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Abstract

In comparison with other primate species, humans have an extended juvenile period during which the brain is more plastic.
In the current study we sought to examine gene expression in the cerebral cortex during development in the context of this
adaptive plasticity. We introduce an approach designed to discriminate genes with variable as opposed to uniform patterns
of gene expression and found that greater inter-individual variance is observed among children than among adults. For the
337 transcripts that show this pattern, we found a significant overrepresentation of genes annotated to the immune system
process (pFDR>0). Moreover, genes known to be important in neuronal function, such as brain-derived neurotrophic factor
(BDNF), are included among the genes more variably expressed in childhood. We propose that the developmental period of
heightened childhood neuronal plasticity is characterized by more dynamic patterns of gene expression in the cerebral
cortex compared to adulthood when the brain is less plastic. That an overabundance of these genes are annotated to the
immune system suggests that the functions of these genes can be thought of not only in the context of antigen processing
and presentation, but also in the context of nervous system development.
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Introduction

Many of the behavioral traits that distinguish humans from

other species are molded throughout development by an

exceptional capacity to incorporate experience and learning into

the production of culture [1]. This ability to learn results from

changes that occur in the organization of the brain as the result of

experiences. The cerebral cortex is continually remodeled in

response to various molecular signals, as well as environmental

stimuli [2]. This phenotypic plasticity in the brain can occur at

multiple levels, ranging from large-scale remapping of cortical

areas to more subtle strengthening or weakening of synaptic

connections [3]. Indeed, an enhanced capacity for such plasticity

may be important in the development of evolutionarily distinct

aspects of human cognition [4–6]. While a certain degree of

plasticity is exhibited throughout one’s lifetime, the juvenile brain

undergoes a greater degree of cortical remodeling than does the

adult brain [7,8]. Determining the molecular underpinnings that

enable this heightened cortical plasticity is fundamental for

uncovering the mechanisms subserving the development of human

brain function. A particularly promising avenue of research in this

area focuses on identifying how the expression of genes changes

throughout development [9–11]. Such changes in the regulation of

gene expression may have significantly influenced human brain

evolution [12].

Regulation of gene expression in the brain may be one way the

developing nervous system is able to exhibit plasticity in response

to changes in the environment. This phenotypic plasticity likely

results from modifications to neuron morphology and synaptic

connections as well as to the surrounding cells (e.g., oligodendro-

cytes, microglia, astrocytes) that participate in neuron function. As

a result, a reflection of phenotypic plasticity in the brain may be

observed by measuring variability in gene expression in samples of

cerebral cortex tissue taken from individuals of different ages. In

the current genome-wide study we sought to clarify whether

mRNA expression in children is more dynamic and variable than

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e37714



gene expression in adult brains. We reasoned that those genes for

which cortical expression is more variable across individuals

during childhood and early adolescence, compared to adults,

could be considered candidates for involvement in neuronal and

synaptic plasticity. To explore these questions, we used microarray

techniques to examine gene expression in surgically-resected

human cerebral cortex tissue in individuals ranging in age from

less than one year to 53 years of age. Using these data, we develop

an approach designed to discriminate the degree to which gene

expression is variable across individuals of the same age class, and

then test for age related differences in the degree of this variability.

Results

Genes with Greater Variance in Expression During
Childhood

We sought to identify which genes showed expression patterns

in the cerebral cortex that are variable across individuals and to

then evaluate whether there were age differences in the degree of

this variability. To test this, 20,678 well-curated microarray probes

were sorted by variance in expression level across all samples,

regardless of age, and the probes with greatest variance (5%,

n = 1095) were retained for further analyses. We then divided the

37 samples into two age groups [younger (,15 years old) and

older ($15 years old)] and compared the variance between groups

for each gene. A cutoff of 15 years was used to distinguish older

individuals with adult levels of cortical glucose uptake [6] and

synapse organization and density [13,14] from younger individ-

uals. We then calculated the expression variance in each group

(younger and older) and tested whether the ratio of the variance of

the younger group to the older group was greater than 1 for each

probe using an F-test. Of the 1095 most-variable probes, 71%

showed significantly greater variance during childhood than

during adulthood [p,1610216 (Wilcoxon signed-rank test);

Figure 1]. Of these, a total of 337 probes (Dataset S1)

corresponding to 302 annotated genes showed significantly greater

expression variance during childhood (pFDR,0.25; 93 probes

with FDR,0.1).

Gene ontology analyses were used to help identify overrepre-

sented gene annotation terms in this list of 337 probes. These

analyses revealed that the most overrepresented biological

processes, when compared to all genes present on the array, were

immune system process (BP_GO:0002376) and immune response

(BP_GO:0006955) (Figures 2 and S1 and Dataset S2). We also

conducted gene ontology and pathway analyses using as the

reference list the subset of 1095 probes with greatest variance

regardless of age. With this analysis we found further enrichment

for particular ‘immunity-related’ terms and pathways (Figure 3

and Dataset S3).

