
Funding pro

Corresponde

Health 10 Cente

E-mail addre

Submitted Ju

1935-861X/08/$

doi:10.1016/j.br

Brain Stimulation (2008) -, -–-

ARTICLE IN PRESS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
www.brainstimjrnl.com
F

Consensus: Can transcranial direct current stimulation
and transcranial magnetic stimulation enhance motor
learning and memory formation?
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NNoninvasive brain stimulation has developed as a promising tool for cognitive neuroscientists.
Transcranial magnetic (TMS) and direct current (tDCS) stimulation allow researchers to purposefully
enhance or decrease excitability in focal areas of the brain. The purpose of this article is to review
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information on the use of TMS and tDCS as research tools to facilitate motor memory formation, motor
performance, and motor learning in healthy volunteers. Studies implemented so far have mostly
focused on the ability of TMS and tDCS to elicit relatively short-lasting motor improvements and the
mechanisms underlying these changes have been only partially investigated. Despite limitations,
including the scarcity of data, work that has been already accomplished raises the exciting hypothesis
that currently available noninvasive transcranial stimulation techniques could modulate motor learning
and memory formation in healthy humans and potentially in patients with neurologic and psychiatric
disorders.
� 2008 Elsevier Inc. All rights reserved.
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Within the past 2 decades noninvasive brain stimulation
has been used as a probe to modulate attention, memory,
motor, and language functions in humans.1-9 TMS and tDCS
can enhance or decrease excitability in target cortical regions
depending on the parameters of stimulation used.10-13 TMS,
and to a lesser extent tDCS (specific differences are
described by Nitsche et al in this issue of Brain Stimulation)
have been used as an interference technique (‘‘virtual
lesion’’) for understanding brain-behavior interactions and
to explore possible cause-effect links between altered activ-
ity in specific brain areas and particular behaviors.14,15

Improved understanding of the involvement of a brain
region in a type of behavior was followed by attempts to
modify activity in this area to secondarily influence perfor-
mance, learning, and memory functions.2-9 In this chapter
we summarize the results from studies that aimed at elicit-
ing improvements in motor performance and motor learn-
ing in healthy humans.
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Motor learning

Formation of motor memories is required for learning the
motor skills in daily life.16,17 It is helpful to distinguish
studies focused on the process of acquisition, consolidation,
and long-term stability (also referred to as retention) of a
new motor skill8,18,19 from those that evaluate the return
to baseline levels of performance in response to external
perturbations.20-23 An example of adaptation to an external
perturbation is the response to directional errors in visually
guided reaching movement caused by prism glasses:22,24

with practice, performance returns to the ‘‘baseline’’ level.
Importantly, adaptation may not require the acquisition of
new motor synergies or movement patterns, as it engages
movements that were achieved throughout life.

In contrast to adaptation, acquisition of a new motor
skill involves the acquisition of new movement qualities
and/or muscle synergies that enhance performance beyond
preexisting levels. Skills seem to take longer to acquire than
adaptation and sometimes do not reach plateau levels after
years (ie, learning to play piano or basketball).20,25-27 In
engineering terms, adaptation may be modeled as error-
based learning, whereas, for example, motor skill learning
is better modeled in terms of reward-based signals.28,29
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reward- and error-based learning is possible.
Consolidation refers either to stabilization (reduced

susceptibility to retrograde interference) or offline improve-
ments.30-33 Consolidation processes can depend on the type
of task, the time between the end of practice and the testing
of recall, and the presence or absence of sleep. Offline im-
provements, for instance, in the ability to perform a finger
opposition task, correlated with the amount of time spent in
REM sleep.34 Similarly, offline improvements in a motor
sequence learning task are sleep dependent when individ-
uals are aware of the underlying sequence.35 However,
when individuals have little awareness for the sequence,
offline improvements are able to develop over waking or
over a night sleep.35 Potentially, the effect of individuals’
awareness on offline learning is mediated by their declara-
tive knowledge for the sequence: disrupting declarative
knowledge for the sequence can induce improvements
over wake.36 In adaptation studies, the successful return
to baseline performance after the perturbation occurs often
within one session, and therefore the possibility of offline
improvements across days has not been thoroughly tested,
although savings, an increase in the rate of readaptation,
could be considered a form of offline learning.37 One
exception to this general statement is the study of Huber
et al38 in which overnight improvements in performance
of a motor adaptation paradigm in which subjects had to
adapt to a visual perturbation of a reaching movement cor-
related with increased less than 4 Hz activity during slow
wave sleep. This activity is thought to reflect oscillatory
changes in neuronal membrane potentials.38

