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Designing scalable biological interfaces

A

This thesis presents the analysis and design of biological interfacing technologies in light of a need
for radical improvements in scalability. It focuses primarily on structural and functional neural data
acquisition, but also extends to other problems including genomic editing and nanoscale spatial con-
trol. Its main contributions include analysis of the physical limits of large-scale neural recording,
experimental development of a screening platform for ion-dependent molecular recording devices,
characterization of the design space for molecularly-annotated neural connectomics, and new designs
for high-speed genome engineering and bio-nano-fabrication. Articulating governing principles and
roadmaps for these domains has contributed to the initiation of multi-institutional projects that are
strategically targeted towards scalability.
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2.1 A sample (not intended to be comprehensive) of computations thatmight be associ-
ated with cortical blocks, and their potential “algorithmic” and physical realizations
(ref. numbers refer to those in forthcoming ArXiv preprint). . . . . . . . . . . . 15

2.2 Strategy for constructing and validating integrative cortical theories, incorporating
a taxonomy of distinct operations across areas. Amesoscale computational theory is
an abstract speci cation of a set of con gurable computational blocks, articulating
an inventory of computational functions, and mapping these operations to speci c
cortical areas and neural implementations, as well as delineating the interactions be-
tween blocks. Amicroscale biological theory speci es the realization of these opera-
tions in neural wetware, including the biomolecular and input-driven determinants
of CCB con gurations. Simulations of the mesoscale computational theory predict
the statistics of connection weights, tuning curves, population activity patterns and
other variables as a function of cortical area. In turn, these signatures are empirically
measurable through connectomic or activity mapping. The microscale biological
theory also generates area-speci c predictions about detailed structures measurable
viamolecular and cell typemapping. Co-registration ofmolecular, connectomic and
activity mapping thus jointly constrains the nature of the CCBs and their con gu-
ration mechanisms, across many levels of description and as a function of cortical
area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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3.1 Four generalized neural recording modalities. (a) Extracellular electrical recording
probes the voltage due to nearby neurons. (b) Optical microscopy detects light emis-
sion from activity-dependent indicators. (c) Magnetic r onance imaging detects
radio-frequency magnetic induction signals from aqueous protons, af er weak ther-
mal alignment of the proton spins by a static magnetic eld. Activity-dependent
contrast agents arenecessary to transduceneural activity into anMRI readout,whereas
current functional MRI methods rely on blood oxygenation signals which cannot
reach single-neuron resolution. (d)Molecular recording devices havebeenproposed,
inwhich a recordofneural activity is encoded in themonomer sequenceof abiomolec-
ular polymer – a form of nano-scale local data storage. This could be achieved by
coupling correlates of neural activity to the nucleotide misincorporation probabili-
ties of a DNA or RNA polymerase as it replicates or transcribes a knownDNA strand. 30

3.2 Penetrationdepth (attenuation length) of electromagnetic radiation inwater vs. wave-
length (data from 324). The approximate diameter of the mouse brain is shown as a
black dashed line. Inset: approximate tissue model based onMie scattering and wa-
ter absorption. Absorption length of water 377 (blue), approximate tissue scattering
length in a Mie scattering model (red) and the resulting attenuation length (green)
of infrared light (inset reproduced from 377, with permission). . . . . . . . . . . . 33

3.3 The voltage signal to interference-plus-noise ratio (SINR) for neurons immediately
adjacent to the recording site sets an approximate upper boundon the distance, rmax,
between the recording site and the farthest neuron it can sense (blue), due to the ex-
ponential fallo f of the voltage SINRwith distance. Assuming at least one electrode
per cube of edge length 2

√
3

3 rmax in turn limits the number of neurons per recording
site (gold), the total number of recording sites (red) and the maximal diameter of
wiring consistent with < 1 total brain volume displacement (turquoise). SINR
values for current recording setups are < 102. In practice, the number of neurons
per electrode distinguishable by current spike sorting algorithms is only∼ 10, with
an estimated information theoretic limit of ∼ 100, so these curves greatly under-

timate the number of electrodes which would be required based on realistic spike
sorting approaches in a pure voltage-sensing scenario. . . . . . . . . . . . . . . . 43
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3.4 Energy cost of elementary operations across a variety of recording and data transmis-
sionmodalities, expressed in units of the thermal energy (lef axis) and as a power as-
suming 100GHz switching rate (right axis). The Landauer limit of kBT ln 2 sets the
minimum energy associated with a logically irreversible bit ip. The practical limit
will likely lie in the tens of kBT per bit716, comparable to the free energy release for
hydrolysis of a single ATP molecule (or addition of a single nucleotide to DNA or
RNA). The energy of a single infrared photon is ∼ 50 kBT. Single gates in current
CMOS chips dissipate ∼ 105–106 kBT per switching event, including the capacitive
charging of thewires interconnecting the gates (red curve). The switching energy for
the gate, not including wires, is ∼ 100× lower (blue curve). The power e ciency
of CMOS has been on an exponential improvement trend due to the miniaturiza-
tion of components according to Moore’s law (data re-digitized from667), although
power e ciency gains have slowed recently. CurrentRFID chips compute and com-
municate at∼ 109–1010 kBT (> 10 pJ) per bit transmitted, while the total energy cost
per oating point operation in a 2010 laptop was∼ 1012 kBT. The power associated
with a minimal low-noise CMOS analog front end for signal ampli cation corre-
sponds to∼ 500mWatwholemouse brain scale. A single two-photon laser pulse at
0.1 nJ pulse energy corresponds to∼ 1010 kBT. For comparison, the 40mWapproxi-
matemaximal allowedpowerdissipation, according to section 3.1 (BasicConstraints)
above, with its equivalent per-bit energy of∼ 108 kBT at the minimal 100Gbit/s bit
rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Power requirements imposed by information theory on data transmission through
a single (additive white Gaussian noise) channel with carrier frequency ν (an upper
bound on the bandwidth), given thermal noise and path loss. Bottom: absorption
length of water as a function of frequency (blue), minimal power to transmit data
at 100, 1000 and 10 000Gbit/s (green) as a function of frequency, assuming ther-
mal noise but no path loss. Top: minimal power to transmit data at 100, 1000 and
10 000Gbit/s as a function of frequency, assuming thermal noise and a path loss cor-
responding to the attenuation by water absorption over a distance of 2mm. While
formulated for a single channel, at certain wavelengths (e.g., RF) these factors also
constrain multiplexed data transmissions between many transmitters and many re-
ceivers, depending on capacity of the system for spatial multiplexing. Horizontal
dashed lines: 40mW, the approximate maximal whole-brain power dissipation in
steady state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Key factors determining the spatiotemporal resolution of dynamic MRI imaging.
(a) Temporal resolution and contrast agent concentration allowing> 5 contrast,
for di ferent classes of dynamic MRI contrast agent (reproduced from 593, with per-
mission). (b) Di fusion limited spatial resolution for water proton MRI as a func-
tion of temporal resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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3.7 Simulations of the dephasing of unsynchronized molecular ticker-tape ensembles,
and its impact on the achievable temporal resolutionof recording,modi ed from 227.
A) The polymerase can directly extend a base, or transition into and out of a paused
state before extending. B) Evenwith no paused state, dwell times are stochastic, here
assuming an exponential distribution. C) Because of the stochasticity of dwell times,
the polymerase ensemble dephases over time. D) Table of parameter dependences
for unsynchronized recording at 100ms temporal resolution, reproduced from 227.
With 10000 templates, 1000 nt/sec average speed, and no pausing, recording for sev-
eral minutes for a range of misincorporation parameters. Recording at 10ms reso-
lution is signi cantly more di cult: even in the limiting case of 100 misincorpo-
ration rate at high ion concentration and 0 misincorporation rate at low ion con-
centration, an average speed of 3500 nt/s would be needed to sustain 1 minute of
recording at 10 ms temporal resolution and 95 decoding accuracy. . . . . . . . . 87

3.8 Calculated decay of extracellular potential from a compartmental neuron model 238,
as a function of radial distance from the soma (red). The black curve is the average
potential at each radial distance. Monopole t to local decay (green), dipole t to far-
awaydecay (blue) and exponentialmodel (yellow). Themonopolemodelworkswell
near the soma, while the dipole model works well farther away from the soma. The
exponentialmodel appears to help capture the e fects of proximity to local dendrites,
since a perfectly-spherical soma would generate a perfect monopole model, while a
current-conserving, elongated neuronwould generate an approximate dipolemodel
at large distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.9 Zoom-in on calculated decay of extracellular potential from a compartmental neu-
ron model 238, as a function of radial distance from the soma. Monopole t to local
decay (green), dipole t to far-away decay (blue) and exponential model (yellow).
The monopole model overshoots the data at large distances, while the dipole model
accurately captures the shape of the long-distance fallo f. . . . . . . . . . . . . . . 98

3.10 Log-logplot illustrating the transitionbetween themonopole anddipole fallo f regimes
of the extracellular potential froma spike. The fallo f ismonopole-like below∼ 45 µm
radius (green) and dipole or multipole-like above∼ 60 µm radius (blue). . . . . . 99

3.11 Extracellular actionpotential amplitudes and shapes on a 2 µmgridofwidth 130 µm×
130 µm, fromthe cell d151 238, assuminguniformextracellular conductivity of 0.3 Siemens
/meter (red). Model generatedusingMatlab andNEURONsof ware and cellmodel
from 238. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.12 Decay of the electric eld magnitude (top) and eld gradient (bottom) with radial
distance from the soma, for the monopole (green), dipole (blue) and exponential
(yellow) fallo f models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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3.13 Selected options for coupling neural of activity measurements into a time-resolved
re ectometric readout via interactionwith the evanescent eld from an optical ber.
A) Electric eld gradient sensing dielectric nanoparticle. B) Electric eld gradient
sensing dielectric nanoparticle with metal nanowires for eld focusing. C) Electric
eld gradient sensing dielectric strips. D) Acoustic vibration-sensing nanoparticle.

E) Dyes with absorption contrast, e.g., sensitive to electric or magnetic elds. F)
Fluorescent dyes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.14 Conceptual diagramof an architecture for optically-powered andwavelength-multiplexed
deep brain electrical stimulation, delivered minimally-invasively via the vasculature. 117

4.1 DNApolymerase (DNAP) as amolecular signal recorder. (A)Overviewof a strategy
for using DNA polymerases as signal recording devices. Signals (top) are coupled to
intracellular or extracellular cation concentration through direct or indirect modu-
lation of an ion channel activity. Cation concentration is in turn coupled to DNA
polymerase delity on a known template according to a known transfer function
(orange curve), generating a DNA recording, in which data is represented by the
density of misincorporated bases, and which can be read by DNA sequencing (bot-
tom). (B)Modulation of Taq polymerase by Ca2+ concentration, measured by a tra-
ditional blue-white colony counting assay. (C) Biochemical steps of the multiplex
deep sequencing assay for measuring the transfer functions of error-prone DNAPs. 122

4.2 Measurement of the experimental noise oor. The spatial distribution (top) and
template-base-speci c (bottom) misincorporation rates for Phusion on the original
(A) and swapped (B) templates. (C)Misincorporation rates for Phusion on the orig-
inal template, using amodi ed protocol in which the ligation products were pooled
and cleaned before high- delity PCR ampli cation. Dashed lines indicated themax-
imum peak, plus the error, of the spatially-distributed misincorporations (top) or
the mean + SEM of misincorporations across all template bases (bottom) misincor-
porations, and served as the noise oors in the main text. . . . . . . . . . . . . . . 126

4.3 Ion-dependent misincorporation rates of Dpo4 and Klenow exo- polymerases. (A,
B, C, D) Mean (top) and template-base-speci c (bottom) misincorporation rates as
a function ofMn2+ (A, C) andMg2+ (B, D) concentrations. (E, F, G,H)Normalized
distributions of misincorporated dNTPs for each template base. (I, J, K, L) Mean
(top) and template-base-speci c (bottom) misincorporation rates as a function of
Ca2+ concentration at 200 uM background Mn2+ (I, K) and 7000 uM background
Mg2+ (J, L) concentrations. Errors are given in Tables S1-2, and are shown as error
bars in the line graphs when they are larger than the data symbol. . . . . . . . . . 127

4.4 Analysis of misincorporation at two-base motifs in the template sequence. Misin-
corporation rate as a function of the template base and of the base preceding the
template base, for Dpo4 at 800 µMMn2+ on the original (A) and swapped (B) tem-
plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
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4.5 Template positiondependence ofmisincorporation rates. (A)Template positionde-
pendence of Dpo4misincorporation rates on the original template at varyingMn2+

(lef ) and Mg2+ concentration (right). (B) Template position dependence of Dpo4
misincorporation rates on the swapped template at varying Mn2+ (lef ) and Mg2+
concentration (right). (C) Template position dependence of Klenow exo- misincor-
poration rates on the original template at varying Mn2+ (lef ) and Mg2+ concentra-
tion (right). Letters above each data point denote the identity of the template base
at that position. Grey shaded areas indicate the noise oor, de ned as themaximum
over positions of the misincorporation rate (plus SEM) observed in an identical ex-
periment with Pfusion HF DNA polymerase (Figure 4.2). Red (blue) shaded ar-
eas in (A) and (B) correspond to shared sub-sequences between the original and the
swapped template. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.6 Statistical analysis ofmisincorporationbyDpo4. (A) Spatial dependence (un-normalized)
of Dpo4 error rate at 800 uM Mn2+ on the original template (blue curve), and gen-
eralized linear model ts of this data set with respect to itself (green curve), and with
respect to the swapped template data set (red curve). (B) Spatial dependence (un-
normalized) of Dpo4 error rate at 800 uM Mn2+ on the swapped template (blue
curve), and generalized linear model ts of this data set with respect to itself (green
curve), and with respect to the original template data set (red curve). (C) Feature
weights for generalized linear model t to Dpo4 original template data. (D) Feature
weights for generalized linear model t to Dpo4 swapped template data. (E) Infor-
mation gain per base as a function of template position, for discrimination between
high (800 uM) and low (75 uM) Mn2+ by Dpo4. (F) Information gain per base as a
function of template position, for discrimination between high (7000 uM) and low
(1000 uM) Mg2+ by Dpo4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
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4.8 Comparisonof alignment-based (main text) and slidingwindow-based (SI text) anal-
yses of the spatial distribution of Dpo4 (A) and Klenow exo- (B) misincorporation
rates at varying Mn2+ (lef ) and Mg2+ (right) concentrations. . . . . . . . . . . . . 135

4.9 Additional sequencing results on ion dependent polymerase delity. A) pH de-
pendence of Dpo4 misincorporation rate (experimental data from Daniel Martin-
Alarcon, analysis joint with Brad Zamf ). B) Template position dependence of the
misincorporation rate of Dpo4 in several pH bu fers, con rming the basic pattern
observed in735 (experimental data from Daniel Martin-Alarcon). C) Example se-
quencing read from misincorporation studies on polymerase Iota, which exhibits
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4.10 Fluidics and surface chemistry for molecular recording device prototyping. A) Mi-
cro uidic system constructed for testing time-dependent molecular recording reac-
tion in-vitro. The DNA template is immobilized to a glass slide via amine-epoxy
chemistry and reactions are conducted inside a PDMS ow cell, which is sealed to
the slidewith a laser-cut acrylic clamp. An automated valve system (controlled via an
Arduinomicrocontroller)was constructed to facilitate research into time-dependent
recording reactions. B) Scheme for surface-based primer extension, extraction of the
product strand from the surface, and preparation for sequencing. C) Denaturing
PAGE gel of products extracted from aDpo4 surface-immobilized primer extension
reaction, with varying extension times from 1 minute to 10 minutes. D) Agarose gel
of products extracted from a phi29 surface-immobilized rolling circle ampli cation
reaction, with and without template circularization by CircLigase. E) Updated de-
sign of a mechanical clamp for adhering PDMS uidic channels to an epoxy coated,
DNA functionalized glass slide. The bottom of the clamp is machined from alu-
minumto ensure good thermal conductivity during the heat denaturation step, used
to extract the synthesized DNA from the surface. F) Updated design of the channel
with a large surface area and a third input line for wash bu fer. . . . . . . . . . . . 145

4.11 Preliminary results formanual bu fer exchangeswithDpo4onaBSA/SDS-passivated
epoxy surface linked to the template DNA. DNA product was extracted and se-
quenced, and misincorporation rate was calculated as a function of template po-
sition. Two separate wells with surface-immobilized DNA template were subjected
to the same series of bu fer exchanges and the standard error of the mean misincor-
poration rate was used to generate error bars at each template position. . . . . . . 146

5.1 EM connectomics tools: A) Serial block face SEM (SBEM) images the top face of
a pre-stained tissue block, then removes the imaged face with a diamond knife, re-
vealing the next layer. B) Focused ion beam SEM (FIB SEM) operates on a similar
principle, but removes tissue layers by ablation with a focused beam of ions. This
enables thinner sections and higher electron doses compared to SBEM, but the nite
depth of focus of the ion beam limits the size of individual blocks. C) Automated
tape collecting ultramicrotomy SEM (ATUM) sections tissue with a diamond knife
and places the sections on a solid support, before loading samples into the electron
microscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.2 Reading out neuronal connectivity via bulk sequencing: cell-identifying nucleic acid
barcodes from synaptically-neighboring cells are physically linked (e.g., via viral ex-
change and recombinase activity734 or other methods 340), and extracted from the
neural tissue. The linked barcodes are then sequenced on a high-throughput DNA
sequencer, such that each sequencing read corresponds to a barcode pair from a
synaptically-connected pair of neurons. . . . . . . . . . . . . . . . . . . . . . . . 168
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5.3 Optical resolution requirements for resolving nearest-neighbor synapses. The frac-
tion of non-resolved synapses as a function of isotropic resolution for PSD labeling
(green) and whole-compartment labeling (red), based on the dataset and analysis
from466. A pair of synapses is considered unresolved here if and only if they contain
labeled points separated by less than the isotropic resolution. . . . . . . . . . . . 175

6.1 A uorescent in-situ sequencing strategy for connectomics: cell-identifying nucleic
acid barcodes are targeted to the pre-synaptic and post-synaptic membranes, where
their sequences are read by FISSEQ in a high-resolution optical microscope. Re-
solving synapses from their neighbors, and distinguishing pre-synaptic from post-
synaptic barcodes at a given synapse, requires strategies for sub-di fraction optical
imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.2 Resolution Enhancement Strategies for FISSEQ BOINC: super-resolution, molec-
ular strati cation, thin sectioning, and informatic deconvolution from a knownbar-
code pool. These techniques can be applied alone or in combination to improve the
resolvability of nearest-neighbor synapses, and/or of barcodes on opposing sides of
the synaptic clef . Super-resolution microscopes overcome the traditional di frac-
tion limited resolution limit (λ/2NA) via a variety of methods, such as patterned il-
lumination, nonlinear optical e fects, or stochastic single-molecule blinking. Molec-
ular strati cation initiates FISSEQof only a (randomor pre-programmed) subset of
molecular barcodes in each imaging frame, e.g., activating only pre-synaptic or only
post-synaptic barcodes. Thin sectioning (physical or optical) allows enhanced lateral
resolution in a 2D plane by eliminating overlaps in the third dimension. Informatic
deconvolution decodes mixed FISSEQ signals from a combination of distinct bar-
codes within a single resolution voxel, by relying on prior knowledge of the pool of
individual barcodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.3 Scaling properties of informatic deconvolution from a known barcode pool. Sim-
ulated barcode pools were generated randomly from an equal mixture of A, T, C
and G (with a check to ensure uniqueness within the pool) and the probability of
ambiguous informatic deconvolution was evaluated as a function of the barcode
length N and barcode pool size n. Solid lines: simulations. Dotted lines: the model
log2(Pambiguous) = 2 × log2(n) + (log2(1.75)− 4)× N − 1. . . . . . . . . . . . 208

7.1 In-vivo arbitrary-sequence ssDNAproduction. A) Strategy for producing arbitrary-
sequence circular ssDNA from a dsDNA parent plasmid. The inset shows a probe-
labeled agarose gel demonstrating ssDNA production (using a single origin rather
than a split origin-terminator system) in the presence of gII protein but not in its
absence. B) Structural and sequence motifs in the lamentous phage origin of repli-
cation, which are used to construct start and stop signals for ssDNA production. . 215
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7.2 Antibiotic selectionwas used tomeasure replication froman f1 origin–whichoccurs
via a single stranded intermediate – in the presence of varying levels of gII protein,
supplied from a separate plasmid. Production of GII from a comparatively low-
strength RBS andmedium-copy expression plasmid led to optimal ssDNA produc-
tion. Only under these “optimized” expression conditions did we measure signi -
cant and robust ssDNA production through the hybridization probe assay. . . . . 216

7.3 Layout of the UK-civMAGE-3 plasmid used for testing in-vivo ssDNA production
driven by gII protein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.4 Potential applications of in-vivo arbitrary-sequence ssDNA production. . . . . . . 217
7.5 Design scheme for continuous multiplex genome engineering, showing a proposed

CRISPR-based ssDNA cutting mechanism. We have since found that this cutting
mechanism does not appear to work as intended, and alternatives are being pursued. 218
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...the space systems community taught me a way of thinking that harn sed cre-

ative v ion to physical, quantitative re oning, in order to explore what could

be achieved in new domains of engineering... Satellite launchers and moon-

ships grew out of quantifiable engineering v ions: system-level concepts that

could be sketched, s sed, and d carded at a rapid pace, evolving through a

kind of Darwinian competition. The b t concepts would win the r ourc of

time and attention needed to fill in more details, to optimize d igns, to apply

closer analys , and a er th refinement and t ting, to compete again. The

prize at the end would be a d ign refined into fully detailed specifications,

then metal cut on a factory floor, then a pillar of fire r ing into the sky bearing

a v ion made real...

K. Eric Drexler 169 1
Introduction

T of biological interfacing technologies in light

of a need for radical improvements in scalability. It focuses primarily on large-scale structural and

functional neural data acquisition, but also extends to other problems including genomic editing and

nanoscale spatial control. Its unifying aspiration is to derive scalable technology architectures from

rst principles, irrespective of current practice.
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Technology architecting: The e forts described here of en take the form of cross-disciplinary “road-

mapping”, i.e., systematic identi cation of the constraints shaping a range of alternative pathways to-

wards scalability. This in turn gives rise to proposals for technologies quite distinct from those used

today, in acute sub-scale. For example, techniques practical for recording the activities 100-1000 neu-

ronsmay need to be abandoned in the design of systems scalable to 100-1000million neurons. Because

of the complexity of biological science and its strati cation into specialized experimental sub- elds

driven by the constant production of concrete scienti c results, we reasoned that cross-disciplinary ar-

chitecting of long-term technology strategies may be under-explored relative to its potential payo fs.

Anticipated outcomes: While the early-stage concepts developed here are not yet fully validated ex-

perimentally, we hope that these analyses and prototype experiments can serve to re-orient aspects of

research towards newplatformswhose bene tswill outweigh the costs and risks associatedwith “start-

ing from scratch”. The best-case outcome is the initiation of pro table new research directions and

systematic development projects; the worst-case outcome is a renewed appreciation of the challenges

of interfacing with biological complexity at scale.

From architectures to teams and projects: Re ecting the focus on initiating new experimental di-

rections, we have catalyzed the formation of multi-disciplinary teams. These teams have applied for

collaborative research grants (each spanning≥ 3 institutions) – onmolecular signal recording, in-situ

readout of neuronal connectivity barcodes, and vascular delivery of neural recording and stimulation

devices – which are based in part on the ideas explored here.

In Chapter 2, an essay co-written with Gary Marcus and Tom Dean, we begin with a high-level

discussion of the assumptions underlying the extant approaches to reverse engineering the computa-

tional architecture of the neocortex. We highlight a scienti c strategy based on classifying “mesoscale”

computational elements via their putative origins in distinctmolecularly-speci ed developmental and

plasticity rules. These ideas provide one possible scienti c context for our e forts to design scalable

means of neural data acquisition incorporating rich molecular information.
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In Chapter 3, we study the problem of recording the electrical “spiking” of a signi cant fraction of

theneurons in amammalianbrain. Despitemanyproposals for incremental improvements on existing

neural recording techniques, and despite much recent interest in the problem 21,20, the limiting factors

and governing principles for brain activity mapping have not been systematically described, and there

are fewdetailed technical proposals for cellular-resolution recordingmethodologieswhich could apply

at whole-brain scale. To address this challenge, we mobilized the intellectual e forts of more than

17 collaborators across many disciplines and institutions, asking what it would take to record from

all neurons in a mouse brain at millisecond resolution, based on an analysis from rst principles of

physics and from the known biophysics of the brain434. This analysis has been featured in a number

of subsequent white-papers 144,585,136 and was highlighted in Nature Physics 86.

We structured the analysis around three problems: (1) All neurons must be probed at a su cient

rate, (2) the energy transmitted into the brain must not cause thermal damage and (3) the volume

of instrumentation introduced into the brain must not cause physical damage. We found that all

existing approaches require orders of magnitude improvement in key parameters in order to scale to

whole brain observations. Electrical recording is limited by the lowmultiplexing capacity of electrodes

and their lack of intrinsic spatial resolution, opticalmethods are constrained by the scattering of visible

light in brain tissue,magnetic resonance is hindered by the di fusion and relaxation timescales ofwater

protons, and the implementation of molecular recording is complicated by the stochastic kinetics of

enzymes.

We also studied the physics of powering and communicating with microscale devices embedded in

brain tissue and found that, while radio-frequency electromagnetic data transmission su fers from a

severe power–bandwidth tradeo f, communication via infrared light or ultrasound may allow high

data rates due to the possibility of spatial multiplexing. The use of embedded local recording and

wireless data transmission would only be viable, however, given major improvements to the power

e ciency of microelectronic devices.

3



The purpose of exploring the physical limits of brain activity mapping is to identify sumptions

whose strategic, purposeful violation could create opportuniti for novel solutions. With Brad Zamf ,

MichelMaharbiz andKonradKording, wehave organized a series ofmeetings among researchers from

several elds, in order to architect solutions to the problem of scalable neural recording. This has led

to several theoretical proposals which are now being actively vetted at a preliminary design stage. One

of these, sensor multiplexing via ber-optic re ectometry, is brie y described in a supplemental note

to Chapter 3.

In Chapter 4, we report preliminary experimental steps toward a novel platform for massively par-

allel neural recording 123,373,735,227: molecular recording devices, also known as molecular ticker-tapes.

We reasoned that the ideal recording device would be a nanoscale machine capable of quantitatively

transducing a wide range of variables into a molecular recording medium suitable for long-term stor-

age and facile readout in the form of digital data. In one potential implementation of such a device,

cation concentrations would modulate the misincorporation rate of a DNA polymerase (DNAP) on

a known template, allowingDNA sequences to encode information about the local cation concentra-

tion735. This approach is a signi cant conceptual departure from existing methods for physiological

signal recording. We (with collaborators from MIT and Northwestern University) have received a

grant from theNational Institutes ofHealth (NIH), totalingmore than $9million, to further explore

this idea, based on our preliminary data.

We (with Brad Zamf and others) published the rst experimental paper in themolecular recording

eld735. It describes the development of a high-throughput screeningmethodology for ion-dependent

molecular recording devices, leveraging massively parallel DNA sequencing technology. We quan-

ti ed the cation sensitivity of DNAP misincorporation rates using a sequencing machine, making

possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep

sequencing, we quanti ed the misincorporation properties of two DNA polymerases – Dpo4 and

Klenowexo-–obtaining theprobability andbase selectivity ofmisincorporation at all positionswithin
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the template. We found that Dpo4 acts as a DNA recording device for Manganese with a misincor-

poration rate gain of 2 /mM. Modulation of misincorporation rate is selective to the template base:

the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested,

while the other template bases are a fected less strongly. Furthermore, cation concentrations act as

scaling factors for misincorporation: on a given template base, Manganese and Magnesium change

the overall misincorporation rate but do not alter the relative frequencies of incoming misincorpo-

rated nucleotides.

In work led by JoshGlaser 227, we also published the rst theoretical paper on themolecular record-

ing device concept. This paper establishes limits on the temporal resolution of recording that arise

frommolecular stochasticity, andderives theneed formolecular clockingmechanisms to achieve single-

spike resolution. A brief summary of this theoretical analysis is included in Chapter 3.

In Chapter 5, we analyze the design space for large-scale cellular-resolution mapping of synaptic

connectivity (“connectomics”) by evaluating the economic and scaling constraints on all previously

proposed cellular-resolution connectomics architectures433. We discuss technology options that could

potentially reduce the costs of neural connectivity mapping by orders of magnitude compared to the

standard electron microscopy methods.

In Chapter 6, we describe a proposed strategy, termed FISSEQ-BOINC, for the simultaneous read-

out from a single brain of multiple distinct structural and functional signatures including transcrip-

tome, connectome, cell lineage and activity history – i.e., for the construction of a Rosetta Brain read-

out as de ned in 122. This strategy leverages the recently developed technology of uorescent in-situ

sequencing (FISSE ) 396 in an optical microscope as the primary mode of information-extraction,

coupled with the use of cell-identifying DNA barcodes as proposed by Zador734,532 and earlier au-

thors 239,685.

Speci cally, we derive strategies, based on optical microscopy and in-situ DNA sequencing, that

could lead to at least a 10× – 100× cost reduction for whole-mouse-brain structural connectomics,
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relative to the existing electron microscopy approaches, while also providing a natural route to inte-

gration with diverse molecular annotations. E forts are now underway in the Church, Boyden and

Zador labs to move towards experimental implementation of these and related ideas, e.g., through

integration of FISSEQ with novel high-speed super-resolution optical microscopies.

In Chapter 7, we describe broader applications of DNA as an “informational substrate”. We (joint

withKevin Esvelt) experimentally demonstrate a simple system for arbitrary-sequence single-stranded

DNA (ssDNA) production inside the E. coli bacterium, a tool whichmay nd application in genome

engineering and in the development of molecular recording devices optimized for slow timescales

(rather than the fast timescales characteristic of neural spiking).

In addition, we study the problem of constructing integrated bio-molecular nano-assemblies, in

which diverse functional elements are arranged in programmable patterns. We (joint with Robert

Barish) report initial experimental investigations into a novel scheme for chip-scale bio-molecular

fabrication (i.e., “nanometer-to-centimeter” or “nm2cm” integration) via top-down organization of

self-assembled DNA nanorods on custom DNA micro-arrays via hybridization. Using structural

DNA nanotechnology, we (joint with Mingjie Dai and Ralf Jungmann) also demonstrate a system

to “stretch out” a single DNA double-helix or ssDNA strand of arbitrary sequence and to display it

for high-resolution microscopy.

Chapter 8 is a brief addendum describing an experiment in biological interfacing at the human

scale.

1.1 C -

Collaboration was essential to all of the work described here, and I am pleased to acknowledge the

following co-authors and our associated joint publications:

• A modi ed version of Chapter 2 will appear as: Marcus, Marblestone and Dean. Computa-
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tional Diversity and the M oscale Organization of the Neocortex: A Hypoth Inspired by

Digital Circuit D ign. Submitted. (2014).

We thank Rafa Yuste, Xiao-Jing Wang, Rick Granger, Blaise Aguera y Arcas, Nuno de Costa,

Clay Reid, Ed Lein, Stefan Mihalas, and Amy Bernard, for helpful discussions, Jennifer Gold-

man,DavidHeeger, Sebastian Seung, Christof Koch, Chris Eliasmith, SeanHill, RandyGallis-

tel, Konrad Kording, ShawnOlsen, Jeremy Freeman, and Doug Bemis for detailed comments,

and Shawn Olsen, Jennifer Goldman and Ed Boyden for many useful references.

• Chapter 3 appeared as434: Marblestone [co], Zamf [co], Maguire, Shapiro, Cybulski, Glaser,

Amodei, Stranges,Kalhor,Dalrymple, Seo,Alon,Maharbiz, Carmena,Rabaey, Boyden,Church

and Kording. Physical Principl for Scalable Neural Recording. Frontiers in Computational

Neuroscience (2013) and one gure in this chapter is modi ed from Glaser, Zamf [co], Mar-

blestone [co], Mo tt, Tyo, Boyden, Church and Kording. Stat tical Analys of Molecular

Signal Recording. PLoS Computational Biology (2013).

We thank K. Esvelt for helpful discussions on bioluminescent proteins; D. Boysen for help on

the fuel cell calculations; R. Tucker and E. Yablonovitch (http://www.e3s-center.org) for

helpful discussions on the energy e ciency ofCMOS;C.Xu andC. Scha fer for data on optical

attenuation lengths; T. Dean and the participants in his CS379C course at Stanford/Google,

includingChrisUhlik andAkramSadek, for helpful discussions and informative content in the

discussion notes (http://www.stanford.edu/class/cs379c/); and L. Wood, R. Koene,

S. Rezchikov, A. Bansal, J. Lovelock, A. Payne, R. Barish, N. Donoghue, J. Pillow, W. Shih,

P. Yin and J. Hewitt for helpful discussions and feedback on earlier draf s.

• The supplemental note toChapter 3may appear as: Marblestone, Amodei,Wood, Church and

Boyden. Multiplexed Neural Interfacing via Optical Micro-Fibers: Theory. Many of the ideas

in this section were originally suggested by Lowell Wood in response to a draf of434.
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• Chapter 4 appeared as735: Zamf [co],Marblestone [co], Kording, Schmidt, Alarcon,Tyo, Boy-

den andChurch. Me uring Cation Dependent DNA Polymer e Fidelity Landscap by Deep

Sequencing. PLoS ONE (2012).

We thank Zach Herbert at the Dana-Farber Cancer Institute Molecular Biology Core Facility

for providing expert assistance with MiSeq sequencing; Sriram Kosuri for providing barcode

sequences and for helpful discussions; RogerWoodgate for helpful discussions; andA.Michael

Sismour for helpful discussions. We thank Noah Donoghue for assistance with micro- uidic

device design and fabrication andPrashantMali for guidance on automation and surface chem-

istry.

• Chapter 5 appears as433: Marblestone,Daugharthy,Kalhor, Peikon,Kebschull, Shipman,Mishchenko,

Lee, Dalrymple, Zamf , Kording, Boyden, Zador and Church. Conneconomics: The Economics

of Large Scale Neural Connectomics. bioRxiv (2013).

We thank Josh Glaser and Ben Stranges for discussions on barcodes, Todd Hu fman for dis-

cussions on serial sectioning, and Ken Hayworth and Richard Schalek for discussions on EM

automation. Dario Amodei, Juan Batiz-Benet, Ted Cybulski, Tom Dean, Noah Donoghue,

Kevin Esvelt, Russell Hanson and Jason Pipkin for discussions.

• Chapter 6will appear as: Marblestone, Daugharthy, Kalhor, Peikon, Kebschull, Shipman, Lee,

Mishchenko, Kording, Boyden, Zador and Church. Rosetta Brains: Towards Scalable, Anno-

tated Connectom . Many of these individuals contributed important aspects of the proposed

designs, and experimental e forts aimed broadly in these directions are now proceeding across

three labs; my role in this project has been primarily that of a synthesizer of ideas, quantitative

analyst and catalyst of collaborations.

We thankFeiChen, PaulTillberg, IanChoi, GaryMarcus,DarioAmodei, TedCybulski, David

Dalrymple, Tom Dean, Noah Donoghue, Kevin Esvelt and Brad Zamf for discussions.
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• Chapter 7 has not been published. It represents joint work with a number of key people.

The structural DNA nanotechnology experimental work was conducted with Robert Barish,

MingjieDai, Ralf Jungmann, RichardTerry, Frederic Vigneault, Dave Zhang and ShawnDou-

glas, among others.

The nm2cm design is based on a proposal by George Church, created following discussions

with the author and others in early 2010, and re ned through interactions with Robert Barish,

Peng Yin, Rich Terry andWilliam Shih. The nm2cm concept is also described in a 2010 report

of invention by Church and colleagues, on which the description given here is based.

The in-vivowork on ssDNAproduction and continuousMAGEwas done in close partnership

with Kevin Esvelt and led to further collaborations with Alex Chavez.

The design work on slow timescale recorders was also done in collaboration with Kevin Esvelt

and Alex Chavez, inspired by general discussions with Jonathan Gootenberg, Sasha Rayshub-

skiy, George Church and Konrad Kording.

• Chapter 8 represents unpublished joint work with Charles Fracchia.
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With the instruments of the time so weak, there seemed little chance to under-

stand brains, at le t at the microscopic level. So, during those years I began to

imagine another approach. Perhaps we could work the other way; begin with

the large-scale things minds do and try to break those proc s down into

smaller and smaller ingredients... Then, perhaps we could combine what we

learned from both “top down” and “bottom up” points of view - and eventually

close in on the problem from two directions.

Marvin Minsky

2
Computational Diversity and the Mesoscale

Organization of the Cortex

T participates in a wide range of tasks, yet super cially appears to adhere

to a relatively uniform six-layered architecture throughout its extent. For that reason, much research

has been devoted to characterizing a single “canonical” cortical computation 135,164,482, repeated mas-
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sively throughout the cortex 557, with di ferences between areas presumed to arise from their inputs

and outputs rather than from “intrinsic” properties714,163,61. There is as yet no consensus, however,

about what such a canonical computation might be 145, little evidence that uniform systems can cap-

ture abstract and symbolic computation (e.g., language)437,438,440 and little contact between proposals

for a single canonical circuit and complexities such as di ferential gene expression across cortex 397,266,

or the diversity of neurons and synapse types 507.

Here, we evaluate and synthesize diverse evidence for a di ferent way of thinking about neocorti-

cal architecture, which we believe to be more compatible with evolutionary and developmental biol-

ogy435,439,436, as well as with the inherent diversity of cortical functions. In this conception, the cortex

is composed of an array of con gurable computational blocks, each capable of performing a variety of

distinct operations, and possibly evolved through duplication and divergence435,55. The computation

performed by each block depends on its internal con guration. Area-speci c specialization arises as

a function of di fering con gurations of the local logic blocks, area-speci c long-range axonal projec-

tion patterns and area-speci c properties of the input. This view provides a possible framework for

integrating detailed knowledge of cortical microcircuitry with computational characterizations.

According to a classic hypothesis of Mountcastle482, “all parts of the neocortex [might] operate

based on a common principle, with the cortical column being the unit of computation”; along sim-

ilar lines, Creutzfeldt 135 suggested that the “functional role of a circumscribed cortical area depends

exclusively on its position within a certain functional circuit and is de ned by it” rather than on any

intrinsic, between-area di ferences in wiring. Wyss et al714 similarly suggested that “functionally het-

erogeneous cortical areas can be generated by only a few computational principles” with “the variabil-

ity of the input signals [yielding] functional specialization”, a view of en associated with notion of

a “canonical cortical microcircuit” 135,164,218. (Two versions of this hypothesis might be distinguished,

one in which the cortical micro-circuitry itself is taken to be identical or nearly identical across areas,

and a second inwhich a single common learning rule applies throughout the cortex, potentially giving
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rise to di ferent micro-circuits in di ferent areas as a function of input.)

There is, however, as yet no consensus about what the putative commonmicrocircuit, or common

learning rule, might be. Although suggestions have been made for how a single pattern recognition

algorithm could underlie the operations of the various primary sensory areas61, whether the rest of

cortex can be characterized in similar terms remains highly controversial 145; there are also clear limits

on the capacities of such systems to generalize beyond a space of training examples437,438, raising in-

principle concerns about the capacity of currently-popular pattern recognizers to capture language,

planning and other aspects of higher-level cognition.

Although the “uniform micro-circuit” and “uniform learning rule” views remain popular in some

computational circles714,61,218,385, andhave recently been in uential in arti cial intelligence 385, theyhave

arguably lost favor over time within empirical neuroscience461,291,674. Indeed, as discussed below, re-

cent experimental work has of en emphasized the importance of structural and functional diversity in

the brain at all developmental stages and at multiple levels 507,248,201, as well as heterogeneity between

cortical areas 236,490,185,184,720,146. As van Hooser recently674 put it, “the diversity found in cortical ar-

chitecture suggests that there may be no single algorithm for cortical processing.”

Against the background of longstanding “uniformist” vs. “specialist” debates, and in contrast to

accounts under which functional specialization derives principally from di ferences in input 135,714,61,

we argue for a conception of the cortex as a computationally heterogeneous array of con gurable

computational blocks (CCBs), con gured partly on the basis of local molecular cues, rather than

purely as a function of input. Systems of this structure might be taken as loosely analogous to Field-

Programmable Gate Arrays (FPGAs) or other Programmable Logic Devices (PLDs) used in digital

circuit design, which also consist of arrays of con gurable elements, each of which is capable of exe-

cuting a number of distinct functions such as AND, XOR, or more complex functions like addition

or multiplication, depending on its con guration.

The CCB view, which we believe to be consistent with the implicit beliefs of many neuroscien-
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tists674,248,223,104,328,103, though rarely explicitly articulated, o fers a natural account of howneural “wet-

ware” with super cially similar physical and anatomical properties can compute a wide diversity of

functions. Strictly uniform architectures, such as Hierarchical Temporal Memory 218, o fer little pur-

chase on why faculties such as language and vision have such di ferent characters, beyond the true

– but likely inadequate – observation that areas can functionally di ferentiate based on their respec-

tive sensory inputs. On the present account, the basic architecture of the individual blocks is shared

across the entire cortex, but the local logic performed by each block can be individually tuned to spe-

ci c kinds of problems. This approach also ts naturally with the “tinkering”, rather than bespoke

customization, that is typical of evolution by natural selection435,314,610, the general trend of complex

systems to evolve specialized modules at multiple levels of functional organization 564, and the repeat-

with-variation character of much of biology that stems from the adaptive versatility of processes such

as duplication and divergence435,55. It is conceivable for example, that reusable cortical logic blocks

might have descended with modi cation from ancestral central pattern generators732,249.

2.1 H

2.1.1 P

Individual blocks might be instantiated at multiple structural scales. Some might correspond to net-

works of multiple neurons, such as interconnected cell assemblies92,272 or cortical columns482. Perin,

Berger, and Markram 519 have found “synaptic organizing principles” leading to strongly connected

neuronal groups at the scale of 10-100 neurons. It also possible that single neurons could form con g-

urable computational blocks; as Koch and Segev 362 noted, “[the individual neuron] has evolved con-

ceptually from that of a simple integrator of synaptic inputs... to amuchmore sophisticated processor

withmixed analog-digital logic and highly adaptive synaptic elements”. Di ferent logical blocks could

also overlap or be “superposed” physically, toggling between logical states either on-line (e.g., through
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electrical signals or neuromodulation45,44) or o f-line (e.g., through enduring wiring changes).

Even within a single computation, such as divisive normalization, there may be considerable dif-

ferences in biophysical implementation across species and across systems 104; likewise, even within a

single low-level process, such as visual search, more than one computational element may be involved

(e.g., both divisive normalization and quadratic nonlinearity)418,539.

2.1.2 R

In principle, CCBs might be exible enough in their con gurability to compute essentially arbitrary

functions420,719,181,180. Alternatively, CCBs might be relatively restricted – perhaps by the stereotyped

micro-anatomy, connectivity andmolecular composition of the cortex – to a smaller set of operations.

Our default presumption is that individual logical blocks would consist of reusable circuits that stand

in between top-level cognitive processes and the ne-grained anatomical elements, perhaps even indi-

vidual neurons, that perform only small parts of a computation. Blocks might consist, for example,

of circuits that instantiate processes such as variable binding, memory retrieval, copying, and rout-

ing. More elementary operations such asmultiplication, dot product, temporal integration and linear

superposition 180,360 might also be realized in individual blocks. A multi-leveled hierarchy of feature

detectors might consist of a set of blocks that provide for processes such as pooling and normaliza-

tion28. Complex systems that perform language or scene understanding would presumably depend

on a combination of many logic blocks. Figure 2.1 presents some candidate computations that might

plausibly be realized by individual con gurable blocks or by sets of blocks, and potential ways those

computations might be implemented physically and algorithmically. Our commitment here is not to

the speci c, but to the broader strategy that is implied, namely one inwhich the central emphasis is on

cataloguing a heterogeneous set of building blocks that could unify bottom-up considerations from

neurophysiology with candidate computations derived from top-down analysis26,27,438,104,528,446.

Importantly, complex computations such as those involved in language may also rely on tight-knit
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Figure 2.1: A sample (not intended to be comprehensive) of computations that might be associated with cortical blocks,

and their potential “algorithmic” and physical realizations (ref. numbers refer to those in forthcoming ArXiv preprint).
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interactions with brain areas outside the neocortex404,618 such the basal ganglia 141 and hippocam-

pus 141,263. Connections to the cerebellum, basal ganglia and thalamus could contribute to sequen-

tial or recursive processing capabilities, e.g., by underwriting a form of short termmemory that could

support neural implementations of push-down automata or simple registermachines. The prefrontal

cortex / basal ganglia system, for example, has been suggested to implement pointer-like mechanisms

to enable symbol processing and cognitive control 381. Indeed, some theories posit a multi-regional

“global workspace” 138,589 or “dynamically partitionable auto-associative network (DPAAN)” 270 as an

essential enabler of variable binding and symbolic processing.

Some blocksmight bemere quantitative variants of others, with important parameters (e.g., degree

of recurrence689 or sheer size of circuitry (Granger, p.c.), modi ed through the process of duplication

anddivergence. For example, simple cell / complex cellmodulesmay recurwith variation at all levels of

the sensory hierarchies 28. Other blocks might, over evolutionary time, become qualitatively distinct,

perhaps via the emergence of new axonal pathways or local synaptic connectivity and plasticity rules.

It is also possible, of course, that some blocks take on multiple functional roles, e.g., memory and

decision-making might be subserved by variants on a single recurrent circuit689,30.

2.1.3 C

Gross structural di ferences, such as the lack of granular cells in layer 4 of the motor cortex 83 may con-

tribute to important di ferences between block con gurations in di ferent areas, but blocks might be

di ferentially con gured in more subtle ways as well. One possibility, which we will refer to as the

molecularly-speci ed synaptic connectivity hypothesis is that statistically stereotyped geometric tem-

plates (e.g., cortical columns), that are de ned by canonical neuron morphologies and their laminar

placements 282, may be largely invariant across the cortex, but with speci c local synaptic connectivity

ne-tuned by a mixture of plasticity and area-speci c molecularly-guided developmental rules. Such

rules, by hypothesis, would guide the “last mile” of neural wiring in di ferent blocks, by, for example,
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directing the local formation, removal or change in size of synapses “on top” of otherwise stereotyped

arborization. For instance, layer 5 pyramidal cells with molecular tag α might seek a speci c molecular

cue α′ in a transiently connected cell to drive synapse growth or pruning, whereas layer 5 pyramidal

cells with molecular tag β might adjust synaptic weights with their neighbors via Hebbian plasticity

mechanisms. This molecularly de ned heterogeneity could allow di ferent circuit con gurations to

emerge from circuitry that super cially appears, without knowledge of the detailed local connectivity,

to be stereotyped.

More generally, at least two classes of biological mechanism could assign computational con gu-

rations to CCBs. First, genetically guided processes of developmental biology, such as cell division,

cell migration and axon guidance could di ferentially shape local circuitry. Such processes can be ex-

tremely precise. For example, families of molecules exhibiting combinatorial molecular recognition,

such as cadherins 299,383 or the many RNA splice isoforms of Dscam in the y 264, may endow neurons

with locally unique “identity tags” to constrain their connectivity. Conjunctions of axon-guidance

gradients and competition between axons can also yield highly precise structures, such as topographic

maps660,611. Biologically plausible developmental rules could also generate certain types of precise con-

nectivity, such as perfectly reciprocal connections between areas, by “sharpening” connections 130. At

the same time, single neurons canmake di ferent types of synapses on di ferent types of target cells637,

new connections between neurons can form in amanner dependent on the nature of the existing con-

nections728, and the formation of electrical connections can be in uenced by the molecular pro les

of the participating neurons 214. It is even possible that the molecules of the extracellular matrix shape

synaptic connectivity and provide a substrate for long-term memory664.

Second, activity-dependent changes in synaptic connectivity or strength could lead to internal re-

con gurations of the logic blocks and hence modify their computational functions in response to

input. Combinations of spike-timing-dependentHebbian plasticity and heterosynaptic competition,

for example, could contribute to the sculpting of connectivity underlying precise sequencing of neural
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activity 197. Importantly, both the resulting block con gurations (microcircuits) and also the mecha-

nisms of their con guration (e.g., learning rules) may di fer across areas, due to heterogeneity at the

molecular level.

