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Abstract 1 
 2 

Executive control refers to the regulation of cognition and behavior by mental 3 

processes and is a hallmark of higher cognition. Most approaches to understanding its 4 

mechanisms begin with the assumption that our brains have anatomically segregated and 5 
functionally specialized control modules. The modular approach is intuitive: control is 6 

conceptually distinct from basic mental processing, so an organization that reifies that 7 

distinction makes sense. An alternative approach sees executive control as self-8 
organizing principles of a distributed organization. In distributed systems, control and 9 

controlled processes are co-localized within large numbers of dispersed computational 10 

agents. Control then is often an emergent consequence of simple rules governing the 11 
interaction between agents. Because these systems are unfamiliar and unintuitive, here 12 

we review several well-understood examples of distributed control systems, group living 13 

insects and social animals, and emphasize their parallels with neural systems. We then re-14 
examine the cognitive neuroscience literature on executive control for evidence that its 15 

neural control systems may be distributed.  16 

 17 
  18 
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 19 

Main Text 20 

 21 

I. Introduction 22 
 23 

Executive control refers to the brain’s ability to regulate its own processing. It 24 

coordinates multiple competing demands, controls attention, gates working memory, and 25 
encodes and retrieves long-term memories. It also maintains and switches task set, 26 

inhibits disadvantageous actions, and regulates the explore/exploit tradeoff and curiosity 27 

(Miller & Cohen, 2001; Shiffrin & Schneider, 1977; Braver & Barch, 2006; Cole & 28 
Schneider, 2007; Miller, 2000a; Ridderinkhof, van den Wildenberg, Segalowitz, & 29 

Carter, 2004; Kidd & Hayden, 2015). Understanding executive control is critical for 30 

understanding self-control and its failures (Aron, Robbins, & Poldrack, 2014; Knoch & 31 
Fehr, 2007; Hare & Rangel, 2009). More broadly, failures of executive control are 32 

hallmarks of many diseases, including addiction, depression, and obsessive-compulsive 33 

disorder, and successful treatments of these diseases often target executive control (e.g. 34 
Milad & Rauch, 2012; Ursu et al., 2003; Volkow & Fowler, 2000; Kalivas & Volkow, 35 

2005).  36 

A brain can be understood as a control system, a collection of interacting 37 
components within an organizational structure that produces adaptive actions based on 38 

information about the current state of the internal and external worlds (Pezzulo & Cisek, 39 

2016; Gallistel, 2013; Lashley, 1951). As we process sensory inputs and generate actions, 40 
the brain monitors that processing and, if it detects the need to change, it regulates it. But 41 

how is executive control in the brain implemented by the interactions of its constituent 42 

parts, individual neurons? 43 
 44 

 Modular and distributed control systems  45 
 The standard approach to understanding control starts with the assumption of 46 
modularity. In a modular control system, regulation is derived from a central controller, 47 

which is a discrete subsystem with a specialized function. In a modular system, it is 48 

theoretically possible to draw a line through anatomical space separating localized 49 
control regions or circuits (often the prefrontal cortex and striatum) from more basic 50 

processing (caudal cortical) regions (Botvinick et al, 2001; Miller & Cohen 2001; Miller, 51 

2000). This specialization means that control regions (or networks) regulate, but do not 52 
participate in, the underlying stimulus-to-action transformation processes (Figure 1). 53 

Such a view is consistent with a long tradition emphasizing the brain’s modular 54 

architecture (Fodor, 1983; Minsky, 1988; Kanwisher, Mcdermott, & Chun 1997; 55 
Bertolero, Yeo, & Desposito 2015). But it is not the only possible view. 56 

The alternative approach envisions executive control as distributed processes in 57 

which there is no dedicated and specialized controller (Figure 1). Instead, in a distributed 58 
control system, regulatory functions are dispersed across a large number of individual 59 

elements or carried out by the interaction among them (Couzin, 2009; Sumpter, 2006). In 60 

most such systems control elements are co-localized with processing elements, and those 61 
elements have somewhat autonomous function. For this reason they are often called 62 

agents. These agents (or any other individual elements in a distributed control system) 63 
sense the properties of their local environment and adjust their own behavior based on 64 
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simple rules. Agents normally have no knowledge of the overall state of the system, and 65 

the response of the system as a whole is often qualitatively dissimilar from those of the 66 

elements. In other words, in such systems, control is often an emergent function 67 

(McClelland et al., 2010; Hofstadter, 1985, Ch. 25; Mitchell, 2009). 68 

 69 

 70 

 71 
Figure 1. Contrasting organizations of modular and distributed control systems. 72 

Within modular control systems, processing and control elements are distinct and 73 

localized to specific areas. By contrast distributed systems combine control and 74 

processing elements, often into individual agents. 75 

  76 

The distributed viewpoint derives inspiration from early studies on cybernetic, 77 

connectionist, and parallel distributed processing models (Rummelhart et al., 1988; 78 

Weiner et al., 1944; Grossberg, 1974; Hopfield, 1982). As noted in a review of the topic 79 

by Botvinick and Cohen (2014), the connectionist heyday of the late 70’s and early 80’s 80 

coincided with the development of formal ideas of control (Posner & Snyder, 1975; 81 

Shiffrin & Schneider, 1977; Norman & Shalice, 1986; Baddeley & Hitch, 1974). It is 82 

ironic then that almost all models of executive control, even relevant PDP models, take as 83 

given that control is functionally and anatomically modular (Botvinick & Cohen, 2014). 84 

Nonetheless, history has vindicated this approach: the modular idea is well supported by 85 
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empirical data. Specifically, neuroscientific research consistently points to dorsal 86 

prefrontal structures (especially the dorsal anterior cingulate cortex, dACC, see below), 87 
as well as superior parietal cortex and parts of the brainstem as the brain’s control system 88 

(Holroyd & Coles, 2002; Botvinick & Cohen, 2014; Ridderinkoff et al., 2004; Shenhav, 89 

Botvinick & Cohen, 2013; Miller & Cohen, 2001; Sleezer & Hayden, 2016; Floresco, 90 
2015; Mansouri et al., 2007).  91 

 92 

Revisiting the distributed processing view 93 
Still, we believe that it is time to revisit a distributed approach to control. Several 94 

factors motivate this belief. First, our understanding of the neuronal (i.e. single unit) 95 

responses of the putative executive regions is only now maturating. Some of this work 96 
emphasizes the broad overlap in functions of the prefrontal and posterior regions; these 97 

functions appear to include both processing and executive roles (Cisek & Kalaska 2010; 98 

Kim & Shadlen, 1999; Chafee & Goldman-Rakic, 1998; Postle, 2006; Awh & Jonides, 99 
2001; Sleezer & Hayden, 2016a; Sleezer, Castagno, & Hayden, 2016). Second, new 100 

anatomical and functional techniques emphasize the fundamentally non-modular 101 

organization of the brain (Misic & Sporns, 2016; Wang et al., 2015; Farah, 1994; Kristan 102 
& Shaw, 1997; Plaut, 1995). Third, major recent advances in computation have come 103 

from abandoning classic (GOFAI)-style symbol manipulating systems in favor of deep 104 

learning algorithms that are distributed and recurrent (e.g. Lecun, Bengio, & Hinton, 105 
2015; Hinton & Salakhutdinov, 2006). These approaches highlight the power and 106 

flexibility of non-modular network organizations. Finally, recent years have seen a 107 

greater understanding of the mechanisms of distributed control in non-brain biological 108 
systems, leading to a greater appreciation of the strengths and of the biological 109 

plausibility of such systems (Couzin, 2009; Passino, Seeley, &Vischer; 2007).  110 

