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The discovery of neural stem cells was rooted in
classic studies of haematopoiesis and of
invertebrate neural development, which
inspired examination of single neural
progenitor cells. (In this review, I will use the

term ‘progenitor cell’ to refer to all classes of immature,
proliferating cells. Neural stem cells are a subtype of
progenitor cells in the nervous system that can self-renew
and generate both neurons and glia.) The early studies led
to the isolation of stem-like cells from the embryonic
mammalian central nervous system (CNS)1–4 and the
peripheral nervous system (PNS)5. Since then, stem cells
have been isolated from many regions of the embryonic
nervous system, indicating their ubiquity (Fig. 1a). After
the discovery of neural stem cells in the embryo, the first
isolation of stem-like cells from adult brain6,7 began yet
another chapter of neuroscience. Adult neural stem cells
have now been found in the two principal adult
neurogenic regions, the hippocampus and the
subventricular zone (SVZ), and in some non-neurogenic

regions, including spinal cord8–10 (Fig. 1a). These
pioneering studies provided a cellular mechanism for
adult neurogenesis, which was well-established in birds
and becoming accepted in mammals, and raised the
possibility that the most intractable of tissues — the CNS
— might have regenerative powers.

Markers that define CNS stem cells are only now being
developed11–14. Hence, they are usually identified retrospec-
tively on the basis of their behaviour after isolation. In
adherent cultures, CNS stem cells produce large clones 
containing neurons, glia and more stem cells; they can also
be cultured as floating, multicellular neurospheres8–10. PNS
neural crest stem cells express the low-affinity neurotrophin
receptor p75 (ref. 5), and grow as adherent clones contain-
ing peripheral neurons and glia, smooth muscle cells and
more stem cells15.

This review summarizes what we currently know about
stem cells in the developing nervous system, and evaluates
the idea that embryonic neural stem cells are heterogeneous
and restricted. Studies that indicate broad plasticity of adult
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The discovery of stem cells that can generate neural tissue has raised new possibilities for repairing the
nervous system. A rush of papers proclaiming adult stem cell plasticity has fostered the notion that there is
essentially one stem cell type that, with the right impetus, can create whatever progeny our heart, liver or
other vital organ desires. But studies aimed at understanding the role of stem cells during development have
led to a different view — that stem cells are restricted regionally and temporally, and thus not all stem cells
are equivalent. Can these views be reconciled?
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Figure 1 The location of neural stem cells. 
a, The principal regions of the embryonic and
adult nervous system from which neural stem
cells have been isolated9,10,63–65. b, Three
models describing stem cells in the vertebrate
neural plate. All neural plate cells are stem
cells (left), or stem cells are a minor population
that is evenly distributed (middle) or located in
particular regions such as the midline and
lateral edges (right). Factors such as bone
morphogenetic proteins (BMPs), Noggin,
retinoids, Sonic hedgehog and fibroblast
growth factors (FGFs), which provide
anterior–posterior (A–P) and dorsal–ventral
(D–V) patterning information, may regionalize
stem cells24.

© 2001 Macmillan Magazines Ltd



stem cells are also discussed. By examining these two different aspects
of stem cell research, future directions of exploration are highlighted
that might help explain this apparent dichotomy.

Stem cells at the beginning of the nervous system
Many fundamental questions regarding specification of early neural
stem cells remain unanswered. When the neural plate first emerges,
does it consist solely of stem cells or does it include both stem cells and
restricted progenitor types (Fig. 1)? Analysis of adherent clone pro-
duction suggests stem cells are prevalent at early stages. In spinal
neural tube from embryonic day 8 (E8) rat, over 50% of the viable
cells at 24 hours are stem cells16,17. In telencephalon from E10 mouse,
estimates of stem cells range from 5 to 20% (refs 4, 18, 19). Most of the
premigratory neural crest consists of stem cells20.

But the frequency of stem cells declines rapidly, diluted by the pro-
duction of restricted progenitors and differentiated cells; for example,
in spinal cord it drops to 10% at E12 and 1% at postnatal day 1 (P1)16,17.
Notably, stem cells seem to be much rarer when neurosphere produc-
tion is used as the assay: only 0.3% of E8.5 mouse anterior neural plate
cells make neurospheres21. Perhaps neurosphere-generating cells are a
subpopulation of early stem cells, or perhaps stem cells are more
prevalent in spinal cord than anterior regions at this age.

