation [15]. Here, we interpret the spike encoding and decoding in the light of processing
and communicating signals with fractional derivatives [10].

At least for signals with mainly (relatively) high-frequency components, it has been well estab-
lished that a neural signal can be decoded with high fidelity by associating a fixed kernel with each
spike, and summing these kernels [16]; keeping track of doublets and triplet spikes allows for even
greater fidelity. This approach however only worked for signals with a frequency response lacking
low frequencies [16]. Low-frequency changes lead to “adaptation”, where the kernel is adapted to fit
the signal again [17]. For long-range predictive coding, the absence of low frequencies leaves little
to predict, as the effective correlation time of the signalsis then typically very short as well [16].

Using the notion of predictive coding in the context of (possible) long-range dependencies, we
define the goal of signal encoding as follows: let a signalxj(t) be the result of the continuous-time
computation in neuronj up to timet, and let neuronj have emitted spikestj up to timet. These
spikes should be emitted such that the signalxj(t

′) for t′ < t is decoded up to some signal-to-noise
ratio,and these spikes should be predictive forxj(t

′) for t′ > t in the sense that no additional spikes
are needed at timest′ > t to convey the predictive information up to timet.

Taking kernels as a signal filter of fixed width, as in the general approach in [16] has the important
drawback that the signal reconstruction incurs a delay for the duration of the filter: its detection cannot
be communicated until the filter is actually matched to the signal. This is inherent to any backward-
looking filter-maching solution. Alternatively, a predictive coding approach could rely on only on a
very short backward looking filter, minimizing the delay in the system, and continuously computing
a forward predictive signal. At any time in the future then, only deviations of the actual signal from
this expectation are communicated.

2.1 Spike-trains as fractional derivative

As recent work has highlighted the possibility that neuronsencode fractional derivatives, it is note-
worthy that the non-local nature of fractional calculus offers a natural framework for predictive cod-
ing. In particular, as we will show, when we assume that the predictive information about the future
signal is fully contained in the current set of spikes, a signal approximated as a sum of power-law
kernels corresponds to a fractional derivative in the form of a sum of Dirac-δ functions, which the
neuron can obviously communicate through timed spikes.

The fractional derivativer(t) of a signalx(t) is denoted asDαx(t), and intuitively expresses:

r(t) =
dα

dtα
x(t),



whereα is the fractional order, e.g.0.5. This is most conveniently computed through the Fourier
transformation in the frequency domain, as a simple multiplication:

R(ω) = H(ω)X(ω),

where the Fourier-transformed fractional derivative operatorH(ω) is by definition(iω)α [10], and
X(ω) andR(ω) are the Fourier transforms ofx(t) andr(t) respectively.

We assume that neurons carry out predictive coding by emitting spikes such that all predictive
information is contained in the current spikes, and no more spikes will be fired if the signal follows
this prediction. Approximating spikes by Dirac-δ functions, we take the spike-train up to some time
t0 to be the fractional derivative of the past signaland be fully predictive for the expected influence
the past signal has on the future signal:

r(t) =
∑

ti<t0

δ(t− ti)

The task is to find a signal̂x(t) that corresponds to an approximation of the actual signalx(t) up to
t0, and where the predicted signal contributionx(t) for t > t0 due tox(t < t0) does not require
additional future spikes. We note that a sum of power-law decaying kernels with power-lawt−β for
β = 1−α corresponds to such a fractional derivative: the Fourier-transform for a power-law decaying
kernel of formt−β is proportional to(iω)β−1, hence for a signal that just experienced a single step
from 0 to 1 at timet we get:

R(ω) = (iω)α(iω)β−1,

and settingβ = 1 − α yields a constant in Fourier-space, which of course is the Fourier-transform
of δ(t). It is easy to check that shifted power-law decaying kernels, e.g.(t − ta)

−β correspond to
a shifted fractional derivativeδ(t − ta), and the fractional derivative of a sum of shifted power-law
decaying kernels corresponds to a sum of shifted delta-functions. Note that for decaying power-laws,
we needβ > 0, and for fractional derivatives we requireα > 0.

Thus, with the reverse reasoning, a signal approximated as the sum of power-law decaying kernels
corresponds to a spike-train with spikes positioned at the start of the kernel, and, beyond a current
time t, this sum of decaying kernels is is interpreted as a prediction of the extent to which the future
signal can be predicted by the past signal.