Crucially, synaptic plasticity can lead to qualitative changes in the functions of circuits, not just

quantitative tuning of parameters. In cultured cells, molecular changes at one synaptic connection can

be communicated to other parts of the cell 202 and changes in the expression of ion pumps at synapses

can lead not only to changes in synapse strength, but also to inversions in the “sign” (excitatory vs.

inhibitory) of a synaptic connection712. Synapses can even change which neurotransmitter they use

for signaling, in response to experience 175. Developmentally, activity may even be able to transform

one type of cell (e.g., pyramidal) into another (e.g., stellate)98.

Computational recon guration could also occur on shorter timescales. Molecularmodulators such

as dopamine could serve to activate or recruit distinct sub-circuits within a xed anatomy 45,44,230, thus

toggling between di ferent input-output mappings. Similarly, di ferent states of dynamical activity in

a sub-population of neurons (e.g., di ferent limit cycle oscillations in recurrent networks732) could

change the input-output function of a block 125,87,200. “Gating” mechanisms at the level of electrical

activity might also vary the functional connectivity between blocks.

2.2 E

Although it is not yet technologically feasible to fully resolve the longstanding debates over the fun-

damental building blocks of cortical circuitry, a number of considerations point to the possibility of

important cortical heterogeneity that could underlie both qualitative and quantitative di ferences be-

tween CCBs as well as the learning rules which give rise to those di ferences.

At a coarse level, there are several well-known cytoarchitectonic di ferences such as the agranularity

of motor cortex layer 4, and a rostral-caudal gradient in supra-granular (II IV) layer neuron numbers
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per unit of cortical surface115. Likewise the distribution of di ferent types of interneurons can dif-

fer sharply between areas: in V1, PV-containing interneurons (including fast-spiking basket cells) are

prevalent ( 75 ) relative to (CB- and CR-containing) interneurons, whereas in the prefrontal cortex

CR-containing neurons (about 45 ) outnumber both PV and CB-containing interneurons689. Like-

wise, canonical structural features such as ocular dominance columns appear in some places of cortex

but not in most others, and are present in some closely-related species but not in others 291.

Local microcircuitry also di fers between cortical areas. For example, motor cortex is dominated by

“top-down” layer 2 to layer 5 local connections699, while primary sensory areas have prominent “as-

cending” local connections L4 to L2/L3 and L5 to L2601. Synaptic connectivity and synaptic proper-

ties di fer between frontal cortex and primary visual cortex. The probability of recurrent connections

between neurons in frontal cortex is substantially higher than in the primary sensory cortex689. Pyra-

midal cells in prefrontal cortex have, on average, up to 23 timesmore dendritic spines than those in the

primary visual areas 185 and cells in visual association areas are larger and havemore spines than those in

primary visual areas 184. Whereas most excitatory cortical synapses exhibit short-term synaptic depres-

sion, some excitatory synapses in the frontal cortex exhibit short-term synaptic facilitation, perhaps

contributing to the generation of sustained activity that is characteristic of prefrontal processing690.

Recent work suggests there can also be important microcircuit-level di ferences within an area, such

as a 2.5 fold di ference in the number of neurons per cortical barrel column from dorsal to ventral in

rodent S1461.

At a ner-grained level, several recent observations seem consistent with a molecularly-speci ed

synaptic connectivity hypothesis. First, molecular properties of cells with the samemorphological cell

type can di fer even within a single cortical layer 346, making it possible in principle that local synaptic

connectivity might be mediated not just by activity-driven plasticity732 but also by di ferent molecu-

larly de ned cell sub-types of the traditionally recognized, chemo-morphologically de ned cell types.

Second, there is evidence that some neuronal morphologies and placementsmay have evolved such
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that they are consistent with many potential patterns of synaptic connectivity 330.

Third, there are small but statistically reliable di ferences between gene expression in di ferent areas

of the cortex such that “the spatial topography of the neocortex is strongly re ected in its molecular

topography-the closer two cortical regions, the more similar their transcriptomes” 266 – allowing the

possibility, in principle, for di ferent cortical areas to wire in di ferent ways, perhaps prior to experi-

ence, so that some such di ferences emerge early in development. Data from the Allen Mouse Atlas

shows that speci c genetic markers, such as RAR-related orphan receptor beta, potassium voltage-

gated channel, subfamily H (eag-related) member 7, ephrin A5, and activity regulated cytoskeletal-

associated protein (Arc) are expressed at markedly higher levels in primary sensory areas (V1, S1, and

A1) than elsewhere in the cortex (Stefan Mihalas, personal communication). Stansberg et al626 re-

view 65 genes, mainly participating in signal transduction, that are enriched in speci c cortical regions.

Other recentwork points to selective gene expression in primates718 and humans 266. At the same time,

recent studies of DNA copy number variants in single neurons 240 and retrotransposons 38,189 suggest

other molecular mechanisms that could potentially contribute to the con guration of computational

blocks. Slight molecular di ferences, such as the alternative splicing of GPR56, may have profound

consequences in human development and evolution, by selectively altering stem cell proliferation and

gyral patterning in the vicinity of Broca’s area 36.

Fourth, there are important functional di ferences between areas that may, in the nal analysis, not

be attributable to activity alone, but rather to prewired di ferences in the con guration of individual

blocks; neural activity in frontal areas, for example, tend to be less immediately stimulus-driven and

more persistent than primary sensory areas689; at the same time, primary sensory areas di fer signi -

cantly from one another in their sensitivity to brief temporal o fsets721.

Fif h, recent investigations ofmouse primary somatosensory cortex620 combining in situ hybridiza-

tion data mining, marker gene co-localization, and retrograde tracing suggest that particular subsets

of cell types, such as subsets of layer 5 pyramidal cells, project di ferently to distal targets – in a fashion
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that is systematically governed by a molecular, combinatorial code. (Whether such a combinatorial

code applies at the local microcircuit level remains unknown.)

Sixth, speci cmolecular cues can, at least in some instances, be used to reprogram circuit connectiv-

ity, even in post mitotic cortical neurons. De le Rossa et al 143 for instance showed that “the molecular

identity, morphology, physiology and functional input-output connectivity of layer 4 mouse spiny

neurons could be speci cally reprogrammed during the rst postnatal week by ectopic expression of

the layer 5B output neuron- speci c transcription factor Fezf2”. As noted above, sensory input can

also lead to important resculpting98, and there is considerable evidence that endogenously-generated

waves can drive local ne-tuning, at least in primary sensory areas 353, even before the onset of vision 11.

Finally, recent evidence suggests that genes such as SAM68 302 can govern the activity-dependent

alternative splicing of neurexin molecules659 that play important functions in the formation, mat-

uration, and maintenance of synapses. The state of pre-synaptic neurexin splicing can even in u-

ence post-synaptic receptor tra cking 29, potentially allowing for a con gurational code that could

integrate intrinsic and extrinsic cues; crucially, such neurexins are represented di ferentially across the

brain, and across developmental stages 302. Neurexins also interactwith neuroexophilin ligands, which

are di ferentially expressed in sub-populations of synapses74, to in uence synaptic function.

Collectively, this evidence makes it plausible that di ferent areas of cortex might be wired in impor-

tantly di ferent ways, despite a shared six-layered substrate, potentially supporting a broad array of

computationally distinct blocks and block con gurations.

2.3 R M

Many strategies for reverse engineering neural computation have been suggested, ranging fromwhole

brain cellular-resolution functional imaging and large-scale data analysis 21, to whole-brain biophys-

ically realistic simulation using models extrapolated from diverse datasets443,312, to intensive studies
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of a single system 361 (e.g., visual cortex). The present viewpoint points to a complementary strategy

(Figure ??): leveraging emerging possibilities for co-registering734,396,532 molecular data 532,396, connec-

tomics734,586 and activitymapping 21,298,262,16, with the speci c goal of creating a taxonomyofmesoscale

computational elements and a characterization of hownetworks are di ferentially con gured between

cortical areas.

In principle, one could then seek a phylogenetic reconstruction of how distinct logic blocks (e.g.,

hierarchical pattern recognizers versus circuits that bind variables or those that orchestrate sequences

of operations) arose over the course of evolution, perhaps descending withmodi cation from precur-

sors such as central pattern generators 250. Using computational modeling, one might explore both

quantitative change689 (e.g., in tunable analog parameters such as strength or breadth of connectiv-

ity) and qualitative changes (e.g., in the development of new rules of synaptic modi cation, or in the

introduction or loss of cell-type-speci c short-range or long-range connections). For example, Kouh

and Poggio have explored a biologically plausible circuit which generates diverse types of nonlinearity

– including energy models, divisive normalization, gaussian-like operations and max-like operations

– depending on its parameter tunings 378.

The CCB viewpoint also suggests an approach tomodeling that contrasts with large-scale biophys-

ically realistic simulations such as Blue Brain442. In the roadmap suggested here, cortical logic blocks

would be identi ed and their computational functions would be abstracted. Then, the pattern of in-

terconnections between logic blocks, at a scale above that of individual neuronal connections, would

be determined. At this point, amesoscale abstract simulation could be constructed. Rather thanmov-

ing from neurons and networks directly to behavior, abstract computational building blocks could

be identi ed at an intermediate scale438,103,528 and associated with corresponding anatomical or phys-

iological structures 103 to comprehensively map block-block connectivity, attributing computational

functions to each block-block interaction. In e fect, this could proceed in twodirections, both upward

from connectomics, cell typemapping and neural circuitmodeling, and downwards frommodels that
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aim to integrate functional anatomy with a diversity of cognitive representations 182,635.

2.4 D

2.4.1 S

One of the most commonly cited sources of evidence in favor of putative cortical uniformity comes a

classic series of experiments by Sur and collaborators 558,597,429, based on earlier work by Frost 210,211, in

which visual inputs to primary visual cortex (V1) were rerouted to the primary auditory cortex (A1),

which in turn was shown to be capable of processing visual stimuli. While these studies are of en

taken to imply a “uniform” cortical substrate, several caveats are in order435. First, such results have

only been demonstrated within primary sensory cortices, which might plausibly share a (somewhat)

uniform pattern recognition architecture, whereas other areas (e.g., in frontal cortex) that are likely

highly diverged from suchpattern recognizers. Second, the “rewired” auditory cortex still retains some

of its intrinsic properties429 and the resulting “visual” system is not without defects. Visual input

leads only to a partial re-structuring of A1 at an anatomical level 597. Third, the areas were not (contra

to a widespread characterization) directly “rewired”; rather intrinsic axon guidance mechanisms used

in development were harnessed to guide rewiring, in part relying on molecular cues shared between

visual and auditory areas, but which might not be equally e fective if visual input were induced to

connect to, e.g., prefrontal cortex435. In the subsequent decade, there appears not to have been any

published report of successful attempts to reroute visual inputs to other areas that seemmore di ferent

(e.g., prefrontal cortex), indirect evidence that cortical “interchangeability” may be far from general.

2.4.2 R

While other authors have emphasized the importance of cataloging a basic inventory of the brain’s

computational primitives438,103,245, the notion of construing the cortex as a heterogenous array of con-
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Mesoscale Computational Theories:

Taxonomy and Phylogeny of CCBs Across Areas and Species
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Figure 2.2: Strategy for constructing and validating integrative cortical theories, incorporating a taxonomy of distinct

operations across areas. Amesoscale computational theory is an abstract specification of a set of configurable compu-

tational blocks, articulating an inventory of computational functions, andmapping these operations to specific cortical

areas and neural implementations, as well as delineating the interactions between blocks. Amicroscale biological theory

specifies the realization of these operations in neural wetware, including the biomolecular and input-driven determi-

nants of CCB configurations. Simulations of themesoscale computational theory predict the statistics of connection

weights, tuning curves, population activity patterns and other variables as a function of cortical area. In turn, these sig-

natures are empirically measurable through connectomic or activity mapping. Themicroscale biological theory also

generates area-specific predictions about detailed structures measurable via molecular and cell typemapping. Co-

registration of molecular, connectomic and activity mapping thus jointly constrains the nature of the CCBs and their

configurationmechanisms, across many levels of description and as a function of cortical area.

24



gurable computational blocks has been given little explicit attention in the literature. Unpublished

work by Rafael Yuste (personal communication) raised an analogy between brains and FPGA’s in a

di ferent way, focusing primarily on their dense interconnectivity 200. Douglas andMartin 162 describe

a cortical microcircuit that might be taken to be similar to an uncon gured block, though they do not

describe it in these terms, and do not emphasize the potential computational di ferences between dif-

ferently con gured blocks.

Several theories61,218,28,529 aim to give a general account of a broad range of hierarchical sensory

computations. For example Anselmi et al 28 o fer a principled account of how rapid computation of

transformation-invariant signatures of new inputs by the ventral visual stream could underlie recog-

nition or category learning from small numbers of examples; it is unclear, however, whether these or

similar mathematical principles would generalize beyond the sensory hierarchies, to other areas of the

cortex (e.g., prefrontal) and aspects of cognition (e.g., language understanding).

Maass419 studied the computational versatility of sof winner-take-all or sof -MAX operations,

which were suggested by Douglas and Martin to be central to the operation of the putative canon-

ical cortical microcircuit 162 and which also feature heavily in a variety of other models 553,546,497. Re-

cent work suggests that spike-timing dependent plasticity on top of a sof -MAX circuit structure can

give rise to computations approximating simple Bayesian inference491 as well as hiddenMarkovmod-

els 334,131. Kouh and Poggio 378 have also suggested tunable circuits that approximate MAX-like opera-

tions for some parameter values but generalize to other nonlinear operations under di ferent param-

eters.

“Liquid statemachines” are tunable computational elements that are consistentwith random inter-

nal wiring, and it has been suggested that this framework may provide a canonical, but highly con g-

urable, corticalmicrocircuitmodel 597. The basic idea is to exploit a randomlywired recurrent network

of nonlinear elements, which will generate a rich internal repertoire of nonlinear functions. A subset

of these elements is chosen and their outputs run through tunable linear decoders. Merely by tuning
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theweights of the linear decoders, one can synthesize awide range of computations on spatiotemporal

input streams. These networks can be trained to perform multiple distinct functions simultaneously

usingHebbian plasticitymodulated by a simple global reward signal 285, suggesting the possibility that

some computational logic blocks could be con gured through reinforcement learning (though oth-

ers may be prewired through the use of molecular cues). Nonetheless, their correspondence with real

brain circuitry and with higher-level cognitive architectures remains uncertain.

The semantic pointer architecture uni ed network (SPAUN) system 182 is a single spiking neural

network model which generates diverse functions and exibly integrates these functions in a manner

suggestive of the exibility of primate cognition. SPAUN combines serial working memory (via a

recurrent attractor neural networkwith a family of xed points corresponding to stored values612), re-

inforcement learning, action selection632, symbol manipulation via vector symbolic architectures633,

motor control 154, image recognition and various forms of pattern completion, and arguably comes

closest, among existing models, towards attempting to provide an integrated mesoscale theory of cor-

tical organization. SPAUN models visual cortex as a hierarchy of feature detectors (restricted Boltz-

mann machines), and prefrontal cortex as a separate working memory system based on neural inte-

grators and convolutionmemories421. All these systems are implemented in spiking neurons through

a common mathematical framework, the NEF, for representation and transformation of variables in

neuronal populations. In principle, neural populations implementing functions via the NEF could

provide a substrate for con gurable computational blocks.

TheHyperNEAT architecture 216 is not explicitly concerned with constructing con gurable sets of

basic instructions, but it provides a natural substrate for building structures that repeat with varia-

tion 554.

In short, the notion of using a taxonomy of con gurable computation blocks for bridging between

computational and neural descriptions has not been a core focus of theoretical and computational

modeling e forts in neuroscience.
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2.5 R

Historically, within the space of possible cortical models – from von Neumann architectures, to the

Turing universality of networks of McCulloch and Pitts neurons, to random interconnectivity, to

massively repeated canonical computational modules, to a uniform substrate shaped by one or many

learning rules – comparatively little attention has been paid, in theoretical and computational neuro-

science, to architectures that incorporate a rich set of basic instructions (as opposed to only one or a few

“canonical” operations) via partially stereotyped yet systematically diversi ed neural structures. Such

architectures are a natural choice given our knowledge of the brain’s development and function, and

they provide a conceptual framework for generating hypotheses about how diverse neural structures

and activities relate to elementary computational functions implemented by the brain.

In the long run, the notion of con gurable logic blocks might also help to make sense of human

“uniqueness”, to the extent that the repertoire of CCB con gurations might di fer across species. For

example, even if most mammals manage with a limited form of cortical computation based only on

motifs like pattern recognition andworkingmemory, primates and humansmight further re-purpose

elements such as the cortical column, potentially providing for the capacity to concatenate arbitrary

symbols438 or represent recursive structures658,265. Future workmight allow the comparison of inven-

tories of CCBs across species.

Intriguingly, recent transcriptome analyses 266,369 show that the human frontal areas are marked by

“a predominance of genes di ferentially expressed within human frontal lobe and a striking increase

in transcriptional complexity speci c to the human lineage in the frontal lobe” – exactly as one might

expect if some new computational block con guration had recently evolved.
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To understand in depth what going on in a brain, we

need tools that can fit inside or between neurons and trans-

mit reports of neural events to receivers outside. We need

observing instruments that are local, nond tructive and

noninv ive, with rapid r ponse, high band-width and

high spatial r olution... There no law of physics that

declar such an observational tool to be impossible.

Freeman Dyson

3
Physical Principles for Scalable Neural

Recording

N the electrical activities of neurons within functioning

brains 21,43,219 and has advanced through steady improvements in the underlying observational tools.

The number of neurons simultaneously recorded using wired electrodes, for example, has doubled
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every seven years since the 1950s, currently allowing electrical observation of hundreds of neurons at

sub-millisecond timescales630. Recording techniques have also diversi ed: activity-dependent optical

signals from neurons endowed with uorescent indicators can be measured by photodetectors, and

radio-frequency emissions from excited nuclear spins allow the construction of magnetic resonance

images modulated by activity-dependent contrast mechanisms. Ideas for alternative methods have

been proposed, including the direct recording of neural activities into information-bearing biopoly-

mers735,227,373.

Eachmodality of neural recording has characteristic advantages and disadvantages. Multi-electrode

arrays enable the recording of ∼ 250 neurons at sub-millisecond temporal resolutions. Optical mi-

croscopy can currently record∼ 100 000 neurons at a 1.25 s timescale in behaving larval zebra sh using

light-sheet illumination 17, or hundreds to thousands of neurons at a ∼ 100ms timescale in behaving

mice using a 1-photon ber scope739. Magnetic resonance imaging (MRI) allows non-invasive whole

brain recordings at a 1 s timescale, but is far from single neuron spatial resolution, in part due to the

use of hemodynamic contrast. Finally, molecular recording devices have been proposed for scalable

physiological signal recording but have not yet been demonstrated in neurons735,227,373.

Figure 3.1 illustrates the recording modalities studied here. While further development of these

methods promises to be a crucial driver for future neuroscience research 332, their fundamental scal-

ing limits are not immediately obvious. Furthermore, inventing new technologies for scalable neural

recording requires a quantitative understanding of the engineering problems that such technologies

must solve, a landscape of constraints which should inform design decisions.

Our analysis is predicated on assumptions that enable us to estimate scaling limits. These include

assumptions about basic properties of the brain, which are treated in section 3.1 (Basic Constraints),

as well as those pertaining to the required measurement resolution and the limits to which a neural

recording method may perturb brain tissue, which are treated in section 3.2 (Challenges for Brain

Activity Mapping). Together, these considerations form the basis for our estimates of the prospects
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Figure 3.1: Four generalized neural recordingmodalities. (a) Extracellular electrical recording probes the voltage due to

nearby neurons. (b)Optical microscopy detects light emission from activity-dependent indicators. (c)Magnetic resonance

imaging detects radio-frequencymagnetic induction signals from aqueous protons, after weak thermal alignment of the

proton spins by a static magnetic field. Activity-dependent contrast agents are necessary to transduce neural activity

into anMRI readout, whereas current functionalMRImethods rely on blood oxygenation signals which cannot reach

single-neuron resolution. (d)Molecular recording devices have been proposed, in which a record of neural activity is

encoded in themonomer sequence of a biomolecular polymer – a form of nano-scale local data storage. This could be

achieved by coupling correlates of neural activity to the nucleotidemisincorporation probabilities of a DNA or RNA

polymerase as it replicates or transcribes a knownDNA strand.
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for scaling of neural recording technologies. We analyze four modalities of brain activity mapping—

electrical, optical, magnetic resonance and molecular—in light of these assumptions, and conclude

with a discussion on opportunities for new developments.

Importantly, our assumptions, analyses and the conclusions thereof are intended as first approxi-

mations and are subject to debate. We anticipate that as much can be learned from where our logic

breaks down as fromwhere it succeeds, and frommethods to work around the limits imposed by our

assumptions.

3.1 B C

M The mouse brain contains ∼7.5 × 107 neurons in a volume of ∼ 420mm3 681 and

weighs about 0.5 g. The packing density of neurons varies widely between brain regions. In the be-

low, we will use a cell density of ρneurons ≈ 92 000/mm3, as measured for mouse cortex78. This corre-

sponds roughly to one neuron per 22 µm voxel. The density of cortical synapses, on the other hand,

approaches 109/mm3, i.e., one synapse per 1 µm3 voxel. For comparison, the human brain has roughly

8 × 1010 neurons 34 in a volume of 1200 cm3 22.

The human brain consumes ∼15W of power (performing, at synapses, a rough equivalent of at

least 1017 oating point computational operations per second on that power budget, according to one

de nition 572, although the analogy with digital computers should not be taken literally). Because

power consumption scales approximately linearly with the number of neurons 279, the mouse brain

is expected to utilize∼15 mW. For comparison, the metabolic rate of the∼20–30 g mouse is∼ 200–

600mW depending on its degree of physical activity622.

N Action potentials (spikes) last∼2ms. The rate of neuronal spiking is highly

variable. Some authors have assumed an average rate of 5Hz 572,261, but certain neurons spike at 500Hz

or faster225, while many neurons spikemuchmore slowly. For example, cerebellar granule cells, which
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make up half of the neurons in the brain, have spontaneous ring rates of∼0.5Hz 109. In neocortex,

one analysis estimated 0.16 spikes per second per neuron (in primate) as energetically sustainable 398.

There may be as much as a two-fold change inmetabolism and hence ring rate across brain states 294.

Certain neurons (possibly up to 90% for some neuron types in some brain areas) may be e fectively

silent607,48, e.g., spiking less than once every ten seconds. Some studies have attempted tomeasure the

d tribution of neural ring rates in various cortical areas (as opposed to just the average rate), and have

observed that these distributions are of en long-tailed: a small minority of the neurons res a majority

of the spikes 563,500,295,588.

While these estimates of typical ring rates are useful numbers to have in mind, in the below we

aim to sample all neurons at 1 kHz rates (or higher for techniques requiring observation of detailed

spike waveforms). This choice is informed by several factors. First, measuring spike timing with mil-

lisecond precision is relevant for understanding network function, due to the possibilities for timing

codes, spike-timing dependent plasticity mechanisms, and other e fects relying on temporally-precise

spiking patterns444,35,650,224. In this regard, it is also important for a recording method to maintain

precise temporal phasing between measurements at di ferent brain locations: activity measurements

should be locked to precise global clocks, perhaps with a tolerable phase imprecision between any two

measurements in the range of 1
2π × 1 ms ≈ 100–200 µs. Furthermore, the activities of neurons can

be highly correlated locally or across large networks 577, suggesting that local activity sensors may be

subjected to high instantaneous total ring rates due to simultaneously-active neurons.

A All existing methods of neural recording utilize

electromagnetic waves, from the near-DC frequencies of wired electrical recordings (∼1 kHz) to the

radio-frequencies of wireless electronics and fMRI (MHz–GHz) to visible light in optical approaches

(∼ 500THz). These electromagnetic waves are attenuated in brain tissue by absorption and scatter-

ing. As an approximation to the electromagnetic absorption by brain tissue, we treat the absorption
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by water, the brain’s main constituent (68–80 by mass in humans 157,191). At visible and near-IR

wavelengths, scattering dominates absorption: absorption lengths are in the∼1 mm range, while scat-

tering lengths are∼25–200 µm707. The combined e fect of absorption and scattering is measured by

the attenuation length, the distance over which the signal strength is reduced by a factor of 1/e along a

path. Figure 3.2 shows the absorption length of water 377, and the attenuation length in a Mie scatter-

ingmodel (from 292) intended to approximate the scattering properties of cortical tissue (and see 213 for

tissue skin depth measurements in the 10Hz to 100GHz range). This gives a preliminary indication

ofwhichwavelengths can be used tomeasure deep-brain signals with external detectors. Note that the

attenuation length is only one of several relevantmetrics: for example, scattering not only causes signal

attenuation, but also causes noise and impairs signal separation, so the magnitude of the scattering is

a key gure of merit.

3.2 C B A M

Any activity mapping technology must extract the required information without disrupting normal

neuronal activity. As such, we consider three primary challenges: spatiotemporal resolution and in-

formational throughput, energy dissipation and volume displacement.

3.2.1 S R I T

A sampling rate of 1 kHz is necessary to capture the fastest trains of action potentials at single-spike

resolution. Aminimal data rate of 7.5 × 1010 bits processed per second is then required to record 1 bit

per mouse neuron at 1 kHz.

In electrical recording, higher sampling rates (e.g. 10–40 kHz) are of en necessary to distinguish

neurons based on spike shapes when each electrode monitors multiple neurons. More fundamen-

tally, one bit per neuron sampling at 1 kHz would likely not be su cient to reliably distinguish spikes
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above noise: transmitting ∼10 bit samples at ∼10 kHz (full waveform) or ∼10–20 bit time-stamps

upon spike detection would be more realistic.

Conversely, it may be possible to locally compress measurements of a spike train before transmis-

sion. The degree of compressibility of neural activity data is related to the variability in the distribu-

tion of neural responses (e.g., such a distributionmay be de ned across time bins or repeated stimulus

presentations)640. In the blow y Calliphora vicina, the entropy of spike trains has been measured

to be up to ∼ 180 bit/s, and the information about a stimulus encoded by a spike train was as high

as ∼90 bit/s640. Extrapolating from y to mouse, this would suggest that a compression factor of

5×–10× should be possible, relative to a 1000 bit/s raw binary sampling.

As a naïve estimate of the entropy as a function of ring rate, one can write the entropy H in bit/s,

assuming 1ms long spikes and f = 1000Hz sampling rate, as

H ≈
(
−Pspike · log2

(
Pspike

)
−

(
1− Pspike

)
· log2

(
1− Pspike

))
· f

where Pspike is the probability of spiking during the sampling interval (average ring rate/f). For an

average ring rate of 5Hz, Pspike = 0.005 and H = 45 bit/s, corresponding to a compression factor of

∼20×. However, at 500Hz average ring rate,Pspike = 0.5 withH ≈ 1000 bit/s, i.e., there is no com-

pressibility. Therefore, compression could conceivably reduce the data transmission burden for activ-

ity mapping by 1–2 orders of magnitude, depending on the neurons and activity regimes under con-

sideration. Note that these compressibility calculations have assumed that ring patterns are indepen-

dent across cells; they represent the temporal compressibility of the spike train from each cell, treated

individually. Patterns across cells could conceivably be compressed by a much larger amount, to the

extent that there is redundancy between cells. Nevertheless, we use 1 bit/neuron/ms or 100Gbit/s as a

“minimal whole brain data rate” in what follows. In many cases, this likely constitutes a lower bound

on what is feasible in practice.
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3.2.2 E D

Brain tissue can sustain local temperature increases (ΔT) of 2Cwithout severe damage over a timescale

of hours. Indeed, changes of this magnitudemay occur naturally in rats in response to varying activity

levels710. Assuming that the brain is receiving a constant power in ux Pdelivered and that the local

thermal transport properties of mouse brains are similar to those of humans, we can approximate the

temperature change in deep-brain tissue as a function of the applied power621,392:

dT
dt =

(
Pdelivered + Pmetabolic − ρbloodCblood fbloodΔT

)/
Ctissue

where Pmetabolic = 0.0116W/g is the power per unit mass of basal metabolism, Ctissue ≈ 3.7 J/(K g) ≈

0.88 · Cwater is the speci c heat capacity of brain tissue, ρblood = 1.05 g/cm3 is the density of blood,

Cblood = 3.9 J/(K g) is the speci c heat capacity of blood, fblood = 9.3× 10−9 m3/(g s) is the volume

ow rate of blood, and ΔT is the temperature di ference between the brain tissue and the blood (at

37C). A steady-state temperature increase (dT/dt = 0) of 2C corresponds to dissipation of∼40mW

per 500mg mouse brain. Therefore, a recording technique should not dissipate more than∼40mW

of power in a mouse brain at steady state.

This estimate of the power dissipation limit in mouse brains, based on such a simpli ed model of

the brain’s thermal transport mechanisms, is likely an under-estimate of the actual maximum steady-

state power dissipation. Radiative heat losswas ignored here since infrared light emitted by deep-brain

tissue is quickly re-absorbed by nearby tissue. We have also ignored cooling due to ows in the cere-

brospinal ventricles617 and in the glymphatic system 303. We have further assumed that conductive heat

loss from the brain surface is negligible compared to the heat extracted volumetrically by blood ow.

While this may hold true locally in deep brain voxels and over short timescales (e.g.,< 1 min), further

work (e.g., a whole-head model 392,642) is needed to de ne the true limits of sustained volumetric heat

production by neural recording systems distributed throughout the mouse brain. Indeed, the char-
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acteristic length scale of temperature inhomogeneities in the brain is on the order of millimeters644,

whereas heat exchange with the owing blood dampens the e fects of local perturbations over longer

length scales. For large brains, thismeans that sources and sinks of heat exert only local thermal e fects;

for a mouse brain on the scale of< 10mm, however, surface and volumetric e fects likely combine to

in uence temperature changes at any site in the brain643. Experimentally, increasing the temperature

gradient at the brain surface, via a cranial window exposed to ambient air at 25C (i.e., the common

craniotomy technique used to access mouse neocortex), has been shown to dis-regulate brain temper-

ature down to a depth of several millimeters 331. For the above reasons, our estimates of the brain’s

capacity for heat dissipation should be treated only as rst approximations.

Higher power levels, compared to themaximum steady state power, may be introduced into brains

transiently. According to the above equation, if a neural recorder dissipates ∼40mW per 500mg

mouse brain, then the brain approaches the steady-state temperature in 2–3min, making shorter ex-

periments potentially feasible. This is in agreement with the estimate from644 of a∼1 min time con-

stant for brain temperature changes, as well as with experimental measurements showing similar time

constants for temperature variations resulting from sustained neural stimulation456,661. Increasing

convective heat loss from the brain by increasing blood ow (e.g. via increased heart rate) or cooling

the brain (volumetrically or via its surface643), the blood, the cerebrospinal uid (CSF), or the whole

animal 530, could increase the allowable transient or steady-state power dissipation.

There are also limits on the power density of radiation applied to brain tissue. For radio-frequency

electromagnetic radiation, the speci c absorption rate (SAR) limit on the power density exposed to

human tissue is ∼10mW/cm2 2, while for ultrasound (which couples less strongly to dissipative loss

mechanisms in tissue) the SAR limit is up to 72× higher4. The power density limit for visible and

near-IR light exposures are also in the∼10–100mW/cm2 range for∼1 ms long exposures, decreasing

as the exposure time lengthens (based on the IEC 60825 formulas 3).

High local power dissipation (transient or steady-state) can modify the electrical properties of ex-
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citablemembranes, altering neuronal activity patterns. For example, heating of cellmembranes and of

the surrounding solution by millisecond-long optical pulses leads to changes in membrane electrical

capacitancemediated by the ionic double layer 594. Slower temperature changes (on a scale of seconds)

resulting from RF radiation lead to accelerated ion channel and transporter kinetics 595. Both of these

e fects are appreciable when the temperature changes are on the order of 1–10C.

For comparisonwith current practice, common guidelines for chronic heat exposure frombiomed-

ical implants710 use upper limits of 2C temperature change, 40mW/cm2 heat ux from the surface of

implanted brain machine interface (BMI) hardware, and an SAR limit of

σE2

2ρ < 1.6mW/g

for electromagnetic energy absorbed by tissue, where E is the peak electric eld amplitude of the ap-

plied radiation, σ ≈ 0.18 S/m is the electrical conductivity of grey matter and ρ ≈ 1 g/cm3 is the tissue

density 392 (this corresponds to an irradiance of ε0cE2/2 ≈ 2.4mW/cm2). A 96-channel BMI system

demonstrated in living brains had dissipated areal power density approaching 40mW/cm2 555.

3.2.3 S V D

To prevent damage to the brain, we assume that a recording technique should not displace > 1 of

the brain’s volume. The appropriate damage thr hold not yet tabl hed, however, so th consti-

tut a first gu s. It is possible to insert large numbers of probes throughout multiple brain areas

without compromising function. In rats, 96 electrodes of 50 µm diameter were simultaneously in-

serted across four forebrain structures (cortex, thalamus, hippocampus and putamen) 551. In rhesus

macaque, 704 electrodes of diameter 50 µm and average depth 2.5mm were chronically implanted in

cortex494. Note, however, that the total volume displacement in these experiments was below 0.1 ,

and below 0.01 , respectively. Furthermore, these studies used a low density of electrodes. Thus,
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detailed limits on the amount and density of inserted material are unknown.

Furthermore, the nature of the volume displacement is important—sheets of instrumentation that

sever long-range connectivity, for example, would disrupt normal brain function regardless of the de-

gree of volumedisplacement. Conversely, higher volumedisplacementmight be possible if introduced

gradually, or during early development, insomuch as the brain can adapt without disrupting natural

computation. One important consideration in this regard would be the disruption of blood circu-

lation by inserted material; a high density of implanted material in a brain region could cause stroke

due to widespread vascular damage. Recent studies have de ned in microscopic detail the complete

vascular network of the mouse cortex using high-throughput histology66; this type of information

could be used to enumerate key vascular pathways which could be spared from damage. To apply this

in a particular animal, however, would require a non-destructive method to image the vasculature at a

similar resolution; otherwise, only a broad statistical view can be obtained, since the detailed vascular

geometry will vary from animal to animal.

Secondary e fects like glial scarring may also pose obstacles to the long-term implantation of large

numbers of probes 531,692, although methods are being developed to alleviate this652,548,547. In the con-

text of electrical recording, the impact of glial scarringmay vary depending on geometry. For example,

the recording sites at the tip of a Utah or Duke multi-electrode array are typically viable in chronic

recordings of up to 18 months in primates494,649, whereas in array formats with multiple electrodes

along each shaf , such as theMichigan array, chronic recordings of up to 4months have been reported

in rats679. Di ferences in recording lifetime may be due to di ferences in the pattern of glial encapsu-

lation of the contacts.
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3.3 E M

We next evaluate neural recording technologies with respect to the above challenges, using the mouse

brain as amodel system. Table 1 lists themodalities studied, the assumptionsmade, the analysis strate-

gies applied, and the conclusions derived.

In the oldest strategy for neural recording, an electrode is used to measure the local voltage at a

recording site, which conveys information about the spiking activity of one or more nearby neurons.

The number of recording sitesmay be smaller than the number of neurons recorded since each record-

ing site may detect signals from multiple neurons. As a note for practitioners, we use the term “elec-

trode” interchangeablywith the terms “recording site” or “contact”,meaning a point-like voltage sens-

ing node: manymulti-electrode arrays in common use (e.g., theDuke andUtah arrays) are conductive

only at the tip, whereas other designs (such as the Michigan array) have multiple contacts along the

shaf . Each shaf in a Michigan array would thus constitute multiple “electrodes” or “recording sites”

in our parlance. Traditional electrical recording techniques keep active devices such as ampli ers out-

side the skull and therefore do not pose a heat dissipation challenge; this may change if ampli ers are

brought closer to the signal sources to reduce noise.

Slowly varying (e.g.,< 300Hz) extracellular potentials (LFPs) 549,93 on the order of 0.1–1mV, and

elds 24 on the order of 1–10mV/mm, are generated by neural activity. While LFPs can be ltered

from the higher-frequency signals associated with extracellular voltage spikes, these and other e fects

necessitate maintaining precise potential references (i.e., ground levels) for voltage measurements dis-

tributed widely across the brain.

S R

L We begin with an idealized estimate of the number

of electrodes required to record from the entire mouse brain, neglecting the di culty of assigning
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observed spikes to speci c cells (spike sorting), and focusing only on what is needed to detect spikes

from every neuron on at least one electrode. The key variable here is the maximum distance between

an extracellular electrical recorder and a neuron fromwhich it records spikes. In a rst approximation,

this is determined by two factors: the decay of the signal with distance from the spiking neuron and

the background noise level at the recording site. We assume that for an electrode to reliably detect the

signal from a given neuron, the magnitude of that neuron’s signal must be larger than the electrode’s

noise level. Note, however, that knowledge of spike shape distributions could potentially be used to

extract low-amplitude spikes from noise.

The peak signals of spikes fromneurons immediately adjacent to an electrode are in the 0.1–1.0mV

range and scale roughly as e−r/r0 , where r is the distance from the cell surface and the 1/e fallo f dis-

tance, r0, has been experimentallymeasured at∼28 µm in both salamander retina 582 and cat cortex 246,

and computed at∼18 µm in a biophysically realistic simulation 238,23. However, this decay is strongly

in uenced by the detailed geometry of neuronal currents and the properties of the extracellular space

(e.g., its inhomogeneity, which may lead to a frequency-dependent fallo f of the extracellular poten-

tial 54), making analytical calculation of the decay rate di cult (at large distances, a much slower 1/r2

dipole fallo f is expected).

Several sources of backgroundnoise enter the recordings. Johnsonnoise, which arises from thermal

uctuations in the electrode, is

Vjohnson = (4kBTZBW)1/2

which for physiological temperature, electrodes of impedance Z = 0.5MΩ, and BW = 10 kHz

bandwidth is Vjohnson ≈ 9 µV. The recordings are also a fected by interference from other neurons,

which has been reported to exceed the Johnson noise, and is non-stationary due to changes in the

cells’ ring properties 567. The noise and interference from these sources realistically produces > 10–

20 µV of voltage uctuations 100. Current recording setups thus have signal to interference-plus-noise
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ratios (SINRs) of< 100, where the SINR is de ned as the ratio of the peak voltage from immediately

adjacent neurons to the voltage uctuation oor of the electrode.

A limit on the maximum recording distance is the distance at which the signal from the farthest

neuron falls below the noise oor, rmax ≈ r0 ln(SINR). For SINR ≈ 100, rmax ≈ 130 µm. For

comparison, recent experimental data frommulti-site siliconprobes has shown fewdetectable neurons

beyond∼ 100 µm and none detectable beyond 160 µm 172. Recordings in the hippocampal CA1 region

could not detect spikes from cells farther than 140 µm from the electrode tip 277, even af er averaging

over observations triggered on an intracellularly recorded spike; in hippocampus, this corresponds

to a detection volume containing approximately 1000 neurons94. Furthermore, in many studies (in

monkeys, rats and mice) using multi-electrode arrays with 150–300 µm inter-electrode spacings, no

neuron is seen by more than one electrode700,105,372,323.

Due to the steep local fallo f, even improving the SINR by a factor of 10 only extends the maximal

recording distance to rmax ≈ 190 µm. Assuming packing of the brain into equal sized cubes of side

lengthd =
2
√

3
3 rmax ≈ 150 µmgivesN > 130 000 electrodes forwhole brain recordingusing recording

siteswith rmax ≈ 130 µm. Note thatN varies as the third power of rmax and is therefore highly sensitive

to variations in the assumed maximal recording distance; the number of required recorders can range

from 38 000 to 210 000 as rmax varies from 190 µm to 110 µm.

These calculations, by assuming perfect spike sorting, greatly underestimate the required num-

ber of electrodes in practice. First, signals from the weakest cells are far weaker than those from the

strongest cells and the signals from some cells decay much faster than others 246. Second, because

of neuronal synchronization, the local noise produced by nearby neurons may sometimes be large.

Third, spike waveforms can vary over the course of a recording session 193,638. Finally, with many neu-

rons per electrode or at high ring rates, spikes from detectable neurons will of en temporally overlap,

making spike sorting di cult.
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Figure 3.3: The voltage signal to interference-plus-noise ratio (SINR) for neurons immediately adjacent to the recording

site sets an approximate upper bound on the distance, rmax, between the recording site and the farthest neuron it can

sense (blue), due to the exponential falloff of the voltage SINRwith distance. Assuming at least one electrode per cube

of edge length
2
√

3
3 rmax in turn limits the number of neurons per recording site (gold), the total number of recording

sites (red) and themaximal diameter of wiring consistent with< 1 total brain volume displacement (turquoise). SINR

values for current recording setups are< 102. In practice, the number of neurons per electrode distinguishable by

current spike sorting algorithms is only∼10, with an estimated information theoretic limit of∼ 100, so these curves
greatly under-estimate the number of electrodes which would be required based on realistic spike sorting approaches in a

pure voltage-sensing scenario.
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L The previous calculations have assumed that any spike which is vis-

ible above the noise on at least one electrode can be detected and correctly assigned to a particular cell,

i.e., that the problem of spike sorting can be solved perfectly. However, perfect spike sorting is far

beyond current algorithmic capabilities and in fact may not be possible in principle.

To achieve the scenario described above, with N = 130 000 recording sites per mouse brain, would

require each electrode to sort spikes from all 4
3 πr3maxρneurons neurons in a sphere of radius rmax ≈

130 µm surrounding the recording site, where ρneurons ≈ 92 000/mm3 is the density of neurons. This

assigns ∼800 neurons to a single electrode. Roughly half (i.e., 400) of these neurons will lie at >

100 µmdistance fromthe electrode, and their signals on the electrodewill thereforehave voltage SINRs

of < 100e−100 µm/28 µm ≈ 2.8, assuming as above that extracellular spike amplitudes decay exponen-

tially in space.

Electrical recording can be viewed as a data transmission problem, with the electrode playing the

role of a communication channel (see section 4.4). According to the Shannon Capacity Theorem 134,

the information capacity C of a single analog channel (with additive white Gaussian noise) is

C = BW log2(1 + S/N)

where BW is the bandwidth, S is the signal power (proportional to the square of the voltage), and N is

the noise power. Here the bandwidth is BW ≈ 10 kHz/s, and the ratio of peak signal power to noise

power of a single spike for the outer 400 cells is nomore than 2.82, or 0.5× 2.82 using the RMS signal

power instead of the peak. With 400 cells emitting 2ms spikes at 5Hz, there will be an average of 4

cells spiking at a time, for S/N ≈ 0.5× 4× 2.82 ≈ 15.7 counting the signal power from all the spikes.

The channel capacity is then C ≈ 40 kbit/s. This represents the maximum amount of information

(e.g., about which neuron spiked when) that the population of spiking neurons can transmit via the

electrode which measures them. To transmit uniquely identifiable signals from all 400 neurons at
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millisecond temporal precision, however, requires 1 kbit/s×400 = 400 kbit/s, which is> 10× greater

than the channel capacity and is therefore not achievable. Even with optimal temporal compression

of ∼5Hz spikes (see section 2), we would need to transmit ∼400/20 = 20 kbit/s, which is strictly

less than the channel capacity and thus possible in principle, but barely so. Furthermore, the channel

capacity given here is an overestimate, since 2.8 is an upper bound on the SINR of the outer cells. On

the other hand, note that the use of a nominal 5Hz average ring rate here (in the estimates of signal to

noise ratio and of temporal compressibility) greatly oversimpli es the distribution of ring rates across

neurons, as discussed in section 2 above, so this analysis can only be treated as a rst approximation.

Based on these rough estimates, perfect spike sorting may not be possible at ∼800 neurons per

electrode, in a sphere of radius 130 µm surrounding a recording site, and at the noise levels typical

of current electrodes. In essence, there may not be enough room on the electrode’s voltage trace to

discriminate such a large number of weak, noisy signals. Note that these information-theoretic limits

still apply even if it is possible to resolve temporally overlapping spikes. In fact, the channel capacity

is what ultimately limits the ability of a spike sorting algorithm to resolve such overlapping spikes.

To see the regime in which spike sorting becomes feasible, suppose that each electrode is only re-

sponsible for spike sorting from the population of ∼100 neurons nearest to the electrode, i.e., in a

sphere of radius r ≈ 64 µm, assuming the 92 000/mm3 cell density from mouse cortex. The outer-

most 50% of these neurons are then positioned> 50 µm from the recording site. For these outermost

50 neurons, the voltage SINR is< 100e−50 µm/28 µm ≈ 17 and S/N < 0.5×172×(2ms×5Hz×50) ≈

72.3. The channel capacity is therefore < 62 kbit/s, whereas 50 kbit/s is needed for signal transmis-

sion from 50 neurons without temporal compression versus∼2.5 kbit/s with temporal compression.

Even 100 neurons per electrode may therefore still be close to the limits of information transmission

through the noisy channel corresponding to a single electrode.

In practice these limits are likely to be highly optimistic, since the set of spikes emerging from a neu-

ronal population is far from an optimally designed code from the perspective of multiplexed signal
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transmission through a voltage-sensing electrode: the waveforms for di ferent neurons are similarly-

shaped rather than orthogonal, the spikes emitted by a given neuron vary somewhat in amplitude and

exhibit shape uctuations (signal-dependent noise), and it is not known in advance what the charac-

teristic signal from each neuron looks like (or even how many neurons there are).

Indeed, current practice is far from the above information-theoretic limits. At present, spike sort-

ing algorithms operating on data from large-scale (250-500 electrodes), densely spaced (∼30 µm), 2D

multi-electrode arrays can reliably identify and distinguish spikes fromnearly all of the 200-300 retinal

ganglion cells447,524 in a small patch of retina, and can also infer approximate cell locations through

spatial triangulation of spike amplitudes. This represents a roughly 1 : 1 ratio of cells to electrodes.

Electrodes with up to 4 single units can be found in chronically implanted multi-electrode arrays (in

both mouse and primate) 133,494, where the electrodes are sparse, although the average yield of cells

per electrode is closer to 1 : 1; if only electrodes with at least one cell are counted, the average rises to

∼1.5–1.7 cells per electrode. Optimistically, simulations of neural activity suggest that 5-10 neurons

per electrode may be distinguishable using current spike sorting algorithms 517,567,100. A limit of ∼10

neurons per electrode would imply N = 7.5 × 106 electrodes to record from all neurons in themouse

brain, which could be accomplished by positioning recording sites on a cubic lattice with ∼40 µm

edge length.

Future algorithmic improvements could enable sorting from more than ∼10 cells per electrode,

but this becomes increasingly challenging. One simple estimate of a reasonable practical limit, for the

regime of many neurons per electrode, would be the largest number of neurons that can be sorted

without requiring the frequent resolving of temporally overlapping spikes: if the average neuron res

at∼5Hz and spikes last∼2ms, then at most roughly 100 neurons per electrode can be sorted without

requiringoverlaps tobe resolved. Note thatwhile somepresent-day algorithms can successfully resolve

overlapping spikes447,524,582,217,534, they typically do so only in the case where electrodes are densely

spaced and any given spike appears on many electrodes, such that spatial information can be used to
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resolve the overlap. Resolving overlaps when spikes appear on only one or a few channels is more

di cult due to noise and spike-shape variation.

Overall, ∼100 cells per electrode may be taken as a rough estimate of the limits of spike sorting,

and would imply N = 750 000 electrodes and an edge spacing of∼80 µm if a cubic lattice of record-

ing sites were used. However, we should not exclude the possibility of game-changers which could

alter the nature of the recorded data to improve the available information. For instance, CCD cam-

eras could be attached to multi-electrode arrays to aid in the identi cation and localization of cells, or

directional information on the source of spikes could be obtained at each recording site, for example

bymeasuring the directions of gradients in voltage. Systems that capture such additional information

could circumvent the above information-theoretic limits and improve spike sorting.

V D

We require< 1 total volume displacement from N recorders. Wires from each electrodemust make

it to the surface of the brain, which implies an average length ℓ ≈ 4mm for themouse brain (depend-

ing on assumptions about the wiring geometry).

As a rough approximation, consider each recorder to produce a volume displacement associated

with a single cylindrical wire, with length ℓ and radius r. Thus r must satisfy

πr2ℓNmin,rd < 0.01Vbrain

Using Nmin,rd = 210 000 or 38 000 recording sites (lower and upper limits from the perfect spike

sorting case from above) and ℓ ≈ 4mm requires wires of radius rmax ≈ 6.0 µm, or 2.5 µm, respec-

tively. Alternatively, if 7.5 × 106 electrodes must be used (current spike sorting case from above), the

required wire radius is ∼ 200 nm. While these dimensions are readily achievable using lithographic

fabrication, there would be a challenge to produce olated wires of such dimensions at scale (perhaps
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suggesting the use ofwire bundles). Still, volume constraints per se are unlikely to fundamentally limit

whole-mouse-brain electrical recording even in the most pessimistic scenario.