Reified models of executive control – in which conceptual elements like monitor, 111 
controller, and processor have direct correspondence with neuroanatomy – are intuitive. 112 

But distributed models are less so. To mitigate this problem here we offer a summary of 113 
the basic principles of distributed control systems, with an emphasis on natural examples.  114 

 115 

II. Principles of distributed control systems 116 
 117 

Principle 1:  Horizontal information flow 118 
Within a modular control system, information flows linearly from lower level 119 

processing units to the controller. By contrast information flow within distributed systems 120 

is characterized by horizontal communication between adjacent members. In other words, 121 

information is derived from neighbors, not from a central communicator. Consequently, 122 
no single member of a distributed system is knowledgeable about the entire system. Each 123 

member can know what their neighbor is doing, and possibly what their neighbor knows, 124 

through localized interactions. 125 
A good example of information flow within a distributed system is a herd of 126 

baboons on the move (Papio anubis, Couzin &Krause, 2003; Strandberg et al, 2015). 127 

Even though they have a hierarchical dominance system, no single member of the troop 128 
knows for sure where to go but several members have some limited and likely noisy 129 

knowledge (Figure 2). The wisdom of the crowd is better than any individual’s guess, as 130 

in many collectively moving animals – including humans (Codling, Pitchford, & 131 
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Simpson, 2007; Simons, 2004; Hamilton, 1967; Bergman & Donner, 1964; Walraff, 132 

1978; Mallon, Pratt, & Franks, 2001; Conradt & Roper 2003). The baboon troop thus 133 
uses a collective decision-making strategy. Individuals begin to head off towards their 134 

best guess and as they do this, troop members compute the average of the members they 135 

observe. Unlike in a modular system each member may be simultaneously a decision 136 
maker and a data point for other decision makers. 137 

Normally this strategy leads efficiently to a rapid consensus (Couzin & Krause, 138 

2003; Conradt & Roper, 2003). In cases where there are two different modal preferences 139 
– say, when northeast and northwest are both good directions but true north is not, this 140 

averaging strategy leads to a suboptimal choice (Figure 2B). For this reason individuals 141 

should be – and are - sensitive to bimodal distributions among the group and, in that case, 142 
randomly choose one of the two modal directions (Strandberg et al, 2015). Similar 143 

patterns are observed in pigeons and human crowds (Biro et al., 2006; Dyer et al, 2008). 144 

In this example, the input is the environmental clues (including memories) about the 145 
best direction to head and the output is a group path. Information is distributed across 146 

individual troop members who communicate locally with each other. Drawing from the 147 

local interactions among members, the group chooses a better output than all the 148 
constituent individuals. The decision is also controlled in a closed-loop manner: the 149 

group can monitor its own performance (it can detect split voting) and regulate its voting 150 

strategy (averaging to bifurcation-then-averaging), even though no individual serves as 151 
the specialized monitor or regulator. Instead, monitoring and control proceed through 152 

local, horizontal connections between members.  153 

The idea of horizontal flow of information from adjacent members is also often a 154 
description of neuroanatomical organization. Neurons, like troop members, tend to have 155 

limited view of the activity of the whole, limited ability to communicate with the whole, 156 

incomplete information, no knowledge of the larger factors that determine the group’s 157 
well-being, and no obvious leadership. However, neurons do have a rich network of 158 

connections to adjacent neighbors and cortical areas that supports a localized flow of 159 
information. While the brain also has centralized global signaling, in the form of 160 

neuromodulators (and possibly cortical oscillations), the bandwidth of these signals is 161 

limited and the timing may be too slow to affect on-line decision processes. Similar to a 162 
baboon troop, the information gained from equal and adjacent members has a large effect 163 

on the regulation of its neural function. 164 

 165 
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 166 
Figure 2. Group movement strategies often illustrate the principle of horizontal 167 

information transfer. A. Rhesus monkey troops on Cayo Santiago migrate multiple times 168 

each day and may use distributed consensus procedures to choose a direction. B.  169 

Cartoon birds eye view illustrating split voting situation. If the troop is split between a 170 

northeast and a northwest direction, the consensus will not be the average (north) but 171 

one of the two modal directions. 172 

 173 

Principle 2: Stigmergy  174 

In the case of the baboons, it is notable that the control signal is the movement of 175 

neighbors. Thus, in a strongly non-modular way, the control signal is precisely the output 176 

of the underlying process (also movement of individuals). It is a stigmergic system 177 

(Bonabeau, Dorigo, & Theraulaz, 1999; Theraulaz, Bonabeau, & Deneubourg, 1998; 178 

Couzin, 2009). 179 

A familiar example of stigmergic signaling is lawn shortcut generation on college 180 

campuses. A student following the trod path also – weakly but surely – strengthens it 181 

(Figure 3.). Another example is pheromonal trails in foraging ants (Hölldobbler & 182 

Wilson, 1990; Wilson, 1971). As a scout forages she lays a scent that other scouts will 183 

follow to valuable food sources. The scent evaporates quickly, so rich food patches, 184 

which attract many ants, will have stronger paths leading to them. An ant that, by chance, 185 

discovers a shortcut will produce a trail with a stronger scent (because, being shorter, it 186 

takes less time to traverse and thus has more scent, Beckers & Deneubourg, 1992). In this 187 

way, pheromones allow ant colonies to find rich food sources and develop shortest path 188 

routes without any centralized control (Aron, Beckers, & Deneubourg, 1993; Jackson & 189 

Chaline, 2007; Beekman, Sumpter, & Ratnieks, 2001).  190 

 191 
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 192 
Figure 3. Humans can collectively identify, create, and maintain efficient paths 193 

across lawns on college campuses. Reproduced with permission from “Modeling the 194 

evolution of human trail systems” (Helbing, Keltsch, & Molnar, 1997). 195 

 196 

Another example of stigmergic control comes from the process of neural 197 

differentiation of sensory organ precursors within the developing fly brain (Drosphilia 198 

melanogaster) (Navalakha & Bar-Joseph, 2011). During development some cells within 199 

the neural clusters of the fly brain become sensory organ precursors (SOPs); these cells 200 

form the backbone of the sensory system later in development. Determination of which 201 

cells become SOPs follows an algorithmic process that produces a maximally 202 

independent set distributed throughout the brain. Functionally each cell will propose itself 203 

as a possible SOP. If any neighboring cell has already become a SOP the proposing cell 204 

will not differentiate. As a consequence of this process the likelihood of an unconnected 205 

cell differentiating increases with time (Afek et al., 2011; Navalakha & Bar-Joseph, 206 