How are neural stem cells initially specified? The stem cell could
be the default state or, alternatively, stem cells might be induced.
Pluripotent embryonic stem cells can produce a primitive type of
neural stem cell when grown in isolation, but only 0.2% of embryon-
ic stem cells generate neurospheres22. Although this study suggests
that there is a default pathway for acquiring the stem cell state, the low
frequency indicates that it may be normally enhanced by inductive
mechanisms.

If stem cells are, or rapidly become, a subset of early neural 
progenitor cells in vivo, how are they distributed (Fig. 1)? Without

specific markers, important questions regarding stem cell frequency
and location in vivo remain open.

The early, widespread presence of stem cells in the embryonic 
nervous system raises another important issue of their role in devel-
opment. Given their prolific, multipotent nature in vitro, they are
likely to be principal progenitors in vivo, but this remains to be shown
directly. For example, it is possible that early restricted neuroblasts
rather than stem cells might generate the preponderance of neurons.
Clonal studies suggest that most glia, both astrocytes and oligoden-
drocytes, originate from stem cells9,18,19, signifying their importance
for gliogenesis. In fact, as described below, there may be an intimate
association between glia and the neural stem cell state.

Neural stem cells acquire positional information
Patterning of the body axis occurs through signalling systems 
that impart positional information. For example, gradients of 
signalling molecules can regionally specify a population of progeni-
tor cells if the cells respond differently to different concentrations of
the signal23. In the nervous system, the salient patterning in anteri-
or–posterior and dorsal–ventral axes occurs early, concomitantly
with neural induction (Fig. 1)24.

Do both stem cells and restricted progenitor cells exhibit 
regionalization, or do stem cells remain unspecified, maintaining
their plasticity? In Drosophila and grasshopper, each stem cell-like
neuroblast has a unique identity based on its position in the neuroec-
toderm25. In vertebrates, this question is just beginning to be
explored. Neurospheres generated from different CNS regions
express region-appropriate markers, indicating that the original
stem cells were indeed regionally specified26. Regulatory 
sequences control region-specific expression of the transcription
factor Sox2, so that expression is seen in telencephalic but not 
spinal cord stem cells27.
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Figure 2 The development of stem cells in the
mammalian CNS. Alignment of in vivo
developmental events with in vitro behaviour of
stem cells derived from embryonic forebrain has
led to the following concept of how neural stem
cells change over time. Early neuroepithelial
cells are columnar, touching ventricle and pial
surfaces during the cell cycle. At mid-gestation,
young neurons have migrated above the
germinal ventricular zone (VZ), radial glia
continue to contact both ventricle and pia,
guiding neuronal migration, and a second
germinal zone arises, the subventricular zone
(SVZ). By postnatal ages, radial glia have
transformed into astrocytes and the VZ also
disappears, but the SVZ remains into adulthood
in some areas. Stem cells present in the early
cerebral cortical neuroepithelium divide
symmetrically first, and then asymmetrically to
generate differentiated progeny. Neurons are
produced first, and migrate along radial glia up
towards the pial surface where they settle in the
subplate (SP) and the cortical plate (CP). After the
neurogenic period, the stem cell makes glial
progenitor cells that proliferate largely in the SVZ.
By birth, the stem cell has developed and has
different characteristics, such as responses to
growth factors, to those of the original embryonic
stem cell. Stem cell development might be driven
by a combination of intrinsic temporal
programmes and extracellular signals from the
changing environment of the developing brain.
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In addition, stem cells isolated from different neural regions gener-
ate region-appropriate progeny. Spinal cord stem cells generate spinal
cord progeny17. Basal forebrain stem cells cultured at clonal density
generate significantly more GABA (g-amino butyric acid)-containing
neurons, which are characteristic of basal regions, than dorsal stem
cells cultured under identical conditions19. PNS neural crest stem cells,
which arise at the lateral edges of the neural plate, express distinct genes
and generate progeny distinct from those of CNS stem cells15,28. Hence,
vertebrate stem cells seem to be positionally specified.

Neural stem cells acquire temporal information
Different neural cell types arise in a precise temporal order that is
characteristic for a particular region and species. In general, CNS and
PNS neurons arise before glia, and specific types of each cell have 
specific birthdates. Timing seems to be encoded in progenitor cells,
so that besides positional information they have ‘temporal informa-
tion’, which is seen as stage-dependent changes in progenitor cells
(Table 1). Thus, late-embryonic ferret cortical progenitor cells 

cannot make cells appropriate for younger stages when transplanted
into early cerebral cortex29. Rat cortical progenitors become restrict-
ed in their ability to generate limbic system-associated membrane
protein (LAMP)-positive limbic cortical progeny after E14 (ref. 30).
Mid/hindbrain progenitor cells are unable to generate telencephalic
phenotypes after E13.5 in mouse31. SVZ cells can no longer make 
projection neurons by birth32,33, and retinal progenitor cells seem to
be similarly restricted temporally34,35.