Figure 3.3 illustrates the above considerations as a function of the electrode SINR.

I E B

There are several technology options for introducing many electrodes into a brain. For example, ex-

ible nanowire electrodes could, in theory, be threaded through the capillary network412, as was pro-

posed by Llinas and Hunter. Capillaries are present in the brain at a density of 2500–3000 per mm3 1,

which equates to one capillary per 73 µm, with each neuron lying within ∼ 200 µm of a capillary413.

Theminimum capillary diameter is as small as 3–4 µm, although the average diameter is∼8 µm, com-

parable to the non-deformed size of the red blood cells 208. Blocking a signi cant fraction of capillaries

could lead to stroke or to unacceptable levels of tissue necrosis/liquifaction.

The cerebrospinal ventricles may also provide a convenient location for recording hardware. Fur-

thermore, neural tissues could be grown around pre-fabricated electrode arrays 316, or silicon probes

arrays with many nano-fabricated recording sites per probe 172 could be inserted into the brain.

Mechanical forces during insertion and retraction of silicon and tungsten microelectrodes from

brain tissue have been measured in rat cortex at ∼1 mN for electrodes of ∼25 µm radius 322. These

forces are comparable to the Euler buckling forceF of a 2mm long cylindrical tungsten rod of r =5 µm

radius

F =
π2EI
(KL)2 ≈ 1 mN

where E = 411 GPa is the elastic modulus of tungsten, I = (π/2)r4 is the moment of inertia of the

wire cross-section, L ≈ 2mm is the length of the wire, and K is the column e fective length factor

which depends on the boundary conditions and is set to K = 1 here for simplicity.

This suggests that itmaybepossible topush structures of< 10 µmdiameter intobrain tissue (see487
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for related calculations). It might be advantageous to pull rather than push wires into the brain (e.g.,

using applied elds, or perhaps even cellular oxen698 to carry the wires), since the thinnest wires could

withstand tension forcesmuchhigher than the compressive force atwhich they buckle (although there

may also be ways to circumvent buckling, e.g., via rapid vibration).

C F D

Electrical recording has the advantage of high temporal resolution, but the large number of required

recording sites poses challenges for delivery mechanisms. Ongoing innovations in electrical recording

that could be leveraged for dramatic scaling include the development of highly multiplexed probes,

multilayer lithography for routing electrical traces, novel methods to implant large numbers of elec-

trodes, smaller electrode impedances to reduce the Johnsonnoise, ampli erswith lower input-referred

noise levels, spike sorting algorithms capable of handling temporally overlapping spikes and adap-

tively modeling the noise, and hybrid systems integrating electrical recording with implantable optics

or other methods.

One challenge for a purely-electrical recording paradigm pertains to the ability to relate the mea-

sured electrical signals to speci c cells within a circuit. As the set of neurons recorded by each electrode

grows to encompass a large volume around the electrode, it will becomemore di cult to attribute the

recorded spikes to particular neurons. Furthermore, given the complex geometries of neuronal pro-

cesses, it is not obvious how to determine the spatial position or layout of a neuron from its electrical

signature on a nearby electrode. A given electrode will be positioned near the axons or dendrites of

some neurons, and near the cell bodies of other neurons, complicating data interpretation. If the spa-

tial density of recording sites is increased such thatmany electrodes sample the same neuron, however,

this could enable imaging of neuronal morphology and signal propagation via voltage signals across

multiple electrodes 39. Currently, extracellular electrical recording also does not allow extraction of

molecular information on the cells being recorded, although intracellular electrophysiological record-
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ing methods (e.g., 363) might enable this for a limited number of cells.

3.3.1 O R

Optical techniques measure activity-dependent light emissions from neurons, typically generated by

uorescent indicator proteins, although activity-dependent bioluminescent emissions are an emerging

possibility. Current genetically encoded calcium indicators can only distinguish spikes below ∼50–

100Hz ring rates without averaging616 due to slow intra-molecular kinetics and indicator saturation

at high ring rates, although signi cant improvements in speed are ongoing647. Intracellular calcium

rises and drops can occur within 1ms and 10–100ms respectively280, which sets the ultimate speed

limit for calcium imaging. The eld of genetically-encoded high-speed uorescent voltage indicators is

also advancing quickly47,379,243,636,102,19 and these may nd particular use in monitoring sub-threshold

events 574.

S R

M For optical approaches, the light originating from the activity of each

neuron must be separated from emissions originating from other points in the brain: this can be ac-

complished in many ways, leading to a variety of architectures for 3D imaging. Epi-fluor cence mi-

croscopy images a plane in the specimen (i.e., with depth of eldDOF = 2nλ
NA2 , where n is the refractive

index,λ is thewavelength andNA is the numerical aperture of the imaging system 540) onto a spatially-

resolved two-dimensional detector (e.g., a CCD camera). The focal plane is then scanned in order to

reconstruct 3D images; because the entire 3D volume is illuminated during image acquisition, out-of-

focus neurons cause background emissions. Light sheet imaging is similar to epi- ourescence imaging,

except that only neurons near the focal plane are illuminated, reducing out of focus noise. Unfor-

tunately, this requires transparent brains 17. Volumetric imaging can also be performed in a single
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snapshot using lightfield microscop 399,84, which capture the directions of incoming light rays, trad-

ing in-plane resolution for axial resolution, or by using multi-focus microscopes 10. In multi-photon

microscopy, nonlinearities result in uorescence excitation occurring only near the focal point of the

excitation laser, which is scanned across the sample. In confocal scanning microscopy, only photons

from a point of interest are measured due to geometric constraints (e.g., pinholes). Alternatively, 3D

imaging can be performed viawavefront coding, which extends the depth of eld by creating an axially-

independent point-spread function using known optical aberrations, in combination with compu-

tational deconvolution 168. With a known 3D pattern of excitation light, wavefront coding can be

applied to 3D uorescence microscopy without scanning using a 2D detector array 540. Emerging, al-

ternative strategies rely on ta ing emissions from di ferent sources with distinguishable modulation

patterns691,155,173,724,713, or precisely controlling and tracking the timing of light emissions 114. Optical

techniques thus achieve signal separation bymultiplexing spatially (e.g., direct imaging) or temporally

(e.g., beam scanning), or of en by a combination of the two.

While optics might seem to require a number of photodetectors comparable to the number of

neurons (or a similar number of sampling events in the time domain, e.g., for scanningmicroscopies),

new developments suggest ways of imaging with fewer elements. For example, compressive sensing or

ghost imaging techniques based on randommask projections683,641,654,646 might allow a smaller num-

ber of photodetectors to be used. In an illustrative case, an imaging systemmay be constructed simply

from a single photodetector and a transmissive LCD screen presenting a series of randombinarymask

patterns 297, where the number of required mask patterns is much smaller than the number of image

pixels due to a compressive reconstruction.

E Single-photon techniques limit imaging to a depth of a few scat-

tering lengths at the excitation and emission wavelengths of activity indicators: up to ∼1–2mm for

certain infrared wavelengths 292,358,359 vs. a few hundred microns for visible wavelengths707. Activity
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dependent dyes are currently available only in the visible spectrum; indicators operating in the infrared

(see 199,598,599 for far-red uorescent proteins) could improve imaging depth.

Multi-photon excitation takes advantage of the deeper penetration of infrared light. Two or more

infrared photons may together excite a uorophore with an excitation peak in the visible range, lead-

ing to the emission of a visible photon. If only one neuron is illuminated with su cient intensity

to generate multi-photon excitation, all photons captured by the detector originate from that neu-

ron, regardless of the scattering of the outgoing light. Hence, the emission pathway is limited less by

scattering than by absorption. This has resulted in imaging at> 1 mm depth 292,358,359.

There are at least ve options for overcoming visible light scattering to enable signal separation

from deep-brain neurons 21,20:

1. Infrared light can excite multi-photon uorescence in an excitation-scanning architecture.

2. Fluorophores with both excitation and emission wavelengths in the infrared could be devel-

oped.

3. By knowing the precise form of the scattering, it can be possible to correct for it. Emerging

techniques based on beam shaping allow transmission of focused light through random scat-

teringmedia by inverting the scatteringmatrix 128. Because the scatteringproperties change over

time, thismust be done quickly, possibly faster than the imaging frame rate, necessitating high-

speed wavefrontmodulation. This can currently be achieved with digital micro-mirror devices

(DMDs), but not with the phase-only spatial lightmodulators (SLMs) that are used to prevent

power losses in the excitation pathways for nonlinear microscopies, although GHz switching

of phase-only modulators appears feasible in principle 20. High speed focusing through tur-

bid media is also achievable using all-optical feedback in a laser cavity495, and it is even pos-

sible to measure the scattering matrix non-invasively 110 using a photo-acoustic technique, or
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via all-optical approaches based on speckle correlation 59. Similar techniques are available for

incoherent light 338.

When using short optical pulses, scattering can lead to temporal distortions that degrade the

peak light intensity at a focal spot. The < 100 fs pulse durations used in two-photon mi-

croscopy, for example, are comparable to the time it takes light to travel 30 µm in vacuum.

Fortunately, wavefront shaping techniques can correct for scattering-induced temporal distor-

tions as well455,337.

4. Light sources and/or detectors could be positioned close to the measured neurons, necessi-

tating the use of embedded optical devices. This could be done using optical ber425 and/or

waveguide740,741 technologies, which are developing rapidly. For example, single-mode ber

cables can support> 1 TB/s data rates 505,77 with low light loss over hundreds of kilometers472.

It is possible to directly image through gradient index of refraction (GRIN) lenses486 or optical

bers425,333,203, which provides one way to multiplex multiple observed neurons per ber.

5. Light emissions from distinct locations can be tagged with distinguishable time-domain mod-

ulation patterns, and the emission time-series for each source can later be decoded from the

summed signal resulting fromscattering691,155,173,724,713,114. For example, ultrasoundencoding691,326,

which frequency-tags light emissions from a known location via a mechanical Doppler shif of

the emitter426, provides a generic mechanism to sidestep problems of elastic optical scattering,

although it requires distinguishing MHz frequency modulations in THz light waves (part per

million frequency discrimination). Radio-frequency tagging of light emissions via a digitally

synthesized optical approach is also an option and may be applicable to combatting the prob-

lem of emission scattering in deep-tissue, multi-point, multi-photon imaging 155.
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S The speed of scanningmicroscopes is currently limited by beam reposi-

tioning times (∼0.1 µs for spinning disk425,333,203,∼3 µs for piezo-controlled linear scanmirrors,∼10 µs

for acousto-optic de ectors682,∼8 kHz line scans for resonant galvanometermirrors). The 10 µs repo-

sitioning time for acousto-optic de ectors is set by the speed of sound in the de ector crystal, while

scanning mirrors and spinning disks are limited by inertia. Note that 0.1 µs repositioning time for

current spinning-disk confocal techniques would require 10 seconds per frame for whole mouse brain

imaging with a single scanned beam (10−7 s/site × 108 sites/brain). There is therefore a need for a 104

fold improvement in beam repositioning time and/or beam parallelization in order to achieve 1 kHz

imaging frame rates for whole mouse brains.

One strategy to implement parallelizationwould exploit (yet to be developed) fast, high-resolution

phase modulator arrays to arbitrarily re-shape coherent optical wavefronts for multisite holographic

multi-photon excitation in 3D 20,512,675. With fast phase modulation (e.g., ∼1 GHz), beating each ex-

citation spot at a di ferent frequency could allow a single detector to probe multiple sites in parallel,

despite arbitrarily-large scattering of the outgoing light 20. Emerging optical techniques may provide

alternative means to implement similar strategies 155. Temporal multiplexing of excitation pulses at

distinct locations (e.g., via few-nanosecond beam delays) also allows parallelization of the excitation

beamwhile combatting scattering ambiguity of the emitted light 114. Furthermore, temporal focusing

techniques in two-photon microscopy (depth-dependent pulse duration) can excite an entire plane

or line within the sample 506,651,583,511, as well as arbitrary patterns of points 512, potentially allowing

fast axial scanning (somewhat analogous to light-sheet techniques used with transparent samples).

Thismethod intrinsically corrects for scattering of the excitation light 513, although not of the emission

light. Like other multi-photon techniques, however, all these methods remain highly dissipative, as

discussed below.

Fluorescence lifetimes in the 0.1–1 ns range639 ultimately constrain the design of scanning uores-

cence microscopies. A delay of 0.1 ns per mouse neuron per frame corresponds to only 100Hz frame
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rate without parallelization, implying that parallelization into at least 10 to 100 beams is essential. The

uorescence lifetime also limits the achievablemodulation frequencies in beat-frequency-multiplexed

parallelization strategies 155, bit lengths in encoded strategies 173, and temporal o fsets in temporally-

multiplexed strategies 114, suggesting that parallelization of detectors may be necessary in a strongly

scattering environment. Depending on the degree of parallelization, which constrains the achievable

dwell times given a xed frame rate, photon counts may also become a limiting factor for high-speed

scanning in some approaches.

D Using the small angle approximation, the di fraction-limited angular resolution of

an aperture is θ ≈ Δx
y ≈ λ

D , where Δx is the spacing which must be resolved, y is the imaging depth,

λ is the wavelength, and D is the aperture diameter. Thus distinguishing neurons which are 10 µm

apart and at a depth of 10mm requires a lens aperture D of > 1 mm when λ ≈ 1 µm. Di fraction

therefore does not appear to be a limiting factor for cellular resolution imaging, except in the context

of microscale apertures that might nd use in embedded optics approaches.

E D

Light that does not leave the brain is ultimately dissipated as heat. The total light power requirements

for optical measurement of neuronal activity using uorescent indicators depend on factors including

uorophore quantum e ciency, absorption cross-section, activity-dependent change in uorescence,

background uorescence, labeling density, activation kinetics, detector noise, scattering and absorp-

tion lengths, and others. Unfortunately, many of these variables are unknown or highly dependent

on particular experimental parameters.

A statistical analysis of photon count requirements for spike detection (in the context of calcium

imaging) can be found in708, which derived a relationship between the number of backgroundphoton

counts (Nbg) and the number of signal photon counts required for high delity spike detection given
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photon shot noise. This scales roughly as Nsignal > 3
√

2Nbg, even at low absolute photon count

rates. While this analysis governs the number of detected photons, the number of emitted photons

will be higher due to losses. In one example using two-photon excitation, 5 of the emitted photons

were captured by the photodetector 351. One implication of photon shot noise is that faster-responding

indicators (e.g., voltage indicators which respond in near-real-time to the membrane potential) must

be brighter.

M - Multi-photon experiments rely on short laser pulses with high peak

light intensities at a focused excitation spot to excite nonlinear transitions 351. This imposes an exper-

imentally relevant physical limit: at least one excitation pulse of su cient intensity per neuron per

frame is required in order to excite multi-photon uorescence during each frame. Assuming 1 kHz

frame rate and 0.1 nJ pulses 114, delivering only one pulse per neuron per framewould dissipate roughly

(108 × 1 kHz × 0.1 nJ) 10W in the mouse brain, which is clearly prohibitive. This is a lower bound

because, in general, more than one excitation pulse per neuron per framemay be required to excite de-

tectable uorescence (e.g., one reference reported 12 pulses per spot 351). For three-photon excitation,

the situation will be even worse as higher peak light intensities are required to excite three-photon

uorescence.

Could the single-pulse energy be reduced while maintaining e cient two-photon excitation? The

number of two-photon (2P) transitions excited per uorophore per pulse is na = F2C/t, where F is

the number of photons per pulse per area in units of photon/cm2, C is the two-photon cross-section

in units of cm4s/photon, and t is the pulse duration in seconds. This can be approximated as

na =

 E
hc/λ(
λ

2(NA)

)2

2
C
t =

(
4E (NA)2

hcλ

)2 C
t

where NA is the numerical aperture of the focusing optics, E is the pulse energy and λ is the stim-
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ulation wavelength. For a 2P experiment with 100 fs, 0.1 nJ pulses, assuming a 2P cross section453,171

of 10−48 cm4s/photon (i.e., 100 Goeppert-Mayer units 237, comparable to that of DsRed2 171), λ =

900 nm andNA = 1.0, na ≈ 1
2 . Thus, a few pulses are likely necessary and su cient to excite 2P uo-

rescence by each uorophore within the focal spot. With a 2P cross section above 10−47 cm4s/photon

(1000 Goeppert-Mayer units, higher than that of any uorescent protein that we are aware of 171), one

could reduce the pulse energy by an order of magnitude (and hence na by two orders of magnitude)

while maintaining na > 1
20 , i.e., one in twenty uorophores excited by each pulse. Reducing the

pulse energy much further might lead to unacceptably low excitation levels. Alternatively, shorter

pulse durations could increase the light intensity, and hence 2P excitation probability, at xed pulse

energy.

uantum dots can have 2P cross sections much higher than those of uorescent proteins: water-

soluble cadmium selenide–zinc sul de quantum dots have been reported with 2P cross sections of

47000 Goeppert-Mayer units and are compatible with in-vivo imaging 389. These would allow excita-

tion e ciencies of na >
1
20 at pJ pulse energies, bringing whole-brain 2P imaging into the∼ 100mW

range. Thus, the use of quantum dots or other ultra-bright multi-photon indicators could be decisive

for supporting the energetic feasibility of multi-photon methods at whole brain scale; there are also

plausible strategies for coupling quantum dot uorescence to neuronal voltage448. However, some

quantum dots have long uorescence lifetimes 137, which may constrain scan speed.

For comparison to current practice, in a typical multi-photon experiment on mice, ∼50mW of

time-averaged laser power at the sample was used with a dwell time of ∼3 µs706, corresponding to

∼ 150 nJ energy dissipation per spot per frame. This dwell time would allow imaging only∼ 300 neu-

rons at millisecond resolution with a single scanned excitation beam. The average excitation power

here is likely already close both to whole-brain thermal dissipation limits, and to photo-damage limits

for pulsed two-photon excitation 288,368.
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B

To work around the requirement for large amounts of excitation light, bioluminescent rather than

uorescent activity indicators could be used488,452,451. Consider a hypothetical activity-dependent bi-

oluminescent indicator emitting at∼1 700 nm (IR), in order to evade light scattering. As a crude esti-

mate, assuming that 100 photonsmust be collected by the detector per neuron per 1ms frame, and 1

light collection e ciency by the detector relative to the emitted photons,∼ 100 µWof bioluminescent

photons emissions are required for the entiremouse brain (usingEphoton = hc/λ). This would be fea-

sible from the perspective of heat dissipation. By contrast, in a 1-photon uorescent scenario, if 100

excitation photons must be delivered into the brain to generate a single uorescent emission photon,

the power requirement becomes 10mW, which is on the threshold of the steady-state heat dissipation

limit. Therefore, bioluminescent indicators could potentially circumvent problems of heat dissipa-

tion even in the 1-photon case.

The widely used bioluminescent protein re y luciferase is∼80 e cient in converting ATP hy-

drolysis coupled with luciferin oxidation into photon production, yielding ∼0.8 photons per ATP-

luciferin pair consumed 584, and has∼90 energetic e ciency in converting free energy to light pro-

duction. Heat dissipation associatedwith the luciferase biochemistry itself is therefore not a signi cant

overhead relative to the 100 µW of emitted photons calculated above. In the same scenario, however,

each neuronwould consume∼6 × 108 additionalATPmolecules perminute in order to power the bi-

oluminescence, which is within the limits of cellular aerobic respiration rates (∼1 fmol O2 per minute

per cell475, with∼30 ATP per 6 O2, hence 3 × 109 molecules ATP synthesized per minute fromADP

via glucose oxidation), but not by a large margin. Transient increases in metabolic rate are possible:

energy dissipationmore thandoubles in themouse during high physical activity622. Therefore, whole-

brain activity-dependent bioluminescence, at speeds high enough to achieve millisecond frame rates,

may be metabolically taxing for the cell but is nevertheless plausible as a light generation strategy.

58



Note that we have not treated the energy required to bio-synthesize the luciferin compound, which

may create additional overhead (though conceivably luciferin could be provided exogenously).

C F D

Scattering of visible light in the brain creates a problem of signal-separation from deep-brain neurons.

Multi-photon techniques, which scan an infrared excitation beam, can work around this scattering

problem. However, current multi-photon techniques using uorescent protein indicators, when ap-

plied at whole brain scale, would dissipate too much power to avoid thermal damage to brain tissue.

Systems (such as plasmonic nano-antennas63 or subwavelengthmetallic gratings 260) that could locally

excitemulti-photon uorescencewithout the need for high-energy laser pulses could conceivably ame-

liorate this issue. Importantly, quantum dots show promise as ultra-bright multi-photon indicators,

if they can be targeted to neurons and optimized in terms of uorescence lifetime. New methods

besides multi-photon techniques could also work around the scattering of visible light in the brain.

For example, uorophores or bio-luminescent proteins could be developed which operate at infrared

wavelengths. A compelling example from nature is the black dragon sh, which generates far red light

(∼ 705 nm) via a multi-step bioluminescent process (using this light to see in deep ocean waters)703,99.

A large set of activity indicatorswith distinguishable colors, generated through a combinatorial genetic

recombination mechanism such as BrainBow410, could also improve signal separation. Targeting, via

protein tags, of activity indicators to speci c locations — such as the axon, soma, soma and proximal

dendrites, distal dendrites, pre-synaptic terminals, post-synaptic terminals, or intact synapses— could

also aid in signal discrimination 31,179,132,315,672,70,194,717. In addition, implanted optical devices, which

place emitters and detectors within a few scattering lengths of the neurons being probed, could po-

tentially obviate the negative e fects of scattering and allow visible-wavelength indicators to be used

without a need for multi-photon excitation. In principle, excitation and detection do not need to

make use of the same modality. For example, photoacoustic microscopy 198 uses pulsed laser excita-
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tion to drive ultrasonic emission, leading to optical absorption contrast. Such asymmetric techniques

impose fundamentally di ferent requirements from pure-optical techniques relative to uorophore

properties, required light intensities and other parameters.

3.3.2 E A E

The preceding sections have assumed that electrical or optical signals from the recorded neurons are

shuttled out of the brainbefore digitization and storage, but it is also conceivable to develop embedded

electronic systems that locally digitize and then store or transmit (e.g., wirelessly)measurements of the

activities of nearby neurons. This could allow for shorter wires in electrical recording approaches, and

for shorter light path lengths in optical recording approaches, as well as for more facile (e.g., non-

surgical) delivery mechanisms for the recording hardware.

Integrated circuits have shrunk to a remarkable degree: in about 3 years, following theMoore’s law

trajectory, it will likely be possible to t the equivalent of Intel’s original 4004 micro-processor in a

10 µm × 10 µm chip area. Functional wirelessly powered radio-frequency identi cation (RFID) chips

as small as 50 µm in diameter have been developed671 and tags with chip-integrated antennas function

at the 400 µm scale7. Integrated neural sensors including analog front ends are also scaling to unprece-

dented form factors: a 250 µm× 450 µmwireless implant – including the antenna, but not including

a∼1 mmelectrode shank used to separate signal fromground–draws only 2.5 µWper recording chan-

nel62. The system operates at ∼1 mm range in air, powered by a transmitter generating ∼50mW of

transmitted power. Note that for a single such embedded recording device, the heat dissipation con-

straint is set not by the device’s own dissipation (10 µW for four recording channels) but rather by the

RF speci c absorption rate limit associated with the 50mW transmit power.

Possibilities may exist for non-surgical delivery of embedded electronics to the brain: remarkably,

cells such asmacrophages (∼13 µm in size) can engulf structures up to at least 20 µm in diameter 101 and

have been studied as potential delivery vehicles for nano-particle drugs 329, suggesting that they might
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be used to deliver tiny microchips. T-cells and other immune cells can trans-migrate across the blood

brain barrier 186 and ghost cells (membranes purged of their contents) engineered to encapsulate syn-

thetic cargo 126 can fuse with neurons 281. It might even be possible to engineer such cell-based delivery

vehicles to form electrical gap junctions624 with neurons or to act as local biochemical sensors493.

The real-time transmission bandwidth requirements for neural recording could be signi cantly

reduced if it is only desired to take a “snapshot” of neural activity patterns over a limitedperiodof time,

but thiswould require a large amount of local storage. For example, ashmemory can store> 10Mbit

of data in a device 100 µm on a side: a 64 giga-byte microSD card with 1.5 cm2 area corresponds to 34

mega-bits per (100 µm)2 area. Even denser forms ofmemory storage are under development and could

perhaps be used in a one-time-write mode in the context of neural recording long before they become

commercially viable for use as rewritable media in the electronics industry.

Here we consider the power dissipation associated with embedded electronic recording devices,

as well as the constraints on possible methods to power them. In the next section, we describe how

physics constrains the data transmission rates from such devices.

P R R

Any embedded system needs to process data, in preparation for either local storage or wireless trans-

mission. Physics de nes hard limits on the required power consumption associated with data pro-

cessing (neglecting the possibility of reversible logic architectures 56), arising from the entropy cost for

erasing a bit of information 387:

ELandauer = ln(2) kBT ≈ 3 × 10−21 J/bit (the Landauer limit)

Ambitious yet physically realistic values for beyond-CMOS logic lie in the tens of kBT per bit pro-

cessed716. Scaling 40 kBT/bit to record raw voltagewaveforms at aminimal 1 kbit/s/neuron (e.g. 1 kHz
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sampling rate, 1 bit processed per neuron per sample), the total power consumption for whole mouse

brain recording could in principle be as low as∼16 nW. While this leaves> 106-foldmore room (ener-

getically) for increased data processing (more required bit ips per second), or energetic ine ciency of

the switching device (greater dissipation per bit), realistic devices in the near-term may in fact require

this much overhead, if not more. This necessitates a more detailed consideration of limiting factors

for today’s microelectronic devices.

In the context of electrical recording, the rst step that must be performed by an embedded neural

recording device is digitization of the voltage waveform. Until mV-scale switching devices are devel-

oped (see discussion below), it is necessary to amplify the∼10–100 µV spike potential in order to drive

digital switching events in downstream gates. During this sub-threshold ampli cation step, a CMOS

(or BJT) device will dissipate static power (associated with a bias current). Importantly, in order to

decrease the input-referred voltage noise of this ampli cation process, it is necessary to increase the

bias current and hence the static power dissipation. For a simple di ferential transistor ampli er, the

minimal bias current scales as

Id =
π
2

4kBT
V2

noise

kBT
q BW

where Vnoise is the input-referred voltage noise of the ampli er and q is the electron charge. For an

extracellular recording with BW = 10 kHz and Vnoise = 10 µV, this implies a minimal bias current

Id ≈ 60 nA or a minimal static power of (IdVdd) ≈ 6 × 10−8 W at Vdd ≈ 1 V operating voltage.

Assuming 10 neurons per recording channel, there are then 7.5million recording channels for amouse

brain, which gives a power dissipation associated with signal ampli cation of ∼ 500mW. Note that

realistic analog front ends (which are subject to 1/f noise and require multiple gain stages) draw 6×–

10× greater bias current, quanti ed by the noise e ciency factor (NEF)634, to achieve the same input-

referred noise levels.

Local on-chip digital computation also incurs an energy cost. Current CMOS digital circuits con-
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sume 5–6orders ofmagnitude667,370,716,666 more energyper switching event (∼1 fJ/bit including charg-

ing of thewires667) compared to theLandauer limit (e.g., for a digitalCMOS inverter, and ignoring the

static power associated with the leakage current). This corresponds to a∼1 fF total load capacitance at

1 V operating voltage. For 100GHz switching rates (108 neurons×1 kHz) as above, this corresponds to

0.01–0.1 mW. Realistic architectures, however, will incur overhead in the number of switching events

required to store, compress and/or transmit neural signals, likely bringing the power consumption

into anunacceptable range (e.g., 1000bits processedper samplewouldbe 100mWhere). To take a con-

crete example, commercial RFID tags consume ∼10 µW9. At a chip rate of 256 kbit/s (with a Miller

encoding of 2), this yields 7.8 × 10−11 J/bit, which is ∼10 orders of magnitude higher than the Lan-

dauer limit. Applying current RFID technology to whole mouse brain recording at 1 kbit/s/neuron

would thus draw ∼8W of power. Therefore, at least 2–3 orders of magnitude reduction in power

consumption will be necessary in order to apply embedded electronics for whole-brain neural record-

ing.

Until recently, the energy e ciency of digital computing has scaled on an exponential improvement

curve 370. This was a consequence ofMoore’s law and Dennard scaling, where both the capacitance of

each transistor and its associated interconnect, as well as the operating voltages, were reducingwith the

device dimensions. Unfortunately, issues related to device variability and the 3D structures needed to

maintain the on-to-o f current ratio have largely stopped the reduction in e fective capacitance per

device; current devices are stuck at ∼ 100–200 aF for a minimum sized transistor. Furthermore, the

exponential increase in leakage current that comes alongwith the scalingof the threshold voltage in this

scenario has precluded substantial further decreases in voltage at a given performance level. Indeed, for

the past several technology generations (since about 2005), CMOS devices have operated at a supply

voltage of∼1 V.

While neural signal processing does not demand very stringent transistor speeds and so reductions

below∼1 V are certainly feasible, a fundamental limitation in scaling the supply voltage still remains.
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Speci cally, CMOS has a well-de ned minimum-energy per bit and an associated minimum-energy

operating voltage that is de ned by the tradeo f between static (leakage) and dynamic (switching) en-

ergy: as the operating voltage is decreased, the capacitive switching energy decreases, but the ratio of

currents in the on and o f states, Io /Ion, increases exponentially, increasing the energy associatedwith

leakage (this e fect is independent of the threshold voltage in the sub-threshold regime). For practical

circuits, the supply voltage that leads to this minimum energy is on the order of 300–500mV, and

thus supply voltage scaling will at most provide 3×–10× improvement in energy over today’s designs.

Thus, a paradigm shif in microelectronic hardware is needed to reduce power by several orders of

magnitude if we are to approach the physical limits. Developing a switching device operating in the

mV range, rather than the 1 V range of current transistors, would allow (1 V/1 mV)2 = 106 fold re-

duction in power consumption716. Electronic circuits constructed using analog techniques 571, which

sometimes rely on bio-inspired computational architectures, show promise for reducing energy costs

by up to ve orders of magnitude 544,571,431, depending on the nature of the computation and the re-

quired level of precision.

Figure 3.4 shows the power consumption per bit processed for several technology classes as well as

the corresponding total power consumption required for whole brain readout, assuming a minimal

whole-brain bit rate of 100Gbit/s.

P E D

Embedded systems need power, which could be supplied via electromagnetic or acoustic energy trans-

fer, or could be harvested from the local environment in the brain.

There are two key regimes for wireless electromagnetic power transfer: non-linear device recti -

cation and photovoltaics. If the single-photon energy is su cient to allow electrons to move from

the valence to the conduction band—that is, band gap < hν/q, where q is the electron charge, h is

Planck’s constant, and ν is the frequency of the photon—a photovoltaic e fect can occur. Otherwise,
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Figure 3.4: Energy cost of elementary operations across a variety of recording and data transmissionmodalities, ex-

pressed in units of the thermal energy (left axis) and as a power assuming 100GHz switching rate (right axis). The
Landauer limit of kBT ln 2 sets theminimum energy associated with a logically irreversible bit flip. The practical limit

will likely lie in the tens of kBT per bit 716, comparable to the free energy release for hydrolysis of a single ATPmolecule

(or addition of a single nucleotide to DNA or RNA). The energy of a single infrared photon is∼50kBT. Single gates in

current CMOS chips dissipate∼1 × 105–106 kBT per switching event, including the capacitive charging of the wires

interconnecting the gates (red curve). The switching energy for the gate, not including wires, is∼ 100× lower (blue

curve). The power efficiency of CMOS has been on an exponential improvement trend due to theminiaturization of

components according toMoore’s law (data re-digitized from 667), although power efficiency gains have slowed recently.

Current RFID chips compute and communicate at∼1 × 109–1010 kBT (> 10pJ) per bit transmitted, while the total

energy cost per floating point operation in a 2010 laptopwas∼1 × 1012 kBT. The power associated with aminimal low-

noise CMOS analog front end for signal amplification corresponds to∼ 500mW at wholemouse brain scale. A single

two-photon laser pulse at 0.1 nJ pulse energy corresponds to∼1 × 1010 kBT. For comparison, the 40mW approxi-

matemaximal allowed power dissipation, according to section 3.1 (Basic Constraints) above, with its equivalent per-bit

energy of∼1 × 108 kBT at theminimal 100Gbit/s bit rate.
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electromagnetic energy is converted to voltage by an antenna and non-linear device recti cation may

occur.

When photon energies are much lower than the band gap, power conversion is governed by the

total RF power and by the impedances of the antenna and the recti er, rather than by the individual

photon energy. For a monochromatic RF source, there is no thermodynamic or quantum limit to the

RF to DC conversion e ciency, other than the resistive losses and threshold voltages for a semicon-

ductor process. For recti cation, when the input voltage to the recti er ismuchhigher than a semicon-

ductor process threshold, conversion e ciencies of 85 have been achieved648. At low input voltages

relative to the semiconductor process threshold, e ciencies as high as 25 and 2 µW load have been

achieved (see431 for an analysis of power e ciency). Ultimately, recti cation improvements are de-

pendent on the same improvements which will be needed for next-generation low-power computing:

mV scale switching devices (promising research directions include tunnel FETs 305, electromechanical

relays408 and other options).

While e cient recti cation is thus not a fundamental issue, capturing su cient RF energy in the

rst place becomes increasingly challenging asmicrochips become smaller andmore deeply embedded

in tissue. Wireless electromagnetic power transfer imposes range constraints due to the loss in power

density with distance. For directional power transfer, placing the receiver at the edge of the transmit-

ter’s near eld (the Rayleigh distance D2

4λ where D is the transmitter aperture) has advantages in terms

of energy capture e ciency 510, whereas for omni-directional antennas it is advantageous to place the

receiver as close as possible to the transmitter. If embedded chips are oriented randomly with respect

to the transmitter, the radiation patterns of their antennas cannot be highly directional, i.e., their gains

Gr (a measure of directionality) must be close to one. In the far eld, this lack of directionality limits

power capture by the antenna (due antenna reciprocity 221): the maximal power PA available to the

chip is

PA =
GrPradλ2

4π
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where Prad is the power density of radiation around the antenna, λ is the wavelength and Gr ≈ 1 for

a non-directional antenna431.

Itmay be possible to power devices with puremagnetic elds (which are highly penetrant) via near-

eld (non-radiative) inductive coupling, which is widely used in systems ranging from biomedical im-

plants to electric toothbrushes, or conceivably by usingmagneto-electric materials 354,536,730,196. For the

case of simple inductive coupling, however, the tiny cross-sections of micro-devices limit the amount

of power which can be captured: a loop of 10 µm diameter in an applied eld of 1 T switching at

1000Hz produces an induced electromotive force of only 0.1 µV. Assuming a copper loop (∼17 nΩm

resistivity) with 1 µm × 1 µm cross-section and 40 µm length (around the outer edge of the chip) gives

a power (V2/R) of only ∼15 fW associated with the induced current. In general, the use of coupled

high-Q resonators can increase the range and e ciency of near- eld electromagnetic power transfer by

orders of magnitude 335 compared to non-resonant inductive power transfer and may be particularly

relevant for implanted devices 284. Unfortunately, at the ∼10 µm length scale, the achievable on-chip

inductances and capacitances are severely limited, which restricts the operating range of any resonant

device to high frequencies
(

fresonant =
(
2π

√
LC

)−1
)
whichwill be attenuated by tissue. Electromag-

netic near- eld power transfer though tissue to ultra-miniaturizedmicrochipsmay thus be ine cient,

again due to low capture e ciency of the applied elds by tiny device cross-sections.

Alternatively, if the photon energy is above the silicon band gap (λ < hc
qVth

≈ 3 µm or less for

silicon), the chip is essentially acting as a photovoltaic cell. There is no thermodynamic or quantum

limit to the conversion e ciency of light to DC electrical power for monochromatic sources, other

than resistive losses and dark currents in the material (86 in GaAs for example60). Again, how-

ever, capturing su cient light becomes di cult for tiny devices. To supply 10 µW (typical of current

wirelessly-powered RFID chips) photovoltaically to a 10 µm × 10 µm (cell sized) chip at 34 photo-

voltaic e ciency requires a light intensity of∼ 300 kW/m2 at the chip, which is prohibitive. Further-

more, in the use of infrared light for photovoltaics, the penetration of the photons through tissue is
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decreased compared to radio frequencies.

Piezoelectric harvesting of ultrasound energy by micro-devices is a possibility 585. The e ciency of

electrical harvesting of mechanical strain energy in piezoelectrics can be above 30 for materials with

high electromechanical coupling coe cients (e.g., PZT) 5,715. The losses in the piezoelectric transduc-

tion process are well described by models such as the KLM model 382,107.

An alternative to wireless energy transmission is the local harvesting of biochemical energy carriers.

Implanted neural recording devices could conceivably be powered by free glucose, the main energy

source used by the brain itself. The theoretical maximum thermodynamic e ciency for a fuel cell in

aqueous solution is equal to that of the hydrogen fuel cell: ΔG0/ΔH0 = 83 at 25C. Furthermore,

if glucose is only oxidized to gluconic acid, the Coulombic (electron extraction) e ciency is at most

8.33 543, which bounds the thermodynamic e ciency. The blood glucose concentration in rats has

been measured at∼7.6m , with an extracellular glucose concentration in the brain of∼2.4m 609.

A hypothetical highlyminiaturized neural recorder with a device area of 25 µm × 25 µm and e ciency

of 80 , processing a blood ow rate of∼1 mm/s 310 could extract

(80 )(7.6m )(25 µm)2(1 mm/s)(2880 kJ/mol) ≈ 11 µW,

which is su cient for low-powerdevice such asRFIDchips 116. Unfortunately, currentnon-microbial

glucose fuel cells obtain only ∼ 180 µW/cm2 peak power and ∼3.4 µW/cm2 steady state power 543.

Thus there is a need for 104- and 106-fold improvements in peak and steady state power densities, re-

spectively, for non-microbial glucose fuel cells to power brain-embedded electronics of the complex-

ity of today’s RFID chips (or for the corresponding decrease in power requirements, as emphasized

above).

C F D

The power consumption of today’s microelectronic devices is more than six orders of magnitude

higher than the physical limit for irreversible computing, and 2–3 orders of magnitude higher than
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would be permissible for use in whole brain millisecond resolution activity mapping, even under fa-

vorable assumptions on the required switching rates and neglecting both the power associated with

noise rejection in the analog front end and the CMOS leakage current. Thus, the rst priority is to

reduce the power consumption associated with embedded electronics. In principle, methods such as

infrared light photovoltaics, RF harvesting via diode recti cation, or glucose fuel cells, could supply

power to embedded neural recorders, but again, signi cant improvements in the power e ciency of

electronics are necessary to enable this. Other potential energy harvesting strategies include materi-

als/enzymes harnessing local biological gradients such as in voltage, osmolarity, or temperature. An

analysis of the energy transduction potential of each of these systems is beyond the scope of this discus-

sion. Fortunately, with many orders of magnitude potential for improvement before physical limits

are reached, we may expect that embedded nano-electronic devices will emerge as an energetically vi-

able neural interfacing option at some point in the future.

3.3.3 E D : I T

Most recording methods envisioned thus far rely on the real-time transmission of neural activity data

out of the brain. Physics and information theory impose fundamental limits on this process, including

a minimum power consumption required to transmit data through a medium. The most basic of

these results hold irrespective of whether the data transmission is wired or wireless, and regardless of

the particular physical medium (optical, electrical, acoustic) used as the information carrier.

A communication “channel” is a set of transmitters and receivers that share access to a single phys-

ical medium with xed bandwidth. The bandwidth is the range of frequencies present in the time-

varying signals used to transmit information. Inwireless communications, information is transmitted

by modulating a carrier wave. To allowmodulation, the frequency of the carrier wave must be higher

than the bandwidth: for example, a 400THz visible light wave may be modulated at a 100GHz rate.

The physical medium underlying a channel could be a wire (with a bandwidth set by its capacitive RC
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time constant), an optical ber, free space electromagnetic waves over a certain frequency range, or

other media.

As a concrete example, consider a police department with 100 o cers, each possessing a hand-held

radio. The radios transmit vocalizations by modulating an 80MHz carrier wave at ∼10 kHz. This

constitutes a single shared communications channel with 10 kHz bandwidth. Simultaneously, the re

departmentmay communicate via a separate channel, alsowith a bandwidth of∼10 kHz, bymodulat-

ing a 90MHz carrier wave. The channels are separate because modulation introduced into one does

not a fect the other. If the neighboring town’s police department makes the mistake of also operating

at 80 MHz carrier frequency, then they share a channel and con icts will arise.

P R S -C D T

We rst treat the case in which there is a single channel for transmitting data out of the brain. As

discussed above in the context of electrical spike sorting, the Shannon Capacity Theorem 134 sets the

maximal bit rate for a channel (assuming additive white Gaussian noise) to

Rmax = BW log2 (1+ SNR)

where BW is the channel bandwidth and SNR is the signal-to-noise ratio. If there is only thermal

noise the SNR = P/(N0BW), where N0 is the thermal noise power spectral density of kBT W/Hz

and P = (PL)P0 is the power of the transmitted signals P0, weakened by path loss PL. Therefore the

transmitted power P0 is lower-bounded:

P0 > kBT BW
2Rmax/BW − 1

PL
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as shown in Figure 3.5 (bottom). In aminimalmodel of a transmitter-receiver system, there thus exists

a tradeo f between the required signal power and the bandwidth of the carrier radiation, due to the

thermal noise oor, even in the absence of path loss (PL = 1).

Path loss weakens the proportion of the power that can reach the detector. Using the above equa-

tion,we can calculate, as a functionofbandwidth, thepowernecessary to transmit a targetwhole-brain

bit rate of 100Gbit/s through amediumwith path loss dependent on the carrierwavelength, as shown

in Figure 3.5 (top).

For RF wavelengths, the radiation penetrates deeply but the achievable data rates are low with-

out excessive power consumption, due to the limited bandwidth. For wavelengths intermediate be-

tween RF and infrared, the penetration depth is low and power must be expended to combat these

losses, despite the high carrier bandwidth. Only in the infrared and visible ranges do the tradeo fs be-

tween power, bandwidth and penetration depth allow transmission of> 100Gbit/s out of the brain

through a single channel without unacceptable power consumption.

The analysis above has ignored the e fects of noise sources other than thermal noise, but many

additional noise sources will increase the amount of power needed to transmit data, via a decrease

in the SNR at xed input power. For optical transmission in the brain, the noise is dominated by

time-correlated “speckle noise” below 200 kHz, which arises mostly from local blood owCarp et al..

This correlated noise, which cannot be ltered by simple averaging, could be avoided by modulating

optical signals at frequencies above 200 kHz.

S M D T

As discussed above, transmitting information through a single channel imposes direct limits on bit

rate, carrier frequency and input power. However, it is conceivable to divide the data transmission

burden over many independent channels, i.e., over many pairs of transmitters and receivers, each op-

erating at lower bandwidth (e.g., at radio frequencies). Indeed, this would be optimal in a scenario
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Figure 3.5: Power requirements imposed by information theory on data transmission through a single (additive white

Gaussian noise) channel with carrier frequency ν (an upper bound on the bandwidth), given thermal noise and path

loss. Bottom: absorption length of water as a function of frequency (blue), minimal power to transmit data at 100, 1000
and 10 000Gbit/s (green) as a function of frequency, assuming thermal noise but no path loss. Top: minimal power

to transmit data at 100, 1000 and 10 000Gbit/s as a function of frequency, assuming thermal noise and a path loss

corresponding to the attenuation bywater absorption over a distance of 2mm. While formulated for a single channel,

at certain wavelengths (e.g., RF) these factors also constrain multiplexed data transmissions betweenmany transmitters

andmany receivers, depending on capacity of the system for spatial multiplexing. Horizontal dashed lines: 40mW, the

approximatemaximal whole-brain power dissipation in steady state.
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where many embedded devices measure and then transmit the activities of nearby neurons. As a con-

crete example of such “spatial multiplexing,” an e fective capacity of 1 Tbit/s could conceivably be

obtained by splitting the data over 1000 transmitter-receiver pairs each operating at 1 Gbit/s, with

the transmitters arranged in a 10 × 10 × 10 grid. Importantly, in order to exceed the above limits for

single-channel data transmission, it must be possible for these transmitter receiver pairs to share the

same bandwidth and operate simultaneously without con icts, for example by modulating distin-

guishable carrier waves or by transferring data over separate wires. The conditions under which this

may occur, however, can be counter-intuitive. For example, for antennas to operate independently,

they must be spaced apart from one another by roughly a wavelength. For 10GHz microwaves, the

wavelength is∼3 cm, so nomore than a handful ofmicrowave transmitters (e.g., operating at frequen-

cies in the 100GHz–1 THz range) can co-occupy the mouse brain while operating independently.

Even with many non-independent transmitters co-occupying the brain and operating simultane-

ously over the same frequency spectrum, it may be possible under some conditions to “factor out”

the e fects of the coupling and allow an increase in channel capacity relative the single-channel result.

To treat such scenarios, a generalization to Shannon’s capacity theorem to multi-input-multi-output

(MIMO) channels has shown that the maximal total data rate is

Rmax = BW · log2 |I + (SNR)HH∗|

whereI is the identitymatrix, |·|denotes thematrix determinant,H is the (M×N forN transmitters

and M receivers) channel matrix giving668 the coupling between the vector of transmitted signals and

the vector of received signals andH∗ denotes the matrix adjoint ofH . The vector of received signals

is then y = Hx+nwherex is the vector of transmitted signals andn is a noise vector. Anymatrix

can be written asH = UV ∗ whereU and V are unitary matrices, and is a diagonal matrix whose
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elements are the singular valu λi. One can re-write the above equation as

Rmax = BW ·
min(M,N)∑

i=1

log2 (1 + SNR · λ2
i )

If the matrix H is of full rank, then the capacity for the multi-channel system can increase over the

single-input-single-output (SISO) result by min(M,N) times606. Note that the rank of the matrix

corresponds to the number of non-zero singular values, so an analysis of the singular values of chan-

nel matrices can inform us about the multiplexing capacity of the channel. Furthermore, this multi-

plexing capacity can in principle be achieved even when the transmitters are not in communication

with each other, which could potentially be important for scenarios involving many brain embedded

transmitters623.

Transmission through a medium with negligible scattering is the simplest situation to analyze. In

this case, evaluating the matrixH requires knowledge of the transmitter-transmitter, transmitter- re-

ceiver, and receiver-receiver distances, as well as the orientations and radiation patterns of the antennas

(e.g., high gain antennas will have a highly directional radiation pattern). Depending on these factors,

the beam from each transmitter will spread to impinge uponmultiple receivers and the e fective num-

ber of spatially independent beamswill be reduced. With transmitter-transmitter and receiver-receiver

distances larger than the wavelength, and highly directional antennas with appropriately chosen ori-

entations, it is possible to increase the channel capacity linearly with min(M,N).

Random scattering, in a coherent disordered medium where the mean free-path ℓ is much larger

than the wavelength λ and much smaller than the size of the disordered medium, is another condi-

tion where the matrix H is a random scattering matrix of full rank483,533. Intuitively, for the case of

two transmitters and two receivers separated by a disordered medium larger than the mean free path:

if transmitter 1 is at least a mean-free path from transmitter 2 (or potentially as close as a few wave-

lengths 57), the path from transmitter 1 to receiver 1 and the path from transmitter 2 to receiver 2 would
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be uncorrelated with respect to one another (in terms of physical path, phase, amplitude uctuations,

and other properties). The rank of the matrixH would then be 2. Devising a code on the transmitter

such that the receivers can distinguish between these two uncorrelated streams results in a doubling

of the capacity, rather than simply averaging the noise oor, which would provide only a logarithmic

capacity gain due to the increased SNR.

Thus, contrary to intuition, a high degree of random scattering can potentially be useful for data

transmission, by enabling spatial multiplexing of channels. This idea has been demonstrated experi-

mentally in the context of ultrasound transmissions 153. Biological tissue in the infrared range is well

described as such a random scattering medium (e.g., mean free path∼ 200 µm at∼ 800 nm in vivo).

