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Abstract. Recent experimental work has suggested that the neurg fate can be interpreted
as a fractional derivative, at least when signal variatimtuces neural adaptation. Here, we show
that the actual neural spike-train itself can be considesethe fractional derivative, provided
that the neural signal is approximated by a sum of power-kesmdds. A simple standard thresh-
olding spiking neuron suffices to carry out such an approtionagiven a suitable refractory
response. Empirically, we find that the online approximatidsignals with a sum of power-law
kernels is beneficial for encoding signals with slowly vag/icomponents, like long-memory
self-similar signals. For such signals, the online povesv-kernel approximation typically re-
quired less than half the number of spikes for similar SNRamspared to sums of similar but
exponentially decaying kernels. As power-law kernels carabcurately approximated using
sums or cascades of weighted exponentials, we demondtedtihé corresponding decoding of
spike-trains by a receiving neuron allows for natural aadsparent temporal signal filtering by
tuning the weights of the decoding kernel.

1 Introduction

A key issue in computational neuroscience is the interficetaf neural signaling, as expressed by
a neuron’s sequence of action potentials. An emerging nasidhat neurons may in fact encode
information at multiple timescales simultaneously [1]4] 3the precise timing of spikes may be con-
veying high-frequency information, and slower measuri&s, the rate of spiking, may be relating
low-frequency information. Such multi-timescale encagiomes naturally, at least for sensory neu-
rons, as the statistics of the outside world often exhibftsmilar multi-timescale features|[5] and
the magnitude of natural signals can extend over severatgar8ince neurons are limited in the rate
and resolution with which they can emit spikes, the mappih@@e dynamic-range signals into
spike-trains is an integral part of attempts at understapdeural coding.

Experiments have extensively demonstrated that neurapx ttkir response when facing persis-
tent changes in signal magnitude. Typically, adaptaticangles the relation between the magnitude
of the signal and the neuron’s discharge rate. Since adaptaus naturally relates to neural coding,
it has been extensively scrutinized [6/7,8]. Importaratiaptation is found to additionally exhibit fea-
tures like dynamic gain control, when the standard dewvidbiat not the mean of the signal changes
[1], and long-range time-dependent changes in the spileereaponse are found in response to large
magnitude signal steps, with the changes following a pdexerdecay (e.gL[9]).

Tying the notions of self-similar multi-scale natural sidg;and adaptive neural coding together,
it has recently been suggested that neuronal adaptatimnsaieuronal spiking to communicate a
fractional derivative of the actual computed signal [L0,4]. Fractional derivediare a generalization
of standard ‘integer’ derivatives (‘first order’, ‘secondler’), to real valued derivatives (e.g. ‘0.5th
order’). A key feature of such derivatives is that they are-taral, and rather convey information
over essentially a large part of the signal spectrium [10].

Here, we show how neural spikes can encode temporal sighais the spike-traiitself is taken
as the fractional derivative of the signal. We show that thithe case for a signal approximated
by a sum of shifted power-law kernels starting at respediivest; and decaying proportional to
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1/(t—t;)®. Then, the fractional derivative of this approximated sigrorresponds to a sum of spikes
at timest;, provided that the order of fractional differentiatiaris equal tol — /3: a spike-trairisthe

a = 0.2 fractional derivative of a signal approximated by a sum at@elaw kernels with exponent
B = 0.8. Such signal encoding with power-law kernels can be cawigdor example with simple
standard thresholding spiking neurons with a refractosgtéllowing a power-law.