Stem cells are a minor component of the progenitor population in
these studies, but experiments indicate that they also exhibit stage-
dependent changes in potential. Some early neural tube cells produce
both CNS and PNS stem cells, suggesting that there is a common
progenitor for two separate stem cell lineages with more restricted
potentials28. Each of these lineages also changes over time. CNS stem
cells undergo repeated asymmetric cell divisions, first producing
neurons then glia18, thus reproducing the normal neuron–glia order
(Fig. 2). Moreover, they have an active role in this process by altering
their intrinsic properties. Thus, stem cells from earlier stage cortices
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Table 1 Summary of transplantation studies assessing stem and progenitor cell behaviour

Donor Host site CNS incorporation Differentiation References

Embryonic stem cells

Mouse ES cells or ES cell-derived Blastocyst Incorporation into all embryonic Both glutamate- and GABA-mediated 50,51
neurospheres tissues neurons in cortex

Mouse ES cell-derived neural E16–18 rat LV Widespread incorporation Neurons, oligodendrocytes and astrocytes 52
precursors

Embryonic neural cells

E9.5 and E14.5 forebrain-derived Blastocyst or morula No aggregation 22
neurospheres

EGF-generated neurosphere cells E15 rat LV Fore- and midbrain structures Astrocytes 53
from E14 mouse fore- and midbrain

Fetal human brain-derived E17–18 rat or P0 mouse LV Widespread incorporation in Neurons (projection), oligodendrocytes 54,55
neurospheres or primary cells the brain and astrocytes

E10.5 mid/hindbrain E13.5 MGE Dispersed into forebrain Site-specific neuronal differentiation 31

E12–14 mouse forebrain E15 to P1 rat LV Into forebrain and midbrain; Site-specific neuronal differentiation 56,57
incorporation and migration reduced 
as host age increases

E13.5 mid/hindbrain E13.5 LGE or MGE No integration into forebrain 31

E36 ferret cortex (making layer 4) E30 ferret (making layer 6) Neocortex and hippocampus Layers 2–5; no transplanted cells in layer 6 29

P2 (making 2/3) Neocortex and hippocampus Layer 2/3 neurons

Early postnatal

Postnatal mouse SVZ cells E15 mouse LV Septum, thalamus, hypothalamus No principal projection neurons 32
and inferior colliculus; not cortex 
or hippocampus 

Neonatal mouse SVZ neurospheres Chick embryo Migrate in isolation Neural crest derivatives 46

Neonatal mouse SVZ cells Chick embryo Chain migration in the neural crest Progenitors and neurons; not neural crest 46
pathway phenotypes

Neonatal striatum Migration Neuronal precursors and olfactory bulb 58
neurons

P0–5 mouse SVZ cells Adult striatum Some migration Olfactory bulb interneurons 59

Adult

Mouse forebrain neurospheres Blastocyst or morula No aggregation 22

Mouse morula or chick embryo Rare neural chimeras Cell types not reported 60

Mouse SVZ neurospheres Chick embryo Migrate as isolated cells Phenotypes of neural crest derivatives 46

Mouse SVZ cells Chick embryo Cells die 46

Adult mouse striatum Minimum migration Some neurons, mostly astrocytes in striatum 61

Adult olfactory bulb Extensive migration Olfactory bulb neurons 61

Cultured rat hippocampal progenitors Adult rat hippocampus Migrate Neurons in granule cell layer of dentate gyrus 42, 62

Adult rat rostral migratory stream Migrate to olfactory bulb Neuroblasts and olfactory neurons 42

Adult rat cerebellum Incorporation No neurons 42

FGF-responsive rat spinal cord Adult hippocampus Broad dispersion Hippocampal granule neurons 41
progenitors

Adult spinal cord Broad dispersion No neurons 41

These studies indicate stage-dependent restrictions in the potential of donor progenitor populations (which include some neural stem cells). They also emphasize the impact of interaction between
implanted cells and the host environment. Different treatments of stem and progenitor cells in vitro can significantly alter their behaviour after implantation. EGF, epidermal growth factor; ES, embryonic
stem; FGF, fibroblast growth factor. LGE/MGE, lateral/medial ganglionic eminence; LV, lateral ventricle.
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produce more neurons and have a lower tendency to produce glia
than those from later stages.