2011). By using information about the structure of neighboring cells, each cell is able to 207 

differentiate appropriately so that the whole brain achieves an equal spacing of sensory 208 

organ precursors. The brain cells do this rapidly and without the need for a monitor or 209 

knowledgeable controller sending distinct control signals. All the monitoring and control 210 

that is needed occurs locally, within each cell. 211 

Principles of stigmergy within executive control processes relates to neural function 212 

quite directly. Neurons produce chemical outputs that modulate responses of downstream 213 

neurons. These outputs are both the computational outputs of the neurons and a way to 214 

modulate activity of their neighbors. In the short term, excitatory and inhibitory outputs 215 

increase and reduce, respectively, the likelihood that the target will fire. In the long term, 216 

activity (especially coincident activity) promotes synaptic plasticity thus up- or down-217 

regulating that target’s firing on longer timescales. Within cortical regions, these 218 

localized interactions could very well lead to emergent control signals without the need 219 

for a dedicated controller (Couzin, 2009).  220 

 221 

Principle 3: Feedback loops  222 
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Feedback is a powerful tool in any dynamical system. It can have positive effects. 223 

When fish school, a few peripheral individuals may detect a potential predator and turn 224 
away from it (Treherne & Foster, 1981; Couzin & Krause, 2003). Neighbors who follow 225 

an average-direction rule then turn and also affect their neighbors, the effect multiplies, 226 

and the traveling wave of turning fish turns the whole school away. The amplification 227 
protects many more fish than were able to detect the predator. Similarly, feedback loops 228 

are a mainstay of other distributed leaderless systems; even audience clapping, for 229 

example, can depend on feedback effects (Néda et al., 2000) 230 
However, feedback loops can be dangerous as well (Giraldeau & Valone, 2002). 231 

Simple effects can snowball and, because the system is distributed, there is no central 232 

controller to stop it. For example, ants leaving a pheromonal trace can find their own 233 
trail, and start going in a circle – a literal feedback loop called an ant mill (Delsuc, 2003). 234 

Another important example of a feedback loop is a marketplace bubble (Porter & Smith, 235 

1994; Smith, Suchanek, & Williams, 1988). If a speculator believes a commodity will go 236 
up in price, she may bid a slightly greater price than the current one. This bidding will 237 

serve as a signal to other investors that the commodity may be a wise investment. As they 238 

bid up the price, their initial assessment will be proven to be right, and other investors 239 
will gain interest. This pattern can lead to runaway prices, but only up to a point; as soon 240 

as this point is reached, the price will crash. 241 

The tendency to boom and bust can lead to market instability and to 242 
underinvestment. In marketplaces, centralized control (such as trading limits) can solve 243 

these problems. Without that kind of control, avoiding these kinds of malign feedback 244 

loops requires careful calibration of the rules each individual follows. Such calibrations 245 
often involve complementary negative feedback loops (Grünbaum, 1998). The analogy to 246 

brains, which have many overlapping positive and negative feedback loops, is quite 247 

direct. 248 

 249 

Principle 4: Self-organization through simple rules 250 
Many distributed control systems are self-organized (Sumpter, 2006). Classic 251 

examples of self-organization include bird flocks and fish schools (Aoki, 1982; Couzin, 252 

2009; Reynolds, 1987). No leader bird rallies its mates and tells them where to fly; nor 253 
does a leader monitor the flock and guide its performance like coxswain on a crew team. 254 

Instead, the structure of the bird flock is a consequence of several simple principles 255 

followed by all individuals. These include rules about distance between adjacent birds 256 
(not too far and not too close, more or less) and rules about when to turn (follow the 257 

group average, Couzin & Krause, 2003). The specific rules, not a leader-bird, determine 258 

the shape of the flock (Figure 4). 259 

. CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/077685doi: bioRxiv preprint first posted online Sep. 26, 2016; 

http://dx.doi.org/10.1101/077685
http://creativecommons.org/licenses/by/4.0/


 10

 260 

Figure 4. Simple rules of distance and spacing determine the shapes of both fish 261 

schools and bird flocks. [Fish picture: Gordon Firestein - Seacology USA, Bird Flock: 262 

Faisal Akram] 263 

 264 

Self-organization is an appealing principle because it is easy to implement and is 265 

robust to degradation (Sumpter, 2006). In contrast, the centralized systems are vulnerable 266 

to the loss of the controller: Remove a switch and the whole railyard breaks down; 267 

remove the coxswain and the rowers start hitting each other’s oars; remove one bird and 268 

the flock swiftly adjusts. Self-organization also allows complex adaptive behavior 269 

without programming expensive control systems. Self-organized systems can be “fast, 270 

cheap, and out of control” (Brooks & Flynn, 1989). These features – ease of 271 

implementation, graceful degradation, and robustness, makes it appealing for analyzing 272 

neural systems. One well-known example of a self-organizing system in neurons is 273 

central pattern generators, in which the activity of the ensemble is an emergent product of 274 

the interactions of the elements, none of which follows the pattern in miniature. 275 

This does not mean all distributed systems are leaderless. There are many contexts 276 

in which formation of leadership is favored (Couzin et al., 2005; Fischoff et al., 2007; 277 

Dyer, 2009; Robson & Traniello, 1999; Reebs, 2000). Dominance hierarchies and other 278 

leadership structures are selected in many species, although leadership is seldom 279 

absolute. And there are intermediate cases - even in the case of baboons, some 280 

individuals are recognized as having greater knowledge of the right path and their 281 

opinion is more highly weighted (Strandburg et al., 2015).  282 

Presumably, we can classify control systems on a spectrum from fully distributed 283 

and leaderless to strictly segregated and hierarchical; the specific organization observed 284 

for any system will depend on the environment in which it evolved. This fact is important 285 

to remember when considering neural systems, which may have some specialization of 286 

function (Botvinick et al., 2001; Rougier et al., 2005; Kanwisher, Mcdermott, & Chun, 287 

1997).  288 

 289 

Principle 5: Quorum-sensing 290 

Agents in distributed systems have very limited field of view in their monitoring 291 

capabilities. In other words, it is often difficult to see the forest for the trees. But 292 

sometimes it is critical to see the forest to make the best decision. In these cases, agents 293 

must engage in quorum-sensing: a type of consensus-based control mechanism wherein a 294 

set threshold or quorum determines the course of action (Mitchell, 2009).  295 
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There are many mechanisms for quorum-sensing; what unites them is that they do 296 

not require centralized control. For example, bacteria can produce diffusible chemicals 297 
(which can serve as a type information) and chemical concentration in the environment 298 

gives a measure of quorum (Waters and Bassler, 2005). One critical feature of any 299 

consensus-seeking measure is that it must terminate; it should also do so relatively 300 
quickly. Failures to do so can be costly, as in the case of Buridan’s ass (Lindauer, 1957; 301 

Pais et al., 2013). 302 

Often, individuals can sense the state of conspecifics in their local environment and 303 
extrapolate to an estimate of group state. Simply averaging the states of neighbors can be 304 

helpful in some circumstances, as in bird flocks and some fish schools. One study showed 305 

that an individual schooling three-spine stickleback fish (Gasterosteus aculeatus) can 306 
adopt a non-linear monitoring function that produces better group behavior emergently 307 