As fractional derivatives contain information over manyétranges, they are naturally suited
for predicting signals. This links to notions of predictiseding, where neurons communicate devi-
ations from expected signals rather than the signal itBeddictive coding has been suggested as a
key feature of neuronal processing in e.g. the refina [141.9elf-similar scale-free signals, future
signals may be influenced by past signals over very extengedranges: so-called long-memory.
For example, fractional Brownian motion (fBm) can exhibing-memory, depending on their Hurst-
parametef{. For H > 0.5 fBM models which exhibit long-range dependence (long-msmahere
the autocorrelation-function follows a power-law decag][IThe long-memory nature of signals
approximated with sums of power-law kernels naturally edtethis signal approximation into the
future along the autocorrelation of the signal, at leasséif-similar1/f7 like signals. The key “pre-
dictive” assumption we make is that a neuron’s spike-tr@inaitimet contains all the information
that the past signal contributes to the future sighal ¢.

The correspondence between a spike-train as a fractiorightiee and a signal approximated as
a sum of power-law kernels is only exact when spike-traiestaken as a sum of Diratfunctions
and the power-law kernels dgt”. As both responses are singular, neurons would only be able t
approximate this. We show empirically how sums of (appratid)1/t” power-law kernels can
accurately approximate long-memory fBm signals via singpfeerence thresholding, in an online
greedy fashion. Thus encodings signals, we show that theplaw kernels approximate synthe-
sized signals with about half the number of spikes to obtainsame Signal-to-Noise-Ratio, when
compared to the same encoding method using similar but exgiafly decaying kernels.

We further demonstrate the approximation of sine wave naiddiwhite-noise signals with sums
of power-law kernels. The resulting spike-trains, expedsss “instantaneous spike-rate”, exhibit the
phase-presession as in [4], with suppression of activittheriback” of the sine-wave modulation,
and stronger suppression for lower values of the power-lgpoeent (corresponding to a higher
order forour fractional derivative). We find the effect is stronger whanading the actual sine wave
envelope, mimicking the difference between thalamic antiead neurons reported inl[4]. This may
suggest that these cortical neurons are more concerne@mgtiding the sine wave envelope.

The power-law approximation also allows for the transpaeanl straightforward implementa-
tion of temporal signal filtering by a post-synaptic, ret@ijvneuron. Since neuraecoding by a
receiving neuron corresponds to adding a power-law keoretdch received spike, modifying this
receiving power-law kernel then corresponds to a tempdtetifig operation, effectively exploiting
the wide-spectrum nature of power-law kernels. This isipaldrly relevant, since, as has been am-
ply noted [4,13], power-law dynamics can be closely apprated by a weighted sum or cascade of
exponential kernels. Temporal filtering would then cormegpto simply tuning the weights for this
sum or cascade. We illustrate this notion with an encodicpding example for both a high-pass
and low-pass filter.

2 Power-law Signal Encoding

Neural processing can often be reduced to a Linear-NonalifieNL) filtering operation on incom-
ing signals([14] (figur€ll), where inputs are linearly weahand then passed through a non-linearity
to yield the neural activation. As this computation yieldsiag activations, and neurons communi-
cate through spikes, the additional problem faced by spik&urons is to decode the incoming signal
and then encode the computed LNL filter again into a spikie-tfde standard spiking neuron model
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Fig. 1. Linear-Non-Linear filter, with spike-decoding front-enaidespike-encoding back-end.

is that of Linear-Nonlinear-Poisson spiking, where spikage a stochastic relationship to the com-
puted activation[[15]. Here, we interpret the spike encgdind decoding in the light of processing
and communicating signals with fractional derivatived[10

At least for signals with mainly (relatively) high-frequencomponents, it has been well estab-
lished that a neural signal can be decoded with high fideljta¢sociating a fixed kernel with each
spike, and summing these kernels![16]; keeping track of siland triplet spikes allows for even
greater fidelity. This approach however only worked for sigrwith a frequency response lacking
low frequencies [16]. Low-frequency changes lead to “aatit”, where the kernel is adapted to fit
the signal agairi [17]. For long-range predictive coding, @&hsence of low frequencies leaves little
to predict, as the effective correlation time of the signathen typically very short as well [16].