Therefore infrared light could be used for spatially multiplexed data transmission out of the brain. At

wavelengthsλ comparable to critical brain dimensions in themouse, however, an insu cient number

of scattering events will occur to create multiple independent pathways for N transmitters. Mathe-

matically, the matrixH will have one highly dominant singular value and a number of much smaller

remaining terms, such that the signals appearing at a receiver from two separate transmitters will be

highly linearly dependent, di fering by only a small phase angle. Therefore, there will be no capacity

gain from multiple transmitters, and distinct transmitters will e fectively share a single channel (re-

ducing to the SISO result).

Little is known about the biological interaction with electromagnetic elds at wavelengths much

shorter than the critical brain dimensions but beyond the infrared, approximately 100GHz (∼3mm)

to 100THz (∼3 µm) in the mouse. If multiple scattering occurs and the absorption is low, this may

also be a regime conducive to MIMO communications40. E ciently generating and processing radi-

ation in this regime by embedded devices is an outstanding problem, however. The so-called “THz-

gap”656 exists because (moving towards higher frequencies starting from DC electronics), parasitic

capacitances and passive losses limit the maximum frequency at which a eld-e fect transistor (FET)

may oscillate and on the other hand (moving downward in frequency starting from optics), the band-
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gaps of opto-electronic devices limit the minimum frequency at which quantum transitions occur.

Thus there is no high-power, low-cost, portable, room temperature THz source available. Advances

in THz light generation, e.g. through the use of tunneling transistors, could be enabling.

U D T M

An important caveat to these conclusions on wireless data transfer occurs if we consider the use of

ultrasound rather than electromagnetic radiation. Because the speed of sound is dramatically slower

than that of light, the wavelength of 10MHz ultrasound is only ∼ 150 µm (approximating the speed

of sound in brain as the speed of sound in water,∼1 500m/s). Thus, many 10MHz ultrasound trans-

mitters/receiver could be placed inside amouse brain while maintaining their spatial separation above

thewavelength, and a linear scaling of theMIMOchannel capacitywith the number of devices is likely

possible in this regime, assuming that appropriate antenna gains and orientations can be achieved in-

side brain tissue. Beam orientation could present a challenge if micro-devices are oriented randomly

af er implantation. With an attenuation of 0.5 dB/(cmMHz)6, the attenuation at 10MHz is only

5 dB/cm. Thus ultrasound-based transmission of power and data from embedded recording devices

may be viable 585.

In contrast, direct imaging of neural activity by ultrasound (e.g., using contrast agents which cre-

ate local variations in tissue elastic modulus or density) may be more di cult. While the theoreti-

cal (di fraction-limited) and currently practical resolutions of 100MHz ultrasound are ∼15 µm, and

15–60 µm 206, respectfully, at these frequencies, power is attenuated by brain tissue with a coe cient

of ∼50 dB/cm6 (105-fold attenuation per cm), which imposes a penetration limit (e.g., for measure-

ments with a dynamic range of 80 dB 206). Attenuation of ultrasound by bone is stronger still, at

22 dB/(cmMHz)6. Attenuation could therefore limit the use of ultrasound as a high-resolution neu-

ral recording modality in direct imaging modes, but multiplexed transmission of lower-frequency ul-

trasound from embedded devices could sidestep this issue.
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C F D

Physics and information theory impose a tradeo f between bandwidth and power consumption in

sending data through any communication channel. Considering only thermal noise and no path loss,

achieving 100Gbit/s data rates through a single channel necessitates either a bandwidth above a few

GHz or a transmitted power above ∼ 100mW, the latter of which may be prohibitive from a heat

dissipation perspective if the signals are to be generated by dissipative microelectronic devices. Re-

searchers have proposed to use thousands or millions of tiny241 wireless transmitters embedded in the

brain to transmit local neural activitymeasurements to an external receiver viamicrowave radiation 176.

However, based on the above power-bandwidth tradeo f, this will require a bandwidth above a few

GHz. At the corresponding carrier frequencies, the penetration depth of the microwave radiation

drops signi cantly, requiring increased power to combat the resulting signal loss. While one might

hope that multiple independent channels could be multiplexed inside the brain, reducing the band-

width and power requirements for each individual channel, the long wavelengths of microwave radi-

ation compared to the mouse brain diameter suggest that such channels cannot be independent, as is

con rmed by an analysis of themulti-input-multi-output (MIMO) channel capacity for this scenario.

Therefore, radio-frequency electromagnetic transmission ofwhole brain activity data from embedded

devices does not appear to be a viable option for brain activity mapping.

On the other hand, an analysis of the channel capacity for IR transmissions in a di fusive medium

suggests that, because of its high frequency and decent penetration depth, infrared radiationmay pro-

vide a viable substrate for transmitting activity data from embedded devices. For example, data could

be transmitted via modulating the multiple-scattering speckle pattern of infrared light by varying the

backscatter from an embedded optical device, such as an LCD pixel 365, in an activity-dependent fash-

ion. Because the speckle pattern is sensitive to the motion of a single scatterer 57,514, coherent multiple

scattering could e fectively act as an optical ampli er and as a means to create independent communi-
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cation pathways. Furthermore, multiplexed data transmission via ultrasound is likely possible because

of its short wavelength in tissue at reasonable carrier frequencies. It may also be of interest to explore

network architectures 88 in which data is transmitted at low transmit power over short distances via

local hops between neighboring nodes capable of signal restoration.

3.3.4 M R I

Magnetic resonance imaging (MRI) uses the resonant behavior of nuclear spins in a magnetic eld to

non-invasively probe the spatiotemporally varying chemical and magnetic properties of tissues. Al-

though originally conceived as a means to image anatomy,MRI can be used to observe neural activity

provided that correlates of such activity are re ected in dynamic changes in local chemistry or mag-

netism.

In anMRI study, a strong static eld (B = 1–15 T) is applied to polarize nuclear spins (usually 1H),

causing them to resonate at a eld-dependent Larmor frequency

f = γ
2πB

whereγ is the gyromagnetic ratioof thenucleus (e.g., 1Hhas a gyromagnetic ratio of 267.522MHz/T474

and therefore resonates at 42.577MHz in a 1 T eld). To obtain positional information, spatial eld

gradients are applied such that nuclei at di ferent positions in the sample resonate at slightly di fer-

ent frequencies. Sequences of RF pulses and gradients are then applied to the sample, eliciting res-

onant emissions that contain information about spins’ local chemical environment, magnetic eld

anisotropy and various other properties.

Most functional studies rely on dynamic changes in two forms of relaxation experienced by RF-

excited spins. The rst form results from energy dissipation through interactions with other species

(e.g. other spins or unpaired electrons), causing the spins to recover their lowest energy state on a
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timescale, T1, of 100–1000ms 559. The second form of relaxation re ects the dephasing of spin signals

in a given sampling volume (voxel) over a timescale, T2, of 10–100ms 147 due to non-uniform Larmor

frequencies caused, e.g., by the presence of local magnetic eld inhomogeneities.

In blood-oxygen level dependent 501 functionalMRI (BOLD-fMRI), themost widely used form of

neural MR imaging, increased neural activity in a given brain region alters the vascular concentration

of paramagnetic deoxy-hemoglobin, which a fects localmagnetic eld homogeneity and thereby alters

T2. Although the existence of this paramagnetic reporter of oxygen metabolism is fortuitous, the

data it provides is only an indirect readout of neural activity614,414,327, which is limited in its spatial

and temporal resolution to the dynamics of blood ow in the brain’s capillary network (1–2 s). The

spatial point-spread function of the hemodynamic BOLD response is in the 1mm range, although

sub-millimeter measurements, revealing cortical laminar and columnar features, have been obtained

by ltering out the signals from larger blood vessels42. A signi cant area of current and future work

is aimed at developing new molecular reporters that can be introduced into the brain to transduce

aspects of neural signaling such as calcium spikes and neurotransmitter release into MRI- detectable

magnetic or chemical signals 596,374,296, as described in section 4.5.3, below.

S R

The temporal resolution of MRI is limited by the dynamics of spin relaxation. For sequential MR

signal acquisitions to be fully independent, spins must be allowed to recover their equilibrium mag-

netization on the timescale of T1 (100–1000ms). However, if local T1 is static its pre-mapping could

enable temporally variant T2 e fects to be observed at refresh rates on the faster T2 timescale (10–

100ms) 147. It may also be possible to detect events that occur on a timescale shorter than T1 and T2, if

the magnitude of the resulting change in spin dynamics overcomes the lack of independence between

acquisitions. Note that these limitations on the repetition time of the underlying pulse sequence are

not eliminated by “fast” pulse sequences such as echo-planar imaging (EPI)628 and fast low-angle shot
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(FLASH) 257 or by the use of multiple detector coils705. These techniques accelerate the acquisition of

2D and 3D images, but still require spins to be prepared for readout.

The spatial resolution of current MRI techniques is limited by the di fusion of water molecules

during the acquisition time 229, since contrast at scales above the di fusion lengthwill be attenuated by

di fusion. The RMS distance of a water molecule from its origin, af er di fusing in 3D for a time Tacq,

is

drms =
√

6DwaterTacq

where Dwater = 2300 µm2/s is the self-di fusion coe cient of water. For Tacq ≈ 100ms, drms ≈

37 µm, which sets the approximate spatial resolution. For ultra-short acquisitions at Tacq ≈ 10ms,

drms ≈ 12 µm.

More technically, as described above,MRI uses eld gradients to encode spatial positions in the RF

frequency (wavenumber) components of the emitted radiation. The quality of the reconstruction of

frequency space thus limits the achievable spatial resolution. The sampling interval of the detector Δt,

and the eld gradient G, determine the wavenumber increment as

Δk = γGΔt

The spatial resolution (here considering only one dimension) is then given by 229:

Δxk-space =
π

Tacq
Δt Δk

=
π

TacqγG

Note that it is the gradient eld, not the polarizing eld B0, which determines the resolution. For a

gradient eld of 100mT/m and an acquisition time of 100ms

Δxk-space =
π

(100ms) (267MHz/T) (100mT/m)
≈ 1.17 µm
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Due to relaxation, however, the emissions from a spin at a given position do not constitute a pure

tone with a well-de ned frequency. Instead, each spin exhibits a frequency spread, which gives rise to

another limit on the spatial resolution 229:

Δxrelaxation =
2

γGT∗
2

where T∗
2 is the shortest relaxation time. Assuming T∗

2 = 5ms and G = 100mT/m, gives

Δxrelaxation ≈ 14 µm

Therefore, forwaterprotons, the resolution limit is set bydi fusionover∼ 100ms acquisition timescales,

rather than by k-space sampling or relaxation. For other spin species (e.g., with lower di fusion rate),

it may be possible to achieve resolutions limited by frequency discrimination.

Notably, there exists a practical trade-o f between spatial resolution, temporal resolution, and sensi-

tivity (SNR). In particular, to achieve high spatial resolution, it is necessary to densely sample k-space.

Fast sampling sequences such as FLASH and EPI achieve speed by sampling each point of k-space

using less signal and of en at a lower resolution. Even at high eld strengths (11.7T), this tradeo f

results in practical EPI-fMRI with a spatial resolution of 150 µm× 150 µm × 500 µm and a tempo-

ral resolution of 200ms729. Achieving much higher spatial resolutions requires longer acquisitions

and/or lower temporal sampling. For example, achieving a 20 µm anatomical resolution in MRI of

Drosophila embryos required 54 minutes for a small eld of view of 2.5mm × 2.5mm × 5mm498.

Furthermore, the ies were administered paramagnetic gadolinium chelates to shorten T1 and thereby

the acquisition time. Separately, frame rates of 50ms have been obtained for dynamic imaging of the

human heart, but required the use of strong priors to reduce data collection requirements736.
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E D

Energy is dissipated into the brain when the excited spins relax to their equilibrium magnetization in

the applied eld. The energy associated with this relaxation is of order the Zeeman energy:

ΔEZeeman =
γ
2πhB0

To obtain an upper bound on the heat dissipation of MRI, we rst assume that the brain is entirely

water, that every proton spin is initially aligned by the eld and then excited by the RF pulse, and that

all spins relax during a T1 relaxation time of ∼ 600ms. In this scenario, even an applied eld of as

high as ∼ 200T would generate dissipation within the ∼50mW energy dissipation limit. In reality,

the energy dissipation is 4–5 orders of magnitude smaller, because only a tiny fractional excess of the

spins are initially aligned by the eld (∼1 × 10−5 for elds on the order of 1 T). Therefore, thermal

dissipation associated with spin excitation in MRI is unlikely to cause problems unless eld strengths

much greater than the largest currently used elds (∼20T) are invoked, or spins with much higher

gyromagnetic ratios are used.

Practically, themain energy consideration inMRI is the absorption by tissues of RF energy applied

during imaging pulse sequences and the switching of magnetic eld gradients. Such absorption is of-

ten calculated through numerical solutions of the Maxwell Equations taking into account the precise

geometry, tissue properties and applied elds for a particular experimental setup 127. The typical spe-

ci c absorption rate (SAR) is well under 10W/kg (or 5mW per 500mg), and is restricted by the FDA

to less than 3W/kg for human studies.
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I A

All the preceding discussion about spatiotemporal resolution presumes the existence of local time-

varying signals (e.g., changes inT1 orT2) corresponding to the dynamics of neural activity. The hemo-

dynamic BOLD response is the most prominent such signal, the limitations of which are discussed

above. There have been studies working towards direct detection of minute (e.g.,∼0.2 nT) magnetic

elds associatedwith actionpotentials through their e fects onMRIphase ormagnitude contrast69,522,

but reliably detecting these elds above the physiological noise will likely require novel strategies709,259

and estimates of the feasibility of these methods have been complicated by the lack of a realistic model

for the local distribution of neuronal currents. MRI detection of the mechanical displacement of ac-

tive neurons due to the Lorentz force in an applied magnetic eld 560 has also been explored, as has

the detection of activity-dependent changes in the di fusion of tissue water665,393, possibly due to neu-

ronal or glial 355 cell swelling 307,287, although strongly di fusion-weighted scansmay have disadvantages

in terms of SNR 318. Manganese in ux through voltage-gated calcium channels406,673 generates MRI

contrast, but exhibits slowuptake kinetics and even slower e ux, such thatmanganesemonotonically

accumulates in the neurons over time. Conceivably, over-expression of manganese e ux pumps such

as the iron transporter ferroportin423 could allow time-dependent activity imaging using manganese

contrast.

In the past 15 years, e forts have been undertaken to develop chemical and biomolecular imaging

agents that can be introduced into the brain to produceMRI detectable signals corresponding to spe-

ci c aspects of neural function (analogously to uorescent dyes and proteins). One critical advan-

tage of using genetically encoded indicators would be the ability to target these indicators to speci c

cell types424,417 and/or cellular compartments 31,179,132,315,672,70,194,717. Notable examples of engineered

molecular MRI contrast agents include T1 and T2 sensors of calcium 32,403 and a T1 sensor of neuro-

transmitter release 596. Depending on theirmode of action, these imaging agents can provide temporal
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resolutions ranging from 10ms to 10 s 593. However, a major current limitation for fast agents is the re-

quirement that they be present in tissues at µ concentrations, posing major challenges for delivery

and genetic expression. Model organisms lacking hemoglobin (e.g., the blow y), and hence lacking a

hemodynamic BOLD response (as is also the case for ex-vivo brain slices), may be particularly useful

for in-vivo testing of novel activity-dependent contrast mechanisms, and specialized setups have been

constructed to perform MRI at near-cellular spatial resolution in this context (though still requiring

several hours to generate whole-brain anatomical images at this resolution) 320.

Figure 3.6 shows the achievable temporal resolution for various classes of activity-dependent MRI

contrast agents as well as the spatial resolution limit due to water proton di fusion.
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Figure 3.6: Key factors determining the spatiotemporal resolution of dynamicMRI imaging. (a) Temporal resolution

and contrast agent concentration allowing> 5 contrast, for different classes of dynamicMRI contrast agent (repro-

duced from 593, with permission). (b) Diffusion limited spatial resolution for water protonMRI as a function of temporal

resolution.

C F D

Movingbeyondhemodynamic contrast is crucial for improving the spatiotemporal resolutionof fMRI,

and several avenues may be available for doing so, especially through the use of novel molecular con-

trast agents and/or genetic engineering. More fundamentally, current MRI techniques rely on the

84



excitation of proton spins in water: this limits imaging to> 100ms timescales, unless SNR is severely

compromised, due to the low polarizability and longT1 relaxation times of proton spins. There is also

a spatial resolution limit of tens ofmicrons over these timescales due towater’s fast di fusion. Methods

which couple neural activity to non-di fusible, highly polarized spins could, in principle, ameliorate

this situation.

3.3.5 M R

Analternative to electrical, optical orMRI recording is the local storage of data inmolecular substrates.

Each neuron could be engineered to write a record of its own time-varying electrical activities onto

a biological macromolecule, allowing o f-line extraction of data af er the experiment. Such systems

could, in principle, be genetically encoded, and would thus naturally record from all neurons at the

same time.

One proposed implementation of such a “molecular ticker tape”would utilize an engineeredDNA

polymerase with a Ca2+-sensitive or membrane-voltage-sensitive error-rate735 to record time-varying

neural activities onto DNA 227 as patterns of nucleotide misincorporations relative to a known tem-

plateDNA strand (for alternative local recording techniques see 209,73). The time-varying signal would

later be recoveredbyDNAsequencing and subsequent statistical analysis 227. DNApolymerases found

in nature can add up to ∼1 000 nucleotides per second 343, and certain non-replicative polymerases

such as DNA polymerase iota have error rates of > 70 on template T bases 207. Similar strategies

could be implemented using RNA polymerases or potentially using other enzyme/hetero-polymer

systems.
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S R

Polymerases proceed along their templateDNA strands in a stochastic, thermally driven fashion; thus,

polymerases that are initially synchronized will de-phase with respect to one another over time, occu-

pying a range of positions on their respective templates at the timewhen a neural impulse occurs. The

rate of this de-phasing is a key parameter governing the temporal resolution of molecular recording.

By averaging over many simultaneously replicated templates, it is theoretically possible to associate

variations in nucleotide misincorporation rate with the times at which these variations occurred, and

thus to obtain temporally resolved recordings of the cation concentration 227.

An analysis of the projected temporal resolution of molecular ticker tapes as a function of poly-

merase biochemical parameters can be found in 227. This work suggests that molecular ticker tapes

require synchronization mechanisms if they are to record at < 10ms temporal resolution for dura-

tions longer than seconds, even when 10 000 templates per cell are recorded simultaneously, unless

engineered polymerases with kinetic parameters beyond the limits of those found in nature can be

developed. Recording at lower temporal resolutions, however, appears feasible using naturalistic bio-

chemical parameters, even in the absence of synchronization mechanisms. This situation is summa-

rized in Figure ??

Thedevelopmentofmechanisms to improve synchronizationof the ensemble ofpolymeraseswithin

each cell, or to encode time-stamps into the synthesized DNA (e.g., molecular clocks), could improve

temporal resolution and decrease the number of required template strands per neuron. Mutation-

based molecular clocks over evolutionary timescales are widely used in the eld of phylogenetics499,

and new tools from synthetic biology 183 and optogenetics or thermogenetics 58 also suggest strategies

for buildingmolecular clocks on faster timescales. As an example sketch of a possible synchronization

mechanism, optogenetic methods (e.g., similar to 367) could be used to halt, and thus re-phase, a sub-

population of polymerases at a light-dependent pause site in the template DNA, while another sub-
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D)

A)

B)

C)

Figure 3.7: Simulations of the dephasing of unsynchronizedmolecular ticker-tape ensembles, and its impact on the

achievable temporal resolution of recording, modified from 227. A) The polymerase can directly extend a base, or tran-

sition into and out of a paused state before extending. B) Evenwith no paused state, dwell times are stochastic, here

assuming an exponential distribution. C) Because of the stochasticity of dwell times, the polymerase ensemble dephases

over time. D) Table of parameter dependences for unsynchronized recording at 100ms temporal resolution, reproduced

from 227. With 10000 templates, 1000 nt/sec average speed, and no pausing, recording for several minutes for a range

of misincorporation parameters. Recording at 10ms resolution is significantly more difficult: even in the limiting case

of 100%misincorporation rate at high ion concentration and 0%misincorporation rate at low ion concentration, an

average speed of 3500 nt/s would be needed to sustain 1minute of recording at 10ms temporal resolution and 95%

decoding accuracy.
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population of polymerases reads through this pause site to maintain temporal continuity of record-

ing; then the second population could be re-synchronized at an orthogonal light-dependent pause site

while the rst population reads through. Alternatively, some form of optogenetics could be used to

directly write bit strings encoding time stamps into the synthesized DNA. These strategies would re-

quire one or two, su ciently strong global clock signals to be optically broadcast to all neurons. The

optics involved would be comparatively simple: this could be done using far fewer optical bers than

would be required for ber-based activity readout, for instance. Alternatively, if the brain could be

ash-frozen at a precisely known time, this could serve as a global time-stamp corresponding to the

termination of DNA synthesis (e.g., the DNA 3’ end).

Spatial resolution for molecular recording would naturally reach the single cell level. To determine

which nucleic acid tape originated from which neuron, static cell-speci c DNA barcoding could be

used734 to associate the synthesized DNA strands with nodes in a topological connectome map ob-

tained viaDNA sequencing. Fluorescence in-situDNA sequencing (FISSE ) 396 on serially-sectioned

or intact tissue ( xed post-mortem) 120 could be used to obtain explicit geometric information.

E D

N DNA polymerization imposes a metabolic load on the cell. Replica-

tion of the 3 billion bp human genome takes approximately eight hours in normally dividing cells,

which equates to a nucleotide incorporation rate of∼ 100 kHz. Therefore, in order not to exceed the

metabolic rates associated with normal genome replication, molecular ticker tapes operating at 1 kHz

polymerization speed 343 would be limited to approximately 100 simultaneously replicated templates

per cell. Evenmore recordings would be possible for RNA ticker tapes. Themammalian cell polymer-

izes at least 1011 NTPs per 16-hour cell cycle 313. Therefore,∼1 700 RNA tickertapes, each operating at

1 kHz, could be placed in a cell before generating a metabolic impact equal to that of the cell’s base-

line transcription rate. While these comparisons to baseline physiological levels are reasonable guide-
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lines, it is likely that a neuron can support higher metabolic loads associated with larger numbers of

templates. The maximal rate of neuronal aerobic respiration is ∼5 fmol of ATP minute via oxida-

tive respiration (see the section on bio-luminescence). Assuming ∼1 ATP equivalent consumed per

nucleotide incorporation, if neuronal metabolism were entirely dedicated to polymerization, it could

support the incorporation of up to 6 × 109 nucleotides per minute, or 105 simultaneously replicated

DNA templates at 1 kHz.

P Normal DNA and RNA synthesis do not produce problematic energy dis-

sipation and molecular tickertapes will likewise not be highly dissipative, at least in the regime where

nucleic acid polymerization rates do not exceed those associated with genome replication or transcrip-

tion.

V D

The nucleus of a neuron occupies∼6 of a neuron’s volume ((4 µm)3/(10 µm)3). Ticker tapes oper-

ating at 1 kHzwith 10 000 simultaneously replicated templates could record for 300 seconds before the

total length of DNA synthesized equals the human genome length. In the case of RNA polymerase

II-based transcription, 2.75 h of recording by 10 000 recorders is required to reach the net transcript

length in the cell. Therefore, with appropriate mechanisms to fold/pack the nucleic acids generated

by molecular ticker tapes, they would not impose unreasonable requirements on cellular volume dis-

placement over minutes to hours.

C F D

Molecular recording of neural activity has the advantages of inherent scalability, single-cell precision,

and low energy and volume footprints. Making molecular recording work at temporal resolutions

approaching 1 kHz, however, will require multiple new developments in synthetic biology, including
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protein engineering to create a fast polymerase (> 1 kHz) that strongly couples proxies for neural activ-

ity to nucleotide incorporation probabilities. Synchronization mechanisms would likely be required

to performmolecular recording at single-spike temporal resolution. An attractive potential payo f for

molecular approaches to activity mapping is the prospect of seamlessly combining—within a single

brain—the readout of activity patterns with the readout of structural connectome barcodes734,466,

transcriptional pro les 396 (e.g., to determine cell type) or other (epi-)genetic signatures 569 which are

accessible via high-throughput nucleic acid sequencing.

3.4 D

We have analyzed the physical constraints on scalable neural recording for selected modalities of mea-

surement, data storage, data transmission andpower harvesting. Each analysis is based on assumptions

– about thebrain, device physics, or systemarchitecture–whichmaybe violated. Understanding these

assumptions can point towards strategies to work around them, and in some cases we have suggested

possible directions for such workarounds. Even valid assumptions about natural brains may be sub-

ject to modi cation through synthetic biology or external perturbation. For example, methods for

rapidly removing heat from the brain could work around our assumptions about its natural cooling

capacity, supporting a range of highly dissipative recording modalities. Likewise, assumptions about

the necessary bandwidth for data transmission could be relaxed if some information is stored locally

and read out af er the fact.

In some cases, theoretical extensions of our rst-order analyses could reveal important insights. The

power-bandwidth tradeo fs identi ed in section 4.4 for electromagnetic data transmission may place

limits on the informational throughput of fMRI, for example, or a realistic simulation of heat uxes

in the brain could reveal the true limits of power dissipation. In many other cases, new experiments

will be required to move beyond crude estimates of feasibility.
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The analysis of physical limits illustrates challenges and opportunities for technology development.

While the opportunities can only be touched upon here, and some directions have been treated else-

where 144,20,21, we anticipate further analyses which could explore design spaces in detail. Here we

brie y summarize a sampling of new directions suggested by our analysis.

E The signal to noise ratio for a voltage sensing electrode imposes limits

on the number of neurons per electrode from which signals can be detected and spike-sorted, likely

requiring roughly one electrode per 100 neurons. To go beyond this, pure voltage sensing nodes could

be augmented with the ability to directionally resolve distinct sources. For example, the 3D motion

of a charged nanoparticle in an electric eld, or of a dielectric nanoparticle in an electric eld gradient,

could be monitored at each recording site711.

O While light scattering creates severe limitations on optical imaging, embed-

ded optical microscopies could overcome these limits. Embedded optical imaging systems with high

signal multiplexing capacity would be desirable, to minimize the required number and size of im-

planted optical probes.

One option might be to use time-of- ight information to multiplex many sensor readouts into

a single optical ber: this could potentially be realized using time-domain re ectometry techniques,

commonly used to determine the positions of defects in optical bers, coupled to neural activity sen-

sors arranged along the ber, which would modulate the ber’s local absorption or backscatter711.

Time-domain re ectometry techniques have already reached 40 µm resolution 386.

Alternatively, novel uorescent or bio-luminescent activity indicators could in principle relax the

limits associated with light scattering, either by enabling e cient two-photon excitation at lower light

dosages, or through all-infrared imaging schemes. Infrared bio-luminescence may be a particularly

high-value target.
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D For both embedded optical and electrical recording strategies, new delivery mechanisms

will be needed to scale to whole mammalian brains. Many of the basic parameters for scalable delivery

mechanisms are still unknown. For example, can a large number of ultra-thin nano-wire electrodes

or optical bers be delivered via the capillary network? Can cells such as macrophages engulf ultra-

miniaturized microchips and transport them into brain tissue? Can the blood brain barrier be locally

opened (e.g., using ultrasonic stimulation 301) to allow targeted delivery of recording probes?

I The ideal technique would not require exogenous contrast agents or genet-

ically encoded indicators, instead relying on signals intrinsic to neurophysiology. Neurons exhibit

few-nano-meter scale 311 membrane displacements (e.g., in response to Maxwell stresses from large

local electric eld variations) during the action potential 502. These can be measured using optical

interferometry 190, but in principle they could also be monitored acoustically (and related activity-

associatedmembrane swellings have been directly observed by atomic forcemicroscopy 348 in cultured

neurons). Sensors could be embedded in or around tissue to transduce the resulting acoustic vibra-

tions into an electrical or optical readout. This could potentially allow recording at larger distances

than the ∼ 130 µm maximum recording radius for a voltage sensing node. Other intrinsic signals in-

clude changes in refractive index associatedwith neural activity, whichwillmodulate the re ection and

scattering of light629. These intrinsic changes in optical properties can be measured with optical co-

herence tomography (OCT) 391. Localmetabolic andhemodynamic signatures are also detectable opti-

cally, such as hemoglobin oxygenation (e.g., via functional near-infrared spectroscopy 293) and the par-

tial pressure of oxygen 515,395. For minimal invasiveness, di fuse optical tomography uses near-infrared

light (600–950 nm), which passes su ciently-readily through the skin and skull to allow imaging of

hemodynamics in cortex 283,325,300, although currently with limited spatial and temporal resolution.
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D Unlike radio-frequency electromagnetics, in-

frared wavelengths may allow spatially multiplexed data transmissions from embedded recording de-

vices, creatingmultiple independent channels by taking advantage of the stochasticity of light paths in

strongly-scattering tissue. Alternatively, techniques are emerging to dynamically measure and invert

the optical scattering matrix of a turbid medium, using pure-optical or hybrid techniques.

U Certain wavelengths of ultrasound exhibit potentially-favorable combinations of

wavelength (spatial resolution), bandwidth (frequency) and attenuation compared to radio-frequency

electromagnetics. Ultrasound could be used as a mechanism for powering and communicating with

embedded local recording chips 585. Novel indicators 592 would likely need to be developed to per-

form neural activity imaging using pure ultrasound. Hybrid techniques such as photo-acoustic 198

or ultrasound-encoded optical691 microscopies are also of interest.

M For local recording, molecular recording devices could sidestep power

constraints on embedded electronics, at the cost of increased engineering complexity. For molecu-

lar recording to become practical at temporal resolutions approaching the millisecond scale, sophisti-

cated protein and viral engineering would likely be required to create a high-speed polymerase-based

recorder operating in the neuronal cytoplasm. This would also necessitate molecular synchronization

or time-stampingmechanisms tomaintain phasing betweenmultiple polymerases within a single cell,

as well as between di ferent cells.

On the other hand, molecular recording devices operating at slower timescales (e.g., seconds) could

perhaps be engineered via more conservative combinations of known mechanisms, such as CREB-

mediated signaling to the nucleus 148 or nuclear-localized calcium sensing 578. In either case, the nucleic

acid strands resulting from such molecular recorders could be space-stamped with cell-speci c viral

connectome barcodes734 for later readout by bulk sequencing. Alternatively, the ticker tapes could be
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read within their anatomical contexts by in-situ sequencing, i.e., nucleic acid sequencing performed

inside intact tissue 396.

C Combiningdynamic activity informationwith static

structural or molecular information could allow these datasets to disambiguate one another. For ex-

ample, a diversity of colors for uorescent activity indicators (i.e., a form of BrainBow410 calcium

imaging) could ease requirements on spatial separation of optical signals, and the color pattern across

cells could be mapped post-mortem at single-cell resolution using in-situ microscopy. Generalizing

further, in-situ sequencing enables the extraction of vast quantities of molecular data from xed tis-

sue, in e fect allowing observations with a palette of 4N colors, where N is the length of the nucleic

acid polymer. It may be possible to harness this exponential informational resource to enhance the

readout of dynamic activity information as well, e.g., through molecular recording.

MRI CurrentMRI is limited by its reliance on intrinsic hemodynamic contrastmechanisms and on

rapidly di fusing aqueous protons. Indicators coupling neural activity to spin relaxation rates are be-

ing developed to move beyond hemodynamic contrast. Novel excitation and detection schemes that

could sensitizeMRI to fast, local, intrinsically activity-dependentmechanisms (e.g., cell swelling, neu-

ronal magnetic elds), while ltering out the slower BOLD response, are also of interest and should

initially be tested in organisms or slice preparations lacking hemodynamic responses. Detailed compu-

tationalmodels of neuronal currents within a tissue voxel (e.g., in the spirit of 549), and of the resulting

mechanical and chemical changes, could be useful for evaluating potential new methods. In princi-

ple, MRI could also abandon the use of water protons as the signal sources, although this would pose

signi cant implementation challenges.

R New signal processing frameworks such as compressive sensing could reduce

bandwidth requirements and inspire newmicroscope designs exploiting computational imaging prin-
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ciples 545,677,349,527. Fast readoutmechanisms 390 applied to giga-pixel arrays (e.g., the 3.2 giga-pixel CCD

camera planned for the Large Synoptic Survey Telescope, which will have∼1 s readout time)might be

adapted to large-scale electrical or optical recording methods. Linear photodiode arrays can achieve

70 kHz line readout rates 8, and many such linear arrays could be read out in parallel. Optoelectronic

methods that convert between time, space and frequency representations of signals 231,234,235,233,427,663,232

could inspire designs for even faster readouts (e.g., ∼10MHz frame rates have been demonstrated in

bright eld imaging). Although thesemethods are not directly compatible with uorescencemeasure-

ments due to their use of spectral dispersion, related ideas (e.g., beat frequency multiplexing) may

enable uorescence microscopy at rates above that of CCD-based imaging 155,173, limited ultimately by

uorescence lifetimes, while also exhibiting favorable properties with respect to scattering.

A X-ray imaging has been used on live cells478 andmight nd use in neu-

ral recording if suitable contrast agents could be devised. X-rays interact with electron shells via pho-

toelectric absorption and Compton scattering and with band structure in materials. X-ray phosphors

utilize substitutions in an ionic lattice to generate visible or UV light emission upon X-ray absorp-

tion 309. In principle, some of these mechanisms could be engineered as neural activity sensors, e.g.,

in an absorption-contrast mode suitable for tomographic reconstruction 388. While tissue damage due

to ionizing radiation would ultimately be prohibitive (e.g., on a timescale of minutes711), very brief

experiments might still be possible.

Likewise, electron spin resonance (ESR) operates at∼100× higher Larmor frequency compared to

protonMRI, which improves polarizability of the spins. Due to Pauli exclusion, use of this technique

requires an indicatorwith unpaired electrons. These can be found in nitrogen vacancy diamondnano-

crystals290 (nano-diamonds), which are also sensitive to voltage 159 and to magnetic elds 258, and are

amenable to optical control and uorescent readout of the spin state (although the 2P cross-section of

the (N − V)− center appears to be relatively low694).
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H New mergers of input, sensing, and readout modalities can work around com-

plex engineering constraints. Electrical or acoustic sensors could be used with optical 566 (e.g., ber) or

ultrasonic readouts and power supplies. AnMRImachine could interactwith embedded electrical cir-

cuits powered by neural activity 319. Linking electrical recording with embedded optical microscopies

or other spatially-resolved methods could circumvent the limits of purely electrical spike sorting. Op-

tical techniques such as holography or 4D light elds could generalize to ultrasound or microwave

implementations. Consideration of analogies and synergies between elds suggests a combinatorial

space of possibilities.

Our goal here has not been to pick winning technologies (whichmay not yet have been conceived),

but to aid a multi-disciplinary community of researchers in analyzing the problem. The challenge

of observing the real-time operation of entire mammalian brains requires a return to rst principles,

and a fundamental reconsideration of the architectures of neural recording systems. We hope that

knowledge of the constraints governing scalable neural recording will enable the invention of entirely

new, transformative approaches.

3.5 S : D

3.5.1 M

To calculate the extracellular electric eld gradients felt by the sensing particles, we began with a com-

partmental model 238 of the extracellular voltage from a ring neuron. We ran the model of 238 using

cell d151 and parameter set B, at a ne grid spacing of 2 µm, and computed the decay of the extracel-

lular spike amplitude with radial distance from the soma. Figures ??–?? show the spatial pattern of

decay of the extracellular potential in the vicinity of the dendritic tree. We t the fallo f pro le near the

soma to amonopole-like (V(r) ≈ 1/r) model, and the fallo f pro le far from the soma to a dipole-like
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Figure 3.8: Calculated decay of extracellular potential from a compartmental neuronmodel 238, as a function of radial

distance from the soma (red). The black curve is the average potential at each radial distance. Monopole fit to local de-

cay (green), dipole fit to far-away decay (blue) and exponential model (yellow). Themonopole model works well near the

soma, while the dipole model works well farther away from the soma. The exponential model appears to help capture

the effects of proximity to local dendrites, since a perfectly-spherical somawould generate a perfect monopole model,

while a current-conserving, elongated neuronwould generate an approximate dipole model at large distances.

(V(r) ≈ 1/r2) model. The resulting models take the forms

Vmono(r) ≈
2.65

r mV

and

Vdip(r) ≈
146
r2 mV

where r is measured in microns. We also compared an exponential model (yellow)

Vexp(r) ≈ 1 mV · exp(− r
28 µm

)

for the fallo f. The full fallo f pattern in a 2D plane is shown in Figure 3.11.
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Figure 3.9: Zoom-in on calculated decay of extracellular potential from a compartmental neuronmodel 238, as a function

of radial distance from the soma. Monopole fit to local decay (green), dipole fit to far-away decay (blue) and exponential

model (yellow). Themonopole model overshoots the data at large distances, while the dipole model accurately captures

the shape of the long-distance falloff.
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Figure 3.10: Log-log plot illustrating the transition between themonopole and dipole falloff regimes of the extracellular

potential from a spike. The falloff is monopole-like below∼45µm radius (green) and dipole or multipole-like above

∼60µm radius (blue).

3.5.2 C

Assuming a purely radial electric eld, the eld strengths in the threemodels (see Figure 3.12) are given

by

Emono(r) ≈
−2.65

r2 mV/µm

Edip(r) ≈
−292

r3 mV/µm

Eexp(r) ≈ − 1 mV
28 µm

· exp(− r
28 µm

)

so that

dEmono

dr (r) ≈ 5.3
r3 mV/µm2
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Figure 3.11: Extracellular action potential amplitudes and shapes on a 2µm grid of width 130 µm × 130 µm, from the

cell d151 238, assuming uniform extracellular conductivity of 0.3 Siemens / meter (red). Model generated usingMatlab

andNEURON software and cell model from 238.
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dEdip

dr (r) ≈ 876
r4 mV/µm2

dEexp

dr (r) ≈ 1 mV
(28 µm)2

· exp(− r
28 µm

)

are the corresponding electric eld gradients. Thus, at reasonable sensingdistances (e.g., 20–100 µm)

from the soma, we can expect elds of order 1–10 µV/µm and eld gradients on the order of 0.1–

1 µV/µm2.

3.6 S : P -

In later chapters, we present a detailed study of the molecular recording approach, but for now we

brie y consider an example of a potential “hybrid” optoelectronic architecture for performing whole-

brain activity mapping. With Lowell Wood and colleagues, we contemplated laying optical bers

bearing periodically spaced activity sensors throughout the entirety of a mammalian brain, and con-

tinuously monitoring signals elicited from these sensors by using time-delay re ectometry of optical

pulses sent along the bers. The idea is to sense neuronal activations electrically, acoustically or mag-

netically from a short stando f (maximizing SNR and removing a need for genetic manipulation), but

to probe the apparatus optically (maximizing bandwidth). Optical bers are used to contain optical

probe pulses, such that photons largely remain inside the bers and do not enter the brain tissue itself,

minimizing tissue heating.

3.6.1 T O F V -E , L -L C S

T B

The bers under considerationwould be high-index-glass optical bers of< 1 µmdiameter (i.e., “pho-

tonic nanowires”657), with unusually thinmetal jackets on the order of∼10–100 nm. Ultra-thin bers

with lengths of at least 1 cm and diameters as small as 100 nm can be fabricated by tapering of commer-
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Figure 3.12: Decay of the electric fieldmagnitude (top) and field gradient (bottom) with radial distance from the soma,

for themonopole (green), dipole (blue) and exponential (yellow) falloff models.
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cial optical bers. Blue light (450–500 nm) probe pulses of sub-picosecond durations (e.g., 0.1–0.2 ps)

would be repeatedly sent through each ber via a pulsed laser.

Due to the thin jacket, these bers are lossy by telecommunications standards: over short distances

(∼1 cm), however, these losses are negligible. The losses arise from evanescent wave leakages out the

ber walls: the non-propagating, evanescent optical eld extends out from the ber by a distance on

the order of a fraction of the wavelength (i.e., 100–200 nm for blue light).

3.6.2 L

In order to probe neural activity with ∼10 µm spatial resolution, we would need to attach ∼1000

local activity sensors along the∼1 cm length of each ber. These sensors would each locally modulate

the optical transmission, re ection or loss properties of the ber. The sensors would themselves be 1–

10 µm in size. They could, for example, be fabricated lithographically and attached at de nedpositions

along the ber using a pick-and-place robot. The sensors could respond to either of two intrinsic

signals from the action potential: electrical potential or mechanical displacement. Figure ?? tabulates

a selection of possible sensing mechanisms, which are discussed in detail below.

3.6.3 I

Asensor-element external to the ber couldmodulate the ber’s transmissionproperties by interacting

with the evanescent elds leaking out radially from the ber’swalls. Priorwork usedmicro-mechanical

cantilevers to modulate the evanescent wave scattering from a ber49, leading to an optical sensor of

the cantilever displacement: in this study, a 1 mm long tapered ber with 1 µm outer diameter (and

mechanical sti fness 1 mN/m = 1 pN/nm) was able to detect cantilever displacements on the scale of

tens of picometers.
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Figure 3.13: Selected options for coupling neural of activity measurements into a time-resolved reflectometric readout

via interaction with the evanescent field from an optical fiber. A) Electric field gradient sensing dielectric nanoparticle.

B) Electric field gradient sensing dielectric nanoparticle withmetal nanowires for field focusing. C) Electric field gradient

sensing dielectric strips. D)Acoustic vibration-sensing nanoparticle. E)Dyes with absorption contrast, e.g., sensitive to

electric or magnetic fields. F) Fluorescent dyes.
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3.6.4 M

The total number of required bers would be on the order of (1 cm/100 µm)2 ≈ 10000 and each such

ber would bear 1000 sensors. Thus we would have 10M sensors to read out 75M mouse neurons,

which appears feasible from the perspective of electrical spike sorting. This readout would need to

occur at a rate of 10 kHz. We thus require a highly parallelized readout and digitization scheme that

would enable real-time digital storage of this data.

T -

Time-delay re ectometry (TDR) involves sending laser pulses down each ber and measuring their

return-times, due to re ection o f of “defects” in the ber: 100 µm/ (speed of light) = 0.3 ps, which

sets the temporal width of the required optical pulses. TDR measurements using pulsed lasers have

already achieved a spatial resolution of< 20 µm 204,386.

The displacement of each of the ∼1 000 such sensor-modules deployed along the ∼1 cm active

length of the ber-in-capillary, would be read-out by a probing optical pulse every few dozen mi-

croseconds, whose variable return waveformwould encode the position of each of the sensing crystals

relative to the ber’s axis.

Alternatively, ber Bragg grating sensors 252,704,376 with di ferent wavelength tunings at di ferent

sensing positions could lead to a spectrally-resolved readout. Other re ectometric techniques such as

optical low-coherence re ectometry have reached micron spatial resolutions 140.

3.6.5 C

We brie y remark here on the compatibility of this architecture with the basic constraints outlined

in434: < 50mWpower dissipation, < 1 volume displacement and the ability to sample all neurons at

> 1 kHz rates.
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E Assume that a probing optical pulse of ten million blue light photons is

launched into eachof 10000 bers everymicrosecond. This corresponds to 10000∗(107 photons per µs)∗

(Planck’s constant) ∗ (speed of light)/500 nm = 40mW, which is within the ∼50mW bound. In

any case, only a fraction of this energy would be dissipated in brain tissue (most would be re ected

inside the ber).

S If pulses are repeated everymicrosecond, the system could average over 100 pulses

per frame and still sample at 10 kHz rates.

V With 10000 bers, each 1 um in radius and 1 cm long, we have a volume

displacement of 0.3mm3 which is less than 0.1 of the 420mm3 mouse brain volume. Furthermore,

this system could conceivably be deployed via the micro-vasculature with no brain tissue volume dis-

placement whatsoever. The fraction of brain grey matter taken up by capillaries is roughly 1 336.

3.6.6 E

E

To implement electric eld sensing in this approach, the ber jacket could be thinned at de ned loca-

tions. At these locations, a dielectric nanoparticle could be attached via an elastomeric “glue”. Then,

the nanometer-scale motions of the dielectric particle in the extracellular electric eld gradient from

a ring neuron would re-position the particle with respect to the ber axis, modulating its degree of

interactionwith the evanescent optical eld. The interactionwith the evanescent eld would, in turn,

modulate the probability of backscatter at this location by the optical pulse traveling along the ber.

A set of these sensors could, for example, be deployed in helical symmetry about the ber-optic

line, with a pitch of∼10 µm and a period of∼60 µm. The axially-dependent depth-of-modulation of

the ber’s optical transmission properties – induced by the nanometric-scale di ferential motions of
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the nanoparticles relative to the ber’s axis, under the action of the time-varying electric eld gradient

from the proximate neurons – would then encode not only the distance to but also the direction of

the depolarizing neuron.

C The force on a dielectric particle in an electric

eld gradient is

Fdielectrophoretic = 4π ∗ r3 ∗ εsol ∗ K ∗ d∥E∥2
dr ≈ 8π ∗ r3 ∗ εsol ∗ K ∗ E ∗ dE

dr

where r is the particle radius, εsol is the dielectric constant (permittivity) of the surrounding medium

and K is the Clausius-Mosotti factor, which approaches K = 1 for particles with dielectric constants

much greater than that of the surrounding solution480. We will assume that K = 1, i.e., that we are

using particles with high dielectric constant*.

Some studies assume a value for the permittivity of brain tissue similar to that of water, i.e., εsol ≈

80 ∗ ε0 ≈ 8 × 10−10 F/m, or slightly lower, i.e., εsol ≈ 10 ∗ ε0 ≈ 10−10 F/m 54, where ε0 ≈ 10−11F/m

is the permittivity of free space. On the other hand, measurements in the 10Hz frequency range re-

ported relative permittivities as high as 107 213, or 105 at 1 kHz 579, and these values have been used in

some subsequent studies 286. It has been suggested that this anomalously-high apparent permittivity

at low frequencies may be due to the cable properties of local dendrites473,477,476. We believe that it

is very unlikely, however, that the e fective microscale permittivity value anywhere inside a biological

*Barium strontium titanate (BaSrTiO4) is a ferroelectric material above its Curie temperature, exhibiting a
spontaneous electric polarization in the absence of an applied eld. Below the Curie temperature, ferroelectric
materials undergo a structural change to become paraelectric, and just below the Curie Temp, the dielectric
constant (polarizability) becomes large. Importantly, in BaSrTiO4, the Ba:Sr ratio can be adjusted to set the
Curie temperature just above the working temperature (e.g., 37C in a physiological experiment). At this setting,
BaSrTiO4 exhibits a dielectric constantmuch greater than that of the surrounding solution. Each of the electric
eld gradient sensors may thus be a metal-jacketed BaSrTiO4 crystal, doped to have its Curie temperature just

above the cerebral temperature. The high dielectric constant of the nanocrystal then allows for comparatively
large dielectrophoretic forces in the E- eld gradient from the ring neuron.
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organism– i.e., the permittivity valuewhich enters into the calculation of the dielectrophoretic force –

wouldbemanyorders ofmagnitudehigher than that ofwater. We thususe εsol ≈ 102∗ε0 ≈ 10−9 F/m,

only slightly higher than that of water, in what follows.

Using r = 170 nm particle radius, our expressions for the electric elds then give dielectrophoretic

forces on the order of Fdielectrophoretic ≈ 10−11–10−9 pN for distances on the order of 50–100 µm from

the neuron soma. These forces will last roughly 1ms or less.

C For comparison, a force su cient to overcome thermal

uctuations over 1 nm displacements must satisfy

F · 1 nm > kTroom ≈ 4 ∗ 10−21 J

or in other words, F > 4 pN. Over 100 nm displacements, we require F > 0.04 pN forces to over-

come thermal noise. Therefore, the endogenous electric eld gradients are grossly too small to exert

forces on individual sub-micron dielectric nanoparticles that would be detectable above the thermal

noise. We therefore require strategies to either a) enhance the dielectrophoretic force, or b) suppress

thermal noise. We consider these options in turn below.

E

To increase the dielectrophoretic force, one strategy would be to increase the local electric eld gradi-

ent applied across the nanoparticle. For example, it would be possible to “harvest” the line-integrated

electric eld over much larger distances, and then to “focus” this integrated eld across a smaller dis-

tance (e.g., across the 100 nm nanoparticle). This means that the local voltage swing of∼1 mV could

be applied over a∼ 100 nm scale distance, rather than over the natural 10–100 µm decay distance.

This could be achieved with long, thin (albeit not ‘quantum wire’) strands of metal, acting as
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‘antennae’, in order to focus the ambient neural electric elds down to the sensor-stations. These

strands would be most naturally deployed on the outside of the ber-optic lines: we contemplate

100 nm × 100 nm coaxial cross-sections of e.g., Au metal (possibly overcoated with a thin dielectric-

insulating layer). These could be applied with lithographic means, but could perhaps also be sub-

tractively de ned by coaxial ion-milling of an initially-uniformly-applied metallic overcoating of the

optical ber.