Temporal specification of stem cell populations also occurs in the
PNS. Mouse neural crest stem cells isolated from the rat neural tube
have been compared with later stem cells isolated prospectively from
E14 sciatic nerve after transplantation into different sites of the chick
embryo20. Early neural crest stem cells generate significantly more
neurons than later stage cells: like CNS stem cells, their neurogenic
capacity declines with stage. Furthermore, the range of neurons 
generated by late neural crest stem cells is more restricted. Early
transplants that are highly enriched for neural crest stem cells but
contain some restricted sensory progenitor cells can generate dorsal
root ganglion (DRG) sensory neurons, and adrenergic and choliner-
gic autonomic neurons. By contrast, older-stage neural crest stem
cells made no DRG neurons, only rare adrenergic sympathetic 
neurons, but they could generate cholinergic autonomic neurons.

Stem cells also undergo phenotypic changes as germinal zones
develop (Fig. 2). It has been suggested recently that some radial glia

present at mid-gestation might be stem cells (reviewed in ref. 36).
This idea is appealing, given that radial glia are thought to be 
neurogenic precursors in adult canary brains, and that astrocytes, the
lineal descendants of radial glia, have stem cell properties in the adult
mammalian SVZ37.

Developmental changes in stem cells — for example, in their
potential and phenotype — are accomplished by, and perhaps driven
by, changes in their growth factor responsiveness (Fig. 3; and see
accompanying reviews by Spradling and colleagues, pages 98–104,
and Weissman and colleagues, pages 105–111). Thus signalling 
molecules, such as fibroblast growth factors, bone morphogenetic
proteins and Noggin, can influence neural stem cells from neural
induction through adulthood, but their responses to these factors
vary with stage.

The mechanisms underlying temporal changes in neural stem
cells are not understood. The lineage trees of mouse CNS stem cells
are remarkably similar to those of invertebrates38. Drosophila CNS
neuroblasts express sequentially the transcription factors Hunch-
back, Krüppel, POU-domain genes 1 and 2, Castor and grainyhead,
which specify the production of different neurons at different
times39,40. The expression sequence may be driven by a cell-intrinsic
clock40. Perhaps similar intrinsic timing mechanisms, combined
with environmental input, temporally specify mammalian CNS stem
cells. Growth factor concentrations vary during development and
neural stem cells respond differently to different concentrations of
the same molecule (Fig. 3). Hence, it is tempting to speculate that,
just as positional information can be imparted by spatial gradients of
signals23, temporal information might be imparted by temporal 
gradients of signalling molecules.

Examining the plasticity of adult stem cells
If stem cells undergo developmental changes, adult stem cells are
likely to differ from those in the embryo and to be regionally and 
temporally restricted.

One way to examine the plasticity of adult neural stem cells is to
transplant them directly into the developing embryo and examine
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what neural cell types they produce; this still remains to be done.
Emerging methods for the prospective isolation of adult CNS stem
cells11–14 should facilitate this important experiment. Experiments
using culture-expanded adult CNS stem cells indicate that there is
some plasticity in adult environments (Table 1). For example, adult
spinal-cord-derived stem cells, which do not normally make 
neurons, can make interneurons if injected into the adult hippocam-
pus41, and adult hippocampal-derived stem cells can make olfactory
interneurons after transplantation to the SVZ42. As yet, however,
there is no direct evidence that adult-derived stem cells can make the
types of projection neuron that are normally generated in the
embryo.

Given the vital gaps in our understanding of adult neural stem
cells, we cannot yet conclude that they are highly plastic. Evidence
that they can generate different somatic cell types is limited, and 
may be restricted to rare events or rare cells43–45. In considering the
two different ideas raised at the beginning of this review, there 
may be in fact no dichotomy. Most neural stem cells might be 
regionally and temporally specified. There may also be rare stem 
cells present in the nervous system, perhaps not even of neural origin,
that have greater plasticity, at least in terms of producing diverse
somatic cell types43.

Reversing the stem cell lineage
If stem cells are restricted, can these restrictions be reversed (Fig. 4)?
For example, can an adult stem cell re-acquire the ability to generate
cell types normally made in the embryo? A study has indicated that
culturing SVZ stem cells as neurospheres expands their potential and
allows them to generate PNS progeny after injection into chick neural
crest pathways46. Furthermore, descendants of neural stem cells may

be able to revert. Optic nerve O2A progenitor cells, which normally
produce solely glia, can be converted in vitro into multipotent, 
neurosphere-generating stem cells47. In the adult SVZ, both type B
stem cells and their progeny, type C progenitor cells, can make neu-
rospheres in vitro. Moreover, type C cells are stimulated to convert to
stem cells by epidermal growth factor48. In the postnatal chick retina
after damage, Muller radial glia, which are maintained throughout
life, can re-enter the cell cycle, re-express retinal progenitor cell
markers and generate new neurons and glia49.