(Ward et al., 2008). Specifically, groups of fish tended to ignore information from single 308 

neighbor but responded when two fish conveyed the same information. This non-linear 309 
criterion can reduce the probability of amplifying noise but can still effectively detect 310 

signals.  311 

The need for agents to sense the properties of the whole, or of large subgroups, is a 312 
major problem in brain systems as a whole. This problem is acute in executive control 313 

systems, which often rely on changing processing as a function of global conditions. 314 

Without holistic integrating neurons, it is difficult to imagine a direct solution to the 315 
problem. For this reason, studies of quorum-sensing systems, which solve the problem 316 

indirectly, are particularly likely to be helpful in understanding the neural basis of 317 

control. 318 

 319 

III. Distributed solutions to classic executive control problems 320 

 321 
Studies of executive control tend to focus on processes for solving a familiar set of 322 

cognitive problems. Prominent among these processes are regulation of stop/go behavior, 323 
speed/accuracy tradeoffs and conflict detection and resolution (Bogacz et al., 2009; Aron, 324 

Robbins, & Poldrack, 2014; Botvinick et al., 1999; Miller & Cohen, 2001). These 325 

operations have analogues outside of neuroscience, including in distributed control 326 
systems of natural and artificial mechanisms. In this section, we investigate how some 327 

examples of distributed control systems handle these executive control problems through 328 

the fundamental elements outlined above. Other important executive functions, which we 329 
do not consider, include working memory, attention, task set maintenance and switching, 330 

regulating the balance of explore vs. exploit behavior, and aspects of reinforcement 331 

learning. Several of these have likely correlates in distributed control systems as well. 332 
See, for example, (Couzin et al., 2002; Couzin, 2009; and Passino, Seeley, & Visscher, 333 

2007) for speculation about how distributed processing systems can implement working 334 

memory, attention, and regulation of long-term memories. 335 

 336 

Stopping and going: Vibrio fischeri bacteria 337 
Initiation and inhibition of behavior is a simple and important executive function 338 

(Jin & Costa, 2010; Schall, 2001; Aron, Robbins, & Poldrack, 2004; Niv et al., 2007; 339 

Hampshire & Sharp, 2015; Kacelnik et al., 2011). Coordination of these two antagonistic 340 

processes can produce both simple responses and complex behaviors. Stop/go behavior 341 
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involves elements like precise timing, inhibition of prepotent responses, and control of 342 

vigor. Another important but less well-appreciated requirement is avoiding intermediate 343 
responses, so that the system can either fully stop or fully go, without drifting between 344 

the two extremes. In other words, being indeterminate can be costly and even lethal in 345 

urgent situations so that the distributed system has to be able to deal with this problem. 346 
Our example of stop/go control in a distributed control system comes from the 347 

luminous bacterium Vibrio fischeri (Waters & Bassler, 2005; Nealson & Hastings, 1979; 348 

Miller & Bassler, 2001). This single-celled organism lives in the light organ of the 349 
Hawaiian bobtail squid (Euprymna scolopes) and emits light when the squid hunts at 350 

night. The light serves to camouflage the squid that otherwise would be visible in the 351 

form of a moonlit silhouette to prey below it (Visick et al., 2000). During the day the 352 
squid hides from potential predators in the dirt and turns its eyes off by extruding most of 353 

the bacteria into the surrounding ocean. As the day progresses the remaining bacteria 354 

reproduce rapidly, and, by nightfall, have replenished their stock so that there are enough 355 
bacteria to serve as an effective camouflage.  356 

The control problem comes from the fact that the bacteria must not luminesce 357 

during the day as they are reproducing. Instead they need to switch to lighting at night all 358 
at once. In other words, bioluminescence needs to be both inducible and repressible 359 

(Nealson & Hastings, 1979). Because of their reproduction pattern, they can do this by 360 

waiting until there is a quorum of other V. fischeri bacteria in the squid light organ. But 361 
how do they know how many others there are? Quorum sensing. V. fischeri release a 362 

chemical known as acyl-homoserine lactone (AHL). They then measure the concentration 363 

of this chemical in their local environment by the transcription activator protein LuxR, 364 
which creates a complex that induces transcription of genes needed for luminescence 365 

(Kaplan & Greenberg, 1985; Stevens & Dolan, 1994). The transcription process is only 366 

triggered when the local density of AHL reaches a predetermined threshold, which serves 367 
as a go signal for the bacteria (Figure 5). 368 

 369 
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 370 

Figure 5. A. Hawaiian squid (Euprymna scolopes). B. Image of V. fischeri 371 

embedding into microvilli of host epithelial cells. C. Illustration of control circuit for 372 

regulation of luminescence through chemical detection in V. fischeri. Credits: (A,B) 373 

reproduced with permission from “Divining the essence of symbiosis: Insights from the 374 

squid-vibrio model.” (McFall-Ngai, 2014). (C) reproduced with permission from “Gimme 375 

shelter: how vibrio fischeri successfully navigates an animals multiple environments” 376 

(Norsworthy & Visick, 2013). 377 

 378 

There are several features used by the system to stop, i.e. to prevent premature 379 

luminescence. These features work by implementing negative feedback (Waters & 380 

Bassler, 2005). One feature is regulation of the stability of the constituent proteins: they 381 

are more stable when AHL is more concentrated (Zhu & Winans, 1999). Another is 382 

active pumping of AHL out of the cell: this process reduces cytoplasmic levels of AHL 383 

and thus dampens sensitivity until AHL concentration is high enough to overwhelm the 384 

pumping mechanism (Pearson et al., 1999).  385 

Several features of this stop/go process are notable here for the curious 386 

neuroscientist. First, the system implements a clock-like function by taking advantage of 387 

the consistency in reproduction rates of its own members. No member or subgroup serves 388 

as a clock or other timer function. In other words, the timing function is an emergent 389 

property of the system. Second, there is no centralized site that tells the bacteria when to 390 

glow; each individual agent makes up its own tiny mind, but, because they are in the 391 

same environment, their activity is effectively coordinated through the localized cross-392 

signaling of individual cells. Third, the system implements a specific and precise 393 

threshold-crossing process (a simple rule based on concentration levels of AHL), even 394 

though no abstract decision variable is calculated or represented. Finally, there is no need 395 

for any kind of modular self-control or inhibition. The lack of glowing (repressability) is 396 
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simply a consequence of the fact that there are insufficient concentrations of chemicals to 397 

drive the glowing; inhibition in this system is an emergent process (cf. Hampshire & 398 
Sharp, 2015). 399 

 400 

Speed-accuracy tradeoffs: ants 401 
A decision made without taking the time to gather all the evidence may not be as 402 

accurate as a deliberate one, but it will have the virtue of speed (Houston, Kacelnik, & 403 

McNamara, 1982). If time is costly (as when faced by an attacking predator) it may be 404 
worth going for the first good response, but if the decision-maker has all the time in the 405 

world, it’s probably worth doing some pondering. Speed-accuracy tradeoffs are a staple 406 

of cognitive psychology (Busemeyer & Townsend, 1993; Wickelgren, 1977; Roitman & 407 
Shadlen, 2002; Chittka et al., 2003; Gigerenzer & Goldstein, 1996; Bogacz et al., 2010) 408 

and animal psychology (Chittka, Skorupski, & Raine, 2009). Like humans and animals, 409 

many distributed decision-making systems make speed-accuracy tradeoffs, including 410 
slime molds (Physarum polycephalum) and honeybees (Apis mellifera, Dussutour, Latty, 411 