To examine the effect of having multiple brain regions included

in the childhood dataset, these analyses were repeated using only

samples collected from the temporal lobe. The resulting list of

significant probes and the original list of 337 probes have 86%

overlap (Dataset S1). As a result, similar gene ontology terms and

pathways were enriched whether all samples or only the temporal

cortex samples were used.

Our gene expression analyses were based on tissue homogenates,

and thus we sought to determine the cellular localization pattern of

proteins that showed a more variable mRNA expression pattern in

children. Specifically, we used immunohistochemistry to determine

the cellular localization for three proteins encoded by genes that

were found to be more variable in their expression in childhood

(HLA class I histocompatibility antigen, alpha chain, HLA-E; a

subcomponent of the classical pathway of complement activation,

C1q; and Neuronal pentraxin-2, NP2). We found that all three

proteins are expressed in microglia and/or neuronal cells in human

temporal tissue (Figure 4). In addition, we found evidence for the

expression of all three proteins in both cell types in a temporal cortex

sample from a child. HLA-E expression was detected in microglia

and neurons of both adults examined. Expression of NP2 was found

in both microglia and neurons of one adult examined. There was no

evidence; however, of C1q expression in either adult (Figure 4). The

absence of C1q immunoreactivity in cells of the cerebral cortex of

adult humans was further confirmed in an additional four

individuals (data not shown).

Recent studies have identified a large number of developmentally

regulated genes [9,11]. One possible explanation for the greater

variance we observed among children is that expression of these

genes is developmentally regulated. To test for this we used

quadratic regression to examine the expression levels of the 302

genes that have evidence for a wider expression variance in

childhood as a function of age (Dataset S1). We found that only 1

of the 302 genes is differentially expressed as a function of age

(NQO1; pFDR = 0.18), the remaining 301 are not (pFDR $0.25).

Thus, we are confident that childhood inter-individual variation

rather than developmental trajectories explains the observed results.

To evaluate whether the greater gene expression variance

among children and overrepresentation of genes annotated to the

immune response is a result of using RNA derived from control

(normal) tissue harvested from surgically resected samples, these

analyses were repeated using expression data derived from

postmortem tissues taken from individuals having no history of

psychiatric or neurological complaints [GEO accession:

GSE13564 [9]]. Of the 1020 genes representing the 5% of genes

with greatest expression variance across all samples, 78% showed

Figure 1. Paired differences between the standard deviation of
genes in children vs. adults. The boxplot is made from for all 1095
probes with highest variance across all samples. Positive values indicate
larger standard deviation (SD) in the younger group (children,15 -
years), whereas negative values indicate larger standard deviation in the
older group (adults$15 years). The median (heavy black line) repre-
sents the point at which 50% of the data are greater than (above the
line) or less than (below the line) this value. The upper quartile (open
box above the median) represents the 25% of the data greater than the
median. The lower quartile (open box below the median) represents the
25% of the data less than the median. Note that 71% of the probes have
greater standard deviation in the younger group. The maximum (above
the upper quartile) and minimum (below the lower quartile) values
excluding outliers are also shown. Outliers are drawn as open circles.
doi:10.1371/journal.pone.0037714.g001

Variable Gene Expression in Childhood
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Figure 2. Gene Ontology and KEGG pathway analyses (reference = all genes). Gene Ontology Biological Process (GO_BP) and KEGG
pathway analyses for probes with greater variance in childhood than in adulthood using as reference all genes called present on the array. The
expected number of genes is the number of genes predicted for this term by random chance. The observed number of genes is the number of genes
actually present in our dataset for this term. For example, in this context we would expect by random chance to see 13 genes annotated to the
GO_BP term ‘immune system process’ (GO:0002376). Instead, we observed 75 genes annotated to this term (pFDR = 0). The steepness of the slope of
each line reflects statistical significance with steeper lines having smaller pFDR values. Those categories with the greatest slope (pFDR = #0.02) are
labeled in this figure. All 339 GO_BP terms and 19 KEGG pathways that met our enrichment criterion of pFDR #0.1 can be found in Dataset S2.
Additional GO (Molecular Process and Cellular Component) data and plots can be found in Dataset S2 and Figure S1 respectively.
doi:10.1371/journal.pone.0037714.g002

Variable Gene Expression in Childhood
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higher variance in the younger group (,15 years) compared to the

older group ($15 years) (p,2.2610216; Figure S2). Of these 1020

genes 529 were significant (pFDR,0.25) in this analysis. The list

obtained by intersecting the significant genes in the variance

analysis based on the Harris et al. dataset included 34 genes

(Dataset S4); by random chance we would have expected to find

approximately 55 overlapping genes between the two studies.