Using the notion of predictive coding in the context of (dbks long-range dependencies, we
define the goal of signal encoding as follows: let a signdt) be the result of the continuous-time
computation in neuror up to timet, and let neurory have emitted spikes; up to timet. These
spikes should be emitted such that the signdt’) for ¢ < ¢ is decoded up to some signal-to-noise
ratio, and these spikes should be predictive fgi(¢’) for t' > ¢ in the sense that no additional spikes
are needed at time& > ¢ to convey the predictive information up to time

Taking kernels as a signal filter of fixed width, as in the gahapproach in[16] has the important
drawback that the signal reconstruction incurs a delayn®duration of the filter: its detection cannot
be communicated until the filter is actually matched to tlgmal. This is inherent to any backward-
looking filter-maching solution. Alternatively, a prediat coding approach could rely on only on a
very short backward looking filter, minimizing the delay fretsystem, and continuously computing
a forward predictive signal. At any time in the future thenlyodeviations of the actual signal from
this expectation are communicated.

2.1 Spike-trainsasfractional derivative

As recent work has highlighted the possibility that neurensode fractional derivatives, it is note-
worthy that the non-local nature of fractional calculusoéfa natural framework for predictive cod-
ing. In particular, as we will show, when we assume that tlegliotive information about the future
signal is fully contained in the current set of spikes, a aiggpproximated as a sum of power-law
kernels corresponds to a fractional derivative in the fofra sum of Diracé functions, which the
neuron can obviously communicate through timed spikes.

The fractional derivative(t) of a signalz(t) is denoted a®*x(t), and intuitively expresses:

rlt) = o),



where« is the fractional order, e.d.5. This is most conveniently computed through the Fourier
transformation in the frequency domain, as a simple midtion:

R(w) = H(w)X (w),

where the Fourier-transformed fractional derivative eparH (w) is by definition(iw)® [10], and
X (w) andR(w) are the Fourier transforms oft) andr(t) respectively.

We assume that neurons carry out predictive coding by emiipikes such that all predictive
information is contained in the current spikes, and no mpilees will be fired if the signal follows
this prediction. Approximating spikes by Diracfunctions, we take the spike-train up to some time
to to be the fractional derivative of the past sigaatl be fully predictive for the expected influence
the past signal has on the future signal:

r(t)= > 8t —t)

t; <to

The task is to find a signal(¢) that corresponds to an approximation of the actual sigf¥@glup to
to, and where the predicted signal contributioft) for ¢ > ¢, due toz(t < to) does not require
additional future spikes. We note that a sum of power-lavagieg kernels with power-law# for
8 = 1—a corresponds to such a fractional derivative: the Fouremgform for a power-law decaying
kernel of formt—? is proportional to(iw)®~!, hence for a signal that just experienced a single step
from 0 to 1 at time we get:

R(w) = (iw)*(iw)’,
and setting? = 1 — « yields a constant in Fourier-space, which of course is theiEptransform
of 6(t). It is easy to check that shifted power-law decaying kerrels. (t — t,)~° correspond to
a shifted fractional derivativé(t — t,,), and the fractional derivative of a sum of shifted power-law
decaying kernels corresponds to a sum of shifted deltatims: Note that for decaying power-laws,
we need3 > 0, and for fractional derivatives we requise> 0.

Thus, with the reverse reasoning, a signal approximatedteasuim of power-law decaying kernels
corresponds to a spike-train with spikes positioned at the of the kernel, and, beyond a current
timet, this sum of decaying kernels is is interpreted as a prextiaif the extent to which the future
signal can be predicted by the past signal.

Obviously, both the Dirad-function and the /? kernels are singular (figuré 2a) and can only be
approximated. For real applications, only some part ofith€ curve can be considered, effectively
leaving the magnitude of the kernel and the high frequenoymmment (the extend to which the initial
1/t? peak is approximated) as free parameters. Figlre 2b aiigstithe signal approximated by a
random spikes train; as compared to a sum of exponentiatistydeg a-kernels, the long-memory
effects of power-law decay kernels is evident.