As stated previously, another form of consolidation is
stabilization, that is, maintenance of practice-induced per-
formance improvements or skill (in opposition to forgetting
or to offline improvements). After the end of a practice
period, procedural memories for a task A may display
different degrees of strength to interference. A classical
approach to evaluate this strength is to introduce a task B as
a source of interference and subsequently test the subject’s
ability to perform task A.37,39,40 Interference to recall a
newly learned motor task A by practicing a different motor
task B has been described as ‘‘retroactive interference.’’
Retroactive interference has a well-described time course
diminishing with the length of the time interval between
0 September 2008 � 3:17 pm
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the end of practice of task A and the application of the
interfering task B, becoming virtually absent after
6 hours.37,40,41 Stabilization over hours after learning
dynamic adaptation tasks has been well-documented.41,42

Of note, Goedert and Willingham40 showed that for motor
sequence learning offline stabilization does not occur.
Whether 15 minutes or 24 hours passes in between task A
and B, task B continues to exert retrograde interference.40

However, this finding might be task specific.
It is important to keep in mind that during motor

learning, both kinds of consolidation, offline learning and
stabilization, are likely occurring.43,44 As stated previously,
it is unclear if offline enhancement occurs for adaptation
tasks as consolidation studies of adaptation have focused
on stabilization. Other factors that may influence our ability
to assess the stability of a procedural memory include the
end point measure used (speed, accuracy, or speed accuracy
ratios related to a motor task) and the practice sched-
ule:45,46 for instance, when a skill is acquired through inter-
leaved rather than blocked practice schedules, motor
memories may become more resistant to interference.

One important theoretical point to highlight is the differ-
ence between measurements of motor performance and
motor skill. Improvements in speed or in accuracy of
performance of a motor action have been often reported in
isolation in the literature, occasionally indicating that
changes in one of these two measures occurred in the absence
of changes in the other. Such changes have been reported as
changes in skill. It would be important to keep in mind that
motor skill cannot always be reliably surmized from changes
in only one of these two measures. Skill may be better
described as a change in the speed-accuracy trade-off, which
is task dependent. Taking into consideration this issue, would
help future investigators avoid concluding a change in skill
(skill improvements) when in fact subjects have only moved
along the same speed/accuracy trade-off curve.
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Noninvasive brain stimulation has been used to identify the
functional relevance of particular brain regions in motor
learning and facilitate activity in specific cortical areas
involved in motor learning in an attempt to improve motor
function.
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UFunctional role of the primary motor cortex
in motor learning as studied with
noninvasive cortical stimulation

Motor learning is associated with functional changes in a
distributed network that includes the primary motor,
premotor and supplementary motor cortices, the cerebel-
lum, thalamic nuclei, and the striatum.18,47-50 Most TMS
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and tDCS studies performed so far to study the role of
motor areas in motor learning have focused on M1.

Role of M1 in encoding of an elementary motor memory:
Butefisch et al51 showed that the synchronous application
of single-pulse TMS to M1 contralateral to a hand practic-
ing a thumb abduction task enhanced the ability of healthy
subjects to encode an elementary and short-lasting motor
memory in the primary motor cortex.2 Importantly, this
effect was evident when M1 was stimulated in synchrony
with the training motions but not when applied in between
training movements. A second important finding from this
study was that synchronous stimulation of the ‘‘resting’’
M1 with the training motions in the ipsilateral hand,
cancelled training effects on motor memory formation,
consistent with the hypothesis that interhemispheric inter-
actions between M1s contribute to motor memory forma-
tion.2 It has been proposed that formation of motor
memories within M1 could represent a first step in the
more complex chain of events leading to improve a motor
skill, but it should not be interpreted as motor learning
per se as skill improvements above naı̈ve levels are typi-
cally not seen with this particular paradigm of motor
memory formation.