& Beekman, 2010; Passino, Seeley, & Visscher 2007). 412 

When looking for a new nest, individual ants (Leptothorax albipennis) leave the 413 
nest and evaluate potential locations within a few square meters (Franks et al., 2002; 414 

Franks et al., 2003). These ants prefer to live in small colonies in thin cracks in rocks and 415 

are therefore easy to study in laboratory conditions (Franks et al., 2002). An ant that finds 416 
a potential nest site will recruit other ants to evaluate it by leading a tandem run back to 417 

the site. Thus, each site is evaluated by a large number of individuals, each of whom 418 

presumably makes a worse (less accurate) decision than the cumulative choice of several 419 
ants. Unlike bees (see below) individual ants appear to evaluate and compare multiple 420 

sites, giving them more individual knowledge and requiring smaller quorum sizes (Franks 421 

et al., 2002; Pratt et al., 2002; Franks et al., 2003). If enough ants appear at a single site, 422 
scouts recognize a quorum, and the quorum catalyzes a change in their behavior; scouts 423 

now carry their nestmates to the new site and deposit them there (Pratt et al., 2002; 424 
Franks et al., 2002).  425 

This whole search and quorum-sense process is slow but accurate. But if the 426 

situation calls for a fast decision (such as during windy weather or threat of predation), 427 
the ant colony can make a speed-accuracy tradeoff (Franks et al., 2003). Specifically, 428 

each ant can reduce the threshold it uses to decide whether to switch from tandem run 429 

recruitment mode to carrying mode. The tandem run, being slower, allows other ants 430 
more time to discover other sites; the carry terminates the process more quickly. The ant 431 

itself doesn’t know explicitly about the speed-accuracy tradeoff; it just has an internal 432 

sense of weather and adjusts its quorum-sensing procedure – and the group’s speed-433 
accuracy tradeoff is an emergent consequence (Franks et al., 2003). 434 

The neuroscience of the speed-accuracy tradeoff is not fully understood, but the 435 

parallels are easy to discern. It is believed that there is a threshold integration process for 436 
perceptual decisions (Bogacz et al., 2010). Recent work suggests it may involve changes 437 

in the baseline activity of neurons that serve as cortical integrators that bring them closer 438 

to threshold (Ivanoff, Branning, & Marois, 2008; VanVeen, Krug, & Carter, 2008), 439 
perhaps through disinhibition (Forstmann et al., 2008). Complementary research suggests 440 

that slower decisions involve inhibition from the subthalamic nucleus (Frank, Scheres, & 441 

Sherman, 2007; Aron & Poldrack, 2006). In either case, neurons encode a decision 442 
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variable that, in a distributed manner, represents the evidence in favor of the decision. 443 

While these models are not strictly distributed control models (because the thresholding 444 
is assumed to be separate from the accumulation), they have characteristics of it. A major 445 

goal of the stopping literature is to identify the key brain site that regulates stopping. The 446 

distributed control approach cautions that such a site may need not exist; instead of a site, 447 
there might be a neural mechanism at work, one that is not distinct from the sites of 448 

neurons that form the perception-action stream. 449 

 450 

Conflict detection and resolution: honeybees 451 
Humans performing a cognitively demanding task may realize the task is harder 452 

than expected and devote more effort to it (Botvinick et al., 1999; Shenhav, Botvinick, & 453 
Cohen, 2013). For example, in the Stroop task, a subject is asked to either read a word or 454 

name the color of ink used to display it (Stroop, 1935). Reading the word is easy, but 455 

naming the ink color, especially when the word itself is a different color, requires more 456 
cognitive control. Another form of conflict is decisional conflict, which is caused by 457 

ambivalence between two equally desired options (Cai & Padoa-Schioppa, 2012 ; 458 

Hayden, Heilbronner, & Pearson, 2011; Strait, Blanchard, & Hayden, 2014; Amiez, 459 
Joseph, and Procyk, 2006). Modular models of conflict detection and resolution generally 460 

involve a discrete conflict detector and resolver, which are often located in the dorsal 461 

anterior cingulate cortex (dACC, Botvinick et al., 1999, Shenhav, Botvinick, & Cohen, 462 
2013; Botvinick et al., 2001). We hasten to note that such models, especially with regard 463 

to dACC, are contentious: the signal may not be conflict per se, but in either case, it may 464 

regulate control, which is our interest here (Kolling et al., 2016; Shenhav et al., 2016; 465 
Ebitz & Platt, 2015). 466 

In springtime, thriving honeybee beehives reproduce. Roughly a third of the hive’s 467 

members remain at the hive site and the others leave to form a swarm that gathers in one 468 
location and, in a few days, chooses a new hive site from a radius of several kilometers 469 

(Seeley, 2010; Seeley & Burhman, 1999; Camazine et al., 1999). Like our ants above, 470 
scouts evaluate promising nearby sites and then return and signal their quality with 471 

special dances (Figure 7). Dances indicating higher quality sites induce other bees to 472 

investigate the same site. When scouts detect a quorum of bees at a site (typically around 473 
20), they then return and provide a different signal, one that initiates a selection of the 474 

hive site by the swarm (Seeley, 2010; Seeley& Buhrman, 1999). 475 

 476 

. CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/077685doi: bioRxiv preprint first posted online Sep. 26, 2016; 

http://dx.doi.org/10.1101/077685
http://creativecommons.org/licenses/by/4.0/


 16

477 
Figure 7. A) Image of honeybee waggle dance communication in a hive. 478 

Reproduced with permission from “Dances as a window into insect perception” (Chittka, 479 

2004). B) Illustration of binary choice between hive sites. Through quorum sensing by 480 

scouts at potential nest cites and waggle dance communication with the swarm, new 481 

hive locations are efficiently chosen. 482 

 483 

If there is one obvious best site, the decision will proceed quickly. But if there are 484 

two or more sites of approximately equal quality, the decision will proceed more slowly 485 

as the bees take the time to choose the best one. The swarm therefore is sensitive to 486 

decisional conflict: it monitors its own level of decisional ambivalence as the decision 487 

proceeds. Note that this is conflict signal a swarm, not individual variable; after all, no 488 

bee knows about more than one site, so no bee is conflicted. By not halting the search 489 

process, the swarm effectively recruits more processing resources (i.e. more bee-search 490 

time) when conflict is high. As in mental effort, deliberation is not free; swarms are 491 

vulnerable to weather and predators so there is an opportunity cost to delaying the 492 

construction of the hive (Lindauer, 1957).  493 

Notably, the detection and resolution of conflict are emergent phenomena. No 494 

single bee that is sensitive to the conflict level – we know the rules the bees follow and 495 

none of them deal with conflict. Nor is there a conflict signal represented in the bee’s 496 

waggle dance or at any other point in the system. No bee has a specialized role before the 497 

swarm starts swarming. Still, the swarm as a whole is quite sensitive to decisional 498 

conflict and able to deal with it efficiently. It’s also worth noting that an aggregate 499 

measure of hive activity, say, the number of active scouts or number of active dances 500 

during the decision, will show clear and strong aggregate conflict signals. This finding is 501 

intriguing because conflict signals are seldom observed in the activity of single neurons, 502 

and yet are robustly observed in the brain’s hemodynamic activity (see below). 503 