2.2 Practical encoding

To explore the efficacy of the power-law kernel approach ¢mai encoding/decoding, we take a
standard thresholding online approximation approach rezheurons communicate only deviations
between the current computed signél) and the emitted approximated sigrdt) exceeding some
thresholdd. The emitted signak(¢) is constructed as the (delayed) sum of filter kernelsach
starting at the time of the emitted spike:

B(t) =Y k(t— (t; + A)),

the delayA corresponds to the time-window over which the neuron cansithe difference between
computed and emitted signal. In a spiking neuron, such ctetipn would be implemented simply
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by for instance a refractory current following a power-léMlowing for both positive and negative
spikes (corresponding to tightly coupled neurons with rese threshold polarity [16]), this would
expand to:

B(t) =D m(t—(t] +2) = Y k(t—(t; +A4)).

+ _
tj <t tj <t

Considering just the fixed time-window thresholding apftoa spike is emitted each time the dif-
ference between the computed signgl) and the emitted signai(¢) plus (or minus) the kerneil(¢)
summed over some time-window exceeds the thresfiold

to

r(to) = d(to) if > Ja(r) = &()] - la(r) — (@) + K(1)]) > 6,
T=tg—A
= —d(to) if ZO lz(r) = 2(7)] = [a(7) — (@(7) = k(7)) > 0, (1)
T=tg—A

the signal approximation improvement is computed here aghisolute value of the difference be-
tween the current signal noise and the signal noise whemekisradded (or subtracted).

As an approximation of /t® power-law kernels, we let the kernel first quickly rise, ahdrt
decay according to the power-law. For a practical implewmigon, we use d /t° signal multiplied
by a modified version of the logistic sigmoid function loggig= 1/(1 + exp(—t)): v(t, k) =
2logsigkt) — 1, such that the kernel becomes:

K(t) = Mu(t, k)1/tP, 2)



wherex(t) is zero fort’ < ¢, and parametér determines the angle of the initial increasing part of the
kernel. The resulting kernel is further scaled by a fadtéo achieve a certain signal approximation
precision (kernels for power-law exponentia= 0.5 and several values éfare shown in figurgl2c).
As an aside, the resulting (normalized) power-law kernaleery accurately be approximated over
multiple orders of magnitude by a sum of justdZunction exponentials (figufé 2d).

Next, we compare the efficiency of signal approximation vatiwer-law predictive kernels as
compared to the same approximation using standard fixeeleefror this, we synthesize self-similar
signals with long-range dependencies. We first remark oregoperties of self-similar signals with
power-law statistics, and on how to synthesize them.

2.3 Sdf-similar signalswith power-law statistics

There is extensive literature on the synthesis of statiffyicelf-similar signals with / f-like statis-
tics, at least going back to Kolmogorav [18] and Mandelbi®][ Self-similar signals exhibit slowly
decaying variances, long-range dependencies and a dpaetsity following a power law. Im-
portantly, for wide-sense self-similar signals, the aatoelation functions also decays following a
power-law. Although various distinct classes of self-&msignals withl / f-like statistics exis{[12],
fractional Brownian motion (fBm) is a popular model for mamgtural signals. Fractional Brownian
motion is characterized by its Hurst-paramatgrwhereH = 0.5 corresponds to regular Brownian
motion, and fBM models witli{ > 0.5 exhibit long-range (positive) dependence. The spectral de
sity of an fBm signal is proportional to a power-laly, 7, wherey = 2H + 1. We used fractional
Brownian motion to generate self-similar signals for vasé{ values, using thef bmfunction from
the Matlab wavelet toolbox.

3 Signal encoding/decoding

3.1 Encoding long-memory self-similar signals

We applied the thresholded kernel approximation outlinieova to synthesized fBm signals with
H > 0.5, to ensure long-term dependence in the signal. An exampdeidi encoding is given in
figure[3, left panel, using both positive and negative spikieset, red line: the power-law kernel
used). When encoding the same signal with kernels withauptdwer-law tail (inset, blue line), the
approximation required more than twice as many spikes fosttime Signal-to-Noise-Ratio (SNR).