Thus, let’s assume that 1 mV is “focused down” by the nanowires to a∼ 100 nm separation across

our dielectric nanoparticle, leading to an electric eld strength of E = dV
dr = 1 mV/100 nm inside

the particle and an electric eld gradient of dE
dr = d2V

dr2 = 1 mV/(100 nm)2. The same formula for

the dielectrophoretic force, above, then gives Fdielectrophoretic, eld-focusing ≈ 0.02 pN, which is still not

su cient to overcome thermal noise. We thus turn to an alternate strategy for enhancing the SNR

relative to thermal uctuations.

E

We have determined above that small dielectric nano-particles are highly sensitive to thermal noise,

leading to a SNR limitation. This may be partially overcome by electric eld focusing, but it would

be more desirable to use an inherently noise-robust architecture. Thus, instead of a single tiny ‘dot’,

one should employ a continuous, relatively ‘fat’ helical ‘stripe’ of dielectric, wound around the outer

surface of the ber with e.g. ∼60 µm pitch – e.g., with a stripe-width and stripe-thickness each of

< 1 µm thickness. There is then∼10–20 µm of such stripe coherently ‘ exing’ in the ber’s evanescent

eld – which happens to nearly coincide with the demonstrated resolution of optical time-domain

re ectometry.

This coherent distortion of the optical waveguide leads to an improvement in the signal-to-noise

ratio: this is because actually-interfering noise sources now are required to be coherent over distances

of dozens of microns and thus will have comparatively modest amplitudes. As a rst-order estimate,
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we can consider each 20 µm segment of the dielectric helix to move as a single, rigid particle under the

endogenous electric eld gradient. The force is then equivalent to that which would be obtained by

scaling one of the dimensions of our dielectric particle, above, from roughly 200 nm to roughly 20 µm,

i.e., a factor of 100 improvement. Unfortunately, this is still not su cient to bring the applied forces

reliably above the level of thermal uctuations.

C

A continuous helical pattern of micron-thick Curie-doped BaSrTiO4 crystal may allow cancellation

of thermal noise due to its extended length, while simultaneously maximizing the harvesting of the

local electric eld gradient forces. Metal jacketing could enhance the interaction of these sensing strips

with the evanescent eld of the optical ber probe, and patterning of metal structures around the

ber could support electric eld focusing and plasmonic resonance e fects, increasing the achievable

modulation of the ber’s optical transmission properties. Due to the extremely weak elds emanating

from the ring neuron, a combination of these methods would likely be necessary to achieve su cient

signal to noise ratio.

3.6.7 A

During the action potential, neuronal membranes displace by a few nanometers, corresponding to a

brief∼1 kHz acoustic vibration 311,190,348. This displacement will propagate through the tissue to reach

a sensor module, with the propagation occurring at roughly the speed of sound in water: ∼1 500m/s.

These nanometer displacements are large compared to the picometer displacements towhich the bony

structures of the middle ear routinely respond usefully – and their attenuation over 1 cm distances in

brain tissue is negligible. Therefore, detection means very modest compared to cochlear ones should

su ce to sense them. Furthermore, arrays of such detectors can in principle phase-di ference in order
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to position-locate signal sources to high angular (and, with enough detectors, also range) accuracy –

again, just as pairs of cochlea do, in human audition. Disambiguation of signals from distinct sources

should be quite feasible with high-rate, high-precision readouts from acoustic sensors.

Similar to the above scheme for electric eld sensing, a micro-lever placed close to the ber would

scatter evanescent optical waves in a manner sensitively dependent on the ber-cantilever distance,

as in49 above, thereby acting as a vibration sensor. The micro-lever could consist of a heavy-metal

nanoparticle attached to the jacket-thinned ber via an elastomeric glue. The di ferential motion of

the heavy-metal nanoparticle relative to the ber in an acoustic vibration eld would then modulate

the evanescent eld scattering.

A

Wecanperform anorder-of-magnitude estimate of the sensitivity of such a system. Themembrane ve-

locity is v = ∼5 nm/ms = 5 µm/s leading to apressure p = Zv ≈ 1–10 PawhereZ = 1.6 × 106 kg s/m2

is the acoustic impedance of brain tissue. The acoustic power density is then p · v = 5 µW/m2.

Assuming that theneural somaundergoing vibrationhas area (10 µm)2, theneuron radiates 5 × 10−16 W

of acoustic power during an action potential. The total energy radiated per AP is thus 5 × 10−16 W ∗

2ms = 10−18 J = 200 kT.

The ultrasound attenuation in brain tissue is roughly 0.5 dB/cmMHz, which we’ll assume is neg-

ligible here, i.e., at kHz frequencies. During the 2 ms action potential, we thus have at most 10−20 J

delivered to our 1 µm2 transducer, whereas kT = 4 × 10−21 J. A tentative conclusion from this is that

acoustic sensing is di cult for a sensor particle with sub-micron sensor cross-section.
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A

Similar to the argument above for dielectric particles vs. dielectric strips, it is likely that a continuous

strip of deforming material would be preferable to small, isolated particles. As in the electric eld

sensing case, transforming to a strip geometry increases the e fective volume of the sensor particle by

a factor of roughly 100: this may be su cient to capture as much as 10−18 J per action potential, as

compared to kT = 4 × 10−21 J.

3.6.8 A

F .

While many voltage-sensing dyes exist, these always operate on a voltage di ferential, e.g., across a

membrane: voltage itself is not physically meaningful, only voltage di ferences. Hence our use of

eld-gradient-sensing nanoparticles, above, rather than “voltage sensors”. Measuring voltage di fer-

ences requires a ground reference, as in conventional extracellular electrical recording. Without sam-

pling over large distances (e.g., with electric eld-focusing nanowires), there is no way to obtain such

a ground reference in the ber OTDR setup. Thus, in the below, we assume that the sensing parti-

cles/dyes are sensitive to electric or magnetic elds, or to propagating acoustic waves, rather than the

extracellular potential per se.

F

Unfortunately, the 0.1–1 ns uorescence lifetimes of typical uorescent dyes imply that uorescence

resulting from evanescent wave excitation of uorescent indicators by the optical probe pulses is not

an option in anOTDR scenario, since the corresponding spatial uncertainty is at least speed of light∗

0.1 ns = 3 cm, which is larger than the entire mouse brain. There may exist plasmonic or stimulated
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emission strategies which could dramatically decrease the uorescence lifetime. An example of such

an e fect has been shown for NV diamond, although the lifetimes are still too long 575.

A

On the other hand, absorption is instantaneous, so neural activity sensorswhichmodulate the absorp-

tion probability of a probe-pulse would be conceivable. Absorption measurements in OTDR appear

as a drop in the re ected signal power at distances beyond the position of an absorber, so absorption

can be spatially resolved 573,645. On the other hand, absorption-based measurements dissipate much

more power in the tissue.

In particular, optical absorption measurements on nitrogen vacancy nano-diamonds, attached to

the ber inside its evanescent eld, could perhaps measure the local magnetic elds 394 produced by

neuronal currents 258. While these systems are typically operated in a uorescence-detected NMR

mode, absorption-baseddetectionwould alsobepossible 14. Apreliminarydemonstrationof optically-

detected magnetic resonance from an NV diamond nanocrystal has been implemented in a tapered

optical ber system409.

P We expect a local neuronal magnetic eld strength of ∼0.1 nT at ∼10 µm sensor

stando f. CurrentNVdiamondmagnetometer systems (using ensembles ofNVcenters653) have achieved

sensitivities of nT/Hz1/2 604, i.e., 100 nT over a 10 kHz bandwidth, but it has been suggested that sen-

sitivities could reach fT/Hz1/2 12, i.e., sub-pico-tesla over 10 kHz bandwidth. Individual NV diamond

spins have achieved few-nano-tesla sensitivity for kHz-frequency AC elds at room temperature, but

required tens of seconds of averaging to do so454. The demonstrated electric eld sensitivity of in-

dividual NV diamond spins is much lower, at roughly 100V/cm/Hz1/2 158, orders of magnitude too

small to detect 1–10 µV/µm elds at kHz bandwidths.
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D The ultimate detection limit for a spin-based magnetometer with spin density

n in volume V, due to quantum uctuations, is 14

δBq ≈
1
γ

1√
nVtmT∗

2

where γ = 1.76 × 1011 s−1T−1 is the gyromagnetic ratio of the nitrogen vacancy center, tm is the mea-

surement duration and T∗
2 is the dephasing time.

The system of 14 reported T∗
2 = 0.15 µs at room temperature. Optimistically, we can imagine ex-

tending the dephasing time to T∗
2 = ∼1 ms (e.g., for isotopically enriched ultra-pure diamond sam-

ples627). Then for n = ∼1 × 1018 cm−3 (there are roughly 1023 carbon atoms per cubic centimeter of

diamond, so that this corresponds to a defect density of 10 ppm) and tm = 1 ms (i.e., 1 kHz band-

width), we have δBq ≈ 1.3 ∗ 10−10T for T∗
2 = 0.15 µs and δBq ≈ 1.6 ∗ 10−12T for T∗

2 = 1 ms, where

we have assumed a continuous 200 nm thick shell around the 1 um diameter ber, extending over a

distance of 20 um, and with volume V = 2 ∗ π ∗ 500 nm ∗ 200 nm ∗ 20 µm.

Thus, at thequantum limit, ensemblenitrogenvacancydiamondabsorption sensors, packeddensely

on the outside of the ber, could exhibit more-than-su cient magnetic eld sensitivity to detect neu-

ronal magnetic elds from a distance of tens of microns. Current NV spin magnetometers, however,

exhibit 2-3 of magnitude higher detection limit even at a reduced temperature of 75K 14, which would

likely bring neuronal magnetic elds to the threshold of detectability.

Increasing the density above 15 ppm in diamond of natural isotopic abundance causes increased

decoherence due to spin-spin coupling – within the NV spin bath and via coupling of NV centers to

spin-1/2 carbon-13 impurities (at roughly 1 natural isotopic abundance) – and thus no net bene t to

sensitivity 13. Thus, without isotopically pure diamond, the spin density is saturated in the above cal-

culation. Thus, the available options appear to be to increase the total volume ofNV-doped diamond

around the ber, or to use isotopically pure diamond. It may also be of interest to explore other spins,
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such as color centers in doped silicon carbide 364.

3.6.9 M

The evanescent eld around anoptical ber takes the formE(r) = E0exp(−r/dp)where r is the radial

distance from the ber wall and dp ≈ λ/3 is the penetration depth, although the exact penetration

depth is highly dependent on the geometry of the ber and the thickness of the ber wall (by using a

very thin metal cladding, one could create as much eld leakage from the ber as desired). Thus, for a

rst order model, we use dp ≈ 200 nm.

If the sensor-particle or sensor-strip was displaced by 10 nm, we could expect a change on the order

of a few percent in integrated evanescent electric eld contained inside the particle or strip:∫ 110
10 e−x/200 dx/

∫ 120
20 e−x/200 dx ≈ 1.05, for example. Whereas the 0.01 dB detection sensitivity

of OTDR corresponds to a fraction of a percent change in the re ection coe cient at a sensor site:

0.01 dB = 100.001 = 1.0023 for example.

The metal jacket of the sensor-particle or sensor-stripe is intended to maximize interaction with

the evanescent eld of the ber. Indeed, lithographic resolutions have improved so drastically over

the past several years that this metal jacket could be patterned so as to support plasmonic resonances,

which could increase the interaction strength with the ber’s evanescent elds by another factor of

Q (of the order of 10-20, for high-quality optical-plasmonic metals such as Ag in such geometries), if

necessary.
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3.6.10 D

S

According to textbook neuroanatomy, every neuron is 20–100 µm away from a capillary. One recent

study in mouse cortex found a mean distance between the center of a neural soma and the nearest

micro-vessel of ∼15 µm662. It has previously been suggested that a network of nanoscale electrical

wires (e.g., conductive polymer nanowires, insulated except at their tips) could be deployed in the

capillary bed, in principle permitting a highly scalable and minimally invasive brain interface412. In

the case of the optical ber sensors discussed above, delivery might be performed simply by “playing

out ( ber-optic) lines” into the arterial side of cerebral blood- ow, and letting them drif into the

capillary bed under the in uence of viscous drag. In principle, a scheme can be imagined wherein,

if light leaking from an already-deployed line is sensed by the line currently being deployed, it could

be auto-withdrawn by a short distance and allowed to stochastically seek an alternative route, i.e.,

one involving a capillary that is not already occupied (although it should be noted that the vascular

network contains many loops65).

It has yet to be determined whether embedding sub-micron bers of any kind deep into the cap-

illary network would cause stroke602, excessive clotting or other damage (e.g., platelet adhesion due

to turbulence, activation of the coagulation and complement systems). These concerns are height-

ened because the minimal capillary diameter in mouse vibrissa primary sensor cortex can be as small

as∼2.5–4 µm, althoughwith an average of∼4–6 µm67. Theremight also need to be a biocompatible

coating on the ber to prevent blood clotting or other e fects.

D

Another option would be to push the ber-probes directly into brain tissue, much as is currently

done for multi-electrode arrays. Because the bers are deliberately thin (to maximize evanescent eld
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Figure 3.14: Conceptual diagram of an architecture for optically-powered andwavelength-multiplexed deep brain

electrical stimulation, deliveredminimally-invasively via the vasculature.

e fects), it would be necessary to sheath them in a structural support, which is later removed, e.g., via

bio-degradation.

3.6.11 M

Similar structures could be used for high-bandwidth brain stimulation. For potential application to

deep brain stimulators, a slender catheter bearing one-or-more ber-optic lines could be thread via

the vasculature from the wrist up into locales of choice in the cerebrum. These lines could be used to

deliver optical pulses of arbitrary ‘formats’ to micro-photodiodes in the vicinity of the tips of each

ber (or along their lengths, for multiplexing) which in turn could source current, upon demand

into the walls of immediately-adjacent vasculature – with the other electrical end of the photodiodes

being slender wires embedded in insulated segments of the ber-optic line’s jacket – which can sink

the sourced current at locations-of-choice ‘elsewhere.’ A sketch of this system is shown in Figure 3.14.

One standard method for common-mode use of a single ber to realize multiple channels is fre-

quency/wavelength multiplexing. For neural stimulation, this would involve using a multi-layer di-

electric lter over each of potentially dozens of photodiodes suspended on a single ber-optic line.
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This arrangement would be wasteful of optical power but e cient from the standpoint of mass and

volume – which is likely the system-level optimum for the intra-vasculature situation.
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Without digital storage, you can’t have life. With digital

storage, you don’t exactly have a rock any more.

John Walker

4
Molecular Recording: Experimental

Progress

T rely on electromagnetic radiation or electronic

hardware to couple the signals of interest to an external data storage device. These approaches be-

come cumbersome, however, when signals reside deep within complex tissues, as is the case in func-
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tional neural connectomics, where simultaneously accessing millions of neurons is currently not fea-

sible688,91. In contrast, molecular approaches to information transfer are by nature ubiquitous, mas-

sively parallel, and inexpensive. We have recently proposed that information could be recorded onto

DNA 373,123, arguably themost robustmolecular information storagemechanism in nature. Recording

systems based onDNA can leverage scienti c and industrial interest in technologies for manipulating

and sequencing nucleic acids, as well as advances in protein design.

A DNA polymerase could be repurposed as a nano-scale recording device, bypassing many of the

hurdles of sensing technologies by locally measuring and storing information rather than requiring it

to be rapidly transmitted, digitized and stored elsewhere. In a simple encoding scheme, an environ-

mental signal of interest is coupled to the base misincorporation rate of the DNA polymerase (Figure

4.1A). Then, as the polymerase copies a known DNA template, the level of misincorporations pro-

duced in the copied strand will represent the amplitude of the environmental signal present. If the

environmental signal varies over time, those changes could in principle also be re ected by changes in

the misincorporation rate over time, enabling the DNA data storage idea to be extended to the time

domain.

DNApolymerases are complex biochemical machines90. To establish them asmolecular recording

devices, it is necessary to quantify how environmental variables a fect their copying delity. Of central

importance is the transfer function associated with a particular DNAP, which maps the amplitude of

the environmental signal to the misincorporation rate of the DNA sequence data. This transfer func-

tion is not only shaped by the biochemical properties of the polymerase, but also by other aspects of

the experimental setup; it re ects the entire sensing pathway from environmental variable to ltered

and processed sequence data. Therefore, the design of DNA recording devices requires the identi ca-

tion of any uncontrolled variables (such as local sequence context or secondary structure of the source

template) that could alter the shape of this transfer function.

Cation concentrations are logical choices as the input signals for a DNA recording device because
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they are a fected by many physiological variables, and some are known to modify DNAP delity 178.

Ca2+, for example, is involved in many signaling pathways, including neurotransmission432 and im-

mune activation 552, and can also be modulated by external stimuli625. Mg2+ andMn2+ concentrations

have been shown to strongly modulate DNAP misincorporation rate79. uantifying the transfer

function between cation concentration and DNAP delity is a useful step towards elucidating the

principles of a DNA recording device.

There are a large number of knownDNAPs with varying properties 51 that impact their usability as

recording devices. A DNAP appropriate for DNA recording of environmental signals should ideally

have a wide dynamic range of misincorporation rates and be active at mesophilic temperatures. Dpo4

(Sulfolobus solfataricus)75 is a member of the Y-family of polymerases 568,85, which are implicated in

translesion bypass 15 and somatic hypermutation 504 and have high misincorporation rates. Klenow

exo- is theD355A,E357Amutant 152 of theKlenowFragmentof theE. coliDNAPolymerase I 384, which

lacks 3’-5’ proofreading activity, and, unlike most commercially available DNAPs, is compatible with

the 37C extension temperature used for the Y-family enzymes. These two DNAPs seem particularly

interesting in the context of recording device development.

Herewe have developed a strand-speci c deep sequencingmethod tomeasure the transfer function

between divalent cation concentration and polymerase misincorporation rate in a highly multiplexed

format. We performed barcoded, error-prone primer extensions using Dpo4 and Klenow exo-, at

varying cation concentrations, and analyzed the products by deep sequencing. Analysis of the mea-

sured transfer functions reveals strong cation, template base, and sequence-context dependent e fects

on the misincorporation rate, which di fer dramatically between the polymerases, and resolves the

bulk misincorporation rate into its underlying transition probabilities. Our method for quantifying

DNAP transfer functions will facilitate the development of engineered molecular recording devices

that utilize DNA as a storage medium.
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Figure 4.1: DNA polymerase (DNAP) as amolecular signal recorder. (A) Overview of a strategy for using DNA poly-

merases as signal recording devices. Signals (top) are coupled to intracellular or extracellular cation concentration

through direct or indirect modulation of an ion channel activity. Cation concentration is in turn coupled to DNA poly-

merase fidelity on a known template according to a known transfer function (orange curve), generating a DNA record-

ing, in which data is represented by the density of misincorporated bases, andwhich can be read byDNA sequencing

(bottom). (B)Modulation of Taq polymerase by Ca2+ concentration, measured by a traditional blue-white colony count-

ing assay. (C) Biochemical steps of themultiplex deep sequencing assay for measuring the transfer functions of error-

prone DNAPs.
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4.1 R

To verify that physiologically relevant ions, such as Ca2+, can in principle modulate DNAP delity,

we checked the Ca2+ dependence of the delity of Taq DNAP using a lacIq-based PCR delity assay

(Figure 4.1B).We constructed a derivative of pUC19 containing the lacIq repressor allele and the partial

gene encoding for the colorimetric enzymebeta-galactosidase (lacZα). Theplasmidwas linearized, and

PCR-ampli ed by Taq DNAP in bu fers containing varying concentrations of Ca2+. Subsequently,

the ampli edDNAwas circularized and transformed into anα-complementing strain of E.coli. Repli-

cation by TaqDNAP introduces mutations in lacIq resulting in the de-repression of lacZα, whose ac-

tivity af er complementation is detected onX Gal indicator plates. The ratio of blue to white colonies

can be used to calculate the bulk Taq error rate if the number of DNA duplications, and mutations

yielding non-functional protein, are known. There are 349 single-base substitutions at 179 codons that

will result in a blue phenotype in the lacI gene 580. Our assay recapitulates previously reported error

rates for Taq (2.6 ∗ 10−5 per bp46) in the absence of added Ca2+, and demonstrates that increasing

divalent cation concentration monotonically increased the bulk error rate.

While Ca2+ modulated Taq delity, Taq is unable to serve as a recording device, because it requires

high temperatures for extension and has a lowmisincorporation rate (<0.015 per nt) across the phys-

iological range of Ca2+ concentrations 538. We therefore focused our analysis onDNAPs that have high

baseline misincorporation rates and operate at physiological temperatures.

4.1.1 M A P M

To characterize DNAPs at varying cation concentrations, we developed a multiplexed primer exten-

sion assay with deep sequencing readout (Figure 4.1C). Barcoded primers were rst annealed to a

known DNA template, followed by primer extension by the error-prone polymerase. Using a 96-

well plate format allowed simultaneous testing ofmany cation concentrations. Subsequently, all wells
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were normalized to equal cation concentrations (salt correction) to eliminate ion-dependent bias in

downstream biochemical steps. To eliminate bias against error-rich primer extensions, a partial Illu-

mina adapter was then ligated downstream. Ligated products were ampli ed via high- delity PCR

using primers that completed the Illumina adapter sequences. The template contained a dideoxy-C

3’ modi cation, preventing extension by the polymerase along the upstream primer. Consequently,

the template strand did not contain the primer-binding site for PCR ampli cation; only strands of

non-template origin were ampli ed, and therefore contained the full Illumina adaptors used for se-

quencing.

Diversity in the initial sequenced bases is required for proper cluster identi cation during Illumina

sequencing. We therefore positioned the 5-base barcodes indexing the 96-well plate wells such that

these barcodes comprised the rst ve bases sequenced. Following deep sequencing using the Illumina

MiSeq platform, individual reads were ltered in silico and compared with the template sequence

to quantify misincorporation rates as a function of ion concentration and base position along the

template (see Materials and Methods).

This method generated hundreds to thousands of reads per cation condition, some of which were

not full length (the result of abortive extensions and/or extensions containing base deletions). Du-

plicate plate wells with nominally equal cation concentrations and di ferent barcode sequences were

analyzed independently and used to generate misincorporation rate estimates and errors (standard

error of duplicate means).

4.1.2 M M T F C C -

M R

We observed misincorporation rates for each reaction condition by comparing ltered sequencing

readswith the known template sequence (Table S1). We rst analyzed the cationdependence ofDpo4’s

mean misincorporation rate, and found it to be positively correlated with both Mg2+ and Mn2+ con-
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centrations (Figure 4.3A B, top). We found that Dpo4 acts as a Mn2+ sensor with a gain of 2̃ /mM.

Dpo4 also acts as a sensor with a gain of 0̃.01 /mM forMg2+ (Table S1). Dpo4 is therefore a far better

sensor for Mn2+ than Mg2+.

While the misincorporation rate for Klenow exo- is also positively correlated with Mn2+ (top of

Figure 4.3C), it exhibits a weak negative correlation with Mg2+ (top of Figure 4.3D). Klenow exo- is

a sensor for Mn2+ with a gain of 0̃.6 /mM and a sensor for Mg2+ with a gain of –0.01 /mM. Thus

two cations may di fer in the direction by which they modify the kinetics of misincorporation.

Note that in all cases, the measured mean misincorporation rates are much higher than the noise

oor (shaded regions). This noise oor is de ned as the mean plus the standard error of the mean of

the misincorporation rate obtained by performing an identical protocol with the high- delity Phu-

sion DNAP in HF bu fer Figure 4.2), and is in agreement with previous studies that measured the

substitution rate of phosphoramidite synthesis 352. Therefore, the noise oor likely results from sub-

stitution impurities in the synthetic template strands. Our measurement of the noise oor is. Deep

sequencing is therefore a reliable method to characterize DNAPs with high misincorporation rates.

We further measured the transfer function for mean misincorporation by Dpo4 and Klenow exo-

with respect toCa2+ concentration. Because the kinetics of primer extension inbu fers containingCa2+

alone are at least 5̃0 fold slower than in either Mg2+ or Mn2+ 306, we performed the primer extensions

in a variety of physiologically-relevant Mn2+ and Mg2+ backgrounds. The misincorporation rate by

Dpo4 in a 200 uM Mn2+ background increases 2.9-fold from 1 nM to 1 mM Ca2+, the majority of

which occurs between 100 nM and 1 mM (Figure 4.3I, Table S1). Conversely, the misincorporation

rate of Dpo4 decreases by 42 between 1 nM and 1 mM Ca2+ in a 7 mM Mg2+ background, with

virtually all of the change occurring between 100 nM and 1 mM Ca2+ (Figure 4.3J). Ca2+ has no e fect

on misincorporation rate with Klenow exo- in the same backgrounds (Figure 4.3K and Figure 4.3L)

nor in most other enzyme/bu fer combinations (Table S1). Therefore neither of the tested DNAPs is

promising as a Ca2+ sensor without further modi cations.
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Figure 4.2:Measurement of the experimental noise floor. The spatial distribution (top) and template-base-specific (bot-

tom)misincorporation rates for Phusion on the original (A) and swapped (B) templates. (C)Misincorporation rates for

Phusion on the original template, using amodified protocol in which the ligation products were pooled and cleaned

before high-fidelity PCR amplification. Dashed lines indicated themaximum peak, plus the error, of the spatially-

distributedmisincorporations (top) or themean + SEMofmisincorporations across all template bases (bottom)mis-

incorporations, and served as the noise floors in themain text.
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Figure 4.3: Ion-dependent misincorporation rates of Dpo4 and Klenow exo- polymerases. (A, B, C, D)Mean (top) and

template-base-specific (bottom)misincorporation rates as a function ofMn2+ (A, C) andMg2+ (B, D) concentrations. (E,

F, G, H) Normalized distributions of misincorporated dNTPs for each template base. (I, J, K, L) Mean (top) and template-

base-specific (bottom)misincorporation rates as a function of Ca2+ concentration at 200 uMbackgroundMn2+ (I, K) and

7000 uMbackgroundMg2+ (J, L) concentrations. Errors are given in Tables S1-2, and are shown as error bars in the line

graphs when they are larger than the data symbol.
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4.1.3 B S M

The misincorporation characteristics of DNAPs depend not only on cation concentrations, but also

on the particular template base being copied. Deep sequencing allows quanti cation of the misincor-

poration rate at every position within the template (Figure 4.3A D). Note that misincorporation by

Dpo4 opposite a template T exhibits a >50-fold increase over the range ofMn2+ studied, while misin-

corporation rates opposite other bases show a comparatively weak dependence onMn2+ (Figure 4.3B,

Table S1). Thus the mean Mn2+ dependence of misincorporation rate of Dpo4 is largely driven by

misincorporations opposite T. There is no obvious correlation of the misincorporation rate with the

identity of the base preceding the template base (Figure 4.4).

Figure 4.4: Analysis of misincorporation at two-basemotifs in the template sequence. Misincorporation rate as a func-

tion of the template base and of the base preceding the template base, for Dpo4 at 800 µMMn2+ on the original (A) and

swapped (B) templates.

Deep sequencing also allows direct measurement of the 4x4 transition probability matrix between

template base and incorporated base (Table S2, Figure 4.3E H). For example, the disproportionate

Mn2+ dependence of misincorporation by Dpo4 opposite template T is largely due to misincorpora-

tion of dGTP. Likewise, mutations caused by Klenow exo- are generally dominated bymisincorpora-
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tion of dATP, except on templateT,which shows a>4-fold preference formisincorporation of dGTP.

Misincorporation by Dpo4 of dGTP opposite template T increases 50-fold with Mn2+. Note, how-

ever, that the relative proportions of the misincorporated bases on a given template base are largely

insensitive to cation concentration for both Dpo4 and Klenow exo-. Rather, cation concentration

acts as a scaling factor with respect to misincorporation opposite a given template base; it is the dif-

ferential magnitude of this scaling factor between the template bases that underlies the template base

dependence of misincorporation.

4.1.4 M C -D

Cations change misincorporation probabilities but not the distribution of misincorporations across

incoming dNTPs. However, the template base itself is not, in general, su cient to predict misincor-

poration rate; the sequence context is important as well (Figure 4.5A C). For Dpo4, the shape of the

graph is dominated by preferential misincorporations at template T (red dots). The dependency on

the sequence, however, is complicated: switching the rst half of the template (shaded blue) with the

second half (shaded red) leaves some aspects of themisincorporation curve similarwhile changing oth-

ers. Indeed, the swapped template leads to a more even distribution of misincorporations, indicating

that template choice is an important design parameter for DNA recording.

There is no obvious sequence context dependence of misincorporation for Klenow exo- (Figure

4.5C), beyond the identity of the template base. Curiously, the misincorporation rate opposite tem-

plate G, which dominates at 75 uMMn2+, stays relatively unchanged with increasingMn2+ concentra-

tion, while misincorporations opposite template A increase, becoming the predominant peaks at 800

uM Mn2+. Thus di ferent DNAPs are di ferently a fected by both cation concentrations and local

sequence contexts.
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Figure 4.5: Template position dependence of misincorporation rates. (A) Template position dependence of Dpo4misin-

corporation rates on the original template at varyingMn2+ (left) andMg2+ concentration (right). (B) Template position

dependence of Dpo4misincorporation rates on the swapped template at varyingMn2+ (left) andMg2+ concentration

(right). (C) Template position dependence of Klenow exo- misincorporation rates on the original template at varying

Mn2+ (left) andMg2+ concentration (right). Letters above each data point denote the identity of the template base at

that position. Grey shaded areas indicate the noise floor, defined as themaximum over positions of themisincorporation

rate (plus SEM) observed in an identical experiment with Pfusion HFDNA polymerase (Figure 4.2). Red (blue) shaded

areas in (A) and (B) correspond to shared sub-sequences between the original and the swapped template.
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4.1.5 S A M E

Our deep sequencing method produces large datasets that can be used to characterize the correlations

within each strand of synthesized DNA, as well as the statistical distributions across strands. To test

the hypothesis that DNAPs could tend to string errors together, we analyzed the lag-one correlations

of misincorporations, asking if a misincorporation on one base makes it more likely that there is a

misincorporation on the next base. Af er correction for bias due to correlations within the template

itself (see Materials and Methods), there is a weak but statistically signi cant correlation of misincor-

porations across bases forKlenow exo- at 800 uMMn2+ (0.047±0.002 excessmisincorporations per

base). For Dpo4, misincorporations at consecutive positions appear independent from one another

(all excess errors <0.01 per base). Therefore, only for Klenow exo- is a misincorporation on a base

associated with an increased probability of misincorporation on the next base.

It is unknown to what extent molecular heterogeneity plays a role in the generation of DNAPmis-

incorporations. If each DNAPmolecule performsmisincorporations according to the same statistics,

the distribution of the total number of misincorporations per read should be governed by a Poisson

distribution. The variance is larger than the mean, however, for each DNAP/template combination

tested, and the null-hypothesis of a Poissondistribution canbe rejected for each of the datasets (χ2 test,

p<0.05). Thus the ensemble of nominally identical DNAP molecules is heterogeneous with respect

to misincorporation rate.

To further study the determinants of misincorporation, we t the misincorporation data set to

a generalized linear model (GLM) containing sequence features that could plausibly impact misin-

corporation rates (Figure 4.6). Possible features included the identity of the template base and the

predicted regional secondary structure. The models were able to t the data (R2 = 0.58±0.02 and

0.53±0.11 for the original and swapped templates, respectively, Figure 4.6A and Figure 4.6B). Inter-

estingly, the models captured the interplay of sequence properties that determine the spatial depen-
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dence of misincorporation. Fits to the original template data could predict the spatial dependence of

misincorporation on the swapped template (R2 = 0.49±0.06), and vice versa (R2 = 0.50±0.01). Fur-

thermore, the weights assigned to di ferent features (Figure 4.6A, Figure 4.6C and Figure 4.6D) in the

model point to potential determinants of the error rate. For example, the models identify the positive

contribution of a template T to Dpo4’s error rate and also suggest that local secondary structure may

play a role (see Figure 4.7).

4.1.6 I C M

Because cation concentration modulates the number of misincorporations in the copied DNA, one

can consider the sequenced data to store information about the cation concentration present during

primer extension422. The information gain per base is related to the likelihood that the observed mis-

incorporation rate at a given template position was produced at a particular cation concentration. For

Dpo4 at high (800 uM) vs. low (75 uM)Mn2+, themost informative template bases transmit 0̃.03 bits

of information per base about Mn2+ concentration (Figure 4.6E), whereas only 5 ∗ 10−4 bits per base

are transmitted at high (7000 uM) vs. low (1000 uM) Mg2+. Therefore, in the limit in which Mn2+

concentration could be modulated as each nucleotide is added, a Dpo4-based DNA recording device

could in principle write 11 megabytes onto a template the length of a human genome (3.2 ∗ 109 bases).

4.1.7 A M A

The analysis described in the main text relies on sequence alignments to compare sequence reads with

the known template. Alignments, however, require the sequenced read to be of su cient length that

the alignment algorithm can work reliably with respect to the full-length templates. We therefore im-

posed a length cuto f of 70 bp, as well as an alignment score cutto f, to ensure that the sequenced reads

could be properly aligned. As a control for analysis methodology, we also developed an alternate anal-
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Figure 4.6: Statistical analysis of misincorporation by Dpo4. (A) Spatial dependence (un-normalized) of Dpo4 error

rate at 800 uMMn2+ on the original template (blue curve), and generalized linear model fits of this data set with re-

spect to itself (green curve), and with respect to the swapped template data set (red curve). (B) Spatial dependence

(un-normalized) of Dpo4 error rate at 800 uMMn2+ on the swapped template (blue curve), and generalized linear model

fits of this data set with respect to itself (green curve), and with respect to the original template data set (red curve). (C)

Feature weights for generalized linear model fit to Dpo4 original template data. (D) Feature weights for generalized

linear model fit to Dpo4 swapped template data. (E) Information gain per base as a function of template position, for

discrimination between high (800 uM) and low (75 uM)Mn2+ byDpo4. (F) Information gain per base as a function of

template position, for discrimination between high (7000 uM) and low (1000 uM)Mg2+ byDpo4.
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A) B)

Figure 4.7: Overlay of Dpo4misincorporation rates with NuPack-predicted secondary structure in the templates.

ysis method which does not make use of sequence alignments and which applies to both short and

long sequences. Here, the ltered forward reads were compared with the perfect product sequence

using a sliding window based on absolute position indexing. We counted a particular absolute base

position in a particular read if the three bases before it and the three bases af er it matched their respec-

tive template sequences. For such valid positions, misincorporation values were tallied with respect to

the template. This method is not applicable to the rst three bases and last three bases of the primer

extension, and therefore the misincorporation rates at these six positions were set to zero for clarity in

plotting. The results from such analyses on Dpo4 and Klenow exo- were consistent with the analyses

given in the main text (Figure 4.8). This method, however, e fectively removes most sequences with

insertions or deletions from the analysis, and creates bias against sequences withmultiple misincorpo-

rations within the sliding window.

All gures in the main text used the alignment based method.
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Figure 4.8: Comparison of alignment-based (main text) and sliding window-based (SI text) analyses of the spatial distri-

bution of Dpo4 (A) and Klenow exo- (B) misincorporation rates at varyingMn2+ (left) andMg2+ (right) concentrations.

4.2 D

In this work, we have developed a method that can quantitatively map the misincorporation land-

scapes of error-prone polymerases as a function of environmental signals. Speci cally, we quanti-

ed how the concentrations of environmental Mg2+, Mn2+ and Ca2+ a fect the delity of Dpo4 and

Klenow exo-. Mn2+ has the strongest in uence on misincorporation rates in comparison to the other

cations. Our method resolves the misincorporation by spatial position and nucleotide-to-nucleotide

transition. We nd that, for Dpo4 and Klenow exo-, Mn2+ and Mg2+ change misincorporation rates

but leave the distribution across incoming misincorporated nucleotides untouched. We have fur-

ther shown that polymerase misincorporation rates exhibit sequence dependences. The development

of a DNAP-based cation sensor, then, necessitates calibration of misincorporation rates at speci c

template positions, within speci c sequence contexts, and at speci c bu fer conditions. The bu fer-

speci city of someDNAPs suggests that polymerase-based sensors might work best within controlled

bu fer environments, e.g. within living cells expressing ion channels, which can maintain bu fer in-

tegrity, but selectively allow targeted ions to permeate. Our experiments quantify the transfer func-

tion of misincorporation from cations, through processing, all the way to DNA sequence data.

Our assay di fers in important ways from the bacterial assays that have been used for the quanti ca-

tion of DNAP behavior 52,342,160. Through deep sequencing we can readily observe polymerase trajec-
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tories with single molecule and single base resolution while simultaneously generating large datasets,

both of which are critical for achieving the comprehensive analyses necessary for establishing poly-

merase data encoding transfer functions. Single base pair resolution allows quantifying the template

dependence of misincorporations, while single molecule resolution allows quanti cation of the cor-

relation structure of misincorporations.

The method introduced here does have limitations, some of which can be mitigated. For example,

themeasured backgroundnoise level is likely dominated by errors introduced during the chemical syn-

thesis of the oligonucleotides used as templates. The use of clonal isolates should dramatically lower

that noise level andmayprove necessary in adapting thismethod to the characterizationof high delity

DNAPs. In addition, GLM analysis indicates that the spatial dependence of the observed misincor-

poration rates may be in part due to the secondary structure of the ssDNA template. Using a nicked,

double stranded templatewould reduce this source of variance, butwould limit the applicability of the

method to DNAPs with strand displacement or nick translation activity. While sophisticated molec-

ular counting methods605 and clonal substrates are necessary to quantify the low misincorporation

rates of proofreading polymerases using sequencing 352, in this study, we have investigated error-prone

polymerases, and are therefore readily able to measure strong e fects despite the limitations of our

method.

Whilewe have demonstrated how a static ion concentration can bemeasured by a polymerase copy-

ing DNA, it would ultimately be useful to have polymerase-based sensors for time-dependent as well

as static signals. To do so, it will be necessary to optimize the sensing polymerase for speed (for tem-

poral resolution), processivity (for recording time), low pause probability (for linearity of temporal

readout), total misincorporation rate (for information density) and dynamic range of misincorpora-

tion rate (for signal to noise ratio). We have shown that divalent ion concentration can be a potent,

yet continuously tunable, modulator of polymerase misincorporation rates, and that such modula-

tion can be restricted to particular template bases and base-to-base transitions. Based on its >15-fold
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change in misincorporation rate over theMn2+ range tested here, Dpo4 could act as a high resolution

Mn2+ sensor. The fact that misincorporations are largely localized to certain template bases makes it

possible in principle to preserve relevant features of the template (on the non-error-prone template

bases) while transmitting information at the same time (on the other bases).

Advances in elds such as neuroscience impose spatial, temporal, and combinatorial challenges of

unparalleled scope, associated with the three-dimensional recording and analysis of complex cellular

systems. A molecular device capable of measuring and recording sub-cellular signals, which can be

manufactured and delivered to target environments in a scalable fashion, may emerge as an optimal

platform for biological signal recording. However, the basic principles for designing and testing such

molecular recording devices in vitro have not yet been established. This study measures a static envi-

ronmental signal – divalent cation concentration – by using DNA polymerases as molecular record-

ing devices. The synthesized DNA strand can be considered as an archival medium, which stores the

measured signal in the form of a misincorporation rate with respect to the known template. Indeed,

the use of DNA as an information storage medium leverages the rapid improvement of sequencing

technology, which is currently outpacing the Moore’s law rate of improvement of microelectronic

technology 106, and which promises to make DNA sequencing a preferred method for extracting data

from biological and bio-molecular systems 509,734,304. Extension of the techniques described here to

time-varying signals and engineered polymerases could lead to molecular sensing technologies of un-

precedented scalability.

4.3 M M

4.3.1 R

All primers were synthesized by IDT. All enzymes, dNTPs and bu fers were from New England Bio-

labs (NEB) unless otherwise indicated.
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4.3.2 M M R T P

Aderivative of pUC19 containing the lacZα and lacIq allelewas linearizedwithDraII. LinearizedDNA

was puri ed and used as template in PCR reactions containing 5 U Taq DNAP, standard Taq bu fer

with 1.5 mM Mg2+, 200 uM dNTPs (Invitrogen), CaCl2 to indicated concentrations and 0.5 uM each

of the primers

CLA55 (5’-AGCTTATCGATAAGCGATGCCGGGAGCAGACAAGC-3’) and

CLA33 (5’-AGCTTATCGATGGCACTTTTCGGGGAAATGTGCG-3’). Reactions were cycled

30 times with 1 minute of annealing at 55C and 4.5 minutes extension at 68C. PCR products were

puri ed using a DNA Clean and Concentrator-5 kit (Zymo Research). Af er determining the A260,

the ampli ed DNA was digested at 37C for 4h with 10U ClaI, and puri ed. Ligation were performed

using the NEB quick ligation kit with 50 ng of DNA, and directly transformed into DH5α E. coli and

platedonLB Carb containing40ug/uLX Gal. Blue andwhite colonieswere counted af er incubation

at 37°C overnight. The error rate f was calculated as f = -ln(F)/(db) 344, where F is the fraction of white

colonies, d is the number of DNA duplications and b = 349 bp is the e fective target size of the 1080

bp lacI gene [19]. Error bars for the blue-white screening experiment were obtained using Poisson

statistics where, for large n, the distribution is approximately Gaussian with a variance that is identical

to the mean.

4.3.3 P E A

All reactions were performed in 96-well plates, on ice, unless otherwise noted. Annealing reactions

wereperformedbymixing 100 nMbarcodedprimerN1.1.1.x (ACACTCTTTCCCTACACGACGCTCTTC-

CGATCTNNNNNGATGGTCATAGCTGTTGTA), where the underlined region is the unique 5-

mer barcode for each reaction, and x = 1 to 96; barcodes were composed with pairwise Levenshtein

distances greater than one) with 150 nM PAGE-puri ed original template strand
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N1.0.6 (AAAATCATAACTAAGTCAGTCAGTACGTCAGTAGCTCAGTCGA

TGGATGCAATGAATGAATGAATGAAAATAAAAATACAACAGCTATGACCAT-ddC)

or swapped template strand

N1.0.8 (CGATGGATGCAATGAATGAATGAATGAAAATAAAAAAAAATCATA

ACTAAGTCAGTCAGTACGTCAGTAGCTCAGTTACAACAGCTATGACCAT-ddC) in 1x anneal-

ing bu fer (Table S3). The primer and template oligonucleotides were annealed by incubation at 95C

for 5 min, followed by a -0.1C/sec ramp until reaching 25C. The PEA2 adapter dsDNA was made at

the same time, by mixing N1.2.1 (P AGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG) and

N1.2.2 (CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT) to a nal concentration of 300 nM

each and annealing them via the same protocol.

Primer extensions were performed as per the manufacturer’s instructions (Dpo4, Klenow exo-,

Phusion) in 10 uL reactions containing 1 uL annealing reaction, 50 uM each dNTP, and 1 uL of a

1:1000 dilution of Dpo4 (Trevigen) in Dpo4 annealing bu fer, 1 uL Klenow exo-, or 5 uL 2x Phusion

Mastermix in HF bu fer, in 1x extension bu fer (Table S3). Primer extensions were initiated with the

addition of divalent cation (chloride salt) to the reactionmixture and incubation at 37°C for 1h, except

for Phusion, which was incubated at 95C for 10 minutes followed by 72C for 1h. Af er primer exten-

sion, a 10 uL mixture of divalent cations was added to each well such that the nal concentration in

each well was normalized to 800 uM Mn2+, 7 mM Mg2+ and 1 mM Ca2+. An automated liquid han-

dling robot (Agilent) was used to create stocks of the divalent cations used for primer extension and

salt correction in a 96-well plate format.

Ligationswereperformed in 10uLvolumes containing6uL salt-correctedprimer extensions, 200U/uL

T4 DNA ligase (New England Biolabs), 1 mM ATP, and 1.23 nM PEA2 adapter. Ligations reac-

tions were incubated at 16C overnight. High- delity PCR of the ligation reactions was performed by

adding 5 uL ligation reaction, 0.5 uM primer N1.3.1 (CAAGCAGAAGACGGCATACGAGATCG-

GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT)and0.5uMN1.3.2 (AATGATACGGC-
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GACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT), in 1x HF Phusion

mastermix, and incubating at 98C for 30s, followed by 30 cycles of incubation at 98C for 10 s and 72°C

for 1 min, followed by a nal extension at 72C for 10 in.

4.3.4 DNA S

Pooled PCR products were cleaned using a MinElute Cleanup Column (Qiagen) into 20 uL bu fer

EB, resulting in a nal concentration of 300-400 ng/uL. Cleaned products were diluted to a nom-

inal concentration of 12-14 nM, calculated using a droplet spectrophotometer ( ubit, Invitrogen),

assuming a nominal average dsDNA length of 100 bp in the sample. The diluted sample (2 uL) was

combinedwith 8 uLwater, denaturedwith 10 uLNaOHand added to 980 uLHT1 bu fer (Illumina).

To introduce su cient base diversity for baseline intensity correction during the sequencing run, 600

uL phiX paired-end library DNA (Illumina) was combined with 400 uL of the sample and loaded on

a MiSeq (Illumina) for 150 bp paired-end sequencing. Approximately 4-5 pm of sample and at least 5

pm of phiX DNA were loaded in each sequencing run.

4.3.5 D A

Raw sequencing reads in the forward direction were ltered for the presence of the lef primer bind-

ing sequence, the rst 12 bp of the right adaptor sequence, and the presence of a correct barcode. Raw

sequencing reads in the reverse direction were ltered for the presence of the lef primer binding se-

quence and the barcode. Forward reads in which the sequence between the lef and right adaptors did

not exactly match the corresponding reverse paired end read were discarded. We also ltered out in-

stances of a short spurious PCRproduct resulting fromknownprimer dimer contamination. The for-

ward reads thus ltered were aligned with the sequence of the theoretical error-free primer extension

product (reverse complement of the template) using the BioPython function pairwise2.align.globalxs
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with gap open and gap extend penalties of -10 and -2 respectively. Sequences with length greater than

or equal to 70 bases between the lef and right adaptors, and alignment scores greater than 60, were

selected for further analysis. Misincorporations aligned to a given template position were counted to-

wards the tally of misincorporations at that position and with respect to its corresponding template

base. Misincorporation rates were measured as ratios of the number of misincorporations at a given

position or template base to the total number of events counted at that position or template base.

Insertions or deletions at a given position were not counted towards the misincorporation tally nor

towards the tally of total events at a position. An alternative analysis method that did not rely on

alignments was also used (SI Text). All data analysis was performed in Python and Matlab; code is

available upon request.

4.3.6 G L M (GLM)C , P S

A -C

Generalized linear models (GLMs) were constructed to predict the misincorporation probability at

a given template position based on sequence context and secondary structure. To construct the vari-

able to be t (y), we took the ltered, aligned reads and removed those that contained insertions or

deletions, resulting in a set of 70 nt long alignments to the rst 70 bases of the template. We further

ignored the rst and last 3 bases of these alignments to enable the use of regional information on sec-

ondary structure. For each base in y, the regressor contained binary features representing the identity

of the template base, a continuous feature representing the position in the template, and the regional

secondary structure prediction at positions ranging from three bases before the template base to three

bases af er. Only three of the four template baseswere used as explicit features, as the fourth is included

in the bias term. The ensemble-averaged secondary structure of the original and swapped templates

were calculated at 37C and standard salt conditions using NuPack sof ware733. The secondary struc-

ture at a given template position was de ned to be the sum of the ensemble pair probabilities of the
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corresponding template base with respect to all other template bases, and was calculated as one mi-

nus the probability that the corresponding template base is unpaired, as evaluated by NuPack. The

data sets used for GLM tting corresponded to individual experimental replicates. GLM calculations

were performed using the Matlab glm t function with a binomial distribution. Excess lag-one errors

were calculatedby subtracting the error expectedbasedon themisincorporationprobability (np/Nt)2,

where np is the number of errors at a particular template position within the data set, and Nt is the

total number of templates in the data set.