 504 

Part IV. Evidence for distributed executive control in the brain 505 

 506 

We turn now to the neuroscience of control. As noted above, there is a broad 507 

consensus that executive control is modular, not distributed (Botvinick & Cohen, 2014). 508 

We believe that one reason for relative unpopularity of distributed control systems by 509 

scholars is that they are unfamiliar and unintuitive. Indeed, distributed control is 510 
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notoriously difficult for us to intuit. Terms like the “ghost in the machine,” “the invisible 511 

hand of the marketplace,” “asking the hive mind” are reminders that our own minds 512 
naturally impute discrete and coherent agency even when dealing with mindless and 513 

ghostless distributed systems. Still, many distributed control systems are intuitive and can 514 

become more so with familiarity.  515 
 516 

Neuroscience methods make modularity easier to find 517 
Another factor disfavoring distributed control models is that the major methods for 518 

studying executive control, lesion, neuroimaging, and single unit recording, all arguably 519 

have some bias towards finding evidence of modularity.  520 

Neuroimaging, like lesion studies, measures aggregate function of a given brain 521 
area or voxel, and thus cannot determine properties of the individual agents of the 522 

nervous system, neurons. This is true for multi-voxel pattern analysis as well as for ROI-523 

type analyses. By aggregating signals across voxels, neuroimagers lose information 524 
about activity of individual neurons. The aggregate signal in turn misses information 525 

about the specific types of local, horizontal, and narrow-bandwidth signals that are 526 

crucial for distributed systems. But it is very good at detecting even weak signals at a 527 

broad range, meaning it can readily measure emergent properties of neural populations. 528 
The limitations of the lesion method are illustrated in a study by Plaut (1995). In this 529 

work, he shows how even the double dissociation, the gold standard of lesion studies, is 530 
susceptible to false positives supporting a modular view given certain reasonable 531 

assumptions about distributed network implementations of cognitive functions. 532 

Single unit physiology studies are just as limited, although in the opposite way. 533 
Neurons may function much like agents, but the power of distributed systems comes in 534 

the specific local interactions of small numbers of agents. Physiology can measure the 535 

activity of only one neuron at a time; even multi-cellular methods have difficulty 536 
capturing interacting neurons. Moreover, most studies focus on a single brain region with 537 

the cost of inability to measure function at the level of the interregional network.  538 

Historically, Karl Lashley had difficulty in finding the locus of memory function by 539 
lesion techniques (Lashley, 1929). This may have been because lesions to distributed 540 

systems do not selectively impair discrete functions, but instead have complex and 541 

unpredictable effects (Farah, 2004). Lashley found that degradation of behavioral 542 
performance depended on the amount of the brain regions removed independent of the 543 

precise location: they characteristically led to graceful degradation, which he interpreted 544 

as the product of mass action (Lashley, 1929). But when there is even a moderate amount 545 
of specialization in the system, they can lead to moderate but measurable effects. The 546 

interpretation of these effects, however, will be influenced by the experimenter’s 547 

theoretical framework.  548 
 549 

A case study: the dACC 550 
To look at these general issues in detail, we will take the dorsal anterior cingulate 551 

(dACC, often just ACC) as a case study. The dACC is part of the cingulum, a band of 552 

cortex that wraps around the corpus callosum in the sagittal plane. The dACC receives a 553 

broad and diverse set of inputs that includes both limbic and cognitive regions, as well as 554 
dopamine signals, and projects to motor, premotor, and executive regions. These factors 555 

make it a natural site for serving as a monitor and controller. Indeed, a great deal of 556 
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evidence links it to these two functions, among others. This evidence includes physiology 557 

(Heilbronner & Hayden, 2016), neuroimaging (Ridderinkoff et al., 2004; Shenhav, 558 
Botvinick, & Chohen, 2013; Kolling et al., 2012, Hare et al., 2011; Behrens et al., 2007; 559 

Hayden & Heilbronner, 2014), and lesion studies ( Rudebeck et al., 2006; Kennerley et 560 

al., 2006; Picton et al., 2007; Turken & Swick, 1999). Most prominently its responses are 561 
activated by contexts that promote control (Rushworth et al., 2011; Shenhav, Botvinick, 562 

& Cohen, 2013). These include conflict (Botvinick et al., 19999; Ebitz & Platt, 2015; 563 

Sheth et al., 2012; but see Kolling et al., 2016 and Ebitz & Hayden, 2016), surprising and 564 
unexpected outcomes (Matsumoto et al., 2007; Hayden et al., 2011; Ito et al., 2003), 565 

rewards (Seo & Lee, 2007; Hayden, Pearson, & Platt, 2009; Kennerley et al., 2009); 566 

progression through a task (Ma et al., 2014; Shidara & Richmond, 2002; Hayden, 567 
Pearson, & Platt, 2011b), changes in environmental context and volatility (Behrens et al., 568 

2007; Procyk, Tanaka, & Joeseph, 20000; Shima & Tanji, 1998), control of actions 569 

(Strait et al., 2016; Nakamura, Roesch, &Olson, 2005), and others not listed here. It is 570 
also directly activated by factors related to control, such as persistence (Blanchard, Strait, 571 

& Hayden, 2015; Chudasama et al., 2013; Parvizi et al., 2013; Hillman & Bilkey, 2012; 572 

Hillman & Bilkey, 2010).   573 
These findings generally support a modular view of cognition, one in which dACC 574 

takes on the specialist role of monitor and controller. However, a broader review suggests 575 

that dACC is neither uniquely involved in monitoring and control, not is its function 576 
primarily these two roles. Indeed, the very long list of functions above should raise 577 

suspicion for a devotee of the modular viewpoint. Yes, these variables can all be placed 578 

under the rubric of monitoring and control, but at some point the definition becomes so 579 
elastic that it contains almost all of cognition. Second, are all these functions found only 580 

in the dACC? Unlikely. Most of these functions are shared with many other brain regions 581 

(Cisek & Kalaska, 2010). For example, recent work points to the important of the orbital 582 
surface in classically anterior cingulate functions like conflict monitoring and resolution 583 

(Mansouri, 2014), and regulating the explore-exploit tradeoff (Blanchard et al., 2015). 584 
Studies that compare dACC activity with other brain regions often find that 585 

differences are more qualitative than quantitative (Hokosawa et al., 2013; Kennerley et 586 

al., 2009; Azab & Hayden, 2016). Indeed, control is associated with many other 587 
prefrontal structures, including OFC, dlPFC, vmPFC, and vlPFC (e.g. Schoenbaum et al., 588 

2009; Wilson et al., 2014; Bechara, 2005; Buckley et al., 2009 ). Nor are these functions 589 

limited to the PFC; control signals are observed in the parietal cortex, the posterior 590 
cingulate cortex, the thalamus, and the striatum (e.g. Hayden, Smith, & Platt, 2010).  591 

More broadly, summaries of dACC function tend to emphasize its potentially 592 

specialized role as a hub, linking visceral, cognitive, and motor systems (Bush, Luu, 593 
&Posner, 2000; Morecraft & VanHoesen, 1997; Rushworth et al., 2011; Paus, 2001; 594 