In figure[3, right panel, we compared the encoding efficacgifgmals with differenff-parameters,
as a function of the power-law exponent, using the same nuoflspikes for each signal (achieved
by changing the\ parameter and the threshalyl We find that more slowly varying signals, corre-
sponding to highef/-parameters, are better encoded by the power-law kernels Burprisingly,
we find and signals are consistently best encoded fordexalues, in the order ai.1 — 0.3. Similar
results were obtained for different valueskoih equation[(R).

We should remark that without negative spikes, there is ngdoa clear performance advantage
for power-law kernels (even for larg8: where power-law kernels are beneficial on the rising pfart o
a signal, they lose on downslopes where their slow decayatdolow the signal.

3.2 Sine-wave modulated white-noise

Fractional derivatives as an interpretation of neuronadirate has been put forward by a series of
recent papers [10,20,4], where experimental evidence wesepted to suggest such an interpreta-
tion. A key finding in [4] was that the instantaneous firingeraf neurons along various processing
stages of a rat's whisker movement exhibit a phase-leativele the amplitude of the movement

modulation. The phase-lead was found to be greater foroadmieurons as compared to thalamic
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neurons. When the firing rate corresponds todbarder fractional derivative, the phase-lead would
correspond to greater fractional ordein the cortical neuron$[10] . We used the sum-of-power-laws
to approximate both the sine-wave-modulated white noisktlag actual sine-wave itself, and found
similar results (figur&l4): smaller power-law exponentspim interpretation also corresponding to
larger fractional derivative orders, lead to increasinfgywer spikes at the back of the sine-wave
(both in the case where we encode the signal with both pesitid negative spikes — then counting
only the positive spikes —and when the signal is approxithatith only positive spikes — not shown).
We find an increased phase-lead when approximating thel aiteawave kernel as opposed to the
white-noise modulation, suggesting that perhaps comieatons more closely encode the former as
compared to thalamic neurons.

3.3 Signal Frequency Filtering

For a receiving neurofito properly interpret a spike-trair(t) ; from neuronj, both neurons would
need to keep track of past events over extended periods ef tinmrent spikes have to be added to or
subtracted from the future expectation signal that wasidireommunicated through past spikes. The
required power-law processes can be implemented in vamansiers, for instance as a weighted sum
or a cascade of exponential processés [9,10]. A naturafibehenplementing power-law kernels as
a weighted sum or cascade of exponentials is that a recaimngon can carry out temporal signal
filtering simply by tuning the respective weight paramefershe kernel with which it decodes spikes
into a signal approximation.

In figurelB, we illustrate this with power-law kernels that sransformed into high-pass and low-
pass filters. We first approximated our power-law kerlel (i & sum of 11 exponentials (depicted
in the left-center inset). Using this approximation, weashed the signal (figuig 5, center). The signal
was then reconstructed using the resultant spikes, usengathver-law kernel approximation, but with
some zeroed out exponentials (respectively the slowlyydegaxponentials for the high-pass filter,
and the fast-decaying kernels for the low-pass filter). FéfH) most right, shows the resulting filtered
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signal approximations. Obviously, more elaborate tunififpe decoding kernel with a larger sum of
kernels can approximate a vast variety of signal filters.

4 Discussion

Taking advantage of the relationship between power-lawd@ttional derivatives, we outlined the
peculiar fact that a sum of Diratfunctions, when taken as a fractional derivative, corresisdo

a signal in the form of a sum of power-law kernels. Exploitthg obvious link to spiking neural

coding, we showed how a simple thresholding spiking neusonampute a signal approximation
as a sum of power-law kernels; importantly, such a simplestholding spiking neuron closely fits
standard biological spiking neuron models, when the réfrgaesponse follows a power-law de-
cay (e.g.[[21]). We demonstrated the usefulness of such progimation when encoding slowly

varying signals, finding that encoding with power-law kdsregnificantly outperformed similar but
exponentially decaying kernels that do not take long-rasgeal dependencies into account.