4.3.7 C S G P B

Calculation of the information gain per base proceeded by a Bayesian framework. Initially equal prior

probabilities were assigned to high and low cation concentrations, corresponding to one bit ofmissing

information, i.e., p(L) = p(H) = 1/2, where p(L) and p(H) are the probabilities that the cation con-

centration is in the low state or high state, respectively. Observing the misincorporation rate updated

the distribution. The expected information gain (conditional entropy) is

Hexp = p(I)Hincorrect + (1 − p(I))Hcorrect

where p(I) is the probability ofmisincorporationweighted by the prior over cation concentration (see

below), and Hincorrect and Hcorrect are conditional Shannon entropies, de ned as

Hincorrect = −p(H|I)log2(p(H|I))− p(L|I)log2(p(L|I))

and

Hcorrect = −p(H|C)log2(p(H|C))− p(L|C)log2(p(L|C))

By Bayes’ rule, p(H|I) = p(I|H)p(H)/p(I), where p(I|H) is the misincorporation rate per base
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Figure 4.9: Additional sequencing results on ion dependent polymerase fidelity. A) pH dependence of Dpo4misincor-

poration rate (experimental data fromDaniel Martin-Alarcon, analysis joint with Brad Zamft). B) Template position

dependence of themisincorporation rate of Dpo4 in several pH buffers, confirming the basic pattern observed in 735

(experimental data fromDaniel Martin-Alarcon). C) Example sequencing read frommisincorporation studies on poly-

merase Iota, which exhibits an exceptionally high error rate on template T bases.

at high cation concentration, as shown in Figure 4.5C. The other conditional probabilities (p(H|C),

p(L|I), and p(L|C)) were calculated analogously. The misincorporation probability was then calcu-

lated through marginalization, e.g., p(I) = p(I|H)p(H) + p(I|L)p(L). Inserting these expressions

into the equation for expected information gain (Hexp) allowed for calculation of the number of bits

of information gained per base.

4.4 F

We (with Brad Zamf andNoahDonoghue) also performed further experiments onmolecular record-

ing, in addition to those described in735. These included studies of the pH dependence of Dpo4 mis-

incorporation and application of the sequencing-based screening system to the ultra-high error rate
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polymerase Iota. These are illustrated in Figure 4.9. Finally, we developed a uidic system and asso-

ciated amine-epoxy surface chemistry for testing time-varying bu fer conditions, as shown in Figure

4.10. Manual bu fer exchangeswithDpo4using this surface chemistry led to preliminary (not yetwell-

reproduced) data on two-bit time-coding, as shown in Figure 4.11. Due to low processivity, Dpo4 was

pre-equilibrated with the rst and second bu fers before addition to the surface; thus, this represents

only a first premliminary step towards true time-resolved molecular recording via error-rate modula-

tion of a single processive enzyme as it continuously copies a template.
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Figure 4.10: Fluidics and surface chemistry for molecular recording device prototyping. A)Microfluidic system con-

structed for testing time-dependent molecular recording reaction in-vitro. The DNA template is immobilized to a glass

slide via amine-epoxy chemistry and reactions are conducted inside a PDMS flow cell, which is sealed to the slide with

a laser-cut acrylic clamp. An automated valve system (controlled via an Arduinomicrocontroller) was constructed to

facilitate research into time-dependent recording reactions. B) Scheme for surface-based primer extension, extraction

of the product strand from the surface, and preparation for sequencing. C) Denaturing PAGE gel of products extracted

from aDpo4 surface-immobilized primer extension reaction, with varying extension times from 1minute to 10min-

utes. D) Agarose gel of products extracted from a phi29 surface-immobilized rolling circle amplification reaction, with

andwithout template circularization by CircLigase. E) Updated design of amechanical clamp for adhering PDMS flu-

idic channels to an epoxy coated, DNA functionalized glass slide. The bottom of the clamp is machined from aluminum

to ensure good thermal conductivity during the heat denaturation step, used to extract the synthesized DNA from the

surface. F) Updated design of the channel with a large surface area and a third input line for wash buffer.
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10X e ier than 10 .

Astro Teller

5
Conneconomics

W - of current and projected

connectomics approaches, with reference to the potential implications of recent advances in diverse

contributing elds. Three generalized strategies for dense connectivity mapping at the scale of whole

mammalian brains are considered: electron microscopic axon tracing, optical imaging of combina-

torial molecular markers at synapses, and bulk DNA sequencing of trans-synaptically exchanged nu-
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cleic acid barcode pairs. Due to advances in parallel-beam instrumentation, whole mouse brain elec-

tron microscopic image acquisition could cost less than $100 million, with total costs presently lim-

ited by image analysis to trace axons through large image stacks. It is di cult to estimate the overall

cost-performance of electron microscopic approaches because image analysis costs could fall dramati-

cally with algorithmic improvements or large-scale crowd-sourcing. Opticalmicroscopy at 50–100 nm

isotropic resolution could potentially read combinatorially multiplexed molecular information from

individual synapses, which could indicate the identi es of the pre-synaptic and post-synaptic cells

without relying on axon tracing. An optical approach towholemouse brain connectomicsmay there-

fore be achievable for less than $10million and could be enabled by emerging technologies to sequence

nucleic acids in-situ in xed tissue via uorescent microscopy. Strategies relying on bulk DNA se-

quencing, which would extract the connectome without direct imaging of the tissue, could produce

a whole mouse brain connectome for $100k – $1 million or a mouse cortical connectome for $10k –

$100k. Anticipated further reductions in the cost of DNA sequencing could lead to a $1000 mouse

cortical connectome.

Wiring diagrams for neuronal microcircuits support e forts to reverse-engineer the brain and to

identify structural contributors to neuropsychiatric pathologies481,150,734. Acquisition of large-scale

connectivity data could, for example, help to guide e forts to simulate emergent network functions in

mammalianbrains 549, which are currently basedon statistical extrapolations fromsmall datasets 282,619.

Recently, the eld of connectomics has sought to develop technologies to rapidly extract comprehensive

cellular-resolution maps of synaptic connectivity 273.

Multiple toolsets could potentially support connectomics at the scale of entire mammalian brains

or brain regions. These include automated electron microscopy and image analysis as well as newer

techniques for DNA sequencing of cell-identifying molecular barcode tags734. It is unclear, however,

to what degree these could be leveraged to create a scalable, integrated connectomics solution, and

whether this could be done at a reasonable cost.

148



Here we analyze the design space for connectomics by considering the scaling and cost constraints

on a range of solutions. We focus here on techniques for dense, cellular-resolution circuit mapping

of individual brains: we do not consider sparse mapping (e.g., viral tracers), low-resolution mapping

(e.g., di fusion MRI) or mapping based on functional measurements470,219.

Approaches di fer widely in the cost requirement for obtaining the complete connectome of an

individual mammalian brain, such as themouse brain, with 7.5×107 neurons in a volume of 420mm3

(a large fraction of these are in the cerebellum, roughly 3×more than in cortex 278). They also di fer in

the nature of the additional informationwhich they provide, beyond the abstract cell-cell connectivity

matrix.

In Sections 5.3 and 5.4, we review the existing electron microscopy approaches, as well as a recently

proposedDNAsequencing approach called BOINC734, focusing on their scalability towards themap-

ping of large volumes of mouse brain tissue. Finally, in Section 5.5, we discuss the prospects for con-

nectomics solutions based on direct imaging by optical microscopy.

5.1 C

Generating microscale anatomical wiring diagrams is a major technological challenge 526. To under-

stand why this is the case, we begin by outlining some of the relevant structural features of neural

circuits. As discussed in detail below in the context of speci c methods, these features place stringent

requirements on technologies for comprehensive measurement of synaptic connectivity. Depending

on the method used to measure connectivity, di ferent sets of features become critical in constraining

the design space.

P Neurons are packed densely in a three-dimensional jungle of wiring: there are

roughly 100,000 neurons per mm3 and 1–2 synapses per µm3 on average inside mouse neocortex. In

rat CA1 hippocampal neuropil, the spatial distribution of synapses appears to be consistentwith a uni-
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form randomdistribution on length scales above the synaptic size466,565, with amean synapse-synapse

distance of ∼ 480 nm (see 565 for the measured distribution of distances). Measurements in rat layer

III somatosensory cortex also suggested an approximate uniformdistribution subject to the constraint

that synapses cannot overlap in space459, again with nearest-neighbor distances of ∼ 500 nm. If the

locations of synapses are distributed uniformly, the number of synapses per cubic micron will con-

form approximately to a Poisson distribution, with mean density of 1–2 synapses per µm3: 13 –37

probability of no synapses, 27 –37 one synapse, 18 –27 two synapses, 6 –18 three synapses,

1.5 –9 four synapses, 0.3 –4 ve synapses and 0.05 –1 six synapses.

S The spatial density and arrangement of synapses varies by region, cortical

layer (see 89 for glutamatergic synapse density vs. layer in mouse neocortex), and so forth, although

there appears to be a roughly universal number of neurons beneath a square of xed area, say 1mm2,

of the cortical surface, varying by a factor of less than 1.6 in rodents 111. Furthermore, on some neurons,

speci c classes of synaptic contacts are spatially organized on the target dendrites64,521. Unfortunately,

detailed measurements of these distributions are currently only available for a handful of brain loca-

tions.

M There is a large variation in the number of synaptic contacts between any given

connected pair of cells. In hippocampus, synaptically connected neurons are of en linked by only

one synapse, with higher level redundant connectivity occurring in a group of nearby neurons. In

some areas of cortex there are only a handful of contacts between synaptically-paired cells 195, while in

other areas there can be as many as a dozen or more, e.g., 6 ± 5 (mean± standard deviation) among

thick-tuf ed neurons in developing rat L5 neocortex445. In general these distributions are unknown.

At some synapses outside cortex (e.g., the Calyx of held 276) the e fective number of “synapses” (i.e.,

vesicle release sites) is much higher.
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S Relevant anatomical features of neurons are on the nanoscale, below the

wavelength of light: dendritic spine necks and axons shrink in diameter down to tens of nanometers.

Synapses can be as small as ∼ 200 nm in diameter (including both pre- and post-synaptic compart-

ments) 113.

L Axons of en travel several millimeters along complex paths, with kilometers

of axonal wiring present in a cubic millimeter of cortex. Furthermore, at least a few cubic millime-

ters of reconstructed volume are likely needed to adequately de ne the connectivity of local cortical

circuits, though smaller volumes may be su cient to reconstruct canonical circuit patterns in other

brain areas 273.

D Mammalian connectomes are not identical across di ferent individuals, so many con-

nectomes should be mapped. Methods for statistical reconstructions of connectomes by combining

partial reconstructions from multiple animals469,467 can be useful for determining average connec-

tomes as well as statistical variation around the average. To the greatest extent possible, however,

multi-modality measurements should be integrated such that they can be simultaneously applied to

each individual brain under study, rather than averaging or correlating across di ferent brains. The

ideal technique would be su ciently low cost that many individual connectomes could be rapidly

acquired. Post-hoc correlation across multiple single-brain connectomes could reveal insights at the

level of mechanistic conservation: for example, there are likely connection motifs which are invariant

across individuals, e.g. in the organization of cortical circuits.

S The amount of data needed to store the abstract connectivity matrix of a mouse

brain is roughly N · s · log2(N) = 2.65 × 1012 bits < 1 terabtye, where N ≈ 108 is the number of

neurons and c ≈ 103 is the average number of synapses per neuron697. Including synaptic weights and

molecular pro les has been estimated to increase this storage requirement by< 100×400.
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5.2 C

Below,we attempt to estimate the costs associatedwithhypotheticalwhole-mouse-brain connectomics

projects – normalized to a three-year project – based on a variety of technology platforms. These es-

timates are intended as rough approximations and should not be taken literally as proposed gures

for particular projects. Despite these caveats, it is of interest to explore how even crude estimates of

project cost vary with changes to the technology architecture adopted, or with improvements to par-

ticular parameters, such as the speed of super-resolution optical microscopy or the number of parallel

electron beams per electron microscope.

5.3 E (EM)

Electronmicroscopy is the most thoroughly developed approach for the dense reconstruction of neu-

ral circuits. Because thewavelength of an electron under 10 kV accelerating voltage is∼10 pm, imaging

with electrons can (in principle) reach spatial resolutions in the sub-nanometer to nanometer range 37,

more than su cient to trace the nest morphological sub-structures of neurons. The basic strategy

employed by the current EM approaches is to obtain many morphological images of thin tissue sec-

tions, segmenting those images into regions corresponding to distinct neuronal processes, and tracing

individual axons from one image to another. Because axons are thin, long, and densely interspersed

with other neuronal processes, tracing their entire lengths is a challenge.

5.3.1 EM :

B The physical constraints on large-scale electron microscopy

for neural circuit reconstruction were rst studied in the 1980s460, following the acquisition of the

C. elegans connectome by electron microscopy701. The electron dose per pixel is one property which
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constrains the resolution and speed of an imaging system. An exemplary recent connectomics study

used roughly 14 electrons per nm2 275, or 3812 electrons per 16.5 nm × 16.5 nm pixel. Due to Poisson

counting statistics, the fractional error in the estimate of the stain density in a voxel goes roughly as

1/
√

N, where N is the number of electrons passing through the voxel460, so the analog bit precision

in that study was roughly log2
√

3812 = 6 bits at each pixel.

Merkle460 used the number of electrons per voxel, the number of parallel electron microscopes

available, and the total project time to estimate the beam current per microscope: imaging a whole

human brain in 3 years at 10 nm × 10 nm × 10 nm voxel size, with 7-bit precision and 1000 parallel

microscopes, would give 0.1 mA beam current, comparable with that of electron microscopes circa

1989.

TEM . SEM Transmission electronmicroscopy (TEM) involves passing electrons through a sam-

ple, whereas scanning electronmicroscopy (SEM) relies on back-scattered or secondary electrons emit-

ted from the sample’s surface. High-resolution EM analysis was originally limited to transmission

electron microscopy, which necessitated the use of ultra-thin (< 100 nm), grid-suspended sections to

allow electron penetration through the slice. Although TEM sections cannot easily be made thinner

than a few tens of nanometers, z-resolution can be improved by tilting the sample and performing a

tomographic reconstruction 81; only a handful of additional tilts are required if sparse reconstruction

techniques are used676. Indeed, the rst proposals for whole-mouse-brain electronmicroscopy circuit

tracing460 assumed a TEM tomography strategy.

Unfortunately, large-scale automation of transmission electron microscopy has been di cult in

practice due to the need to isolate fragile ultra-thin sections which can be penetrated by the electron

beam 269,267. TEM is still used today, at rates approaching 10 megapixels per second using camera ar-

rays68, but in a recent study,∼30 of∼4 000 thin sectionswere lost in the preparation process68. Thus,

improvements in TEM sample handling are needed to trace connectivity at whole-mouse-brain scale,
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andwe focus on scanning electronmicroscopy techniques below. Improvements in high-throughput,

high-reliability automatedTEM sample preparation, coupledwith camera arrays68, couldmakeTEM

viable for large-scale circuit reconstruction 81.

M EM cannot take ad-

vantage of parallel imaging onmultiplemachines unless lossless subdivision of the tissue into “blocks”

is performed prior to imaging: it must be possible to separately image two adjacent sub-blocks and

stitch the resulting images together in sof ware. The nest neuronal processes must be traceable from

one sub-block to the other, and features localized at the block-block interface must be preserved. In

one demonstrated technique for lossless subdivision 268,269, a hot diamond knife reduces the cutting

stress locally and reversibly, and an oil lm prevents damage due to scraping of the tissue block along

the knife edge. This process appears amenable to large-scale automation.

P The speed of SEM can be increased by using multiple parallel

beams in a single instrument. For example, Zeiss is developing a multi-beam SEM (mSEM) instru-

ment with 61-fold parallelization. It is incorrect to assume, however, that the speed of a multibeam

SEM scales proportional to the number of beams. Because of the limitations of electron optics and

charge repulsion, the total current in each beam is typically much smaller than can be achieved in a

single-beam system. A 10× speed improvement over an equivalent single-beam instrument would be

a more conservative estimate, even though the system has 61 beams. Parallelization of a 40mega-pixel

per second SEMby a factor of 25would lead to gigapixel per second rates, which appears to be a reason-

able upper bound for the immediate future. More optimistically, advanced SEMs could potentially

use thousands of parallel beams, and instrument costs could be reduced to the $100k regime via solid-

state lithographic electron optics 269; such systems may be a natural o fshoot of the development of

next-generation electron-beam lithography systems by the semiconductor industry.
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R Reliability of ultra-thin-sectioning is a key issue for SEM

approaches. Empirically, it is currently di cult to knife-section a 300 µm× 300 µm× 300 µmblock at

30 nm slice thickness, and usually takes multiple attempts; reliable sectioning becomes more di cult

for larger block sizes. We highlight scenarios below where reliability of physical sectioning is likely to

become the major limiting factor. Note also that at high electron doses, the mechanical properties of

the block surface change in such a way to worsen the minimum section thickness and the sectioning

reliability.

Diamond knives used in electronmicroscopy routinely perform 10k sections before incurring dam-

age. Assuming that only 1000 sections are used per knife to keep damage rates conservatively low, and

that each knife costs $2500, the cost of the knives for 420mm3/(1 cm2 × 25 nm) = 168000 sections

would be <$500k.

Another major challenge to whole brain imaging will be minimizing the material loss from vi-

bratome section to vibratome section, and from the sub-sectioning of the brain either before or af er

embedding.

5.3.2 A SEM

Three strategies for large-scale electron-microscopy of brain tissue — SBEM, ATUM and FIB SEM

— are depicted in Figure 5.1.

S SEM (SBEM)

SBEM uses a diamond knife embedded in the SEM to serially remove an ultra-thin section of a pre-

stained tissue block464 af er surface imaging, revealing the next layer to be imaged 151.

R The z-resolution achievable with diamond knife sectioning is on the order of 25–

30 nm, limited by the knife sharpness; note that the section itself can be destroyed in SBEM since
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it is the block face that is imaged. The e fective z-resolution of SBEM could be improved by using

multi-energy deconvolution SEMs, allowing “virtual sections” thinner than the physical sectioning

thickness of the diamond knife76*. SBEM also imposes a minimal lateral pixel size, since the higher

electron doses associated with smaller pixels interfere with reliable physical scraping by the diamond

knife when pixel densities surpass this limit 269.

M Current implementations of SBEM are limited to tissue blocks∼1 mm on

a side, although there appears to be no block size limitation in principle 81.

A - - (ATUM)

ATUM267,271 allows a block of tissue to be sliced into > 25 nm ultra-thin sections which are arrayed

on a tape reel for random-access imaging.

R Empirically, the reliability of ATUM SEM decreases considerably below ∼30 nm

section thickness. As for SBEM, virtual sectioning techniques could potentially be used to achieve

higher e fective z-resolution.

Unlike SBEM,ATUMdoes not su fer from aminimal pixel size limit due to physical tissue damage

at high electron doses, since the tissue sectioning occurs before imaging. This has allowed a lateral pixel

size of 4 nm×4 nm, such that a voxel size as small† as 4 nm×4 nm×25 nm appears to be possible‡ 520.

*Virtual sectioning has particular application to reset sections (the rst sections acquired af er resetting the
cutting arm of the ultra-microtome). ThruSight (FEI, Co) is a commercial application of this idea.

†TheATUMapproachhas been routinely applied to image at pixel resolutions down to 1 nmfor the imaging
of c-elegan neural processes; even sub-nanometer pixel resolutions are possible, but this is slow and inmost cases
can be considered as oversampling (Richard Schalek, personal communication).

‡Connectivity and synapses may be visible even with an 8–10 nm pixel size and proper staining (Richard
Schalek, personal communication). In this case, imaging time and imaging cost decrease by a factor of 4. Fur-
thermore, ATUM-based imaginghas demonstrated the ability to performmulti-scale resolution (e.g., large axon
tracts can be imaged at one pixel size and dwell time, while neuropil can be imaged at a smaller pixel size and
dwell time); this further decreases the imaging time and cost.
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M ATUM SEM can achieve large lateral slice sizes, e.g., 2.5mm× 6mm, and

su ciently-thin sectioning allows e fectively lossless tracing along the axial dimension. Thus, ATUM-

SEM appears to be suitable for whole-mouse-brain-scale automation 81.

R Reliability of automated ultra-thin sectioning would likely be the key limiting factor

forwhole-mouse-brain EM imaging in this approach. One rough estimate gives success rate of 990 per

thousand ATUM sections (Richard Schalek, personal communication). In addition, 10000 sections

can be cut and collected for each fresh area of the knife (Richard Schalek, personal communication).

F I B SEM (FIB SEM)

In FIB SEM, a gallium ion beam, rather than a diamond knife, removes a thin layer of the tissue block

by ablation 357, to expose a fresh surface for imaging.

R FIB SEM has achieved 5 nm × 5 nm × 5 nm voxel sizes 357, because it can a) toler-

ate large electron doses, eliminating the lateral resolution issues of SBEM and b) slice at a very ne

z-resolution 269. In fact, the z-resolution of FIB SEM microscopy is limited by depth of electron pen-

etration into tissue block 269, such that lower voltages and more sensitive electron detectors could in

principle reduce the slice thickness even further.

M Themajor limitation of FIB SEM,which appears to be fairly fundamental,

is that it can only apply to blocks at most 100 µm across along the direction of the milling beam (with

an optimal size of∼20 µm), due to the limited depth of focus within which the ion beam is thin and

approximately collimated 269. Automated FIB SEM imaging of large volumes of brain tissue would

thus involve lossless subdivision of the tissue into rectangular blocks, with one edge length of∼20 µm

and the other edges much longer: for example, blocks of dimensions ∼20 µm × 100 µm × 100 µm
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might be a reasonable target.
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Figure 5.1: EM connectomics tools: A) Serial block face SEM (SBEM) images the top face of a pre-stained tissue block,

then removes the imaged face with a diamond knife, revealing the next layer. B) Focused ion beam SEM (FIB-SEM)

operates on a similar principle, but removes tissue layers by ablation with a focused beam of ions. This enables thinner

sections and higher electron doses compared to SBEM, but the finite depth of focus of the ion beam limits the size of

individual blocks. C) Automated tape collecting ultramicrotomy SEM (ATUM) sections tissue with a diamond knife and

places the sections on a solid support, before loading samples into the electronmicroscope.

5.3.3 EM :

The image-acquisition cost for a 3-year project is given by

C3 year acq = machine cost ×
Timaging

3 years

where Timaging, the time it would take to acquire all the data on a single machine, is given by

Timaging =
1

pixels per second per beam
× tissue volume/pixel volume

number of parallel beams per SEM

In the below, we typically assume a machine cost of $1M, and compute the imaging time for a

420mm3 brain at the highest achievable resolution on eachmachine type. Note that if pre-existingma-

chines are used, or if themachine cost can be amortized over a longer duration (e.g., multiple projects),
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then the e fective image-acquisition cost would be lower.

SBEM

In one SBEM study, imaging a 325 µm× 325 µm× 60 µm tissue block at 16.5 nm× 16.5 nm× 25 nm

voxel size took on the order of 7 weeks at∼0.5MHz pixel rate 82. This is in order-of-magnitude agree-

mentwith the simplest calculation, based only on the pixel size and∼2 µs dwell time: 2 µs×(325 µm×

325 µm × 60 µm)/(16.5 nm × 16.5 nm × 25 nm) ≈ 2 µs × 1012 pixels ≈ 517 hours ≈ 3 weeks. The

estimated cost for a single whole mouse brain acquisition in 3 years is roughly $1B without paralleliza-

tion and $20M–$100Mwith 60-fold parallelization. SBEM can likely be operated at lower pixel dwell

times (e.g., 0.5 µs) without unacceptable loss of image quality, decreasing the cost proportionately.

ATUM

ATUM can achieve 40 megapixel per second imaging rate at 4 nm × 4 nm × 25 nm pixel size (or an

e fective imaging rate of 400–2400 megapixels per second with 10- to 60-fold parallelization). The

estimated 3 year whole mouse brain imaging cost is then $300M and $5M–$30M.

FIB SEM

FIB SEMcan achieve> 5MHzpixel rate at 5 nm×5 nm×10 nmvoxel size 269. For a 3-year acquisition,

we would need

1
3 years

× 1
5 megapixels per second per beam

× 420mm3

(5 nm × 5 nm × 10 nm per pixel)
≈ 3600 beams

Without parallelization, the estimated 3 year imaging cost is $3.6B, comparable to the estimate of $5B

in 269 (which considers more than just imaging costs). At 60-fold parallelization, 60-360 machines

would be needed, giving an estimated cost of $60-$360M.
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S

Data acqu ition costs for whole-mouse-brain automated EM approaches could lie in the range of

$10M–$200M.These estimates donot include the costs ofdeveloping reliable systems for lossless tissue

subdivision, thin-sectioning and sample handling.

5.3.4 EM :

A major outstanding challenge in SBEM connectomics is image analysis: reconstructing neuronal

wiring from EM image stacks. Tracing thin axons over long distances is the key di culty, as opposed

to synapse detection 275,479.

E A critical issue is the reliability of the analys . Each error a fecting an axon

can cause disproportionate damage to the reconstruction, by mis-labeling each of the hundreds of

downstream synapses in the connectivity matrix. For example, if an error in an axonal trace occurs on

average even once per the length of one axon, which is several mm inmouse brain, then 50 of all con-

nections in the connectivitymatrixwill be incorrect. In practice, achieving one error per severalmmof

EM trace is challenging: in one study465, the errors in the manual reconstructions from ssTEM data

— i.e., the best reconstruction quality currently available, as compared with automated algorithms

— were roughly 1 error per 1000 axonal slices, corresponding to roughly 1 error per ∼50–100 µm of

axonal length, far below the ∼4mm typical axonal length in mouse cortex. In that study, the slice

thickness was 50 nm, so decreased error rates would be expected in the techniques studied here, which

use< 30 nm slice thickness.

D Currently, the ability of automated algorithms to trace the thinnest

axons depends strongly on the imaging resolution. Given appropriate staining, a voxel size of
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(< 10 nm)× (< 10 nm)× (< 10 nm) is su cient to allow fully-automated axon tracing, whereas

larger voxel sizes can lead to tracing ambiguities that are currently only resolvable through human-

assisted image analysis. It is possible, though not proven 81, that a su ciently small lateral pixel size—

e.g., as is achievable in ATUM SEM due to its tolerance of high electron doses, but not in SBEM —

can allow for unambiguous automated neurite tracing even at relatively low z-resolutions.

D Thequality of EMdata dependsnot only on the instrument

resolution but also on the properties of the staining method. Staining of internal structures in axons

and dendrites can lead to ambiguities in the resulting images. If only external surfaces are stained (e.g.,

along with a synapse stain) then even 25 nm× 25 nm× 25 nm instrument resolutionmay be su cient

forunambiguous axon tracing in some cases. On theother hand, ifmany internal structures are heavily

and non-speci cally stained (i.e., themethod produces large “blobs” of dense stain), then even 5 nm×

5 nm × 5 nm instrument resolution may not be su cient for axon tracing. Speci c staining of the

plasma membrane or other structures using genetically encoded contrast generators (e.g., APEX450)

may be one option for programmable control of the staining properties. Genetically encoded contrast

agents could be targeted to speci c neuronal compartments, such as the axon (much as are certain ion

channels) 31, in order to sparsify the scene. Reliable and uniform staining of entire mammalian brains

prior to tissue sectioning is the subject of ongoing research464.

T In EM tracing, the goal is to trace tube-

like structures (axons) through a series of images using the fact that the tubes are hollow. The tubes

are randomly oriented throughout the series of images, running perpendicular or parallel to the slice

with roughly equal probabilities (in cortical neuropil). If the axon is perpendicular to the slice, then

it appears as a “circle”. If the axon is oriented parallel to the slice, then it appears as a “blob” of stain

arising from its upper and/or lower membrane surfaces. The fundamental parameters are the largest

161



voxel dimension h and the smallest opening diameter d in the tubes. If two slice-parallel axons nearly

overlap, and are heading in nearly the same direction, then their paths cannot be distinguished, even

when using longer-range structure across multiple images or sections and even as judged by human

experts. This led to a model of the frequency of such “true ambiguities”465 per micron of axonal

wires, as a functionof the slice thicknessh. Using the observeddistributionof axondiameters ρ(d), the

model predicts one expected true ambiguity per 100–1000mm of axonal wire for 20–30 nm sections;

recall that there are kilometers of axonal wire per mm3 of tissue.

D Assuming 10 nm × 10 nm× 10 nm EM voxel size, there are

420mm3/(10 nm × 10 nm × 10 nm) ≈ 5 × 1016 voxels in a 420mm3 mouse brain. At 1 byte per

pixel, this is∼ 400 000 terabytes of EM image data, roughly the total amount of data transmitted over

the internet during a 10 hour period circa 2013 (storage would cost $20M on $100 2TB hard drives).

5.3.5 EM :

SBEM ATUM

The standard z-resolutionof SBEMandATUMof 25–30 nm is not su cient to allow fully-automated

tracing of neuronal processes with currently available algorithms. Manual volume segmentation from

SBEM image stacks by a trained human requires roughly 2 work-hours per µm3. To get around this,

Helmstaedter and colleagues 275 split the analysis pipeline into two separate stages: skeleton tracing

and volume segmentation / contact detection.

For the skeleton tracing step,REdundant-SkeletonCOnsensusProcedure (RESCOP) 274 is a human-

assistedprocess for tracing the center of the axon. The sof ware resolves disputes betweenusers through

redundancy and infers an estimate of the skeleton trace via a statistical model. A redundancy factor

of 18 or 19 leads to roughly one tracing error per cell. This method achieved∼0.0135 work-hours per
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µm3. At a labor rate of $5 per hour, this corresponds to $70M per mm3; for the whole mouse brain

the labor cost would be of order $30B. To complete the analysis within 3 years using this method,

assuming 2000 working hours per year, 945 000 laborers would be required.

The human-assisted skeleton tracing does not reveal synapses or detailed local morphology. This

information is obtained via fully-automated volume segmentation algorithms, applied af er the skele-

ton tracing 317,669. The estimated volume error rate for this process is around 3 275. Note that this

procedure currently does not reveal “ground truth” synapses as de ned by the presence of a post-

synaptic density (PSD) and pre-synaptic vesicles, but merely assesses the probability of connected

neurons based on the pattern of contact between two cells (e.g., contact area, which is not a good

predictor of actual synapses468,275, except at very high contact areas 275).

In an alternatework ow, segmentation canbe performed automatically, followedbyhumanproof-

reading 526. Assuming (15 nm)3 voxels, a recent review 526 estimated that current methods would re-

quire 4.5millionperson years of proofreading for awholemouse brain, similar to the 3·945000 = 2.84

million person years estimated above for manual skeleton tracing. Thus, either segmentation algo-

rithms must be improved, or data quality must be improved to compensate, to allow a dramatic re-

duction in the need for either pre-segmentation manual skeleton tracing and/or post-segmentation

manual proofreading.

Large-scale internet-based crowd-sourcing could play an important role in scaling up data analysis,

since tens of thousands of users appear to be willing to participate in the process for “free” 587. These

players also collectively generate a large data-set for training machine learning algorithms 587. Other

crowd-sourcing approaches for image segmentation are also being developed226.

Using today’s tools, analysis costs would be in the tens billions of dollars for a whole mouse brain.

The computational connectomics sub- eld aims to reduce the analysis costs by orders of magnitude,

ideally leading to full automation, and it is making progress towards this goal 339,556.
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FIB SEM

It is possible that the (< 10 nm)×(< 10 nm)×(< 10 nm) resolution of FIB SEMwill enable reliable,

fully automated axon tracing and synapse identi cation from large volumes269. Automated synapse

detection fromFIB SEM images has been demonstratedwith error rates comparable to that of human

experts (e.g., 0.92 recall at 0.89 precision) 53,380.

5.3.6 A EM

While stains have been developed to couple electron-imaging contrast to neuronal and vesicularmem-

branes, there are few extant mechanisms to couple electron contrast to other forms of sub-cellular

molecular information, such as speci c genetic sequences or speci c proteins. Recent attempts have

been made to introduce multiplexed labeling capabilities into EM 228, as well as to create genetically

encoded proteins which can serve as EM markers450,608. Furthermore, it may be possible to create

nanoscale spatial patterns ofheavymetals or otherhigh-contrast elementswhich could serve as combinatorially-

diverse EM labels (EM barcodes). Another option for obtaining multiplexed molecular information

from a given cell body would be as follows: given the > 1000 sections that contain a single cell body, it

would be possible to antibody-stain each section for a di ferent molecular marker, and thus to assign

a “molecular identity” to every EM-reconstructed cell, without requiring any single EM image to be

“multi-colored”. Nevertheless, EM currently lags behind optical microscopy in the ability to readily

reveal biochemical information in a multiplexed fashion and in any neuronal compartment.

5.3.7 S

Electron microscopy imaging using serial block-face SEM (SBEM), automated tape-collection lathe

ultramicrotomy (ATUM) or focused ion beam SEM (FIB SEM) would cost hundreds of millions to

billions of dollars forwhole-mouse brain data acquisition using current instruments. Next-generation
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parallel-beam SEMs — e.g., a 61-fold parallelized SEM under development by Zeiss — could reduce

the data-acquisition costs into the range of tens of millions of dollars or below, depending on the

degree and cost of parallelization.

FIB SEMwill likely allow fully-automated image analysis, due to its< 10 nm z-resolution and com-

patibility with 5 nm in-plane resolution. However, due to its limited eld of view per instrument

(∼20 µmalong themilling axis), new instrumentationwouldbe required to automate the sub-division

of tissue into appropriate-sized blocks. Hayworth has demonstrated preliminary proof of principle

that this sub-division could be achieved without information loss, to enable tracing of ne axons be-

tween blocks. SBEM and ATUM SEM are more readily automated on the hardware side than FIB-

SEM due to their compatibility with larger elds of view.

For SBEM and ATUM, which have z-sectioning limits of ∼25 nm, tracing of ne axons becomes

more di cult for current image-segmentation sof ware. Recent sof ware advances, which separate

skeleton-tracing (human-assisted) from subsequent volume segmentation and synapse identi cation

(automated), have reduced the human labor requirements to roughly one work-minute per cubic mi-

cron (although current semi-automated image analysis methods mandate a staining protocol incom-

patible with “ground-truth” synapse identi cation, i.e., the presence of vesicles and PSD). At a labor

rate of $5 per hour, analysis of a whole mouse brain using this sof ware would cost tens of billions of

dollars and require nearly a million workers. Further advances in sof ware are needed, therefore, to

enable fully-automated analysis of image data generated from SBEM and ATUM. Importantly, the

analysis costs could ultimately become negligible, in principle, through algorithmic advances. Also,

the e fective z-resolution of SBEM or ATUM could be improved through virtual sectioning.

Thus, given either a) construction of an automated tissue sub-division system for FIB SEM or b)

full sof ware automation of SBEMorATUMimage analysis (e.g., viamachine learning advances), and

the emergence ofmulti-beam SEMs at a cost comparable to current single-beam SEMs, awholemouse

brain EM connectome project could be achievable for a cost of tens to hundreds of millions of dollars
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and a duration of several years per mouse brain. A major advantage of EM connectomics is its ability

to trace in detail the morphology and compartmental structure of neurons, which is tightly coupled

to their electrochemical functions428.

5.4 T - (BOINC)

A DNA barcode is a unique sequence of DNA used to “tag” an object of interest. Zador has sug-

gested734 an approach to connectomics, calledBarcodingof IndividualNeuronalConnections (BOINC),

which leverages large numbers of DNA barcodes. First, each neuron is given a unique DNA barcode.

Copies of each neuron’s barcode are then exchanged with its immediate synaptic neighbors. A cell’s

own barcodes are then stitched together with barcodes received from its synaptic neighbors, form-

ing a set of barcode pairs corresponding to synaptically connected neurons. Zador’s original proposal

suggested one potential implementation: using trans-synaptic tracer viruses (e.g., engineered pseu-

dorabies replicons) to shuttle copies of the barcode from a given cell to its immediate pre-synaptic

neighbors, whereupon a recombinase (e.g., phiC31 integrase) in the recipient cell would link donor

and recipient barcodes into a single strand734.

The barcode-pair DNA strings from all cells are extracted, pooled, ampli ed (i.e., creating many

copies of each barcode pair) and sequenced on a bulk DNA sequencing machine, such as an Illumina

HiSeq. This results in digital data specifying a set of “on” matrix elements, corresponding to barcode

pairs (synaptic neighbors) which are observed, and a set of “o ” matrix elements, corresponding to

barcode pairs which are not observed (e.g., due to the absence of a synapse between the corresponding

two neurons).

To allow “annotation” of the connectivity matrix, Zador and colleagues also suggested that addi-

tional information, encoded in nucleic acids, could be appended onto these barcode pairs, e.g., RNA

sequences indicative of a cell’s gene expression pro le (cell type).
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Note that the problem of determining the spatial position of each neuron is not solved by this ap-

proach, although coarse-grained positional information could be included by sectioning the tissue and

appending additional, position-encodingDNAbarcodes to the cell-barcode pairs extracted from each

physical section, prior to bulk sequencing. The basic idea of BOINC is depicted in Figure 5.2.

Alternatemolecular implementations of the same idea (e.g., which obviate the use of trans-synaptic

viruses 532) could be preferable from a practical standpoint. For example, synaptoneurosomes contain-

ing cell-speci c barcode RNAs could be extracted from the tissue and their contents sequenced via

a vesicle-barcoded emulsion PCR: synaptoneurosomes typically have some of the pre-synaptic and

some of the post-synaptic membrane still attached and even re-sealed680, although there would be an

issue of synaptoneurosome collection e ciency in this scheme.

5.4.1 DNA

In one implementation, the DNA barcodes are contiguous strings of random nucleotides (random

oligonucleotides)685,415. In another implementation, the barcodes correspond to an array of direct

or inverted DNA sub-strings anked by recombinase inversion sites734,518 (e.g., with 19 nucleotide

inversion sites for Rci recombinase 256,518). The stochastic arrays could be generated in-vivo by re-

combinase activity, starting from a standard cassette present in all neurons. There is precedent for

recombinase-based sequence diversity generation in biology: the Min system makes 240 distinct vari-

ants of its multiple-inversion site, leading to 240 di ferent isomeric forms of a phage coat protein to

evade bacterial defenses 366.
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G ACCG G ATA A TAG AC AT TG C

G A ACC AG G T T A ACC AT TG AG

G AC TG ATCG G AG C TG A AT T C

Sequencing
Library

Figure 5.2: Reading out neuronal connectivity via bulk sequencing: cell-identifying nucleic acid barcodes from

synaptically-neighboring cells are physically linked (e.g., via viral exchange and recombinase activity 734 or other meth-

ods 340), and extracted from the neural tissue. The linked barcodes are then sequenced on a high-throughput DNA se-

quencer, such that each sequencing read corresponds to a barcode pair from a synaptically-connected pair of neurons.
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In the rst implementation, DNA barcodes consisting of only 20 DNA nucleotides (A, T, C or G)

could in principle uniquely label 420 = 1012 neurons, four orders ofmagnitude larger than the number

of neurons in a mouse brain. When barcodes are generated (or chosen) randomly, there is a need to

consider the probability of two neurons acquiring the same barcode. To uniquely identify a cell with a

DNAbarcode, the barcodesmust be long enough to avoid the occurrence of duplicate barcodes in the

population. The probability of no identical barcodes when n barcodes are chosen with replacement

from a test-tube with 4j barcodes (i.e., with all possible DNA oligonucleotides of length j) is

P(j, n) = n!× Binomial(4j, n)/(4j)n

where n is the size of the cell population and j is the DNA barcode length in nucleotides457.

For n = 7.5 × 107 neurons and j = 31 base-long barcodes, the probability of a duplication 1 −

P(j, n) < 0.001 (the per-neuron probability of duplication is then roughly 10−11). This corresponds

to a total barcode population size of 431 ≈ 5 × 1018.

For the case of recombinase inversion barcodes, the number of barcodes generated from k segments

is k!× 2k, as long as the recombinase inverts but only rarely excises on the relevant timescales734,696,518.

To achieve a similar probability of barcode duplication, only k ≈ 16 distinguishable segments are

needed.

There are many other strategies to create cell-identifying barcodes besides the two just mentioned;

the diverse mechanisms involved in generation of antibody diversity by the immune system provide a

range of examples. Indeed, somatic (VDJ) recombination has been used as a formof in-vivo barcoding

for tracing of lymphocyte lineages in the mouse 220.

E PCR ampli cation and sequencing can introduce errors which would transmute

one barcode into another. Fortunately, the recombinase-based barcode generation strategy leads to

barcodes that are highly orthogonal at the sequence level (large minimal pairwise edit distance be-
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tween barcodes, compared to the mutation probability), and synthetic barcode libraries introduced

via viral transduction could be designed to be highly orthogonal. On the other hand, short barcodes

strings which are generated stochastically in all cells by other methods will not necessarily be highly

orthogonal.

Illumina paired-end sequencing can achieve error rates of roughly p = 0.012 = 10−4 per base.

Assuming a 100 bp template, the probability of two errors is then p2 · Binomial(100, 2) = 5 · 10−5.

The error rate per cycle of PCR is much lower due to the high delities of proofreading polymerases:

f = 5 · 10−7 per base for Pfusion 352. The fraction of strands with≥ 1 polymerase-induced error af er

d cycles of PCR on a template of length b nucleotides is then F(≥ 1) = 1 − e−b·f·d = 0.00125 344 for

d = 25 cycles and b = 100 nucleotides. On the other hand, in complex template libraries, errors due

to mis-priming and chimeric products can occur at rates of 5 or higher. It is possible to reduce the

e fective PCR and sequencer error rates using “digital” sequencing methods like 352,605, which employ

pre-ampli cation template barcoding and redundant sequencing to factor out these error sources.

Failure to capture any barcode pair corresponding to a given connection, leading to a false negative

(missed connection) in the connectivitymatrix, will likely be the dominant source of error inmost im-

plementations of BOINC.With highly orthogonal barcode sequences, false-positives due to sequenc-

ing errors can be minimized. Therefore, it is likely possible to implement BOINC in a regime where

almost all errors are false-negatives, in contrast to the electron microscopic axon tracing approaches

which are quite vulnerable to false-positives734.

5.4.2 H - DNA

The cost for a BOINC connectome is CBOINC = c · r ·Nsynapses where c is the cost per sequencing read,

r is the number of sequencing reads per synapse and Nsynapses is the number of synapses in the tissue

under study. The fraction of un-sampled synapses is funsampled = e−r 734 so that 1 − e−10 = 99.995%

of synapses are sampled at r = 10 and 95% of synapses are sampled at r = 3. Because many pairs
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of neurons are connected by several synapses, the fraction of un-sampled connections (synaptically

linked cell pairs) will be less than the fraction of un-sampled synapses.

The mouse brain contains roughly Nsynapses = 1011 synapses: an average of 103 synapses per neuron

gives Nsynapses = 7.5 × 1010, whereas an approximate average spatial density of 1 synapse per µm3

gives Nsynapses = 4.2 × 1011. Hence 1011–1012 sequencing reads are required per mouse connectome,

depending on the redundancy factor r.

With current sequencing technology, running 3 lanes of an Illumina HiSeq 2500 produces > 109

reads (of up to 100 bp each) in about 10 days for a cost of a few thousand dollars. Roughly 100 HiSeq

runs would be required for a full mouse connectome, for a cost of a few hundred thousand dollars.

An existing high-throughput genomics facility (with> 50 HiSeq machines) could sequence a mouse

connectome in 1-2 months.

The cost per base-pair (bp) ofDNAsequencinghas beendecreasing rapidly: 2 bpper dollar in 2004,

106 bp per dollar in 2009 and 107 bp per dollar in 2011 106,734. The “$1000 human genome” corresponds

to $1000/(3 · 109 bp · 40×) = $10−8 per bp, assuming 40× coverage. At these rates, the cost per 100

bp read is $10−6. Thus the minimum cost at these rates is about $10−6/synapse, or about $100k for

1011 synapses. Three-fold and ten-fold oversampling (r = 3 or r = 10) raise the cost to $300k and $1M

per whole mouse brain, respectively. Corresponding costs for the mouse cortex alone, which contains

perhaps 10 of all synapses, range from $10k to $100k.

If these trends continue, it is not unreasonable to imagine that sequencing costs for a mouse brain

connectome could drop by a further factor of 10 ormore in the foreseeable future. At that point other

expenses, includingmouse andDNAprocessing costs, will dominate. Note that we have not included

the cost of the bulk sequencing machines in this calculation: we are assuming that existing machines

are used, e.g., at an existing genomics facility.
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5.4.3 A BOINC

At 100–200 bp, each sequencing read would have enough room to include a minimal amount of

transcriptomic information, in addition to just the connectivity matrix. This could take the form

of RNA transcripts attached to the barcodes via RNA trans-splicing. uantitating the relative pro-

portions of just a few transcripts could be useful: for example, GAD67 and NeuN can be used to

identify inhibitory neurons461. Sequencing and abundance-counting of a few dozen transcripts could

be su cient to identify known neurobiologically relevant cell types: PV, SOM and VIP to identify

the major classes of interneurons, for instance, and DAT, CHAT and others to identify major classes

of neurotransmitter-secreting cells. Reliably implementing such trans-splicing mechanisms may be

di cult in practice, however, and the method does not scale to capture full transcriptomes. As an al-

ternative, BOINC connectomes could be annotated with transcriptional information via cell-speci c

barcoding of ribosomes 532.

It is also possible that relative connection strength annotations could be incorporated into BOINC

by counting the number of recovered barcode pairs corresponding to any given pair of cells. In many

potential implementations of BOINC, the number of barcode pairs recovered from a given cell pair

would scale approximately linearlywith the total area of synaptic contact between the cells, whichmay

be correlatedwith connection strength 371,187,731, although the precise extent towhich this relationholds

is not known and some potentially complicating factors have been identi ed 523. Variability in the

barcode pair collection e ciency across di ferent cells could confound such measurements, however,

and total contact area is likely not a perfect indicator of connection strength.

While BOINC can also be annotated with coarse-grained positional information, its major limi-

tation is that it does not reveal the precise spatial position or morphology of each cell. Optical mi-

croscopy techniques incorporating BOINC barcodes could potentially ameliorate this, as discussed

below.
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5.5 D

An optical microscopy approach to connectomics would be powerful, in principle, in that it could al-

low integrationwith awide range of other biochemicalmeasurements that are accessible throughmod-

ern lightmicroscopy, e.g, Fluorescent In-SituHybridization (FISH) 118,96 or serial histology463,462. It is

widely believed, however, that electron microscopy is the only approach which can allow acquisition

of connectomes by direct imaging. Indeed, there can be asmany 10-40 neurites per di fraction-limited

optical resolution volume466, which creates severe di culties with direct optical tracing of axons, even

when neurites are tagged with distinct sets of uorescent proteins through random genetic recombi-

nation (BrainBow)410,321,95. Nevertheless, there may be novel strategies which can work around this

limitation.

5.5.1 O .

Because of the comparative sparseness — at 1-2 synapses per µm3 — of synapses in 3D space, opti-

cal connectomics approaches could succeed by restricting their attention only to the synapses them-

selves466. Rather than directly tracing the paths of axons and dendrites through a series of images,

cell-identifyingmolecules could be physically tra cked— via endogenous cellular processes— to the

pre-synaptic and post-synaptic compartments 350,702,725. Then, observations of the synaps alone could

reveal the identities and/or properties of the pre-synaptic and post-synaptic cells.

R Di fraction-limited 3D imag-

ing (λ/2NA ≈ 200 nm xy-resolution and 2λ/NA2 ≈ 533 nm z-resolution for numerical aperture

NA = 1.5 and wavelength λ = 600 nm) is not su cient to directly resolve a synapse from its

neighboring synapses466. Simulations of synapse-labeled uorescence microscopy based on EM re-

constructed rat hippocampal neuropil have suggested, however, that < 100 nm isotropic resolution

173



is su cient to resolve >90 of synapses from their nearest neighbors466. These simulations assumed

that uorescence was limited to the pre-synaptic and post-synaptic densities (PSDs), as opposed to the

entire axonal bouton or spine head.

Figure 5.3 shows a conservative estimate of the resolvability of nearest-neighbor synapses based on

the dataset from466, in which synapses are present at an average density of 1.85 per µm3. A strict crite-

rion for resolvability is applied: two synapses are considered to be non-resolved if any of their labeled

points are separated by a distance smaller than the isotropic resolution. Since synapses are extended

objects, it is of en possible to separate them based on shape, even if they are not resolvable according

to the strict criterion; the strict criterion gives a su cient but not necessary condition for resolvability.