Thus, specific genes involved in plasticity show variation between

Figure 3. Gene Ontology and KEGG pathway analyses (reference = 1095 probes with greatest variance). GO and KEGG pathway
analyses for probes with greater variance in childhood than in adulthood using as reference the 1095 (,5%) genes with highest variance across all
samples. The expected number of genes is the number of genes predicted for this term by random chance. The observed number of genes is the
number of genes actually present in our dataset for this term. For example, in this context we would expect by random chance to see 47 genes
annotated to the GO_BP term ‘immune system process’ (GO:0002376). Instead, we observed 84 genes annotated to this term (pFDR = 0). The
steepness of the slope of each line reflects statistical significance with steeper lines having smaller pFDR values. Those categories with the greatest
slope (pFDR = #0.02) are labeled in this figure. All 10 GO_BP terms and 6 KEGG pathways that met our enrichment criterion of pFDR #0.1 can be
found in Dataset S3. Molecular Function (MF) analyses did not meet enrichment criteria. Cellular Compartment (CC) has one term that met our
criterion (MHC protein complex; pFDR = 0.09; see Dataset S3).
doi:10.1371/journal.pone.0037714.g003

Variable Gene Expression in Childhood
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the two studies. Biological processes related to immunity (e.g.

BP_GO:0006955, GO:0002252, GO:0050776) and nervous sys-

tem development (BP_GO:0007399) were enriched (p,0.01;

Dataset S5) in the list of 529 significant genes, which was similar

to what was observed based on current study data.

Validation of Microarray Data Using qPCR
We chose for validation fourteen probes annotated to genes with

greater variance in expression during childhood (HLA-DOA,

APOL3, LEP, C1QC, CHURC1, HLA-DOA, HLA-E, NPTX2,

PCDH17, HLA-DPA1, SERPINA3, NPAS4, IL8 and FCGBP). The

qPCR data of six of these probes (APOL3, HLA-DOA, HLA-DPA1,

SERPINA3, NPAS4, and FCGBP) were in agreement with

microarray findings (Figure 5). The genes that did not validate,

failed because of 1) poor Illumina probe annotation; and 2) the

microarray results may be more sensitive in detecting variance

than is qPCR.

Discussion

Among transcripts showing the greatest variance in expression

levels, we found a significantly higher number of genes (n = 302) in

which expression variability among individuals was greater in

samples collected in children and young adolescence than those

collected in adults. These data provide compelling evidence for

greater variance in the expression of genes in the cerebral cortex

earlier in development. We note that this variance is associated

Figure 4. Immunohistochemistry evidence for expression of ‘immunity-related’ genes in neurons and glial cells. Immunohistochem-
istry showing the protein expression of C1Q, NP2 and HLA-E in nondiseased human glial cells and neurons. Arrows denote the location of microglia
(M) and neurons (N). Images A–B show C1Q staining in frozen temporal lobe sections of two adults. Images C–D show C1Q staining of microglia and
neurons, respectively, in frozen temporal lobe sections of a child. Image E shows NP2 staining of microglia and neurons in frozen temporal lobe
sections of an adult. Image F is a negative control of the adult frozen temporal lobe tissue. Images G–H show NP2 staining of microglia and neurons,
respectively, in paraffin embedded temporal lobe section of a child. Images I–J show HLA-E staining of both microglia and neurons in frozen temporal
lobe sections of two adults. Image K shows HLA-E staining of microglia and neurons in a frozen temporal lobe section of a child. Image L is a negative
control of the frozen temporal lobe section of the child. We found evidence for the expression of all three proteins in both cell types of the child.
However, in the adult, NP2 and HLA-E were present in both cell types but there was no evidence of C1Q expression.
doi:10.1371/journal.pone.0037714.g004

Variable Gene Expression in Childhood
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with the general greater overall plasticity during childhood [7,8].

Determining how and if such inter-individual variance in the

transcriptome relates to plasticity among neurons and at the

synapse and how it manifests as phenotypic or behavioral

variability is of fundamental importance for uncovering the

biological mechanisms underlying human brain development.

These genes and their related pathways make compelling

candidates for further study of nervous system development and

cognition, and they also reinforce a role for system-wide plasticity

and adaptation in the nervous system. Strikingly, many of these

genes are known to function in the immune system. These data

suggest many genes traditionally considered to be ‘immunity-

Figure 5. Test of the correlation between microarray and qPCR data. Y-axis shows mRNA expression levels [–DCt values (Ct reference–Ct
target)] derived from qPCR experiments whereas the X-axis shows the log2 normalized microarray expression signal intensities. Correlations were
considered significant when p,0.05. r= correlation coefficient.
doi:10.1371/journal.pone.0037714.g005

Variable Gene Expression in Childhood
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related’ are not only expressed in the brain but also show greater

variance in their expression levels at a developmental stage

characterized by heightened neuronal and synaptic plasticity.