Compared to the work where the firing rate is considered asdidnal derivative, e.gl_[10],
the present formulation extends the notion of neural codiitly fractional derivatives to individual
spikes, and hence finer temporal variations: each spiket&iéy encodes very local signal varia-
tions, while also keeping track of long-range variations.

The interpretation in [10] of the fractional derivativg) as arate leads to a 1:1 relation between
the fractional derivative order and the power-law decayeent of adaptation of abo012 [10[22.9].
For such fractional derivative,, our derivation implies a power-law exponent for the povaer |
kernelss = 1—a ~ 0.8, consistent with our sine-wave reconstruction, as welligisiecent adapting
spiking neuron model$ [21]. We find that when signals are @gprated with non-coupled positive
and negative neurons (i.e. one neuron encodes the positivefithe signal, the other the negative),
such much faster-decaying power-law kernels encode méogeetly than slower decaying ones.
Non-coupled signal encoding obviously fair badly when algmapidly change polarity; this however
seems consistent with human illusory experience’s [23].

As noted, the singularity of /t° power-law kernels means that initial part of the kernel can
only be approximated. Here, we initially focused our sintiolaon the use of long-range power-law
kernels for encoding slowly varying signals. A more dethissmproximation of this initial part of
the kernel may be needed to incorporate effects like gainutation [24.8], and determine up to
what extent the power-law kernels already account for thenpmenon. This would also provide a
natural link to existing neural models of spike-frequendgatation, e.g/ [25], as they are primarily
concerned with modeling the spiking neuron behavior rathem the computational aspects.

We used a greedy online thresholding process to determiea heuron would spike to approx-
imate a signal, this in contrast to offline optimization nueth that place spikes at optimal times, like
Smith & Lewicki [26]. The key difference of course is that tla¢ter work is concerned with decod-
ing a signal, and in effect attempts to determine the effecteural (temporal) filter. As we aimed to
illustrate in the signal filtering example, these notiors@ot mutually exclusive: a receiving neuron
could very well filter the incoming signal with a carefullysghed weighted sum of kernels, and then,
when the filter is activated, signal the magnitude of the m#tcough fractional spiking.

Predictive coding seeks to find a careful balance betweeadimg known information as well
as future, derived expectations [27]. It does not seem soregble to formulate this balance as a no-
going-back problem, where current computations are prejsforward in time, and corrected where
needed. In terms of spikes, this would correspond to oumaggan that, absent new information, no
additional spikes need to be fired by a neuron to transmifdmgard information.

The kernels we find are somewhat in contrast to the kerneleiffby Bialek et. al.[[16], where the
optimal filter exhibited both a negative and a positive pad ao long-range “tail”. Several practical
issues may contribute to this difference, not least thdivelabsence of low frequency variations, as
well as the fact that the signal considered is derived froenfiyis H1 neurons. These two neurons
have only partially overlapping receptive fields, and thgesation into positive and negative spikes is
thus slightly more intricate. We need to remark though thasee no impediment for the presented
signal approximation to be adapted to such situations,toatsbons where more than two neurons
encode fractions of a signal, as in population coding, 2. [

Finally, we would like to remark that the issue of long-rarigmporal dependencies such as
discussed here seems to be relatively unappreciated. Asegodut in [9], long-range power-law
dynamics would seem to offer a variety of “hooks” for compiata through time, like for tempo-
ral difference learning and relative temporal computatiand possibly exploiting the many noted
correspondences between spatial and temporal stati2€gs [

Acknowledgement: work by JOR supported by NWO Grant 612.066.826, SMB partiXiyO
Grant 639.021.203.
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