Labeling only of the PSDs allows resolution of >90 of synapses at isotropic resolution< 125 nm,

whereas labeling of the entire pre-synaptic and post-synaptic compartments gave poor performance

even at< 50 nm isotropic resolution. The poor performance for whole-compartment labeling is not

surprising: synaptic boutons and spine heads of en directly contact other nearby boutons and spine

heads, leading to high confusion rates between nearby synaptic puncta, in the whole-compartment

labeling scenario, even if the imaging resolution were to approach to zero. Therefore, to optically

resolve individual synapses, it is essential that the labeling be highly speci c to the PSDs, as could

perhaps be achieved with a protein-tagging strategy.

A Experimentally, confocal microscopy in< 100 nm thin

sections and at roughly 200 nm di fraction-limited xy resolution— in the context of Array Tomogra-

phy — appears to optically resolve most if not all synapses463,462,356 via antibody staining of synaptic

proteins such as synapsin. Isolated uorescent puncta are observed, in numbers similar to those ex-

pected in the tissue based on EM measurements of synapse density462. In one recent study, the uo-

rescent puncta have been attributed to individual synapses 541 by comparison with EM imaging of the

same serial sections.
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Figure 5.3: Optical resolution requirements for resolving nearest-neighbor synapses. The fraction of non-resolved

synapses as a function of isotropic resolution for PSD labeling (green) andwhole-compartment labeling (red), based on

the dataset and analysis from 466. A pair of synapses is considered unresolved here if and only if they contain labeled

points separated by less than the isotropic resolution.

Advances in microscopy could minimize the need for ultra-thin 2D sections. The dual-objective

imaging technique I5M achieves 100 nm resolution axially and 200 nm resolution laterally in a wide-

eld mode 253, and multi-photon 4Pi-confocal microscopy gives similar axial resolution 177 in a paral-

lelized beam-scanning mode.

A 10–100× improvement to the speed of linear structured illumination microscopy (SIM) has re-

cently been reported726. Linear SIMexceeds the di fraction-limited resolution by a factor of 2 along all

three axes, with commercial systems achieving 130 nm× 130 nm× 270 nm resolution voxels. Further

improvement to the axial resolution of SIM could allow it to resolve most synapses. For example, I5S

two-objective detection 590 is a form of SIM with isotropic 100 nm resolution.

Other techniques o fer even deeper levels of optical super-resolution. Nonlinear SIM – SIM per-

formed at illumination intensities high enough to saturate the uorophore – can improve resolution

beyond that of linear SIM 254, and parallelized nanoscopies based on point-spread function engineer-

ing have been demonstrated 115. Stochastic Optical Reconstruction Microscopy (STORM) achieves

30 nm× 30 nm× 50 nm voxel size in 3D 139, but at its current volume throughput of roughly 15 µm3/s,
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STORM of an entire mouse brain would take nearly 1000 imaging years.

Molecular methods could be used to increase the e fective spatial resolution, relative to that of

any given optical setup, by “stratifying” the observation of di ferent synapses into di ferent imaging

frames 396. This would increase imaging time proportionately. For a 2× cost in the imaging time,

molecular strati cation could also resolve the pre-synaptic and post-synaptic compartments of a given

synapse: rst activate pre-synaptic but not post-synaptic dyes, then switch to a new camera frame and

reverse the activation pattern.

5.5.2 S

F - B B A “synaptic BrainBow” strategy466 has

been proposed, in which each cell would express a distinct combination of uorescent proteins, which

would be targeted to the pre-synaptic and post-synaptic compartments. Then, by observing the spec-

trum of colors at each synapse, the corresponding pre-synaptic and post-synaptic cells could be iden-

ti ed, even if the pre-synaptic and post-synaptic compartments of a given synapse are not optically

resolvable from one another. This could be combined with observation of the corresponding uores-

cent protein color patterns expressed in the nuclei, thus labeling the locations of the corresponding

somas.

This method could have favorable properties with respect to resolution of neighboring synapses,

outperforming the conservative resolution requirements in Figure 5.3. Synaptic BrainBow relies on

tagging synapses based on co-localization (spatial correlation) of uorescence from pre-synaptic and

post-synapticmarkers: even if the uorophores are not precisely localized to the pre-synaptic andpost-

synaptic densities, their emissions co-localize only over the synaptic clef itself. Therefore, detection

basedon uorescence co-localization canperformbetter thandirectly resolving single-colored synaptic

puncta.

Unfortunately, theoriginally-proposed formof synapticBrainBow466 doesnot scale to entiremouse
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brains because of the limited color palette of available uorescent proteins: 2·log2(10
8) = 54 spectrally

distinguishable uorophores would be required466.

F I -S S (FISSE ) 4N-“ ” Novel

methods could potentially allow variants of the synaptic BrainBow strategy to scale to mammalian

systems. An alternative method could leverage Fluorescent In-Situ Sequencing (FISSE ) 396,340, a

recently-developed method for sequencing of DNA or RNA by optical microscopy in the context of

intact tissue slices. In e fect, FISSEQ constitutes a form of uorescent microscopy in which there are

4N distinguishable labels, corresponding to the 4N possible nucleotide sequences of a DNA molecule

of length N nucleotides. By leveraging FISSE , it may therefore be possible to create a 4N-“color”

variant of the synaptic BrainBow strategy, which would scale readily to whole mouse brains, despite

using only four actual spectrally distinguishable uorophores. In one possible implementation, cell-

identifyingRNAbarcodes (similar to those used in BOINC) could be targeted to the pre-synaptic and

post-synaptic densities, and their nucleotide sequences could be read out by uorescent microscopy

in-situ.

If the uorescent sequencing frame rate of an Illumina HiSeq machine§ were directly translated

to in situ sequencing of 100 nm thick tissue slices in a di fraction-limited microscope, similar to the

setup used in Array Tomography463,462, the imaging time¶ and imaging cost for a 3-year mouse brain

§Illumina machines can achieve cluster densities on the sequencing ow cell (essentially a glass microscope
slide) of 1,000,000 clusters per mm2, similar to the areal density of synapses in a 0.5–1 µm thick tissue section.
Given that a HiSeq run takes roughly 250 hours (11 days) and generates 300 billion bases of sequence (e.g., 3
billion 100 bp reads), the time to sequence a 1 cm2 area is

TIllumina = 250 hours/(3 · 109 reads)× (108 clusters/cm2)× (1 read per cluster) = 8.3 hours

¶For comparison, whole mouse brain uorescence Micro-Optical Sectioning Tomography (fMOST) at
0.6 µm×0.8 µm× 1 µm xyz voxel size took 19 days 242,737,508,401,117,119. This is broadly consistent with the estimate
given here for whole mouse brain FISSEQ at the Illumina scan rate and Array Tomography slice thickness: us-
ing 100 nm rather than 1 µm sections gives a factor of 10 relative to fMOST, and the 30 cycles of FISSEQ give an
additional factor of 30, leading to 15 imaging years forwholemouse brain at the e fective throughput of fMOST.
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connectome would be

8.3 hours
100 nm × 1 cm× 1 cm slice

× 42000 slices = 40 years

and $13M respectively, assuming $1M per Illumina-rate machine.

5.6 T

These approaches could be validated in smaller brains. For example, the Drosophila brain, with 135k

neurons, is roughly 1000× smaller than the mouse brain. In the electron microscopy approaches,

only a few microscopes would be required for Drosophila, although image analysis would still pose

signi cant challenges.

For BOINC, a single 11 day run on a HiSeq produces > 109 reads, more than su cient for a

Drosophila connectome (e.g., 108 synapses× r = 10 reads per synapse). Reads of length 100 bp could

include two 20-base barcodes, to uniquely label all neurons in the y, as well as additional barcodes

to provide spatial information. Indexing 10 sections along the x, y and z axes – forming blocks of

< 100 µm edge length – would require only log4(10
3) = 5 additional nucleotides, or< 10 additional

nucleotides for a highly orthogonal set.

For an optical microscopy approach based on in-situ sequencing of synapse-localized RNA bar-

codes, roughly 5000 z-sections of 75 nm thickness and 400 µm × 1000 µm xy cross-section would be

su cient to cover the entire Drosophila brain. The totality of these sections would t on a single stan-

dardmicroscope slide. If a 4-color 2D saturatedSIM 254 image at 50 nm xy resolution takes 1 s to acquire

and comprises a 50 µm × 50 µm eld of view, then the time to image all the slices from a single y is

roughly 9 days. This is multiplied by a factor of 20 to account for 20 FISSEQ cycles. Therefore, ultra-

thin-sectioning 2D SIM FISSEQ of an entire Drosophila brain at 50–100 nm × 50–100 nm × 75 nm

resolution – likely su cient to resolve nearly all synapses – could be performed in < 6 months on a
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single automated SIM microscope.

Once validated in a smaller model organism, extension to mammalian systems could be straight-

forward, although di ferent model systems pose di ferent obstacles for genetic engineering tasks like

whole brain cellular-resolution barcoding. In addition, technologies like bulk EM staining may need

to be adapted464 to larger volumes. Due to its small brain size, with only a few million cortical neu-

rons489, the Etruscan shrew may be a desirable early target.

5.7 S

Several approaches forwhole-mouse-brain connectomicsmaybenearlywithin reach for roughly $100M–

$200M in a three-year project. For electron microscopy approaches, this would require dramatic im-

provements in the speed and accuracy of computerized axon tracing. Improvements to the reliability

and automation of electron microscopy sample handling would also be essential.

Approaches leveraging a new “exponential resource” — nucleic acid sequence-space — appear to

have the potential to further reduce the cost by a factor of 10–100 ormore. For example, BOINC734, a

set of approaches based on bulk sequencing of nucleic acid barcodes that have been exchanged across

the synaptic clef and physically paired into a single sequencing read, could potentially obtain amouse

connectome for under $1M at today’s sequencing costs. Further cost reductions are anticipated given

the exponential improvement of DNA sequencing technology 106.

More speculatively, the ability tomeasure combinatorially-multiplexedmolecular information (the

4N possible RNA sequences of length N) in situ via optical microscopy, and to localize this readout

speci cally to synapses, could enable optical microscopy to directly acquire connectomes from xed

tissue samples. This approach could be feasible in the $10M range via a suitable combination of fast

super-resolutionmicroscopy726,115,254, physical and/oroptical thin-sectioningmicroscopy463,462,117,485,590

and molecular strati cation techniques.
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The development of a whole mammalian brain connectomics capability will be a signi cant engi-

neering challenge, regardless of the technology platform(s) adopted. Even once the component tech-

nologies are developed, there will be a need to integrate components into an automated pipeline for

connectome acquisition. This is most likely to take place if technological innovations enabling signif-

icant cost reductions are introduced as early as possible.
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Unfortunately, nature seems unaware of our intellectual

need for convenience and unity, and very o en tak de-

light in complication and diversity.

Santiago Ramón y Cajal

6
Rosetta Brain

W called Fluorescent In-Situ Sequencing of Bar-

coded IndividualNeuronalConnections (FISSEQ BOINC), leveraging uorescent in situnucleic acid

sequencing in xed tissue (FISSE ) 396,340. FISSEQ BOINCexhibits di ferentproperties fromBOINC734,532,

which relies on bulk nucleic acid sequencing. FISSEQ BOINC could become a scalable approach for

mapping whole-mammalian-brain connectomes with rich molecular annotations.
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Scaling connectomics towholemammalian brains is a challenge: themouse brain has roughly 7.5×

107 neurons and> 1011 synapses in a volume of 420mm3, with kilometers of neuronal wiring passing

through any cubic millimeter of tissue, and relevant anatomical features on the scale of< 100 nm433.

We recently analyzed the design space for connectomics by studying the cost and scaling constraints on

electronmicroscopy circuit tracing (EM) and bulkDNA sequencing of cell-identifyingDNAbarcode

tag-pairs (BOINC)734,433,532,518. We also suggested using optical microscopy tomap connectomes433,122.

Here we elaborate on the potential of the optical approach, proposing a strategy called Fluores-

cent In-Situ Sequencing of Barcoded Individual Neuronal Connections (FISSEQ BOINC), leverag-

ing uorescent in-situ nucleic acid sequencing (FISSE ) 396,340. FISSEQ BOINC could determine the

synaptic connectivity matrix, soma positions, and synapse positions, as well as diverse molecular an-

notations for cells and synapses.

In Section 6.1, we describe FISSEQ and propose FISSEQ BOINC. In Section 6.3, we detail pre-

liminary speci cations for “Rosetta Brain” datasets – comprising joint, co-registered measurements

of many cellular andmolecular properties of a single brain – and explain how FISSEQ BOINC could

potentially meet them.

6.1 I -

Fluorescent in situ sequencing (FISSE ) 396,340 is a method for sequencing DNA or RNA molecules

via uorescentmicroscopy, in the context of intact, xed tissue slices. In FISSE , a series of biochemi-

cal processing steps, such as DNA ligations or single-base DNApolymerase extensions, are performed

on a block of xed tissue, interlaced with uorescent imaging steps. Here we illustrate the case in

which DNA polymerase extension is used – this is referred to as “sequencing by synthesis”, because

a copy of the sequenced strand is synth ized by the polymerase. The process is conceptually identi-

cal to the mechanism of uorescent sequencing by synthesis in a commercial bulk DNA sequencing
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machine600, except that it is performed in xed tissue.

Each DNA or RNA molecule in the sample is rst “ampli ed” (i.e., copied) in-situ471 via rolling-

circle ampli cation411 to create a localized “rolling circle colony” (rolony) consisting of identical copies

of the parent* molecule 170. A series of biochemical steps is then carried out. In the kth cycle, a uores-

cent tag is introduced, the color of which corresponds to the identity of the kth base along the rolony’s

parent DNA strand. The system is then “paused” in this state for imaging. The entire sample can

be imaged in each cycle. The uorescent tags are then cleaved and washed away, and the next cycle

is initiated. Each rolony – corresponding to a single “parent” DNA or RNA molecule in the tissue

– thus appears, across a series of uorescent images, as a localized “spot” with a sequence of colors

corresponding to the nucleotide sequence of the parent molecule. The nucleotide sequence of each

DNA or RNA molecule is thus read out in-situ via uorescent microscopy.

The net result of this process is a form of uorescent microscopy in which there are 4N distinguish-

able “colors” or “labels”, corresponding to the 4N possible nucleotide sequences of a DNA molecule

of length N nucleotides. Indeed, the FISSEQ BOINC strategy for connectomics, presented below,

can be roughly conceived as a “4N-color synaptic BrainBow”433,466,467,410,321,95, where N is the number

of bases sequenced.

FISSEQ BOINC In FISSEQ BOINC, cell-identifying RNA barcodes 518,734,239,532,415 are targeted to

the pre-synaptic and post-synaptic membranes, and FISSEQ is used to optically resolve and sequence

the pre-synaptic and post-synaptic barcodes at a large fraction of synapses, thereby identifying con-

nected pairs of cells in-situ. The idea of FISSEQ BOINC is shown in Figure 6.1, and Supplemental

Note 6.5.1 describes possible strategies for targeting nucleic acid barcodes to the pre-synaptic and post-

synaptic membranes.

The key challenges for FISSEQ BOINC are fourfold:
*In the case of RNA FISSE , a reverse transcriptase rst creates a cDNA copy, which is then circularized

and ampli ed to generate a local DNA rolony.

183



1) Biochemical cycling: the large number of biochemical and imaging cycles required, e.g., at least

30 images to in situ sequence a 30-base cell-identifying barcode

2)Resolutionofdistinct synapses: theneed tooptically resolve a given synapse fromnearby synapses,

which will require sub-di fraction-limited optical microscopy and/or molecular strati cation if most

or all synaptic contacts are to be observed (whereas synapses from a sparse subset of neurons are rou-

tinely resolved with di fraction-limited optics)

3) Resolution of pre-synaptic from post-synaptic barcodes: the need to distinguish barcodes on

the pre-synaptic and post-synaptic sides of a synapse, despite their close apposition across the synaptic

clef 139, which will require further targeted resolution enhancements

4) Restriction of FISSEQ to synapses: barcode RNAs localized in axons or dendrites would of-

ten co-inhabit resolution voxels with pre-synaptic and post-synaptic barcodes, implying a need either

for precise targeting of barcodes only to synapses (and nuclei), or for restriction of the FISSEQ bio-

chemistry itself only to synapses – optical resolution considerations433,466 further suggest that FISSEQ

signal should be restricted as closely as possible to the synaptic clef , rather than lling the entire pre-

synaptic and post-synaptic compartments, i.e., the spine heads and axonal boutons

We next treat each of these challenges in turn.

6.1.1 B

C Current FISSEQbiochemistry steps –based on sequencing by ligation– take 2.5 hours

per base, but using Illumina-type sequencing chemistries – based on sequencing by synthesis – this

can be reduced to 30 minutes per base. A variety of alternative chemistries have been developed for

fast cyclic sequencing by synthesis in polymerase colonies 121.

R Biochemical reagent costs are negligible compared to imaging costs (see below).

Fluorescent ligation probes are the cost-limiting reagent in current FISSEQ protocols, available com-
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Figure 6.1: A fluorescent in-situ sequencing strategy for connectomics: cell-identifying nucleic acid barcodes are tar-

geted to the pre-synaptic and post-synaptic membranes, where their sequences are read by FISSEQ in a high-resolution

optical microscope. Resolving synapses from their neighbors, and distinguishing pre-synaptic from post-synaptic bar-

codes at a given synapse, requires strategies for sub-diffraction optical imaging.

mercially for roughly $500per 1017 molecules (andnote that commercial biochemical reagents are of en

priced orders of magnitude above the synthesis cost). For comparison, we can estimate the number of

ligation probemolecules required for whole-mouse-brain FISSEQ BOINC as n · s ·m ·b ≈ 1017 where

n ≈ 108 is the number of neurons, s ≈ 104 is an upper bound on the average number of synapses

per neuron, m ≈ 1000 is the number of template copies per synapse, and b ≈ 100 is the number of

nucleotides per template. Thus, even if we require 100× excess probe molecules, the reagent cost per

whole mouse brain synaptic FISSEQ BOINC is less than $100k.

E Sequencing by ligation has typical error rates of roughly ε = 1%, such that a 30-base

sequencing reaction has a success probability of Psuccess = (1− ε)30 = 74%. If each base is sequenced

three times, however, a majority voting scheme can be implemented: the sequencing-associated error

rate could thus be reduced to 3ε2+ε3, leading toPmajority vote
success = (1−(3ε2+ε3))30 = 99.1%. This would

triple thenumber of biochemical cycles. An alternativemethod to error-correct synaptic FISSEQreads

is discussed in Supplemental Note 6.5.4.
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6.1.2 R

R Di fraction-limited 3D optical microscopy (λ/(2 · NA) ≈ 200 nm

xy-resolution and 2λ/NA2 ≈ 533 nm z-resolution for numerical aperture NA = 1.5 and wavelength

λ = 600 nm) is insu cient to reliably resolve nearby synapses, which are packed at an average den-

sity of 1-2 per µm3 433. Prior theoretical studies466,433, constrained by EM anatomical data from rat

hippocampal neuropil, suggest that > 90% of synapses could be resolved at ∼ 100 nm isotropic res-

olution. This conclusion is subject to the assumptions used in the simulations, including uorescent

labeling only of the pre-synaptic and post-synaptic protein densities (PSDs) rather than of the entire

synaptic compartment433.

S - There exist multiple methods to optically label intact

synapses via inter-cellular protein-protein interactions across the synaptic clef , e.g., via neurexin-neuroligin

interaction or split uorescent protein complementation 194,717,407, or via immuno-staining against

synapse-speci c proteins463,462. These methods could be used to validate the ability of an optical

setup to resolve distinct synapses, and/or to locate synapses before in-situ sequencing. Because close

axon/dendrite contacts do not reliably predict the locations of individual synapses468, it would be

desirable to use such an independent molecular marker of valid synapse locations, although we also

invoke other methods here to eliminate FISSEQ signal that does not originate from actual synapses.

L The rolling-circle nano-balls (rolonies) gen-

erated in FISSEQ are roughly 100–200 nm in diameter, in current protocols.

S

We now consider strategies, which can be used alone or in combination, to ensure the resolution

a given synapse from neighboring synapses: super-r olution imaging, thin sectioning and molecular
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stratification. These strategies are illustrated in Figure 6.2.

S - Whilemuch super-resolutionmicroscopy research aims toward< 10 nm

resolution and live-cell compatibility, FISSEQ BOINC gives rise to a di ferent set of challenges: 50–

100 nmresolution in four colors, in xed tissue, using standard uorophores, and at thehigh t possible

speed. The speed/resolution tradeo f is likely to be favorable in an in-situ sequencing context: rolonies

are brighter than single uorophores, and the protocol is robust to photobleaching because new dyes

are owed in on each cycle†.

To perform FISSE , a microscopy platform must ideally allow 4-color imaging, or at least 3-color

imaging. On a 3-color microscope, the 4th base could be unlabeled such that absence of signal serves

as the fourth color. A 2-color microscope, however, is insu cient‡.

Among existing technologies, linear 3D structured illuminationmicroscopy (SIM) 255 enhances res-

olution by a factor of 2 along all three axes, relative to the di fraction limit, and is naturally compatible

with4-color imagingusing standard uorophores. Analog SIMacquisition726 can improve SIMspeed

and saturated SIM (SSIM) 254 can improve SIM resolution§. I5S two-objective detection 590 is a form

of SIM with isotropic ∼ 100 nm resolution. Other existing methods such as isoSTED can achieve

< 50 nm resolution along all three dimensions 576, but may be more di cult to adapt to high-speed,

4-color operation.

†Oxygen-radical scavenging bu fers 18 can also be applied to minimize photobleaching and photodamage.
‡In theory, a scheme with 2× more uorophore cleavage/removal cycles could be envisioned: ow on A

and T, look with 2 colors, cleave and wash away the uorophores without de-protecting the bases, ow on C
and G, look with the same 2 colors, cleave and wash away the uorophores, then de-protect and move to the
next base. Unfortunately, in the current FISSEQ chemistry, uorophore cleavage/removal is achieved via the
same reaction as nucleotide de-protection. Use of a 2 color microscope would therefore require new FISSEQ
chemistry.

§The light intensity of the sinusoidal illumination pattern needed for SSIM is >1 photon per cross-section
per uorescence lifetime; then the emission pattern is non-sinusoidal due to saturation and contains spatial
information at higher harmonics.
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Super Resolution Molecular Strati!cation
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Ultra-thin Sectioning

Primer 1 Primer 2
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Figure 6.2: Resolution Enhancement Strategies for FISSEQ-BOINC: super-resolution, molecular stratification, thin

sectioning, and informatic deconvolution from a known barcode pool. These techniques can be applied alone or in com-

bination to improve the resolvability of nearest-neighbor synapses, and/or of barcodes on opposing sides of the synaptic

cleft. Super-resolutionmicroscopes overcome the traditional diffraction limited resolution limit (λ/2NA) via a variety
of methods, such as patterned illumination, nonlinear optical effects, or stochastic single-molecule blinking. Molecu-

lar stratification initiates FISSEQ of only a (random or pre-programmed) subset of molecular barcodes in each imaging

frame, e.g., activating only pre-synaptic or only post-synaptic barcodes. Thin sectioning (physical or optical) allows en-

hanced lateral resolution in a 2D plane by eliminating overlaps in the third dimension. Informatic deconvolution decodes

mixed FISSEQ signals from a combination of distinct barcodes within a single resolution voxel, by relying on prior knowl-

edge of the pool of individual barcodes.
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T Thin sectioning below the intrinsic axial resolution of the imaging setup can

improve the effective axial resolution, by physically separating otherwise unresolvable axial locations.

It can also increase the e fective lateral resolution, by decreasing the spot density in the xy plane within

each section. Experimentally, Array Tomography – a form of thin-sectioning microscopy – appears

to resolve most synapses in mouse brain tissue463,462 using< 100 nm tissue sections on a di fraction-

limited confocal microscope. In Array Tomography, the process of diamond-knife sectioning is auto-

mated, and an array of tissue slices is generated on a strip of adhesive for subsequent random-access au-

tomated imaging. All-opticalmethods can also achieve axial sectioning down to the 100 nm level 253,177.

M Molecular strati cation is amethod leading to linear improvements

in the effective spatial resolution of FISSEQ with linear increases in the number of imaging cycles, at

fixed optical resolution of themicroscope, by activating only a subset of themolecules in each cycle 396.

In one implementation, multiple distinct “primer” sequences are employed sequentially during the

FISSEQ process, such that each primer initiates sequencing of a subset of the rolonies.

There are two broad types of molecular strati cation – stochastic and deterministic. In stochas-

tic strati cation, an arbitrary subset of barcodes is activated in each step; for example, all barcodes

beginning with the nucleotide “C”. In deterministic strati cation, a defined subset of the barcodes is

activated in each step; for example, all barcodes at pre-synaptic but not post-synaptic terminals, or all

barcodes in L5 pyramidal cells but not in other types of neurons.

Stochastic strati cation could be implemented via random ligation of primer binding sites to the

target nucleic acids before FISSEQ 396. Up to 4x strati cation can be obtained just by varying the last

base of the primer binding site, since polymerase initiation is strongly dependent on correct homology

at this position. Further strati cation can be achieved byworking backwards, gaining additional strat-

i cation by a factor of 4 at each step. Strati cation factors of 10-100 should be readily achievable with

this approach, albeit with the corresponding increases in imaging time. Stochastic molecular strati -
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cation by a factor S should lead to an increase in the average point-point separation by a factor of S1/3

along all three axes.

Molecular strati cation could be used to reduce the e fective density of synapses in each imaging

frame. To do so, however, all of the rolonies at a given synapse are activated or inactivated together.

For example, strati cation could be performed using the rst few bases of the cell-identifying barcode

itself, which is cell-speci c rather than rolony-speci c.

6.1.3 R - -

To distinguish pre-synaptic from post-synaptic barcodes at a given synapse, further strategies must

be employed for resolution enhancement of optical microscopy: barcodes positioned close to the

pre-synaptic and post-synaptic membranes may be spaced apart by ∼10–50 nm across the synaptic

clef 466,139, well below the resolution of structured illuminationmicroscopy and below the level where

gains can be made through thin-sectioning. Molecular strati cation and informatic deconvolution can

solve this problem, as depicted schematically on the right side of Figure 6.2.

M In an elegant implementation of deterministic strati cation, pre-

synaptic and post-synaptic barcodes could be fused to distinct primer binding sites. A rst primer

would drive in situ sequencing only of pre-synaptic barcodes; then, in a subsequent set of biochemical

cycles, a second primer would drive in situ sequencing only of post-synaptic barcodes. This would

eliminate the need to r olve pre-synaptic from post-synaptic barcod in any single fluor cent image.

Supplemental Note 6.5.2 details a range of possible strategies to implement deterministic molecular

strati cation at the synapse.

To summarize: if a given synapse is already resolvable from other nearby synapses, then additional

deterministicmolecular strati cationby a factor of 2 –byusing distinct pre-synaptic andpost-synaptic

priming sequences – would be su cient to resolve pre-synaptic from post-synaptic barcodes.
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I So far, we have assumed that the pre-synaptic and post-synaptic

barcodes must be optically resolved, either in the same imaging frame, or in separate imaging frames

(viamolecular strati cation). This is not necessary, however, if the set of possiblepre-synaptic andpost-

synaptic barcodes is already known, and is a small subset of the 4n DNA strings of length n, where n

is the barcode length.

For example, suppose that each cell’s barcode is readable via FISSEQ in the cell’s nucleus. In a rst

step, one can then perform FISSEQ on all the cell nuclei. One thereby determines all possible pre-

synaptic or post-synaptic barcode sequences. Now suppose that both pre-synaptic and post-synaptic

barcodes are contained within a single resolution voxel at each synapse, such that “mixed” uorescent

signals are obtained from the synapse during FISSEQ. Given the mixed signal, and the known set of

possible barcode sequences obtained from nuclear FISSE , it is then possible to determine computa-

tionally which combination of the known barcode sequences gave rise to the observed mixed signal¶.

We refer to this approach as informatic deconvolution of non-resolvable barcode combinations,

given a pre-determined pool of individual barcode sequences. Supplemental Note 6.5.4 outlines op-

tions for informatic deconvolution in more detail.

6.1.4 R FISSEQ

Restricting the FISSEQ signal to synapses is critical to the implementation of FISSEQ BOINC. Bar-

codes localized “part-way down” axons or dendrites would of en co-inhabit FISSEQ resolution vox-

els occupied by genuine synapses. Furthermore, to achieve su cient resolvability of neighboring

synapses, the FISSEQ signal should be restricted as closely as possible to the synaptic clef 433,466.

Methods to accomplish this restriction fall into two categories: barcode localization (tra cking

RNA barcodes solely to the synapse) and location-restricted sequencing (restricting FISSEQ chem-

¶Additionally, synapse locations could be pre-labeled with an antibody (e.g., Anti-Synapsin I) and optically
resolved, so that the microscope knows “where to look” for such mixed signals.
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istry solely to the synapse). Supplemental Note 6.5.3 describes one strategy for restricting FISSEQ

biochemistry to the synapse, even in the presence of barcode RNAs localized outside the synapse.

6.1.5 C : U - FISSEQ BOINC

Oneapproachwouldbe toperformFISSEQon< 100 nmthin tissue sections in a standarddi fraction-

limited microscope, such as a confocal microscope. We treat this case here merely because it leads to

a simple calculation of the estimated imaging cost; other methods allowing comparable degrees of

super-resolution, which do not rely on thin sectioning, may be preferable in practice.

S Experimentally, this approach appears to resolve most synapses in the con-

text ofArrayTomography463,462. Resolution calculations466 indicate thatArrayTomography at 100 nm

vertical slice thickness and 200 nm lateral resolution (via a standard confocal microscope) would re-

solve >90 of synapses from their nearest neighbors.

I A comparison with the rates of sequencing by uorescent microscopy in commer-

cial sequencing machines suggests that FISSEQ BOINC in< 500 nm thin sections could proceed at

rates of 8 hours per cm2 433. Assuming 100 nm sections, the total imaging time is

Tultra-thin sectioning FISSEQ
mouse =

8 hours
100 nm section

× 42000 sections = 40 years

to sequence >90 of mouse brain synapses at Illumina rates on a single machine433.

I With $1M in situ sequencing machines operating at Illumina speeds, and machine

cost amortized over three years, the imaging cost would be $13Mper wholemouse brain connectome‖.

‖To distinguish pre-synaptic from post-synaptic barcodes, either a deterministic molecular strati cation ap-
proach would be used – with distinct pre-synaptic and post-synaptic primer sequences, increasing the imaging
cost by a factor of 2 – or informatic deconvolution could be applied based on a known barcode pool, such as
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A The cost of instrumentation for whole mouse brain sectioning and section-

handling, at 100 nm slice thickness, can likely be reduced below $1M433.

P The cost for a 3-year ultra-thin sectioning mouse brain FISSEQ BOINC is there-

fore in the $10M-$20M range, subject to the prior experimental demonstration of the basic molecu-

lar mechanisms of FISSEQ BOINC. This cost could be reduced if the individual microscopes were

brought below $1M, or amortized over multiple projects.

O . Via all-optical techniques, I5M microscopy achieves 100 nm

axial and roughly 200 nm lateral resolution in a wide- eld mode 253. Parallelized multi-photon 4Pi-

confocal microscopy leads to similar axial resolution 177. Bessel beam plane illumination gives 2×

improvement in the axial resolution and 1.5× improvement in the lateral direction relative to con-

focal microscopy, while allowing high speeds 215. While we have focused on the physical sectioning

approach here, because its ability to resolve densely labeled synapses has been demonstrated experi-

mentally463,462 and because it leads to a simple estimate of the imaging cost, optical sectioningmay be

preferable in practice, e.g., if auto-alignment methods for 4Pi interference are introduced.

6.1.6 H

Hybrids between the bulk sequencing (BOINC)734,532,433 and in situ sequencing (FISSEQ BOINC)

could lead to reduction of total costs, as well as potential experimental simpli cations. For example,

FISSEQ could be performed solely on each cell’s self-barcode – localized in the nucleus – and BOINC

bulk-sequencing could subsequently be used to determine the connectivity matrix. This would elimi-

nate the requirement for high resolution direct observation of synapses by lightmicroscopy, yetwould

from nuclear FISSE , without any increase in the imaging cost.
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still allow localization of each cell body in addition to determination of the connectivity matrix. Sup-

plemental Note 6.5.5 discusses a potential hybrid strategy.

6.1.7 S

FISSEQ BOINC leverages the recent development of uorescent sequencing protocols for nucleic

acids that have been locally ampli ed inside intact tissue 396,340. This approach could have several ad-

vantages over other connectomics approaches such as axon tracing via large-scale serial-section electron

microscopy. Most notably, like BOINC734, it does not require error-prone morphological tracing of

thin (< 100 nm) neural processes over large (∼1 cm) distances, instead relying on a digital representa-

tion of cell identity in nucleic acid strings for which the fidelity of readout independent of d tance

from the neuronal soma.

FISSEQ BOINC could allow the direct observation of synaptic connections in situ by reading the

sequences of pre-synaptically and post-synaptically localized cell-identifying nucleic acid barcodes.

Achieving the necessary spatial resolution in uorescent microscopy, however, requires a suitable

combination of: a) super-resolution microscopy, b) physical463,462 or optical 253 sectioning of tissue

into∼ 100 nm slices, c) molecular strati cation, and/or d) informatic de-convolution of multiple se-

quences within one optical resolution voxel using a known barcode pool.

A preliminary cost estimate suggests that FISSEQ BOINC in 100 nm ultra-thin 2D sections may

be achievable for roughly $10M per three year mouse connectome, using imaging equipment compa-

rable to today’s bulk uorescent sequencing machines. The ultra-thin sectioning approach has been

demonstrated experimentally to resolve densely labeled synapses in mouse cortex, and may integrate

naturally with Array Tomography immuno-staining methods that report on the molecular diversity

of synapses463,462.

FISSEQ BOINC integrates readily with other light-microscopy-based readouts, conferring high-

dimensional, molecularly speci c information: FISSEQ BOINC is thus naturally suited to the acqui-
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sition of Rosetta Brain datasets, as described below. In the simplest case, this includes integration

with other FISSEQ readouts from the same tissue specimen, such as in situ transcriptomics 33 or in

situ readout of cell lineage barcodes.

In the speci c implementation proposed here, which sequences only synapse-localized andnuclear-

localized barcodes – FISSEQ BOINC does not trace the morphologies of neurons. It is possible that

whole-cell FISSEQ could recover detailed morphology, however, if each neuron is lled su ciently

with barcoded transcript, in a manner somewhat analogous to current BrainBow approaches410,321,95.

6.2 P FISSEQ BOINC

6.2.1 T

Given the prior experimental demonstration of FISSEQ 396,340, key experimental milestones on the

way towards FISSEQ BOINC include the following.

• Barcode each neuron with a unique RNA tag. For dense, whole-brain barcoding, the barcode

generation mechanism should be genomically encoded rather than delivered virally. Mouse

models may be readily accessible due to their ease of genetic manipulation, e.g., via embryonic

stem cell implantation. A germline-competent transgenic encoding the barcoding mechanism

must be developed, despite the fact that expressed barcodes pose potential issues of toxicity.

Due to its small brain size, with only a few million cortical neurons489, the Etruscan shrew

may also be a desirable target.

• Find a set of RNA localization tags that can label all synapses regardless of cell type. This is

discussed in Supplemental Note 6.5.1.

• Restrict the FISSEQ signal to the pre-synaptic and post-synaptic densities (PSDs): a FISSEQ

enzyme such as phi29 could be targeted to the PSDs via an antibody (localization to entire
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synaptic compartments is not su cient433 to allow good resolvability of neighboring synapses

in a dense labeling scenario). This is discussed in Supplemental Note 6.5.3.

• Demonstrate optical resolution enhancement in the context of FISSEQ: to observe nearly

100% of synaptic contacts unambiguously, a 4-color (or at least 3-color) super-resolution mi-

croscopy with 50–100 nm xy resolution is needed, coupled with < 100 nm thin sectioning

or < 100 nm axial resolution. Molecular strati cation is a complementary tool for optical

resolution-independent enhancementof the effective spatial resolution, andmethods formolec-

ular strati cation are discussed in Supplemental Note 6.5.2.

• Achieve chemical compatibility of FISSEQ with appropriate tissue-embedding and immuno-

staining reagents: compatibility of FISSEQ with Array Tomography preparations would be

valuable (OPTIONAL).

• Achieve biochemical compatibility of bulk BOINC with FISSEQ to allow hybrid strategies:

BOINC could be used to obtain connectivity information via bulk sequencing while FISSEQ

couldbeusedon the same sample toobtain cellular positions and transcriptomes (OPTIONAL).

6.2.2 FISSEQ BOINC

Simpli ed versions of FISSEQ BOINC could be useful even while relaxing some of the above en-

gineering requirements. For example, rather than mapping the precise synaptic connectivity, a rst

implementation could target FISSEQ BOINC barcodes only to the pre-synaptic compartments and

nuclei, thus obtaining the complete projectome of a single brain, i.e., the spatial locations to which

all axons project. This would obviate the need to resolve pre-synaptic from post-synaptic compart-

ments, requiring only FISSEQ of pre-synaptic compartments and donor nuclei / somas. Projectomes

are powerful resources 205,503,620 of interest to many neuroscientists, and are useful for constraining
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theories of brain architecture441, yet current approaches require integrating many experiments across

many brains and do not reach single-cell precision71. FISSEQ BOINC would solve both problems.

Note that cellular-resolution, single-brainprojectomes could alsobe achievedwithBOINCthrough

3D sectioning of the tissue and subsequent section-speci c barcoding; nuclear-localized DNA bar-

codes (revealing soma positions) could be distinguished from synapse-localized RNA copies of the

barcodes (revealing projections) by observing the removal of introns or by other methods.

6.3 T R B

A key goal for neuroscience is to measure many biological variables simultaneously, in a co-registered

fashion,within singlebrains 122. Even co-registering just two variables at cellular resolution (e.g., activity

and connectivity, or gene expression and projection pattern) has led to insights inaccessible to separate

measurements620,68, and it is important to extend such co-registration to as many relevant variables

as possible. The results of such rich co-registration would constitute Rosetta Brains: integrative data-

sets that could constrain theoretical e forts to bridge across levels of structure and function in neural

tissue.

Such integration could be enabled by the emerging ability to translate a variable of interest, such as

synaptic connectivity, cell lineage 591, or perhaps even dynamic activity patterns735,227,678, into a physical

form that can be robustly stored, transported and measured – digitally-encoded nucleic acid strings,

which can be read out in situ via FISSEQ as temporal patterns of colors.

6.3.1 FISSEQ BOINC R B

We can envision at least one route to Rosetta Brains, as follows 122. Given a single brain, we would

like to measure “A, B, C, D and E”: Activity, Behavior, Connectome, Development and Expression of

genes and proteins. All of these can be obtained via a FISSEQ BOINC approach, as follows:
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Activity can be measured via electrodes, optical microscopy, molecular recording735,227,678 or other

techniques434,21, in amanner that allows co-registration68 at the single-cell levelwith subsequent xed-

tissue optical microscopy.

Behavior can be monitored via video in the context of hypothesis-driven experimental paradigms

or free behavior.

Connectomes can be obtained via FISSEQ of nucleic acid cell ID’s indicating connectivity, “ID-

C”, as well as FISSEQ of nucleic acid barcode-tagged antibodies targeted to speci c synaptic proteins,

revealing synapse properties 507.

Developmental lineage693,591 can be determined via FISSEQ of nucleic acid cell ID’s encoding cell

lineage:“ID D”, e.g., DNA barcodes which are “updated” once per cell cycle722,124.

Expression of genes is measured in a spatially-resolved fashion via FISSEQ or uorescent in-situ

hybridization 118,96 ofmRNA and/or of nucleic acid barcoded antibodies targeted against cellular pro-

teins: “ID E”.

Implementing such a strategy would entail performing behavioral experiments on a single animal,

with measurement of activity data occurring in real time. Then, the brain tissue would be xed and

thin-sectioned463,462,117, perhaps using methods similar to those of Array Tomography462. The tissue

sections would be subjected to highly multiplexed FISSEQ and immuno-staining cycles in a high-

speed, high-resolution optical microscope.

6.3.2 A

N - Attaching eachprotein-probing

antibody to a unique nucleic acid barcode allows multiplex in-situ readout of synaptic and cellular

proteins (exponentially parallelized compared to the typical 4-8 uorescent colors per staining cycle).

Furthermore, in-situ sequencing ofmRNA is inherentlymultiplexed. It will likely be possible with

FISSEQ to achieve orders of magnitude higher multiplexing compared with recent gene expression
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atlases (8 hybridization probes per brain in 25 µm sections) 397, while performing these analyses on

single brains rather than populations of brains.

E - By combiningmany types ofmeasurements on a single piece of tissue, there is

the possibility for error-correction: for example,mRNAexpression levels could cross-validate cell type

inferences made on the basis of synaptic protein abundances and distance-dependent connectivity

patterns.

Furthermore, an array of molecular barcoding techniques could cross-validate or even substitute

for in-situ sequencing, e.g., multiplexed in-situ probe hybridization 118,96**.

C During thin sectioning, electrodes or

other recording devices434 could potentially remain inside the tissue, with the microtome simply slic-

ing through them – although damage to the knife would be a serious concern, perhaps necessitat-

ing sof , thin electrodes. The positions of the electrodes or other recording devices could be known

post-facto from microscopy or pre-facto from high-resolution CT scans. This would allow molec-

ular composition and connectivity to be ascertained for cells of known activity history and repre-

sentation/coding properties. Optical imaging of neural activity would integrate even more readily

with xed-tissue optical microscopy for FISSEQ. Much more speculatively, molecular recordings of

time-dependent signals735,227 could be read out directly though FISSEQ or other forms of optical mi-

croscopy678.

**Fluorescent in-situ hybridization approaches have demonstrated experimentally a 32-fold simultaneous
multiplexing capacity using Binomial(7, 3) = 35 STORM activator/emitter photo-switchable pairs416. This
approach could theoretically scale to at least 792 e fective colors using available emitters, or to tens of thousands
of e fective colors if an infrared (IR) uorophore was added to the color palette or other methods were used to
distinguish dye pairs 655.
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6.3.3 L

Measuring morphology is important, since mechanisms such as ephaptic coupling 25, BDNF signal-

ing289, nitric oxide release 142 and many others can functionally link nearby neurons in a distance-

dependent manner. Also, the positions of inputs within the dendritic tree govern their electrical in-

tegration 80,174. Therefore, knowledge of the precise spatial appositions of neuronal processes seems

relevant for understanding elementaryneuron-neuron interactions. Variants of FISSEQ BOINC, em-

ploying FISSEQ barcodes distributed throughout all cellular compartments, could reveal at least the

gross morphology of every cell, much as is done in current BrainBow techniques410,321,95. Certainly, a

genetically targeted subset of cell shapes could be imaged in this way.

Neuromodulators (e.g., neuropeptides and biogenic amines) can strongly modify the behavior

of neural circuits, e fectively forming “circuits within circuits” that are activated or inactivated by

various modulators44,45. Because many neuromodulatory receptors 129 and release sites 537 are extra-

synaptic44,670,mapping theneuromodulatory circuitrywill requiremore than just synaptically-localized

immuno-staining. While this goes beyond the pure synaptic FISSEQ BOINC approach described

above, this could also be done using optical imaging and multiplexed antibody staining in the same

setup. Alternatively, correlations between gene expression patterns and neuromodulatory responses

could bemeasured independently, and thenused to infer single-cell neuromodulatory properties from

FISSEQ transcriptomics data.

We have not discussed how to measure the dynamics of connectomes, or of the associated molec-

ular annotations. This will require additional new concepts, perhaps variants of existing molecular

recording ideas735,227,434, but tailored to particular (e.g., slower) timescales and processes of interest

(e.g., transcription). Integrating activity data intoRosettameasurements raises highly non-trivial tech-

nology problems if it is to be done at scale434.
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6.4 D

FISSEQ BOINC is a hypothetical connectomics strategy which uses Fluorescent In-Situ Sequencing

(FISSE ) to directly read the sequences of co-localized RNA barcodes at the synaptic clef . Once the

basic molecular mechanisms are established, preliminary estimates indicate that a FISSEQ BOINC

analysis of an entiremouse brain could cost $10M-$20M for a three-year project, primarily in the form

of microscopy equipment433. Improvements to the speed of 50–100 nm 4-color super-resolution u-

orescence microscopy in xed-tissue could reduce this cost further.

FISSEQ BOINCis onlyone example of aplausible lightmicroscopic strategy forhigh-speed,molec-

ularly annotated connectomics. Unforeseen limitations of this plan could be revealed experimentally

and alternative designs may prove superior. Nevertheless, the FISSEQ BOINC strategy illustrates the

existence of a exible emerging design space. Ultimately, such an approach could simultaneously pro-

vide spatial localization of neuronal somas, determination of the neuron-neuron connectivity matrix,

and cellular-resolution molecular annotations indicative of cell types, synapse properties, and devel-

opmental lineages. Furthermore, molecularly annotated connectomics approaches could synergize

with strategies – such as the Human Brain Project443,332 – that aim to build large-scale data-driven

simulations via integration of diverse measurements and data-sets.

Several recent and ongoing developments converge to enable the possibility of FISSEQ BOINC

or similar strategies. The problem of tracing thin axons over large distances though vast image stacks

is, in principle, obviated by the use of digitally-encoded biopolymers which can be physically trans-

ported along the axon by endogenous cellular mechanisms. This combinatorial sequence space can

be accessed by using N cycles of uorescence-coupled biochemistry to read out 4N e fective “colors”.

Advances in light microscopy beyond the di fraction limit – which could be as simple as ∼ 100 nm

physical or optical sectioning – allow spatial resolution of many of the key objects of interest within

any single uorescent image, but further improvements in the effective spatial resolution can be ob-
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tained by stratifying otherwise unresolvable objects into separate image frames using exible in-situ

DNA manipulation techniques.

FISSEQ BOINC is currently at the level of a theoretical proposal. The implementation of FISSEQ-

BOINCor related strategies will require the solution of a number of experimental challenges in in-situ

biochemistry, imaging and automation. None of these appears to be insurmountable, however, and

ongoing advances in elds such as high-speed super-resolution microscopy and automated tissue sec-

tioning could remove some of the existing technical obstacles. We can thus envision at least one path,

whichmay be one amongmany viable alternatives, towards whole-brain-scale, molecularly annotated

connectomics.

6.5 S I

6.5.1 I -

While each of the below approaches will likely lead to an enhancement of synapse-localized barcodes,

compared to passive di fusion, none is likely to yield the stringent synapse-speci city required for

FISSEQ BOINC: some fraction of barcode RNA will remain localized outside the synapse. Thus,

one of these approaches will need to be combinedwith a secondary spatial restriction such as location-

restricted FISSE , as outlined in Section 6.5.3.

B A cell-barcode in the genome could be transcribed

into RNA molecules bearing either the MS2-binding RNA aptamer sequence or the PP7-binding

RNAaptamer sequence (via direct genetic fusion orRNA RNA interaction 149). The cytoplasmic do-

main of the pre-synaptic protein neurexin could be fused toMS2protein, and the cytoplasmic domain

of the post-synaptic protein neuroligin could be fused to PP7. These protein-RNA interactions are

quite strong, e.g., with a 3 n a nity constant for theMS2 aptamer/MS2protein interaction615. Alter-
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natively, RNA barcodes could perhaps be fused covalently to the targeting proteins via cap-snatching

protein mutants from viruses 212 (a form of in-vivo mRNA display) or engineered ribozymes 50. The

barcode RNAs could thereby be localized to the pre-synaptic and post-synaptic compartments.

Thedi culty for this approach lies in themolecular diversity of synapses. Taking theneurexin/neuroligin

example, there are four neuroligin genes in the mouse. The di ferent subtypes of neuroligin can be

found at di ferent subsets of synapses, with neuroligin 1 at excitatory synapses and neuroligin 2 at in-

hibitory synapses. Neuroligin 3 is found at both excitatory and inhibitory synapses, but likely not

at every synapse in the mouse brain. The C-terminal tails of the various neurexins/neuroligins are

likely su cient to direct targeting of the appropriate fusion proteins, although the cell-type context

dependence of this targeting would need to be tested.

Thus, this approach may require not just twoMS2/PP7-tagged synaptic proteins such as neurexin

andneuroligin (i.e., one pre-synaptic andonepost-synaptic), but rather a small set ofMS2/PP7-tagged

pre-synaptic proteins and small set ofMS2/PP7-tagged post-synaptic proteins, to cover themolecular

diversity of all synapses. There are likely other groups of (e.g., non-membrane) proteins which collec-

tively could be used to target barcodes to all synapses: candidates include PSD95, gephryin, SHANK3,

Synapsin and others.