Convergence of Neurologically Expressed Responses in
Adulthood

Many of the 302 genes (e.g., brain-derived neurotrophic factor)

with more dynamic patterns of gene expression during childhood

already have documented roles in the nervous system. When we

intersect our list of 302 genes with phenotype data (largely derived

from knock out experiments in mice [15]) compiled by Mamma-

lian Genome Informatics [16], we find 238 of these genes have

orthologous mouse genes represented in the phenotype database.

Half of all protein-coding genes with a mammalian phenotype

(MP:0000001) show some sort of nervous system phenotype (3,011

of 6,406). Only 66 of the 238 variable orthologous human genes

have a noted neuronal phenotype (Mammalian Phenotype IDs:

MP:0003631 and MP:0005386; Dataset S6), in mice. This is a

significant underrepresentation (2 tailed p#0.0001, Fisher’s Exact

Test). Future work will be necessary to understand whether the

neuronal function of these human genes represents an evolution-

ary divergence from mouse genes.

That we detect a high degree of inter-individual variability in

the regulation of these transcripts during childhood may reflect the

fact that this is a developmental stage characterized by increased

neuronal plasticity. From both an immunological [17] and

neurological [7] perspective, children have a more naı̈ve and less

established response to novel environments when compared to

adults. Both the child’s nervous and immune systems develop in

response to stimuli [18], and because children are initially exposed

to different stimuli at different times, we might speculate that what

happens to forge a connection between a stimulus and a response

in one child may be different than what happens to forge that

same connection in another. However, as children age, the

efficiency and speed of the response (both neurological and

immunological) to stimuli grows, and during adulthood these

responses may converge regardless of the nature of their initial

exposures [19,20]. This could result in more targeted, yet less

plastic, responses to environmental stimuli during adulthood. We

suggest that greater variability in the expression of these ‘response

genes’ in the brain during childhood could reflect a developmental

period during which neurological responses are being established

and the brain is more plastic [7]. We might speculate on the

mechanistic level that during childhood the brain is responding to

stimuli with more ad hoc, less fixed signaling and biochemical

pathways. Although this may be necessary during childhood, such

variability is energetically costly to maintain [6,21] and should be

selected against when an effective response is already present.

Therefore, just as exposure converges between individuals during

adulthood, we observe similar convergence at the transcript level

of these genes between adults. Importantly, we found a very

similar pattern in two independent and distinct datasets.

Immune System Genes in the Normal, Healthy Brain
Of the 302 genes identified as having greater variance among

children, 84 were annotated to the immune system. The central

nervous system (CNS) has traditionally been considered immune

privileged; a system in which white cells and plasma proteins tolerate

the introduction of alloantigens rather than initiating an immune

response. However, similarities between the immune and central

nervous systems have previously been suggested [22,23] and recent

research shows increased evidence of cross-talk between the two

systems [2,24–26] as well as shared mechanisms underlying similar

structures and functions [18]. Although ‘immunity-related’ proteins

such as IL-1, IL-6 and TNF [27–29], CXCL12/CXCR4 [30–32],

C1q and C3 [33,34], and the major histocompatibility complex class

I (MHCI) family [35–37] have been shown to function in the healthy

CNS, the current research suggests that this is only a subset of

‘immunity-related’ genes expressed in healthy brain tissue. Our

dataset of 84 genes annotated to ‘immune system process’

(BP_GO:0002376; Dataset S3) includes genes implicated in the

classical complement cascade (e.g., C1QB, C1QC, C2, C5AR1),

chemokine signaling and cytokine-cytokine interactions (e.g.,

CCL26, CCL5, CCR1, CXCL10, IL6, IL8, LEP, OSM, TNFSF10,

TNFSF13B, WAS, and DOCK2), MHC class II receptor activity (e.g.,

HLA-DMA, HLA-DOA, HLA-DPA1, HLA-DRA, HLA-DRB3, and

HLA-DRB4), MHC class I receptor activity (e.g., HLA-A, HLA-B,

HLA-E, and HLA-H), cell adhesion (e.g., CD86, ITGAL, ITGB2, SPN,

and HLA molecules), and Toll-like receptor signaling (e.g., CD14,

CD86, CCL5, CXCL10, IL6, IL8, LY96, TLR7). Although many of

these genes have traditionally been considered ‘immunity-related,’ it

is important to note that, unlike their roles in the immune system, the

processes discussed here (e.g., MHCI receptor activity, cell

adhesion) appear to function in the brain free from injury, disease

and exposure to pathogens [38]. Both glial cells (e.g., microglia) and

neurons appear capable of expressing these genes in the central

nervous system under normal conditions [35], and additional work is

needed to decipher whether glial or neuronal functions contribute to

the pattern of gene expression described here.