Obviously, both the Dirac-δ function and the1/tβ kernels are singular (figure 2a) and can only be
approximated. For real applications, only some part of the1/tβ curve can be considered, effectively
leaving the magnitude of the kernel and the high frequency component (the extend to which the initial
1/tβ peak is approximated) as free parameters. Figure 2b illustrates the signal approximated by a
random spikes train; as compared to a sum of exponentially decayingα-kernels, the long-memory
effects of power-law decay kernels is evident.

2.2 Practical encoding

To explore the efficacy of the power-law kernel approach to signal encoding/decoding, we take a
standard thresholding online approximation approach, where neurons communicate only deviations
between the current computed signalx(t) and the emitted approximated signalx̂(t) exceeding some
thresholdθ. The emitted signal̂x(t) is constructed as the (delayed) sum of filter kernelsκ each
starting at the time of the emitted spike:

x̂(t) =
∑

tj<t

κ(t− (tj +∆)),

the delay∆ corresponds to the time-window over which the neuron considers the difference between
computed and emitted signal. In a spiking neuron, such computation would be implemented simply



Fig. 2. a) Signalx(t) and corresponding fractional derivativer(t): 1/tβ power-laws and delta-
functions; b) power-law approximation, timed to spikes; compared to sum ofα-functions (black
dashed line). c) Approximated1/tβ power-law kernel for different values ofk from eq. (2). d) The
approximated1/tβ power-law kernel (blue line) can be decomposed as a weightedsum ofα-functions
with various decay time-constants (dashed lines).

by for instance a refractory current following a power-law.Allowing for both positive and negative
spikes (corresponding to tightly coupled neurons with reversed threshold polarity [16]), this would
expand to:

x̂(t) =
∑

t
+

j
<t

κ(t− (t+j +∆))−
∑

t
−

j
<t

κ(t− (t−j +∆)).

Considering just the fixed time-window thresholding approach, a spike is emitted each time the dif-
ference between the computed signalx(t) and the emitted signal̂x(t) plus (or minus) the kernelκ(t)
summed over some time-window exceeds the thresholdθ:

r(t0) = δ(t0) if
t0∑

τ=t0−∆

|x(τ) − x̂(τ)| − |x(τ) − (x̂(τ) + κ(τ))|) > θ,

= −δ(t0) if
t0∑

τ=t0−∆

|x(τ) − x̂(τ)| − |x(τ) − (x̂(τ)− κ(τ))|) > θ, (1)

the signal approximation improvement is computed here as the absolute value of the difference be-
tween the current signal noise and the signal noise when a kernel is added (or subtracted).

As an approximation of1/tβ power-law kernels, we let the kernel first quickly rise, and then
decay according to the power-law. For a practical implementation, we use a1/tβ signal multiplied
by a modified version of the logistic sigmoid function logsig(t) = 1/(1 + exp(−t)): v(t, k) =
2 logsig(kt)− 1, such that the kernel becomes:

κ(t) = λv(t, k)1/tβ, (2)



whereκ(t) is zero fort′ < t, and parameterk determines the angle of the initial increasing part of the
kernel. The resulting kernel is further scaled by a factorλ to achieve a certain signal approximation
precision (kernels for power-law exponentialβ = 0.5 and several values ofk are shown in figure 2c).
As an aside, the resulting (normalized) power-law kernel can very accurately be approximated over
multiple orders of magnitude by a sum of just 11α-function exponentials (figure 2d).

Next, we compare the efficiency of signal approximation withpower-law predictive kernels as
compared to the same approximation using standard fixed kernels. For this, we synthesize self-similar
signals with long-range dependencies. We first remark on some properties of self-similar signals with
power-law statistics, and on how to synthesize them.

2.3 Self-similar signals with power-law statistics

There is extensive literature on the synthesis of statistically self-similar signals with1/f -like statis-
tics, at least going back to Kolmogorov [18] and Mandelbrot [19]. Self-similar signals exhibit slowly
decaying variances, long-range dependencies and a spectral density following a power law. Im-
portantly, for wide-sense self-similar signals, the autocorrelation functions also decays following a
power-law. Although various distinct classes of self-similar signals with1/f -like statistics exist [12],
fractional Brownian motion (fBm) is a popular model for manynatural signals. Fractional Brownian
motion is characterized by its Hurst-paramaterH , whereH = 0.5 corresponds to regular Brownian
motion, and fBM models withH > 0.5 exhibit long-range (positive) dependence. The spectral den-
sity of an fBm signal is proportional to a power-law,1/fγ, whereγ = 2H + 1. We used fractional
Brownian motion to generate self-similar signals for variousH values, using thewfbm function from
the Matlab wavelet toolbox.