In this scheme, the cell barcode itself need only bear the MS2 or PP7 aptamer sequence; a trans-

genic mouse could be created (e.g., with CRISPR) that fuses the MS2 or PP7 proteins to multiple

endogenous pre-synaptic or post-synaptic proteins.

B FINGR Another targeting strategy would utilize bronectin intra-

bodies generated withmRNAdisplay (FINGRs) 251. These are a form of genetically-encoded “protein

aptamer” against a target protein of interest, whose expression level is additionally tuned to be at or

below the level of the target, leading to highly speci c labeling. FINGRs have already been generated

against Gephyrin and PSD95 251.
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B RNA -

Sequence signals in the 3’-UTR of mRNAs direct their localization to neuronal processes,

e.g., the dendrites, via the formation of ribo-nucleoprotein “granules” which are transported by cy-

toskeletalmotor proteins to their appropriate sub-cellular destinations686. Further sequence signals in

the 5’-UTR appear to be su cient to direct localization to the synapse458, in some scenarios, although

the full molecular underpinnings of subcellular RNA localization are not well known. Synapse as-

sociated poly-ribosome complexes, which perform spatially-localized protein translation at synapses,

appear to be tightly localized to the synapse, and in particular to the base of the dendritic spine631.

In principle, the appropriate RNA localization tags could be appended to cell-barcode RNAs to

direct their localization to the pre-synaptic or post-synaptic densities. If multiple distinct localiza-

tion tags must be appended, in a mutually exclusive fashion, to a single stochastically-generated RNA

barcode, RNA trans-splicing or transposon traps could be used, as discussed in Section 6.5.2. Unfor-

tunately, very few RNAs appear to localize exclusively to the synapse itself97 let alone to the PSDs, so

this will necessitate combination with the methods of Section 6.5.3 or similar.

6.5.2 I

I RNA Individual

cells can simultaneo ly express at least 14-50 RNA splice variants of the same gene492. For determin-

istic molecular strati cation to distinguish pre-synaptic from post-synaptic barcodes, two mutually-

exclusive exons could be placed downstream of the barcode RNA: for example, one exon could con-

tain theMS2 aptamer and reverse transcription priming site 1, while the other exon could contain the

PP7 aptamer and reverse transcription priming site 2. Then, the same (e.g., genomically-encoded)

DNA barcode sequence would give rise to two distinct RNA sequences, one targeted to the pre-

synaptic compartment and speci c to the rst primer, and the other targeted to the post-synaptic

compartment and speci c to the second primer (using di ferent sequencing adaptors might be prefer-
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able to di ferent reverse-transcriptase primer binding sites, so that rolony preparation could occur in

a single step).

In another implementation of the same idea, the cell could express multiple alternative RNAs

which could be trans-spliced (rather than cis-spliced) onto a given barcode RNA. This has the ad-

vantage that alternative exons do not need to be engineered into a single gene684. The e ciency of

trans-splicing would likely be a limiting factor here, especially since un-spliced targeting RNAs could

saturate the available synaptic proteins.

I - -

Alternatively, gene duplication events could be targeted to a predetermined genomic

location, e.g., via a “transposon trap”402. A barcode would rst be generated within the retrotrans-

poson sequence at a de ned “start-site” location in the genome. Elsewhere in the genome would be

placed two “landing sites” of the form: Promoter - Landing Site - PreTag/PostTag, where PreTag and

PostTag are targeting sequences for pre-synaptic or post-synaptic localization. The retrotransposon

can then be induced to “copy-and-paste” the barcode to these prede ned landing sites. The landing

siteswouldbe known sequenceswhere that transposonhas a highprobability of landing. Transposon-

based duplicationmight have the advantage of being less dependent on cell-type-speci c regulation as

compared with alternative splicing.

I ( . )

Alternatively, to implement deterministic two-fold molecular strati cation, the same DNA encoded

cell barcode could be transcribed from one promoter in the forward direction – leading to one set of

primer binding sites and localization tags – and from another promoter in the reverse direction, ap-

pending the second set of primer binding sites and localization tags. For a su ciently diverse barcode

space, the reverse complement of a given barcode in the pool would not itself be present in the pool,
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meaning that a cell could be identi ed either by its forward or reverse-complemented barcodes. It

might be necessary to prevent spurious hybridization of the forward and reverse-complemented bar-

code RNAs (leading to spurious generation of RNA barcode dimers as well as PKR-activating long

dsRNAs738), but it should be noted that many opposite-strand overlapping genes occur naturally in

the human and mouse genomes 570.

6.5.3 R FISSEQ

Additional synapse speci city of the FISSEQ signal could be achieved by restricting the sequencing

chemistry to the pre-synaptic and post-synaptic densities using a form of protein tagging. This could

be achieved by conjugating the various enzymes used in the FISSEQ rolony preparation to antibodies

against synaptic proteins. Such enzyme-antibody conjugates are not unreasonable given the success

of previous enzyme antibody conjugates such as horseradish peroxidase, urease, and alkaline phos-

phatase. Moreover, by multiple conjugating enzymes in successive steps of the FISSEQ process to

antibodies targeting di ferent synaptic proteins found at the same synapse (e.g. MMuLV RT—anti-

PSD95, CircLigase—anti-NR1, Phi29—anti-NLGN3), spurious reactions at non-synaptic sites could

be progressively reduced. Enzyme-antibody conjugates could be applied at a non-permissive tempera-

ture (or in the absence of substrate), unbound copies washed away, and then switched to a permissive

temperature for the reaction.

Alternatively, a genetically-encoded non-speci c biotin ligase 562, fused to a synaptic protein, could

be used to biotinylate the proteins at the synapse, in a strategy similar to that of 550. One of the FISSEQ

enzymes could then be linked to streptavidin. Af er enzyme addition and a wash step to remove un-

bound enzyme, enzyme activity would be restricted to the synapse, such that FISSEQ signals would

only originate from the synapse itself.

Note that protein localization at the synapse, as is exploited in this strategy, can be highly precise,

perhaps due in part to synapse-localized translation in some cases631,244.

206



6.5.4 P

In the case where two DNA molecules are sequenced within a single optical resolution voxel (e.g.,

a di fraction-limited spot), the information content of each base sequenced is 3.25 bits†† (whereas 4

bits would be recovered if it could be known which amplicon generated which signal). Informatic

deconvolution is the process of providing additional information in order to make up for the missing

0.75 bits and generate a full sequence pair. This additional information can come from two sources:

priori knowledge of all sequences in the pool, or additional “programmatic sequencing” reactions. It

would also be necessary to append additional sequence tags to the barcodes, indicating which bar-

codes are pre-synaptic and which are post-synaptic. Otherwise, only an unordered pair of sequences

is attributed to each synapse.

K Consider rst the problem of adding information from the known bar-

code pool. Let n be the number of neurons (unique, known barcodes), s be the number of synapses

observed and N be the barcode length. In a given resolution voxel (e.g., synapse) containing both

pre-synaptic and post-synaptic barcodes, the observation consists of a list of unordered pairs corre-

sponding to the labels at each base, such as “(A and T) or (T and A)”.

Denote the observation as x. There are< 2N sequencepairs consistentwith x, givennoprior knowl-

edge: the scaling will be ( 1
4 × 1+ 3

4 × 2)N = 1.75N on average. These are embedded in a space of 42N

possible sequence pairs independent of the observation. We know that at least one pair of barcodes,

each chosen from the set of size n of known barcodes, is consistent with x. Perfect deconvolution is

possible if and only if there is no other such pair which is also consistent with x.

For random sequences, the probability that any other pair of known barcodes is also, by chance,

††Four of 16 possibilities (AA, TT, CC or GG) each convey 4 bits of information since the bases of both
strands are disambiguated, whereas the remaining 12 possibilities convey only 4 − 1 = 3 bits of information
since the bit specifying which base goes with which strand is lef ambiguous. Thus the Shannon entropy is on
average 4

16 · 4+
12
16 · 3 = 3.25 bits per base sequenced.
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consistent with x is

<
n2 · 2N

42N = n2 · 2−3N

Since there are s synapses in thebrain, the expectednumberof ambiguous synapses is then< s·n2·2−3N.

For a mouse brain with s < 1012 and n = 108, the expected number of ambiguous synapses via

informatic deconvolution of pre-synaptic and post-synaptic barcodes is at most Sambiguous = 1028 ·

2−3N. For N = 30, Sambiguous = 8 whereas Sambiguous = 0.0002 for N = 35. Therefore, 30-35 base

barcodes could potentially lead to nearly ambiguity-free connectomes via informatic deconvolution

at the synapses.

Supplementary Figure 6.3 shows a simulation of these statistics for small N and comparison with

the above simple model.
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Figure 6.3: Scaling properties of informatic deconvolution from a known barcode pool. Simulated barcode pools were

generated randomly from an equal mixture ofA,T,C andG (with a check to ensure uniqueness within the pool) and the

probability of ambiguous informatic deconvolution was evaluated as a function of the barcode lengthN and barcode

pool size n. Solid lines: simulations. Dotted lines: themodel log2(Pambiguous) = 2× log2(n)+(log2(1.75)−4)×N− 1.

P Additional multi-b e sequencing reactions can also provide the

missing 0.75 bits of information. These can be implemented using a sequencing by ligation strategy,
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which selects for correct hybridization of a multi-base ligation probe. Ligation e ciency is decreased

by orders of magnitude by the presence of a single nucleotide mismatch within a symmetrical 12-base

footprint, six bases on each side of the single-strand break 535.

As an example, through the appropriate choice of ligation probe-sets, a uorescent signal could be

indicative that bases 1 and 2 of the read are the same base (reminiscent of a logical ANDgate). If we had

previously observedA andT signals at base 1, andA andG signals at base 2, this additional information

would unambiguously imply that the two barcodes begin with the sequences “AA” and “TG” (the

alternative possibility “AG” and “TA” is ruled out because the extra multi-base read has indicated that

the rst two bases are identical in at least one of the molecules). Such “parity” sequencing reactions

must beprogrammed, either through thedesignof the templatemolecules, or through the enzyme and

sequencing reagents interrogating the template molecules. This scheme would increase the number

of required biochemical cycles.

U FISSEQ - FISSEQinside the cell’s

nucleus can “average”overmany rolonies corresponding to the same cell-barcode, allowingunambigu-

ous knowledge of the pool of all cell-barcodes (not to mention their corresponding soma positions)

via nuclear FISSEQ. This knowledge could be used – in a manner analogous to informatic deconvo-

lution – to disambiguate error-prone sequencing reads from the synapses, which might derive from

only 1-2 rolonies. This could be valuable, for example, for “factoring out” the error rate associated

with the reverse transcriptase step in RNA FISSEQ. Note that, unlike in traditional bulk sequencing

library preparation, FISSEQ does not involve sequential, bottlenecked ampli cation steps that can,

e.g., “lock in” polymerase errors generated during the rst few cycles of PCR; indeed, in rolling-circle

ampli cation, only the original template molecule itself is copied.
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6.5.5 H

Hybrid strategies could combine favorable aspects of BOINCandFISSEQ BOINC.One possibility is

as follows: 1) rst localize eachneuron and identify its correspondingbarcode via FISSEQof thenuclei,

and then 2) subsequently subject the entire brain, post-FISSE , to bulk sequencing to determine

the barcode pairs via BOINC734,532,433. In this scenario, only (multiple redundant copies o ) a single

barcode – the self-barcode of a particular cell – is in situ sequenced in each nucleus, greatly reducing

the optical resolution requirement and hence allowing a signi cant speedup.

Cost estimate: To image only the nuclei, which are separated by (1 mm3/100000)1/3 ≈ 20 µm on

average, a wide- eld scan could rst be applied to locate the nuclei. Then, using random-access con-

focal scanning in 3D, at 10ms dwell time per pre-identi ed nucleus (a somewhat arbitrary estimate),

the per-cycle imaging time would be 10ms × ρ × 420mm3 where ρ = 100 000/mm3 is the approxi-

mate density of neuronal nuclei. Thirty cycles of FISSEQ on all mouse brain neuronal nuclei would

then take only ve months on a single machine, i.e., for a cost in the range of $200k. The tissue could

then be subjected to bulk sequencing of barcode pairs corresponding to synaptically connected cells,

at the cost associated with BOINC, i.e., potentially <$1M433. The hybrid process could thus achieve a

1-year project cost in the $1M range for a wholemouse brain barcode-based connectomewith precisely

known soma position for each barcoded cell.
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Rather than believe that Watson and Crick made the

DNA structure, I would rather str s that the structure

made Watson and Crick.

Francis Crick

7
DNA as an Informational Substrate

M has focused on the use of DNA for the storage of arbitrary information, as

opposed to just genetic information – for example, we have studied the use of DNA as a connectomic

barcode734, as proposed and experimentally pursued by Zador et al, or as a local storage medium for

time traces of neuronal activity 373, as suggested by Kording et al and pursued in our own recent work.

Here we expand on this notion, demonstrating or proposing several other applications of DNA as a
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nanoscale informational substrate.:

• As a broadly applicable tool, we harnessed a previous result496 on themechanism rolling circle

ssDNA production as a means for production of arbitrary sequence ssDNA inside the E. coli

bacterium. This has potential applications to genome engineering, in-vivo structural DNA

nanotechnology, and other areas.

• We proposed a molecular recording device for time-series of biological sensor readings which

occur on a timescale of minutes to hours (e.g., characteristic of many changes in gene expres-

sion), rather than the milliseconds to seconds regime for which the polymerase-based ticker-

tapes studied in Chapter 3 and Chapter 4 were designed. The proposed systems harness the

natural process of CRISPR mediated immunity in bacteria430, which constructs a linear ar-

ray of DNA sequences harvested from pathogenic invaders. Such slow-timescale molecular

recorders may be more practical (e.g., non-toxic to the host cell) in the near term, especially as

they rely on the “transplantation” and judicious combination of existing, largely unmodi ed,

molecular machinery rather than on the engineering of entirely novel molecular mechanisms.

• The sequence-speci c hybridizationof complementary single-strandedDNA(ssDNA) strands

has led to an explosion of research into structural DNA nanotechnolo , wherein many ss-

DNA strands of user-programmed sequence self-assemble in solution to form a user-de ned

nanoscale object or machine 581,525. We consider both an application of this methodology to

constructing one-dimensional nano-arrays, and a proposed extension of it – a series of exper-

iments and design exercises, aimed at uncovering principles for the integration of bottom-up

nanotechnologybasedon self-assemblywith top-downnanotechnologybasedonphotolithog-

raphy. This has seeded a research programbased onharnessing nanoscale combinatorialmolec-

ular recognition coupled with DNA synthesis, sequencing, microscopy and photolithography

to synergize top-down and bottom-up approaches, sidestepping the limits of each.
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7.1 I - DNA

We (joint with Kevin Esvelt) have demonstrated in-vivo arbitrary-sequence ssDNA production. In

rolling-circle replication, the plus-strand origin of a circular plasmid or virus is nicked by the viral

replicase (gII protein) and extended by host DNApolymerase, displacing the existing strand 542. Af er

replicating the entire genome, the replicase again nicks the DNA at the origin and re-circularizes the

displaced strand into a circular ssDNA. Rolling-circle origins from several phage, virus and plasmid

species can be separated496,161 into “start” and “stop” signals encoding ssDNA synthesis and termi-

nation, respectively Figure 7.1. By anking any arbitrary (e.g., genome-integrated) dsDNA sequence

with these signals, it should be possible to generate circular ssDNA of that sequence within the cell

Figure 7.1.

We rst veri ed that gII protein could drive replication of an f1-origin-containing plasmid which

lacked any other mode of replication; even in the absence of the f1 minus-strand origin, exogenously

supplied gII drove replication of a plasmid containing the f1 plus-strand origin as its sole origin of repli-

cation (presumably due to spontaneous priming of minus-strand synthesis by endogenous RNAs).

Thus, gII is su cient for replication via ssDNA production in the context of the E. coli host cell; the

full machinery of a helper phage, as was used in previous work in in-vivo ssDNA405, is not necessary.

Using a pUC plasmid (UK-civMAGE-3) bearing the f1-origin signal, and a separate SC101 plasmid

(ST-gII-m35) driving expression of f1 gpII, we veri ed ssDNA production using a Cy5 labeled uores-

cent probe oligo in an agarose gel (containing Mg2+ to aid in probe hybridization) Figure 7.5B. Probe

hybridizationwas abolished in the absence of gII protein or using a nonfunctional mutant gII protein

driven from the same plasmid. Thus, gII can drive ssDNA production from a plasmid which also

replicates via pUC.

Interestingly,we foundFigure 7.2, that expressionof gII froma constructwithweakerRBS strength

gave more ssDNA production (and faster f1-based full-plasmid replication) than expression of gII
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from a construct with higher RBS strength.

With these basic parameters established, next steps could include attempting to drive ssDNA pro-

duction from a (plasmid-based or genomically-integrated) split origin-terminator setup, rather than a

single-origin plasmid.

We foresee at least two potential applications for arbitrary-sequence in-vivo ssDNA production,

as shown in Figure 7.4A: multiplex genome engineering and in-vivo nano-assembly. In particular,

in-vivo arbitrary sequence ssDNA production could lead to a strategy, shown in Figure 7.5 for achiev-

ing continuous multiplex automated genome engineering (cMAGE) without complex machinery or

researcher intervention. Whereas traditional MAGE687 relies on electroporation to deliver oligonu-

cleotides to the cell, cMAGE produces all ssDNA continuously from a single synthetic plasmid, by

copying one strand via the rolling circle replication machinery of lamentous phages. In principle,

our strategy avoids problems associated with transformation e ciency, strand concentration, and cell

death caused by electroporation, as well as eliminating the need for complex machinery or researcher

intervention, thus potentially providing a signi cant work ow improvement with respect to tradi-

tional MAGE.

Inparticular, weproposed that the resulting circular ssDNAcouldbe cut intode ned linear oligonu-

cleotides by a Type II CRISPR system430 and incorporated into the replicating genome by binding to

the lagging strand during genome replication at multiple target sites within the cell, as in traditional

MAGE687. Consequently, only one plasmidwould need to be delivered into the cell to generatemulti-

ple copies ofmany distinct oligonucleotides. Furthermore, becauseType II CRISPR systems function

robustly inmany cell types and rolling circle replication via an ssDNA intermediate is a generalmethod

occurring in all kingdoms of life 192, cMAGE could then be applied to any cell type into which a single

dsDNA plasmid can be delivered, dramatically expanding the range of cell typ amenable to multi-

plex genome engineering. While we have not yet had success with this CRISPR-based ssDNA cutting

strategy in-vivo, we have initiated research into othermechanisms of in-vivo sequence-speci c ssDNA

214



C

T T

T

AT

gpII nick site = position 0

-12 +130

removal preserves termination

stem is necessary

and su!cient for

termination

essential plus-strand origin

-12

minus-strand 

origin

packaging

signal

gII protein

endogenous polIII

circularized

ssDNA form

of insert (does not

include backbone)

f1 +strand

origin
f1 +strand

terminator
insert

plasmid backbone

A)

B)

Figure 7.1: In-vivo arbitrary-sequence ssDNA production. A) Strategy for producing arbitrary-sequence circular ss-

DNA from a dsDNA parent plasmid. The inset shows a probe-labeled agarose gel demonstrating ssDNA production

(using a single origin rather than a split origin-terminator system) in the presence of gII protein but not in its absence. B)

Structural and sequencemotifs in the filamentous phage origin of replication, which are used to construct start and stop

signals for ssDNA production.
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Figure 7.2: Antibiotic selection was used tomeasure replication from an f1 origin – which occurs via a single stranded

intermediate – in the presence of varying levels of gII protein, supplied from a separate plasmid. Production of GII from

a comparatively low-strength RBS andmedium-copy expression plasmid led to optimal ssDNA production. Only un-

der these “optimized” expression conditions did wemeasure significant and robust ssDNA production through the

hybridization probe assay.

Figure 7.3: Layout of the UK-civMAGE-3 plasmid used for testing in-vivo ssDNA production driven by gII protein.
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Applications: 

1) chop up the DNA 
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(continuous MAGE)
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Figure 7.4: Potential applications of in-vivo arbitrary-sequence ssDNA production.
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Figure 7.5: Design scheme for continuousmultiplex genome engineering, showing a proposed CRISPR-based ssDNA

cuttingmechanism. We have since found that this cuttingmechanism does not appear to work as intended, and alterna-

tives are being pursued.
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cutting. One mechanism under consideration is the use of holiday junction resolvase enzymes72 to

cut immobile, designed junction structures that fold in the ssDNA form of the plus strand, but which

are not present in the dsDNA form.

Arbitrary sequence in-vivo ssDNAproduction could also nd application to in-vivonano-fabrication,

perhaps using designs inspired by William Shih’s 2004 single-stranded octahedron603. We have de-

signed variants of this system which would strictly use a single ssDNA (whereas Shih’s original paper

used 5 additional short synthetic strands), by replacing DX crossover regions with simple duplexes, as

shown in Figure 7.4B.

7.2 S

Clustered regularly interspaced short palindromic repeats (CRISPR) mediated immunity in bacteria

consists of an immunization stage, in which invading viral nucleic acids are incorporated into a ge-

nomic locus as roughly 30 nucleotide long “spacers”, followed by an immunity stage, in which RNAs

expressed from the spacer DNAs are used to guide the cleavage of subsequent instances of the in-

vader. The spacers are arranged in a linear array, separated by repeat sequences, and such that nearly

all – though perhaps not strictly all – new spacers are incorporated at the far end of the array, closest

to the so-called “leader” sequence727. With Kevin Esvelt, Alex Chavez and Jonathan Gootenberg, we

have designed a system for molecular recording of sensor time-series in which the sensor biases the

relative rate of incorporation of two competing spacer sequences.

This scheme relies on two key insights: 1) the availability orthogonal CRISPR systems to avoid

self-targeting and crosstalk 188 and 2) the ability to generate a dsDNA sequence in-vivo using a genom-

ically encoded template, such that the dsDNA sequence generated is not itself present in the genome

– this prevents the Cas9-based cleavage mechanism from cutting the host cell’s genome. This latter

capability relies on the in-vivo ssDNA production mechanism discussed above, speci cally as applied
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Figure 7.6: Design sketch for an intracellular molecular recording device operating on slow timescales, in which a time
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to genome-integrated origin-terminator constructs, in which the direct conjunction of the termina-

tor and origin sequence is present in the synthesized circular DNA, but not in the genomic template.

This mechanism for expression of DNA circles from a genomic template is similar to the mechanism

of induction used by integrating (“temperate”) lamentous phages 542, such as CTXφ and its satel-

lite phages. In the present scenario, it would need to be adapted to mammalian chromosomes and

mammalian rolling circle viruses such as the porcine circovirus 192. Partial homology between origin

and terminator sequences might also need to be mutated away to completely prevent cutting of the

genome-embedded sequences.

It would also likely be necessary to optimize the absolute and relative expression of Cas1/Cas2, and

perhaps further optimize the system, via directed evolution of these proteins, in order to ensure suf-

ciently high spacer acquisition rates to achieve time-resolved recording on timescales of practical in-

terest.

7.3 A DNA -

: 1D - ?

Using structural DNA nanotechnology 525, we (joint with Mingjie Dai and Ralf Jungmann) have de-

signed and experimentally validated a system to stretch out a single DNA double-helix or ssDNA

strand of arbitrary user-programmable sequence within a de ned “frame” structure. This could be

used to display the strand for high-resolutionmicroscopy studies (e.g., electronmicroscopy or atomic

force microscopy), or to harness it as a completely addressable sca fold – down to the 0.34 nm linear

precision of the DNA base pair – for arranging nanoscale components along a 1D array.

The DNA double helix represents a versatile substrate for constructing one-dimensional nanos-

tructures: arbitrary DNA sequence motifs can be arranged in any order along its length, allowing

sequence-speci c DNA binding moieties to be placed in close proximity. To capture the potential
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Figure 7.7: Design of the DNA tightrope in caDNAno2. The three-dimensional view and square-lattice 341 cross-section

of the scaffolded DNA origami nanostructure are shown. Each cylinder or circle represents a single DNA double helix,

linkedwith its neighbors by single-stranded crossovers, in a pattern reminiscent of basket weaving.
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Figure 7.8: Construction and imaging of the DNA tightrope. A) The structure is assembled by combining circular

m13mp18 phage ssDNAwith DNA origami staple oligonucleotides andwith a user-designed linear ssDNA strand gener-

ated from a synthetic dsDNA by exonuclease digestion. 3Dmodel produced by CanDo 347. B) Scheme for amplification

and exonuclease digestion of the linear strand. C) Agarose gel illustrating the near-complete conversion of dsDNA to

ssDNA by exonuclease digestion, for various lengths of starting dsDNA. D) Agarose gel confirming folding of the scaf-

folded DNA origami structure. E) AFM image showing visible tightropes. F) Negative stain TEM image showing visible

DNA tightropes; black lines are drawn in, offset from the DNA tightropes, to highlight the paths of the DNA tightropes.

of the DNA helix for nanotechnology, it would be useful to constrain DNA to adopt a straightened

linear conformation, rather than a random coil. While we have elsewhere assisted in demonstrating

a DNA elongation and deposition method that relies on macroscale instrumentation 516, here we de-

velop a simple and customizable DNA origami platform that stretches an arbitrary double-stranded

DNA segment like a tightrope across two rigid pillars with a de ned pillar-to-pillar spacing. In addi-

tion to straightening the DNA, the platform is easy to identify by imaging and can be functionalized

with organic or inorganic groups at many addressable sites. The tightrope can be placed in tension

bymodulating its length relative to that of the supporting structure. This system should facilitate the

rapid prototyping of one-dimensional nano-systems.

The support for the track was designed using caDNAno 167 and is assembled using standard 3D
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Figure 7.9: Effects of shortening the tightrope. A) Agarose gel showing successful folding of tightrope structures with

shortened linear gBlock strands. B) CanDo 347 analysis showing the expected bent structure backbone resulting from

mechanical strain. C) TEM image confirming the bent configuration; the tightrope is visible and an offset black line is

drawn in to highlight its position. D) Another configuration observed in TEM, probably representingmechanical buckling

of the structure backbone under strain.

sca foldedDNAorigami techniques 166,108, whereby them13mp18 genome is folded via 175 short staple

strands. The tightrope strand begins as a 300 to 500-mer dsDNA “gBlock” available commercially

from Integrated DNA Technologies. This gene block is then ampli ed by PCR with a phosphoroth-

ioate forward primer and a phosphate reverse primer, and the amplicons are subsequently exposed

to lambda-exonuclease. The phosphate-primed strands are digested by the exonuclease, while the

phophorothioate-modi ed strands remain intact, and can thenbe integratedwith the support to form

the ssDNA tightrope.

7.4 2 : - - -

, -

No integrated architecture has yet been proposed which fully speci es the steps necessary to produce

structures with a) overall sizes on the scale of today’s computer chips (centimeters), b) addressable fea-

tures on the 10 nm scale, and c) the ability to attach a wide range of discrete components at customiz-

able locations. We have performed initial theoretical and experimental investigations into a scheme for

nanometer-to-centimeter fabrication integration via top-down organization of DNA nanorods using
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DNA hybridization interactions. In particular, George Church and I – leveraging previous work by

the Church lab and collaborators on lithographic fabrication of periodic, chemically uniform nano-

arrays for sequencing applications, as well as of aperiodic DNA microarrays – de ned a deterministic

strategy for orderingmolecular components acrossmillimeter or centimeter length scales while (we ex-

pect)maintaining few-nanometer precision in the placement of individual components. Weproposed

a solution that combines two levels of photo-lithography with DNA nano-structure patterning.

7.4.1 B

Although conventional lithographic techniques can produce patterns at high spatial resolution, they

provide no means to speci cally interface these patterns with diverse molecular-scale components.

In contrast, the self-assembly of information-bearing bio-polymers exploits the speci city of molec-

ular recognition to generate combinatorial numbers of speci c binding interactions. Here we out-

line – based on a proposal by George George, which was created in response to discussions with the

author and others – a method which speci es the construction of an array of uniquely addressable

bio-molecular lattice points (UALPs) on a surface, with spacing on the order of 500 nm. Such an ar-

ray could be used to provide docking and interconnection sites for inorganic components templated

on DNA nanostructures. Such an array could also serve as a surface-based seed layer for growth into

the third dimension via templated self-assembly of subsequent layers. Several capabilities in nano-

technology can be leveraged to create fully addressable nano-arrays.

1) Construction of periodic spot arrays: Interference photo-lithography 308 allows rapid and low-

cost fabrication of periodic patterns over large areas. The resulting chips may consist of an array of

positively charged amino-silane spots on silicon or glass surfaces. Changing the pitch ismerely amatter

of changing the incidence angle. As a rule of thumb, it is easy to obtain a 3× ratio between pitch

and spot diameter but di cult to obtain a 10× ratio: thus 300 nm spot diameter at 1000 nm pitch is

feasible, as is 100–150 nm spot diameter at 400 nm pitch, but 200 nm spot diameter at 2000 nm pitch
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Figure 7.10: Construction of DNA spots in a de Bruijn pattern. A diffraction-limited UV line focus, produced by a cylin-

drical lens, is scanned through a series of discrete positions, aligned to a nano-grid fabricated using interference lithog-

raphy. The line foci sequentially activate lines of nano-grid spots along the x or y axes via nitro-benzyl chemistry, fol-

lowed by deposition of the corresponding oligo type. Each axis corresponds to a De Bruijn sequence of the different

spot types, with sub-sequence length s = 2. Thus, each pair of consecutive DNA spots along an axis uniquely identifies

the location along the axis. The alphabet size n is the number of DNA spot types along each axis. Shown here is the De

Bruin sequence with n = 2 and s = 2 : 1122(1). Note that, for a pattern with 108 UALPs, n = 100 and 2 ∗ 104 separate

oligo deposition steps are required. Assuming that one activation and deposition step occurs every 5 seconds, the entire

process (up to rod deposition) takes one day. For comparison, if each spot had to be individually activated and deposited

at 5 seconds per step to ensure unique addressability in 2D, the process would take 5 seconds ∗ 108 = 15 years. The use
of a de Bruijn spot pattern and cylindrical lens allows us to circumvent this problem, as would the use of DMD-driven

parallel oligo synthesis or deposition.
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Figure 7.11: Conversion of the de Bruijn DNA origami pattern to a set of uniquely addressable bio-molecular lattice

points (UALPs). Rigid DNA nanostructure rods bind to individual spots on the surface via binding sites on the DNA

origami adaptors (orange). Contact points between rods bound to adjacent spots define unique x or y coordinates.

Cooperative hybridization tomarkers (rod coupling DNAs) indexing these x and y coordinates allows unique addressing

of 2D positions. Rods have directionality to define ordered pairs. ix and iy rod types are distinct to prevent mixing of the

two coordinates. The total number of UALPs along an axis is n2, where n is the number of distinct spot types per axis.

The total number of UALPs in 2D is n4. In the example shown: there are n = 2 distinct spot types, n2 = 4 unique

positions along each axis, and n4 = 16UALPs in 2D.
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may not be feasible.

2)Decoration of periodic spot arrays withDNAnano-structures at one-to-one occupancy: Rolling

circle nano-balls (rolonies, see Figure 7.12) have been shown to bind size-matched positively charged

surface spots fabricated by methods such as interference lithography 170. Rolonies sterically and elec-

trostatically exclude one another on size-matched spots. Therefore the rolony concentration in solu-

tion can be held well above that needed to achieve a Poisson average spot occupancy of one, driving

the system to stoichiometric spot occupancy. Rolonies have customizable size via the duration of the

RCA reaction and each rolonymay possess a unique 5’ endwith a hybridization-addressable sequence,

e.g., de ned by an overhang on the RCA primer.

Similarly, DNA origami bind to size and shapematched e-beam lithographic spots with one to one

occupancy 345, and this property should extend to size-matched spots fabricated by interference photo-

lithography or other low-cost methods for creating periodic arrays of nano-sized spots. Lambda-

inside-m13 phage sca folds have also been used to make lambda-sized origami. Furthermore, single-

stranded tile (SST) structure fusionmay be a viable approach to make larger SST structures695,723. All

these facts suggest that 200 nm×200 nm rectangles or circles should be achievable and possibly larger.

Nano-structures would be greatly superior to rolonies due to their precision and addressability.

Note that in practice, attaching rolonies toDNAorigami in awell-controlled fashion has seemed non-

trivial due to non-speci c aggregation.

3)RigidDNArods on the 1 um scale: 6-helix-bundleDNAorigami rods span450nmpermonomer

and 900 nm per dimer, while the largest fully addressable 12-helix-bundle single-stranded tile rods

currently span 1 um.

4)Customaperiodic oligonucleotide arrayswithmicron-scale feature sizes: these canbe readily gen-

erated using light-driven chemistry 112,613, thus placing distinct user-de nedDNA sequences at de ned

locations on a surface. Digital micro-mirror devices (DMDs) and spatial light modulators (SLMs) can

be used to activate chemical steps in parallel, or alternatively, 2D or 3D spot-scanning or line-scanning
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Figure 7.12: Negative stain TEM image of a single rolony on a glow-discharged carbon grid-suspended film.

optics can be used in a serial process. Any of these technologies can in principle generate di fraction-

limited feature sizes on the order of 300 nm for UV light. In practice, oligonucleotide arrays have

been limited to feature sizes of approximately 2 um, due to light scattering by the liquid medium in

the synthesis ow cell. The feature size limit imposed by light scattering depends on the tolerance

of the system with respect to optical crosstalk between spots: probably the micro-array manufactur-

ers are being quite conservative about avoiding crosstalk at the expense of larger feature sizes. In the

nm2cm application, we may be able to go well below 2 um features with the same optical setup if tol-

erances are high compared to those for oligonucleotide array synthesis. Furthermore, scattering can

be suppressed by several methods, including drying the ow cell between chemical steps and using a

dipping lens to limit the optical path length through the uid. In principle there is no fundamental

di ference in theoretically attainable resolution between standard lithography and light-directedDNA

synthesis/deposition.

Furthermore, the required resolutions of the optical systems involved depend on the parameters
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of the components used in later stages of the fabrication process (see below). In the rod-bridging

strategy described below, if interference lithography could pattern 200 nm spots at 2 um pitch, and

if a 2 um origami rod was available, then DMD optics at the conservative tolerances used by micro-

array manufacturers would already su ce for aperiodic light patterning, since DMD-directed DNA

synthesis can already achieve ∼2 µm pitch in the micro-array eld. Alternatively, construction of a

periodic arraywith 200-300nm spot size at 1 umpitch via interference lithography, followedbyDMD-

directed oligo synthesis at 1 um pitch would be su cient, since 1 um rigid origami or SST rods are

already available, as are 2D origami or SST assemblies with ∼ 200 nm diameter. In the below, we

focus on a line-scanning scenario for illustration, assuming that light scattering can be minimized or

tolerated, given the dimensions of the other components involved.

Combining capabilities 1 through 4 leads in principle to a strategy for construction of a uniquely

addressable lattice in 2D. This strategy is shown in Figure 7.10 and Figure 7.11.

A.Use interference lithography to create a face-centered square lattice with uniform chemistry (i.e.,

no oligos yet).

B. Use nitrobenzyl photo-chemistry 247 to make these generic dots photo-activatable (“caged”).

C. Use spatially patterned light, aligned to the underlying lattice generated in steps A and B, to

selectively deposit or synthesize oligos within the interference lithographic spots. With su ciently

high-resolution digital micro-mirror device (DMD) or spatial light modulator (SLM) patterning, this

in principle could result in a di ferent oligonucleotide sequence being attachedwithin each spot. Here,

however, only 2n distinct oligonucleotide sequences (1x, ..., nx, 1y, ..., ny) will be synthesized. Figure

7.10 shows an example where n = 2. Because the oligonucleotide sequences are to be arranged in

non-crossing lines, it is possible to use focused lines of activation light from a cylindrical lens instead

of DMD patterning, although DMD patterning would also be an excellent option. The line width

could in theory be di fraction limited at λ
2∗NA = 360 nm for 360 nm UV light with NA = 1/2. In

practice, the e fects of light scatteringmust be taken into account to determine the e fective line width
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that is achievable (or the e fective spot size, for DMD patterning).

D. Build 2n di ferent DNA nanostructure exclusionary objects (DEOs: orange disks in the gure),

which bind to the corresponding DNA 2n spot types synthesized in step C. These are DNA origami,

or other nano-structures, which can expose de ned DNA adaptor sequences and which size-exclude

one another on the spots from step C. Note that for a pattern with N UALPs, only 2 ∗ n = 2 ∗ N1/4

distinct DEOs must be synthesized.

E. Bind 2n types of rods to the corresponding adaptor sequences on the origami from stepD, and at

least 2 ∗ n2 pairwise rod-coupling DNAs (RCDs: oligos or DNA nano-structures), which bind selec-

tively to oriented rod-pairs via attachment sites on the ends of the rods. The rods will have a preferred

orientation de ning lef -right, front-back and up-down axes for each rod. Each of the 4-way rod junc-

tions will have two RCDs corresponding to the x and y axes. This results in a unique address for each

of n4 junctions, de ned by the identity of the pair of RCDs at that site. Thus, each four-way rod

junction comprises a UALP. The junction address can be queried by cooperative binding to its two

RCDs, e.g., using cooperative hybridization probes. The cooperative hybridization probe can then be

thought of as a second-order RCD speci c to a givenUALP.Note that for n = 100 spot types per axis,

2 ∗ 1002 rst-order RCDs must be synthesized. This can be achieved by ampli cation of oligo library

synthesis (OLS) pools 375, whichnow routinely contain 5∗104 distinct user-speci ed sequences. In con-

trast, direct synthesis of n4 = 108 second-order RCDs is a technical challenge. If not all UALPs must

be uniquely addressed, redundancy can be encoded into the the rst-order RCDs, allowing a much

smaller number of second-order RCDs to be used. Alternatively, clever library synthesis methodsmay

be employed, e.g., using sequential ligations, to produce O(108) de ned second-order RCDs.

F. Each axis (x and y) coordinate is set by adjacentDEOpairs. These can be thought of as a de Bruijn

sequence with alphabet size n, subsequence length s = 2, full sequence length ns = n2. In general,

this process leads to a grid of n4 UALPs. For n = 100 and grid spacing of 1 um, we have 1004 = 108

UALPs in a total grid size of 1 cm2.
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Because of the inherent constraints on interference lithography (3×pitch to spot size ratio is easywhile

10× is hard), if rigid 2 µm rodswere used (for ease of a subsequent non-periodic photo-patterning step

using a digital micro-mirror device or spatial light modulator), you would probably want 500 nm ×

500 nm origami or SST spot-covering structures. This is still somewhat beyond the limits of DNA

origami and SST technology, however. If a 1 µm pitch was used, then probably a 200-300 nm spot

diameterwouldbe su cient, but thenon-periodic light patterningwouldbe somewhatmore di cult.

7.4.2 A : - -

, , - -

We took initial steps to develop new ways to form rigid, multi-micron-long, fully-addressable nano-

rods, as are required in the above deterministic nm2cm scheme.

L

The phage lambda genome length is 48,490 bp, so a lamdba 6-helix origami bundle (6hb 165) would

have length (48,490)×(0.34nm)/6=2747.76nm. Adimerof lambda6hbswould surpass 5 um length,

which matches the “feature size” on an A fymetrix Human Tiling 1.0R Array Set. Similarly, a disk-

shaped lambda origami would have > 200 nm diameter, matching the available interference lithog-

raphy spot size. One technical issue is the the presence of single-stranded nicks in the commercially

available lambda DNA, preventing its direct use as an origami sca fold. Various groups are pursuing

in-house phage production or enzymatic repair of the commercial lambda DNA, in order to solve

these problems. On the other hand, it is still unclear whether 3D folding of such a long sca fold will

occur reliably. We therefore chose to take a di ferent approach to constructing long nanorods, which

we describe in the next subsection.
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Current synthetic approaches to self-assembly have centered on two paradigms: the creation of pe-

riodic crystalline structures from small numbers of symmetrical building blocks, and the use of large

numbers ofunique, asymmetric building-blocks to fully de ne a complex self-assembledobject723,695,156.

Robert Barish, Dave Zhang and I demonstrated proof of principle for a hybrid approach: the nucle-

ated growth of periodic crystals on aperiodic polymer templates. An aperiodic single-stranded DNA

template serves as the nucleus for growth of periodic but nite DNA crystals, and the template is

stretched and rigidi ed during the crystal growth process. The polymer template thus serves as a

“molecular ruler”449 that constrains an otherwise unbounded crystal growth process. Further elab-

oration of the molecular ruler principle in synthetic self-assembly may lead to e cient methods for

construction of complex multi-scale architectures. Key questions for experimental investigation in-

clude:

1) Can an aperiodic sca fold with secondary structure serve as nucleus?

2) Can a oppy sca fold be ratcheted into a well-de ned, nite shape?

3) Does growth of the crystal remain nite?

4) Can this be done in a system with strong binding interactions, such as the SST system?

5) Isothermal vs. annealed: will oppy sca folds lead to slow isothermal growth kinetics?

R

To test nucleation of periodic lattices on an aperiodic template, we (joint with Dave Zhang) rst

adapted a single-stranded tile (SST) ribbon system723. By choosing each row of repeated tiles to be

a unique species, this system was previously used723 to construct ribbons of well-de ned widths that

are periodic along their lengths (“unique row ribbons”). We generated a set of 160 SST adaptor tiles

which bind to an 1.15 um long stretch of the circular m13mp18 ssDNA template. These adaptor tiles
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connect to the rst layer of a unique-row SST ribbon and nucleate the assembly of the ribbon. Figure

7.13A shows the conceptual scheme.

For controlled growth on the sca fold, it is essential that the nucleating structure, consisting of

the sca fold annealed to the adaptor tile layer, forms before the temperature of spontaneous self-

nucleation of the SST ribbon. To ensure that the unique-row SST ribbon nucleates at a temperature

lower than the melting temperature of adaptor-sca fold contacts, we designed the unique-row SST

ribbon system such that each 10 or 11 nucleotide binding domain possesses only one C or G base and

otherwise consists of A and T nucleotides. Under these conditions, spontaneous nucleus formation

is expected to occur at roughly 25-35C (for 1.6 uM each lattice strand), while nucleated lattice growth

(strength 2) occurs at 50-55C (1.6 uMeach lattice strand) binding of adaptors to sca fold occurs at 60C

(10 nM sca fold, 10 nM each adaptor). This consideration is important because the sca fold contains

secondary structure as well as regions of varying GC content; therefore the adaptor-sca fold contacts

may have limited thermodynamic stability.

The unique-row SST lattice can be designed to have any number of layers. We tested the use of

one-pot thermal annealing to form successively larger lattices from zero to thirteen helical rows above

the adaptor layer. The sca fold was combined with the lattice tiles in a ratio of 1:160, corresponding

to the 160-tile designed length of the ribbon, and with a 10x excess of the 160 individual adaptor tiles,

and annealed from90C to room temperature. Figure 7.13B shows the result of applying this procedure

to successively greater numbers of lattice rows. Rows 1-3 add successfully to the nucleating structure.

Figure 7.13D shows a typical AFM image of a gel extraction from the band corresponding to addition

of layer 3. Note the sca fold strand is rigidi ed by the growth of the crystal. The kinks in the structure

likely correspond to lattice defects where crystal growth was hindered. Beginning with layer 4, most

of the ribbon structures appear to aggregate.

We analyzed the mechanism of aggregation and found that it could be suppressed at high temper-

ature. Adding super-stoichiometric quantities of the lattice strands relative to the sca fold did not
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abolish aggregation, nor did the use of PAGE puri ed lattice strands. Adding large excess of lattice

strands led to spontaneous self-nucleation of unique-row SST lattices; this spurious nucleation could

be suppressed by adding complements of the individual binding domains for the top halves of each

lattice tile (we referred to this as the “sticky block” strategy). It was also possible to nucleate 3-layer

SST lattices by isothermal layer-by-layer growth on pre-annealed sca fold/adaptor complexes. A cycle

time of 30minutes was su cient to bring the reaction to a level of completion similar to that achieved

with thermal annealing (Figure 7.13C).

We (joint with Robert Barish) next explored the assembly of lattices from rigid double-crossover

(DX) tiles. A 6-layer-wide unique-row DX ribbon was nucleated on BsrbI-linearized m13mp18 ss-

DNA sca fold. A rectangular DNA origami structure was folded from the remainder of the sca fold

strand in order to aid in visualization of sca fold-nucleated ribbons. Figure 7.14A shows a schematic

of the design. Figure 7.14B shows the detailed strand layout of the sca fold-adaptor complex and nu-

cleated lattice. The design is inspired by 561 in which algorithmicDX lattices implementingXOR logic

were nucleated on a periodic sca fold. Our design di fers from 561 in that we nucleate on a fully addr s-

able aperioidic scaffold with high secondary structure and well-defined length; also, we nucleate finite

structur rather than infinite crystals.

Thus it was unknownwhether nucleation ofDX tiles could occur in this context and lead to crystal

formation. Figure 7.14C shows typical AFM images obtained af er ligation of crystals formed with an

excess of lattice tiles relative to the seed strand. The origami structures formed on the seed (green

circles) are clearly associated with long ribbons, indicating that the ribbon structures are nucleated

on the m13 sca fold strand. Figure 7.14D shows an assembly formed at a sub-stoichiometric excess of

the lattice strands. Here the straight edge corresponding to the sca fold nucleus is easily distinguished

from the opposite jagged edge, suggesting that crystal growth proceeds bottom-up from the nucleus

and that it occurs asynchronously across the nucleus.

We also nucleated the growthof in nite-width lattices on them13 sca fold, as shown inFigure 7.14E.
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Figure 7.13: Nucleation of single-stranded tile ribbons on circular m13mp18. A) Design schema for rigidifying an ape-

riodic, floppy template sequence by using an aperiodic adapter tile layer to template growth of row-unique periodic

single-stranded-tile crystals. B) Agarose gel on thermal annealing products showing structure aggregation, particularly

after addition of layer 3. C) Isothermal growth experiment showing similar results to the annealing scenario. D) AFM

image of a structure gel-extracted from the red box in B.
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Figure 7.14: Nucleation of double-crossover lattices on linearizedm13mp18. A) Design schema. B) Structure of the DX

crossover lattice. C) AFM images of DX lattice formation on linearizedm13mp18 ssDNA scaffold. A rectangular DNA

origami folded from part of the scaffold serves as amarker for the presence of the scaffold. D) Zoom-in on a structure

from the same experiment as in C. E) Nucleated the growth of infinite-width lattices on them13 scaffold, without a

designed origami marker on the scaffold. F) Zoom-in on the structure from E.
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Again, the straight edge corresponding to the sca fold strand is distinguished from the jagged edge

where crystal growth terminated asynchronously. Unlike self-nucleatedDAO E lattices, these sca fold-

nucleated lattices have a characteristic right-handed super-twist resulting from constrained contacts

with the sca fold. Figure 7.14F shows a high-resolution image where individual DX tiles and their

contacts with the sca fold are visible.
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8
Addendum: Hardware for Personal

Phenotyping

W ( C F )

B -G , awearable systemfor continuousphysiologicalmon-

itoring. Based on open-source Fab Lab tools 222, we have developed early prototypes of a glasses-
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Figure 8.1: Early prototype hardware for glasses-mounted physiology. a) CAD of initial prototype for 3D printed glasses

frames. b) Electronics for bio-sensing. c) Integration of electronics with 3D printed frames. d) EKGmeasured using

custom-built electronics – based on 484 – using fabric electrodes: the same electronics is applicable to EMG and EEG. e)

RS232 interface for communication between digital sub-systems in amulti-sensor glasses prototype. f) FSKmodulated

audio can be used to log data to an Android phone.

mounted sensor platform which integrates two analog sensors (e.g., electroencephalography and gal-

vanic skin response), one synchronous detection sensor (e.g., IR re ection to measure pulse), as well

as an accelerometer and gyro to measure head movements. The system communicates with a host us-

ing Bluetooth. In a more recent iteration, the lightweight electronics are cast in a silicone shell which

enables them to be mounted on any glasses stem.

We are also developing open and easy-to-use protocols for transmitting time-stamped data from

such sensors. By developing and open and interoperable ecosystem of sensors and interconnects, we
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A)

B)

C)

FabECG

FabSampler

Figure 8.2: Benchmarking the FabECGwithmedical-grade electrodes on the chest. a) Setup for data acquisition using

the FabSampler electronics. b) Data acquisition using an oscilloscope. c) Data acquisition using FabSampler and Python

on a laptop.
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hope ultimately to enable the integration of rich real-time physiological data – personal phenotyping

– into projects like the the Personal Genome Project41.
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