Blood contamination in cortical tissue could confound our gene

expression result, especially in the case of immune related genes.

Thus, we provide evidence, using immunohistochemistry, that

HLA-E is present in both glial cells and neurons of a child’s brain

as well as two adult brains (Figure 4). To our knowledge, the

expression of this protein has previously only been characterized in

tumor cells [39] and in trophoblast cells [40]. We also found

evidence for protein expression of C1q and NP2 in both cells types

of the child brain, NP2 expression in both cell types of the adult

brain but no evidence of expression of C1q in two adult brains.

This finding is consistent with studies suggesting an interaction

between NP2 and C1q in mice [34]. Our findings suggest the

potential exists for a similar interaction in the human brain, but

this interaction may be limited to the younger, more plastic cortex.

That we did not detect expression of C1q in the adult brain

provides evidence that this protein plays a more prominent role in

the developing rather than the adult brain. Further work is

necessary to determine the relationship between mRNA and

protein expression of C1q.

Previous studies have demonstrated differential expression of

MHCI gene and protein expression in regions of the central

nervous system undergoing activity-dependent plasticity

[36,37,41–45]. Whereas the exact mechanisms underlying

MHCI’s role in plasticity are not yet known, a growing body of

evidence points to MHCI protein involvement in selective

maintenance or elimination of synapses throughout normal brain

development and cell-cell communication [25,36,37] as well as a

role in neurotransmission at the synapse [44]. In addition, it was

recently shown that neuronal MHCI has the ability to modulate

NMDA receptor function and NMDA-induced AMPA receptor

trafficking, which suggests a role for MHCI in NMDAR-

dependent synaptic plasticity [35]. The authors note that because

MHCI levels vary during development and are activity dependent,

changes in MHCI levels may provide a mechanism for develop-

mental changes in plasticity and synaptic activity in the brain [35].

In children in the present study, MHCI genes like HLA-A, HLA-B,

and HLA-E are expressed at different levels in different individuals.

It is tempting to speculate that such ‘immunity-related’ genes

Variable Gene Expression in Childhood
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expressed by neurons may encode proteins that can initiate

processes important for nervous system development.

Is the dynamic pattern of gene expression among
children uniquely human?

When considering the evolution of the human brain in particular

we propose humans may exhibit a more prolonged period of

adaptive mRNA expression variability during childhood. Humans

have a longer period of juvenile development in comparison to other

primates [46,47]. During this time the cerebral cortex consumes

nearly twice the amount of glucose as observed during adulthood

[21] and there are extensive changes to synaptic organization and

density [13,14]. Our data suggest that another characteristic of the

human cerebral cortex is greater inter-individual variance in gene

expression earlier in development. Because we observe this pattern

in tissue samples that are heterogeneous in cellular composition, we

suggest this variance relates to overall phenotypic plasticity in the

brain but further work is needed to distinguish the relative

contribution of each cell type to this transcriptional variability in

childhood. Genes that show this pattern may contribute to

phenotypic plasticity in the brain and serve as mediators between

the environment and genome.

Testing if this prolonged period of adaptive gene expression is

unique to humans will require examining gene expression

throughout development in nonhuman primates. One promising

potential avenue for pursuing this aim is to examine regulatory

elements of the 302 genes identified in this study across nonhuman

primates. Those elements fixed in modern human populations but

derived from the ancestral condition may point to human specific

features. Additionally, examining variance in gene expression in

nonhuman primate cortical tissue would provide a more

comparative context and allow us to infer if the pattern that we

observe in these human samples is evolutionarily derived. Good

candidate species for this type of study include chimpanzees and

rhesus macaques. Unlike humans and chimpanzees, macaques

have a much shorter period of juvenile development [46,47] and

when compared to humans, and glucose consumption levels also

peak earlier in development than in humans [48]. Although many

of these same genes may be expressed in nonhuman primate

cortical tissue and would show similar degrees of expression

variance in younger vs. older individuals, we would suggest that

the period of greater expression variance would be greatly reduced

in species with shorter periods of brain development. Understand-

ing these processes from an evolutionary perspective may provide

clues to the origin and refinement of human cognitive features.