3 Signal encoding/decoding

3.1 Encoding long-memory self-similar signals

We applied the thresholded kernel approximation outlined above to synthesized fBm signals with
H > 0.5, to ensure long-term dependence in the signal. An example ofsuch encoding is given in
figure 3, left panel, using both positive and negative spikes, (inset, red line: the power-law kernel
used). When encoding the same signal with kernels without the power-law tail (inset, blue line), the
approximation required more than twice as many spikes for the same Signal-to-Noise-Ratio (SNR).

In figure 3, right panel, we compared the encoding efficacy forsignals with differentH-parameters,
as a function of the power-law exponent, using the same number of spikes for each signal (achieved
by changing theλ parameter and the thresholdθ). We find that more slowly varying signals, corre-
sponding to higherH-parameters, are better encoded by the power-law kernels, More surprisingly,
we find and signals are consistently best encoded for lowβ-values, in the order of0.1− 0.3. Similar
results were obtained for different values ofk in equation (2).

We should remark that without negative spikes, there is no longer a clear performance advantage
for power-law kernels (even for largeβ): where power-law kernels are beneficial on the rising part of
a signal, they lose on downslopes where their slow decay cannot follow the signal.

3.2 Sine-wave modulated white-noise

Fractional derivatives as an interpretation of neuronal firing-rate has been put forward by a series of
recent papers [10,20,4], where experimental evidence was presented to suggest such an interpreta-
tion. A key finding in [4] was that the instantaneous firing rate of neurons along various processing
stages of a rat’s whisker movement exhibit a phase-lead relative to the amplitude of the movement
modulation. The phase-lead was found to be greater for cortical neurons as compared to thalamic



Fig. 3. Left: example of encoding of fBm signal with power-law kernels. Using an exponentially
decaying kernel (inset) required 1398 spikes vs. 618 for thepower-law kernel (k = 50), for the same
SNR. Right: SNR for variousβ power-law exponents using a fixed number of spikes (48Hz), with
curves for differentH-parameters, each curve averaged over five 16s signals. The dashed blue curve
plots theH = 0.6 curve, using less spikes (36Hz); the flat bottom dotted line shows the average
performance of the non-power-law exponentially decaying kernel, also forH = 0.6.

neurons. When the firing rate corresponds to theα-order fractional derivative, the phase-lead would
correspond to greater fractional orderα in the cortical neurons [10] . We used the sum-of-power-laws
to approximate both the sine-wave-modulated white noise and the actual sine-wave itself, and found
similar results (figure 4): smaller power-law exponents, inour interpretation also corresponding to
larger fractional derivative orders, lead to increasinglyfewer spikes at the back of the sine-wave
(both in the case where we encode the signal with both positive and negative spikes – then counting
only the positive spikes – and when the signal is approximated with only positive spikes – not shown).
We find an increased phase-lead when approximating the actual sine-wave kernel as opposed to the
white-noise modulation, suggesting that perhaps corticalneurons more closely encode the former as
compared to thalamic neurons.

3.3 Signal Frequency Filtering

For a receiving neuroni to properly interpret a spike-trainr(t)j from neuronj, both neurons would
need to keep track of past events over extended periods of time: current spikes have to be added to or
subtracted from the future expectation signal that was already communicated through past spikes. The
required power-law processes can be implemented in variousmanners, for instance as a weighted sum
or a cascade of exponential processes [9,10]. A natural benefit of implementing power-law kernels as
a weighted sum or cascade of exponentials is that a receivingneuron can carry out temporal signal
filtering simply by tuning the respective weight parametersfor the kernel with which it decodes spikes
into a signal approximation.

In figure 5, we illustrate this with power-law kernels that are transformed into high-pass and low-
pass filters. We first approximated our power-law kernel (2) with a sum of 11 exponentials (depicted
in the left-center inset). Using this approximation, we encoded the signal (figure 5, center). The signal
was then reconstructed using the resultant spikes, using the power-law kernel approximation, but with
some zeroed out exponentials (respectively the slowly decaying exponentials for the high-pass filter,
and the fast-decaying kernels for the low-pass filter). Figure 5, most right, shows the resulting filtered



Fig. 4. Sinewave phase-lead. Left: when encoding sine-wave modulated white noise (inset); right: en-
coding the sine-wave signal itself (inset). Average firing rate is computed over 100ms, and normalized
to match the sine-wave kernel.