Heilbronner and Hayden, 2016). But is it really all that specialized? There is anatomical 595 

and functional evidence for it’s hub-nature, but it’s also true of other brain regions, 596 
including, for example, PCC (Heilbronner, Hayden, & Platt, 2011; Heilbronner & Platt, 597 

2013) and insula. Indeed, rich interconnectivity is a feature of many brain systems (Wang 598 

& Kennedy, 2016; Heilbronner & Haber, 2014; Heilbronner et al., 2016). 599 
Nor are the response properties observed in the dACC uniquely control-related. 600 

Many of them seem to fit naturally into the category of stimulus-response processing, 601 

rather than as a regulator of that processing. That is, if we think of the brain as a system 602 
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that converts sensory inputs to motor outputs, we should expect in a modular brain to find 603 

no sensory and motor signals in dACC, and instead find pure control-selective signals 604 
(Cisek, 2012). Instead, dACC is prominently responsive to both sensory stimuli and to 605 

actions. One convenient parameter to look at is spatial representation; this is a prominent 606 

property of the physical world but should, in theory, not be part of the recondite world of 607 
control. And yet dACC encodes the locations of stimuli under consideration and the 608 

specific details of actions (Hayden & Platt, 2010; Isomura et al., 2003; Luk & Wallis, 609 

2009; Stoll et al., 2016? ; Strait et al., 2016; Shima & Tanji, 1998). 610 
Together these pieces of evidence argue that the differences between the dACC and 611 

adjacent structures are not as strong as is conventionally believed. They suggest instead a 612 

broad continuity of function between dACC and its neighbors and afferents. The broad 613 
functions, especially in the control domain, that it serves, are more distributed than 614 

modular. Moreover, the units of dACC – its neurons – appear to play a role in input-615 

output processing as well as in generation of control signals. That is, from the perspective 616 
of a scientist accustomed to thinking about bee swarms and ant colonies, they look much 617 

like individual bugs: sensitive to multiple task parameters and capable of generating their 618 

own control signals, which influence their neighbors, and have the capability of 619 
participating in a larger cascade and, under the right circumstances, having effects at the 620 

aggregate level. 621 

 622 

Maybe executive control could be distributed in the brain? 623 
A priori, it is not unreasonable to think so. A basic description of the brain sounds 624 

like an ideal candidate for a distributed control system. Neurons are agents that can only 625 
communicate with a very small number of neighbors relative to the whole population. 626 

Like bacteria, they use a variety of diffusible chemicals to communicate. Each neuron 627 

can monitor an extremely limited portion of the world and can broadcast its signals to a 628 
very narrow part of the world as well. Each neuron has limited but powerful and non-629 

linear computational properties.  630 
Moreover, each cell is autonomous, but they work together, non-competitively, in 631 

the service of a much larger goal (overcoming competition is a major barrier for many 632 

distributed systems, Sumpter, 2006). Individual neurons possess the ability to regulate the 633 
activity of other neurons (or output structures) through changes in firing rate. This 634 

activity can serve as both a processing and a regulatory role. The properties of the whole 635 

system (the brain) are rich and flexible, much more so than any of its constituents 636 
(Hofstadter, 1985, Ch. 26). The brain makes use of both positive and negative feedback, 637 

and shows slow changes over time. 638 

Strong circumstantial evidence for the distributed view comes from lesion studies 639 
(Farah, 2004; Wilson et al., 2010). Damage has surprisingly weak and graded effects; 640 

graceful degradation is a well-known property of distributed systems (McClelland et al., 641 

1987). Of the major “clean” effects associated with lesions (prosopagnosia, hemianopia, 642 
scotoma, and so on), few would be considered executive control effects. Instead, 643 

impairments in executive control can come from lesions in many different areas, and 644 

associated effects are generally graded, and only grow serious when the lesions become 645 
quite large(Farah, 2004; Lashley, 1929; Wilson et al., 2010). 646 

Although there is some evidence for control-specific lesions (Shallice, 1982; Levine 647 

et al., 1998; Duncan et al., 1996), it may be difficult to pin these data clearly to control 648 
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functions. Instead, it may be that more difficult processing is impaired but simpler 649 

processing is spared. Consider, for example, an ant colony with a large proportion of 650 
members lesioned. That colony would have no trouble choosing a hive site if the decision 651 

was easy, but would have a great deal of trouble with a more difficult decision. We 652 

should not then conclude that the task-difficulty module is broken. 653 
Indeed, the brain was the original inspiration for connectionist and PDP networks. 654 

The linkage between brain organization and other distributed control systems has been 655 

pointed out by many others before (Seeley, 2010; Couzin, 09; Passino et al., 2007; 656 
Mitchell, 2009). Given these facts, it is striking that the distributed view has not 657 

continued to serve as the null hypothesis for modular theories as a viable alternative 658 

view. 659 
 660 

  Methods that can push for a distributed processing view 661 
 However, recent technological advances have made the distributed processing 662 

more attractive for researchers. With the adoption of newer analysis techniques, a host of 663 

traditional imaging methodologies are beginning to highlight the interconnectivity and 664 

coordination of many brain regions during a variety of tasks (Sporns and Betzel, 2016). 665 
For example functional connectivity analysis is a growing trend in fMRI imaging studies 666 

(Sporns and Betzel, 2016; Craddock, Tungaraza, and Milham, 2015). In contrast to 667 

traditional ROI analysis, functional connectivity analysis focuses on the interaction 668 
pattern between the brain regions as the determinant of brain function rather than the 669 

activity of the single brain regions (Craddock, Tungaraza, and Milham, 2015; Sporns, 670 

Tononi, and Kotter, 2005). Likewise, an increasing emphasis on large-scale brain 671 
networks has lead to a revision of cognitive functions extending across modular 672 

boundaries and sparked efforts to define functional regions based on “connectional 673 

fingerprints” (Misic & Sporns, 2016; Passingham, Stephan, & Kotter, 2002).    These 674 
trends have lead to the new field of network analysis and connectomics that emphasizes 675 

the interconnections of different brain regions across structure and function. A recurrent 676 
theme in many studies utilizing network analysis is the distributed processing nature 677 

inherent to many tasks across brain regions over a singular key region (Wang et al., 2015; 678 

Bressler & Menon, 2010).  679 
 680 

The modular vs. distributed debate in stopping and working memory 681 
For purposes of comparison, it is helpful to consider two aspects of executive 682 

control that have long been thought to be modular, but have more recently been 683 

challenged by a more distributed alternative view. 684 

Influential work by Aron and others highlights the important and seemingly 685 
modular role of the right inferior frontal gyrus (rIFG) and anterior insula (aIns) in motor 686 

response inhibition, a form of executive control related to stopping (Rubia et al., 2001; 687 

Aron et al., 2003; Aron, Robbins, & Poldrack, 2004; Aron, Robbins, & Poldrack, 2014). 688 
However a recent series of studies challenges this view and proposes an alternative 689 

account that is more aligned with a distributed interpretation (Hampshire & Sharp, 2015; 690 

see also Munakata, 2011). Specifically, Hampshire and Sharp propose that stopping is the 691 
result of local processing by individual units that engage in lateral inhibition and 692 

potentiation, in a manner originally proposed for control of attention in the ventral stream 693 