Materials and Methods

Samples
Samples (Table S1) were derived from surgically resected

control tissues (e.g., electrophysiologically inactive) that were

removed from patients during surgery for brain disorders (e.g.,

intractable seizures). Written informed consent was obtained from

all patients involved in the study; in the case of children, consent

was obtained from authorized legal representatives (e.g., parents/

legal guardians). Procedures for obtaining consent were approved

by the human investigation committee. Race and/or ethnicity

were self-identified, and patients were then categorized according

to National Science Foundation established criteria. The research

described in this publication was reviewed and approved by the

Human Investigation Committee (HIC) at Wayne State University

(HIC# 071608MP4X) and was found to present no greater than

minimal risk to human subjects.

Cerebral cortex tissues taken primarily from the temporal lobe

(Table S1) were flash frozen in dry ice and stored at 270uC.

Tissue samples were homogenized in TRI Reagent (Applied

Biosytems/Ambion, Austin, TX). RNA extraction was completed

using the TRIzol protocol (Invitrogen, Carlsbad, CA) or the

MagMax-96 for Microarray kit (Applied Biosystems/Ambion)

following the manufacturers’ instructions. The TURBO DNase

treatment (Applied Biosytems/Ambion) or RNeasy kit in con-

junction with the RNase-Free DNase Set (Qiagen, Valencia, CA)

was used to further purify the initial RNA isolation according to

the manufacturer’s recommendations. The DNA-free RNA

isolations with ABS 260/280 ratios above 1.7 (Nanodrop 1000;

Thermo Scientific, Wilmington, DE) and two distinct peaks

representing the 18S and 28S ribosomal RNA and minimal

background banding (Agilent Bioanalyzer 2100; Santa Clara, CA),

were selected for analysis. Gene expression data were collected

using a genome-wide microarray [Illumina Human HT-12v3

chips using the Illumina BeadChip platform (Illumina, San Diego,

CA)] by the Applied Genomics Techology Center (AGTC; Wayne

State University, Detroit, MI) following Illumina’s protocol in the

TotalPrep-96 RNA Amplification Kit (Applied Biosytems/Am-

bion, Austin, TX) for labeling and the Whole-Genome Gene

Expression with IntelliHyb Seal for the hybridization, wash, and

stain (Illumina, San Diego, CA).

Data Preprocessing
Illumina BeadStudio (V.3) was used to process the arrays and

obtain background corrected intensity values for all 48,803 probes

in 40 arrays (corresponding to 37 unique brain samples) as well as

the probe detection p-values. Only probes with a detection p-value

#0.1 in at least half (16) of the total number of unique individuals

sampled were retained for future analyses. This filtering step

resulted in a total of 20,678 probes for our variance analyses. All

values in the background corrected expression matrix were offset

by adding a constant so that the smallest intensity value equaled

1.0 in order to allow further log transformation of the data.

Expression values were then log2 -transformed and quantile-

normalized [49]. A final preprocessing step averaged over the

expression values for each of the 3 samples run in duplicate.

Variance in Expression Level by Age Group
The log2 gene expression data for each gene was first adjusted

for the SEX variable by subtracting from all male sample

expression levels the male average expression level and from all

female sample expression levels the female average expression

level. The variance of each probe was determined from these SEX

adjusted data and then probes were sorted from largest to smallest

variance and the top ,5% (1095 probes) were retained for further

examination. We chose to pre-filter the variant transcripts to be

sure we were capturing those transcripts with the greatest overall

variance among individuals. This pre-filtering step allowed us to

filter out thousands of transcripts with low to nonsignificant levels

of inter-individual variance and to determine, with greater

statistical power, if the most variant transcripts exhibit 1) greater

variance in kids, 2) greater variance in adults, or 3) if the most

variant transcripts were equally variant across all individuals.

Samples were divided into two age groups: children or younger

individuals (,15 years old; 29 individuals) and adults or older

individuals ($15 years old; 8 individuals). A cutoff of 15 years was

chosen because cortical glucose uptake has reached adult levels [6]

and changes to synapse organization and density are approaching

adult levels at this age [13,14]. Expression variance was computed

in each group and we tested whether the ratio of the variance of

younger individuals to older individuals was greater than 1 for
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each probe with an F-test. The nominal p-value derived from the

F statistic accounts for the different number of degrees of freedom

in the estimation of the variance of each group. A Wilcoxon

signed-rank test was used to determine whether the top 5% of

probes with the largest variance had greater variance in younger

individuals. Gene ontology and pathway analyses were conducted

for the probes (Dataset S1) with significantly greater expression

variance during childhood using as reference list both a) the list of

all probes called present and b) the list of 5% most varying probes.

In order to test that the variance analysis was not simply

identifying genes that are differentially expressed as a function of

childhood age only (i.e. developmentally regulated changes in gene

expression), we used a quadratic regression approach to examine

the relationships between gene expression levels and age. We

employed a linear model that assumes a quadratic relationship

between expression levels (log-transformed) and age while

adjusting for sex and potential for developmental delay. An F-

test was used to calculate a p-value for each probe representing the

probability that the expression level is not significant for age.