Fig. 5. Illustration of frequency filtering with modified decoding kernels. The square boxes show the
respective kernels in both time and frequency space. See text for further explanation.

signal approximations. Obviously, more elaborate tuning of the decoding kernel with a larger sum of
kernels can approximate a vast variety of signal filters.

4 Discussion

Taking advantage of the relationship between power-laws and fractional derivatives, we outlined the
peculiar fact that a sum of Dirac-δ functions, when taken as a fractional derivative, corresponds to
a signal in the form of a sum of power-law kernels. Exploitingthe obvious link to spiking neural
coding, we showed how a simple thresholding spiking neuron can compute a signal approximation
as a sum of power-law kernels; importantly, such a simple thresholding spiking neuron closely fits
standard biological spiking neuron models, when the refractory response follows a power-law de-
cay (e.g. [21]). We demonstrated the usefulness of such an approximation when encoding slowly
varying signals, finding that encoding with power-law kernels significantly outperformed similar but
exponentially decaying kernels that do not take long-rangesignal dependencies into account.



Compared to the work where the firing rate is considered as a fractional derivative, e.g. [10],
the present formulation extends the notion of neural codingwith fractional derivatives to individual
spikes, and hence finer temporal variations: each spike effectively encodes very local signal varia-
tions, while also keeping track of long-range variations.

The interpretation in [10] of the fractional derivativer(t) as arate leads to a 1:1 relation between
the fractional derivative order and the power-law decay exponent of adaptation of about0.2 [10,22,9].
For such fractional derivativeα, our derivation implies a power-law exponent for the power law
kernelsβ = 1−α ≈ 0.8, consistent with our sine-wave reconstruction, as well as with recent adapting
spiking neuron models [21]. We find that when signals are approximated with non-coupled positive
and negative neurons (i.e. one neuron encodes the positive part of the signal, the other the negative),
such much faster-decaying power-law kernels encode more efficiently than slower decaying ones.
Non-coupled signal encoding obviously fair badly when signals rapidly change polarity; this however
seems consistent with human illusory experiences [23].

As noted, the singularity of1/tβ power-law kernels means that initial part of the kernel can
only be approximated. Here, we initially focused our simulation on the use of long-range power-law
kernels for encoding slowly varying signals. A more detailed approximation of this initial part of
the kernel may be needed to incorporate effects like gain modulation [24,8], and determine up to
what extent the power-law kernels already account for this phenomenon. This would also provide a
natural link to existing neural models of spike-frequency adaptation, e.g. [25], as they are primarily
concerned with modeling the spiking neuron behavior ratherthan the computational aspects.

We used a greedy online thresholding process to determine when a neuron would spike to approx-
imate a signal, this in contrast to offline optimization methods that place spikes at optimal times, like
Smith & Lewicki [26]. The key difference of course is that thelatter work is concerned with decod-
ing a signal, and in effect attempts to determine the effective neural (temporal) filter. As we aimed to
illustrate in the signal filtering example, these notions are not mutually exclusive: a receiving neuron
could very well filter the incoming signal with a carefully shaped weighted sum of kernels, and then,
when the filter is activated, signal the magnitude of the match through fractional spiking.

Predictive coding seeks to find a careful balance between encoding known information as well
as future, derived expectations [27]. It does not seem unreasonable to formulate this balance as a no-
going-back problem, where current computations are projected forward in time, and corrected where
needed. In terms of spikes, this would correspond to our assumption that, absent new information, no
additional spikes need to be fired by a neuron to transmit thisforward information.

The kernels we find are somewhat in contrast to the kernels found by Bialek et. al. [16], where the
optimal filter exhibited both a negative and a positive part and no long-range “tail”. Several practical
issues may contribute to this difference, not least the relative absence of low frequency variations, as
well as the fact that the signal considered is derived from the fly’s H1 neurons. These two neurons
have only partially overlapping receptive fields, and the separation into positive and negative spikes is
thus slightly more intricate. We need to remark though that we see no impediment for the presented
signal approximation to be adapted to such situations, or situations where more than two neurons
encode fractions of a signal, as in population coding, e.g. [28].

Finally, we would like to remark that the issue of long-rangetemporal dependencies such as
discussed here seems to be relatively unappreciated. As pointed out in [9], long-range power-law
dynamics would seem to offer a variety of “hooks” for computation through time, like for tempo-
ral difference learning and relative temporal computations (and possibly exploiting the many noted
correspondences between spatial and temporal statistics [29]).

Acknowledgement: work by JOR supported by NWO Grant 612.066.826, SMB partly byNWO
Grant 639.021.203.
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