(Desimone & Duncan, 1995; Chelazzi et al., 1998). In other words, they propose a simple 694 
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set of local rules that neuron/agents can follow and produce effective stopping behavior. 695 

This view implements classic stopping models and is consistent with relevant unit 696 
physiology – that is, with measures of the responses of the putative agents (Band et al., 697 

2003; Boucher et al., 2007; Schall, Stuphorn, & Brown, 2002). In contrast to Aron and 698 

colleagues, they propose that the rIFG/aIns is part of a larger multiple demand cortex that 699 
flexibly handles many executive functions, including stopping (Duncan, 2001; Cole & 700 

Schneider, 2007; Erika-Florence, Leech, & Hampshire, 2014). Ultimately, they suggest 701 

that stopping may not be a valid psychological construct, but rather a term used to 702 
describe intuitively similar behaviors.  703 

Another example comes from the domain of working memory. Classic 704 

neurophysiological works by Niki, Fuster and then Goldman-Rakic supported the idea 705 
that the DLPFC serves as the site of working memory storage (Kubota & Niki, 1971; 706 

Funahashi, Bruce, & Goldman-Rakic, 1989; Alexander & Fuster, 1971; reviewed in 707 

Riley & Constantinidis, 2016). The key evidence for this idea was the fact that single 708 
neurons in that region showed systematic changes associated with the contents of 709 

working memory. This is a modular view: it proposes that specific rostral regions serve 710 

as sites of storage for working memory, while posterior regions implement perception 711 
and association. A recent body of work challenges this view and argues for a more 712 

distributed alternative (reviewed in Postle, 2006; Pasternak & Greenlea, 2005; Postle, 713 

2016).  714 
The alternative view proposes that neurons in frontal regions regulate storage 715 

(Lebedev et al., 2004; Postle, 2005), but that caudal regions responsible for perception 716 

are reactivated during working memory, and that their reactivation serves to store the 717 
information on-line (Harrison & Tong, 2009). This view thus sees perceptual neurons as 718 

flexible agents with multiple cognitive roles, including both basic processing and 719 

executive control roles. Indeed, further work suggests that modulations in these neurons 720 
may alter their responsiveness, thus serving as a form of proactive control that also 721 

implements memory-guided decisions (i.e. a matched filter, Machens, Romo, & Brody, 722 
2005; Miller & Wang, 2006; David et al., 2008; Jun & Romo, 2010; Mirabella et al., 723 

2007; Hayden & Gallant, 2013; Ogawa & Komatsu, 2004). 724 

Working memory is interesting to use because of its centrality in the history of 725 
modular theories (i.e. most theories) of executive control (Baddeley Hitch, 1974; 726 

Baddeley, 1996).  Especially, the concept of the central executive, which supports the 727 

short-term memory in demanding tasks, has been thought to play a diverse control 728 
functions. However, subsequent studies discredited the general function of the central 729 

executive and rather fractionated its functions to number of the different operations 730 

(Logie, 2016). Thus, as a psychological construct, the concept of the central executive in 731 
working memory might no longer be regarded as the modular, centralized function and 732 

rather as the functions of the distributed nature. 733 

 734 

CONCLUSIONS 735 

 736 
We do not mean to imply that no current work could be classified as distributed. 737 

Quite the opposite is true. Many models have distributed aspects (e.g. Botvinick et al., 738 

2001; OReily, Herd, & Pauli, 2010; Behrman & Plaut, 2013; Botvinick & Plaut, 2004; 739 
Munakata et al., 2010; Botvinick & Plaut, 06; McClelland et al., 2010; Lenartowicz et al., 740 
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2010). Instead, our major goals are to highlight the key distinguishing features of 741 

distributed and modular systems.  742 
 743 

Advantages to a distributed control system 744 
From the perspective of adaptiveness, there are several advantages of a distributed 745 

control system with simple agents (Brooks & Flynn, 1989). First, because it is self-746 

organized, there is no need to build a special centralized organization system that will 747 

link up control elements with their corresponding processors. A modular system requires 748 
the equivalent of a telephone switchboard; a distributed one does not. Second, that self-749 

organization gets around the specter of infinite regress (Cooper, 2010). For example, if 750 

we have a special centralized organization system, we need another system to build and 751 
maintain it, and to monitor its functioning, and so on, ad infinitum. Self-organizing 752 

systems are easier developmentally – there is no need to pre-specify their organization 753 

genetically or any other way. They are also more robust to damage and can more readily 754 
adapt and be amenable to plasticity, such as occurs with learning. They are generally 755 

more flexible for novel situations. Finally, and most important, distributed control is a 756 

good way to get complex and adaptive behavior from systems consisting of elements that 757 
are less complex (Sumpter, 2006). From a theoretical perspective, distributed system 758 

makes sense. Many brain functions are distributed, including perception and object 759 

recognition, storage of episodic memories, motor planning and execution, and, arguably, 760 
economic decision-making (Strait, Sleezer, & Hayden, 2015; Cisek, 2012; Cisek & 761 

Kalaska, 2010).  762 

 763 

How to study distributed executive control systems 764 
Distributed control systems may be more difficult to study than modular ones 765 

with conventional methods. In many studies (including, we hasten to admit, many of our 766 
own), we pick out some psychological process of interest. We then ask whether brain 767 

activity in some neuron or voxel within a given brain region correlates with a measure of 768 
that variable. If we get a positive result, the simplest step is to infer that that variable is 769 

reified in the brain. The distributed perspective cautions against this strategy; such 770 

correlations may be real, but may only correlate with emergent properties of the system. 771 
And if the underlying processes are dissimilar, we will draw false conclusions. In other 772 

words, we are always in danger of reifying higher level processes at the lower level. 773 

Instead, the best strategy for dealing with this possibility is a top-down research 774 
program. We should come up with specific hypotheses about how distributed control 775 

systems might work, and then estimate its expected neural signatures (e.g. Hampshire & 776 

Sharp, 2015). The next step is to identify the results expected from alternative distributed 777 
or even modular implementations, and perform the critical test of comparing alternative 778 

views. This approach is agnostic about method; it can be applied to unit physiology, 779 

neuroimaging, or even reaction times (Louie, Kaw, & Glimcher, 2013; Chau et al., 2014). 780 
And it’s worth reiterating that the two modular and the distributed views are not mutually 781 

incompatible. In reality, they may exist on a spectrum. And executive control may be 782 

heterogeneous; some aspects may be modular while others may be distributed.  783 
The relevant hypotheses will come, as always, from close consideration of the 784 

data; especially from attempts to interpret data that conflict with preconceptions. But 785 

also, they can come from the animal kingdom, as we have discussed in this review. 786 
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Brains are complex distributed systems, and they face many of the same constraints as 787 

others. It should not be surprising that they have a great deal in common with ant 788 
colonies, bee swarms, and herds of migrating baboons (Couzin, 2009; Sumpter, 206; 789 

Passino et al., 2007; Seeley, 2010; Hofstadter, 1980; Hofstadter, 1985, Ch. 25, 26). 790 

 791 
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