These p-values were corrected for multiple hypothesis testing and

nominal as well as pFDR values for all 337 probes identified as

having greater expression variance among children are reported in

Dataset S1.

In order to examine the effect of having tissue derived from

surgical patients, these analyses were repeated using a previously

published dataset [9] with expression data derived from postmor-

tem tissue (GEO accession: GSE13564). All 42 individuals from

this dataset with age information were used in this analysis. The

raw data was preprocessed using the RMA algorithm [50]

implemented in the affy package [51] of Bioconductor, which

included background correction, quantile normalization and

summarization of probe intensities into one value per probeset

and sample. Probesets not detected present (or marginally present)

in at least half of the samples were discarded from further analyses.

The present and marginal present calls were obtained using the

affy package. In addition, probesets that could not be mapped to a

valid Entrez ID were also discarded from further analyses. The

difference in gene variance between age groups (,15 and

$15 years) were performed as described above except that the

sex adjustment step was skipped since there was no gender data

available for this dataset.

Immunohistochemistry
Human, nondiseased, surgically resected, temporal cortex

tissues were obtained from 2 male subjects, one representing the

younger group (,15 years) and one representing the older group

$15 years). The resected temporal tissue was fixed in 4% freshly

depolymerized paraformaldehyde in 0.1 M phosphate buffer

saline pH 7.4 (PBS) at 4uC for 4 days. The tissue was rinsed in

PBS for 30 minutes, 3 times on a rocking device and then divided

into two halves and subsequently immersed in a 15% sucrose

solution in PBS and placed at 4uC overnight. The samples then

were placed in 30% sucrose in PBS for several days at 4uC until

the tissue sank in the solution. Cryoblocks were made using

Optimum Cutting Temperature compound (OCT) and stored at

280uC. With the aid of a cryomicrotome, 6-mm thick frontal

sections were cut from one half of each cryoblock at 220uC to

226uC, mounted on charged glass slides and stored at 280uC for

future use.

Immunohistochemistry was performed using mouse monoclonal

antibodies against HLA-E (Abcam, Cambridge, MA Clone MEM-

E/02, IgG1, dilution 1:20), goat polyclonal antibody against a

peptide mapping near the N-terminus of NP2 of human origin

(genetic locus NPTX2, Santa Cruz Biotechnology, Santa Cruz,

CA, dilution 1:25) and rat monoclonal antibody C1q (7H8,

Abcam, Cambridge, MA, 1:10 dilution).

All samples were air dried and rehydrated. Immunohistochem-

ical tissue labeling was performed using the Discovery Immuno-

histochemistry Auto-System (Ventana). Cell conditioning, pre-

treatment and blocking of peroxidases were performed according

to standard protocols.

An additional, nondiseased, postmortem obtained temporal

cortex sample was also stained following similar methods to those

above. Prior to immunostaining, sections were rinsed thoroughly in

PBS and pretreated for antigen retrieval by incubation in 10 mM

sodium citrate buffer (pH 3.5) at 37uC in an oven for 30 minutes.

Sections were then rinsed and immersed in a solution of 0.75%

hydrogen peroxide in 75% methanol to eliminate endogenous

peroxidase activity. After rinsing again, sections were incubated in

the primary antibody, HLA-E (same as above, but 1:100 dilution) or

rabbit polyclonal C1QC antibody (Abcam, Cambridge, MA, 1:100

dilution) diluted in PBS with 2% normal horse serum and 0.1%

Triton X-100 detergent for approximately 24 hours on a rotator at

4uC. After rinsing in PBS, sections were incubated in biotinylated

anti-rabbit IgG (1:200 dilution, BA-2000, Vector Laboratories,

Burlingame, CA) and processed with the avidin-biotin-peroxidase

method using a Vectastain Elite ABC kit (pk-6100, Vector

Laboratories). Sections were rinsed again in PBS, followed by a

rinse in sodium acetate buffer. Immunoreactivity was revealed using

3,39-diaminobenzidine and nickel enhancement.