If environmental factors can enhance the acquisition of neural
stem cell fates, or increase the plasticity of stem cells, this may be of
enormous benefit therapeutically, as indicated in Box 1.

Future studies
As regions of the embryo are patterned and development unfolds,
neural stem cells may be an essential mediator of developmental sig-
nals, acquiring a changing repertoire of gene expression, morphology
and behaviour. Despite differences in the properties of stem cells 
isolated from different regions and at different times, they still self-
renew. Self-renewal can therefore be considered as the propagation of
stem cells, rather than the production of exactly the same type of cell.

It will be important to examine how developmental signals, both
spatial and temporal, specify changes in neural stem cells. Markers
for neural stem cells will allow their selection from different stages
and regions to examine their potential after transplantation into the
embryo or adult, and a comparison of their gene expression. Such
explorations will help identify essential mediators of stem cell 
self-renewal, and genes that determine production of different types
of progeny. Markers will also help solve the tantalizing issue of which
cells in vivo are stem cells.
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Stem cells are under active consideration as a source of donor
tissues for neuronal cell therapy75.
Parkinson’s disease. The requirement is to generate cells that
synthesize and release dopamine for implantation into the dopamine-
depleted striatum. For this therapy to be effective, it is unknown
whether these cells must also mature into projection neurons with
synaptic host connections — a process that is required for optimal
effects of embryonic nigral grafts.
Huntington’s disease. If we can control differentiation into mature
neuronal phenotypes then many other diseases that involve loss of
specific neuronal types, such as the striatal medium spiny projection
neurons lost in Huntington’s disease, might be suitable for
transplantation of neurons expanded from stem cell sources.
Spinal cord injury. Stem cells may be able to repopulate the site of
injury, provide a substrate for axon growth across the transection,
and block syrinx progression. Each of these effects has been found
with primary embryonic cells; however, studies using stem or
immortalized precursors are still preliminary.
Stroke. Stem cells and immortalized precursors may be able to
migrate through the central nervous system and repopulate sites of
ischaemia. In spite of rather limited evidence from animal studies,
clinical trials of this strategy are already underway.
Multiple sclerosis. Oligodendrocyte lineages are better
characterized than neuron lineages, and oligodendrocyte precursors
can differentiate and provide a functional remyelination of axons after
focal experimental demyelination. For application in multiple sclerosis,
the main problem is how to stimulate the migration of such cells to
diverse sites of demyelination that occur sporadically in the human
disease. Notwithstanding the potential applications of
oligodendrocyte lineages in several diseases, many key technical
problems remain to be resolved.

Sources. If we select early embryonic stem cells, then the number of
transformations and the complexity of signals required to achieve a
specific differentiated phenotype may prove prohibitive; instead, it
may be easier to control the phenotypic differentiation of developing
neuronal precursors, but that might in turn limit their capacity for
expansion. Adult-derived cells may circumvent both ethical and
immunological constraints, but their plasticity for expansion and
differentiation remains to be established. Cross-lineage
transformation offers a new prospect for a more flexible source, in
particular to derive autografts from patients themselves. A further
advance is that precursor cell are less immunogenic than primary
embryonic neurons in xenografts, highlighting a way to overcome one
of the main difficulties of transplantation from non-human donors.
Expansion. Neuronal stem cells from species other than mice seem
to senesce on repeated passage, with only limited potential for
expansion. Conversely, if not fully differentiated at the time of
implantation, there is always the possibility of tumour formation — a
problem that is still not resolved for either embryonic stem cells or
immortalized precursors.
Differentiation. The biggest single problem still to be solved is how
to direct and control the differentiation of specific target phenotypes
required for replacement and repair in each disease. Selection of
appropriate starting cells by embryonic regional dissection and stage
of development, as well as diverse parameters of in vitro
manipulation, are likely to be crucial factors in directing appropriate
phenotypic differentiation. Failure can lead not only to a lack of benefit
but also to significant side-effects from proliferation of non-neuronal
phenotypes.

All these problems can be solved, but it will require more than a
single breakthrough to transform the potential attributed to stem cells
into a realistic clinical strategy for cellular repair.

Box 1
Potential therapeutic uses of stem cells to repair the nervous system
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Although research to identify adult sources of highly plastic stem
cells for therapeutic use will continue, it seems likely that most 
neural-generating stem cells might be specified during development.
In that case, we must explore this diversity to understand how 
different neural cells are, and can be, made. ■■
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