qPCR Validation
Validation of mRNA expression patterns was performed by

qPCR on three genes of interest (HLA-DOA, APOL3, and LEP)

using the Taqman gene expression assays available from Applied

Biosystems (ABI). In order to account for the slight bias of younger

individuals in the microarray analysis, 10 samples from individuals

$15 years old and 1 sample from ,15 years old were added to

the 36 (1 sample lacked sufficient RNA for validation) for

validation by qPCR. A total of 800 ng of RNA from each sample

were synthesized into complementary DNA (cDNA) using

Superscript III First-Strand Synthesis system (Invitrogen). qPCR

was performed using the Stratagene (Santa Clara, CA) MX3000P

real-time machine and ABI’s Taqman 2X Universal PCR master

mix (2X), No AmpErase UNG. The reference gene human

RPLPO, a standard endogenous control from ABI’s Taqman gene

expression assays, was multiplexed with the target gene for every

cDNA template as a quality control measure. All samples were run

in triplicate. We also examined additional genes of interest C1QC,

CHURC1, HLA-DOA, HLA-E, NPTX2, PCDH17, HLA-DPA1,

SERPINA3, NPAS4, IL8, FCGBP, respectively, using the conditions

above except the assays were run on an Applied Biosystems 7500

Fast Real-Time PCR System. Average Ct value was used for each

sample. The –DCt values (Ct target – Ct reference), which are

surrogates for log (base 2) gene expression were analyzed as

described above.

Probe Annotation and Gene Ontology Mapping
When an Illumina probe lacked gene annotation information

we mapped the probe sequence to the human genome (Feb. 2009

GRCh37.hg19) using the UCSC Genome Bioinformatics Site Blat

tool and chose the best sequence match. For all ontology analyses

GO mappings were based on data provided by Gene Ontology

(ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest-

lite/) on 2009-Aug 30 and Entrez Gene (ftp://ftp.ncbi.nlm.nih.

gov/gene/DATA) on 2009-Mar 11. Onto-Express [52] was used

to examine relationships between GO terms.
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Software Tools Used in Analyses
The R statistical language and environment [53] using

specialized bioinformatics packages available via the Bioconductor

project (www.bioconductor.org) was used for all data analyses.

Bioinformatics packages used included limma, preprocessCore,

marray, GOstats, KEGG.db, GO.db.

Data Deposition
Microarray image files collected for this project are MIAME

(Minimum Information about a Microarray Experiment [54])

compliant and have been deposited in the National Center for

Biotechnology Information’s Gene Expression Omnibus (GEO)

data repository under the series accession number GSE37721.

Supporting Information

Figure S1 Gene Ontology analyses. GO term (Molecular

Function and Cellular Component) analyses for probes with

greater variance in childhood than in adulthood using as reference

all genes called present on the array. The expected number of genes

is the number of genes predicted for this term by random chance.

The observed number of genes is the number of genes actually

present in our dataset for this term. For example, in this context

we would expect by random chance to see .1 gene annotated to

the GO_MP term ‘MHC class II receptor activity’ (GO:0032395).

Instead, we observed 5 genes annotated to this term (pFDR = 0).

The steepness of the slope of each line reflects statistical

significance with steeper lines having smaller pFDR values. Those

categories with the greatest slope (pFDR = #0.05) are labeled in

this figure. All 26 GO_MP terms and 30 CO_CC terms that met

our enrichment criterion of pFDR#0.1 can be found in

Dataset S3.

(PDF)

Figure S2 Paired differences between the standard
deviation of genes in children vs. adults. The boxplot is

made from for all 1020 probes with highest variance across all

samples in the postmortem dataset. Positive values indicate larger

standard deviation in the younger group (children ,15 years),

whereas negative values indicate larger standard deviation in the

older group (adults $15 years). The median (heavy black line)

represents the point at which 50% of the data are greater than

(above the line) or less than (below the line) this value. The upper

quartile (open box above the median) represents the 25% of the

data greater than the median. The lower quartile (open box below

the median) represents the 25% of the data less than the median.

Note that 78% of the probes have greater standard deviation in

the younger group. The maximum (above the upper quartile) and

minimum (below the lower quartile) values excluding outliers are

also shown. Outliers are drawn as open circles.

(PDF)

Table S1 Sample information for all individuals.
(XLSX)

Dataset S1 Probes with greater variance in expression
in children than in adults.
(XLS)

Dataset S2 GO and Kegg Pathway analyses for probes
with greater variance in children than in adults using as
reference all genes called present on the array.
(XLS)

Dataset S3 GO and Kegg Pathway analyses for probes
with greater variance in children than in adults using as
reference the top 5% of genes with highest variance.
(XLS)

Dataset S4 Genes found to be significant in variance
analyses (great variance in children than adults) in both
the Harris et al. 2009 (GEO accession: GSE13564) and
current datasets.
(CSV)

Dataset S5 GO analysis for probes with greater vari-
ance in children than adults. (Harris et al., 2009 Dataset;

GEO accession: GSE13564).

(XLS)

Dataset S6 Intersection of 302 genes with greater
variance in children with Mammalian Genome Infor-
matics dataset of Mammalian Phenotype ID:
MP:0003631 and MP:0005386).
(XLS)
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