Role of M1 in motor adaptation: As discussed previ-
ously, the concept of motor adaptation refers to learning
to adjust to external perturbations.21-23,52 In these experi-
ments, subjects adjust their motor behavior to compensate
for a particular perturbation to maintain a stable perfor-
mance.21 TMS and tDCS have been used to evaluate the
role of M1 in motor adaptation. In general, stimulation
over M1, using parameters that decrease excitability in
that region like 1-Hz TMS, have been applied before or
during adaptation paradigms (to evaluate its functional
relevance for encoding of the necessary adjustments to
compensate for the perturbation).23,53 In one study, single
TMS pulses applied to M1 at 120% of resting motor thresh-
old (RMT) of the first dorsal interosseus muscle immedi-
ately after the end of each trial while adapting to a
perturbation in the form of a visuomotor rotation did not
impact adaptation, but caused faster deadaptation (forget-
ting) within the same session relative to single pulses ap-
plied 700 miliseconds after the end of each trial or
relative to PMd stimulation.53 In another study, 1-Hz
rTMS applied to M1 at 90% of biceps RMT before force
field adaptation did not affect the participants’ adaptation
per se, but impaired retention relative to control subjects
(who did not receive any rTMS) as tested the following
day when subjects were exposed to the same force field
to which they had previously adapted.54 On the other
hand, Baraduc et al23 did not find a deleterious effect of
1-Hz TMS applied over M1 on adaptation to a dynamic
force field. Potential areas of interest that remain to be
investigated in more detail include the role of motor areas
other than M1 in motor adaptation.

Role of M1 in motor skill learning: As discussed previ-
ously, motor learning may (and often does) continue after
30 September 2008 � 3:17 pm
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the end of practice periods, referred to previously as consol-
idation in the form of offline learning. The role of M1 has
been investigated in the process of acquisition and consol-
idation of motor skills.13,50,55 Muellbacher et al13 reported
in an influential study, that 1-Hz rTMS over M1 at 115% of
flexor pollicis brevis RMT applied immediately before a
single-session practice of a thumb-to-finger opposition
task did not disrupt within session improvements in speed
and muscle force generation but had deleterious effects
on retention of these improvements as tested the following
day relative to stimulation applied 6 hours after practice or
when applied to other cortical areas such as the occipital
cortex or the left DLPFC. These results were interpreted
as supportive of the view that M1 plays a functionally
relevant role in consolidation of explicit motor memories.13

The role of M1 was also explored in motor sequence learn-
ing56 by using a modified version of the serial reaction time
task (SRTT).57 1-Hz rTMS was applied over M1 immedi-
ately after training when subjects practiced the task early
in the morning or late in the evening (different groups).
The end point measure was offline enhancement in perfor-
mance of the task 12 hours later (the evening of the practice
day with no sleep in between in the first group and the
following morning after a normal night sleep in the second
group). It was reported that offline enhancements of the
learned task were disrupted in the first group (no sleep)
but not in the second group. The authors interpreted the
result as indicative of different consolidation processes
depending on how close sleep is to the practice period.56

For a more detailed review of the effects of virtual lesion
studies on motor learning, please refer to15. On the other
hand, rTMS and tDCS have been used in an attempt to
facilitate motor learning, the focus of this review.
 E 357
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noninvasive cortical stimulation

On the basis of human neuroimaging studies, it was
proposed that application of noninvasive stimulation with
parameters that enhance motor cortical excitability could
secondarily facilitate motor learning. One key structure in
the distributed network engaged in motor sequence learning
is the primary motor cortex (M1).13,58 Within M1, the
extent of cortical reorganization associated with motor
training correlates with performance improvements.59 The
interaction between the two M1s appears to play an impor-
tant role in motor control in general,20,60-64 and in motor
sequence learning in particular.64,65 However, the specific
way in which these interactions operate during motor learn-
ing remain to be determined. According to these interac-
tions, it would be theoretically possible to facilitate motor
learning processes in which M1 is involved by enhancing
excitability in the ‘‘learning’’ M15 or by decreasing excita-
bility in the ‘‘resting’’ M1.66-68 The intrinsic intracortical
REV 5.0 DTD � BRS52_proof � 3
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mechanisms by which these oversimplified models may
operate remain to be identified64,69,70 (see for discussion
chapters by Walsh et al., Di Lazzaro et al., Berardelli et al.).

Several investigators proposed that noninvasive cortical
stimulation that enhances excitability in the M1 contra-
lateral to a training hand5,71 might result in varying
degrees of improvement in motor function in healthy
humans. Kim et al72 reported that 10-Hz rTMS at an
intensity of 80% of RMT applied over M1 during practice
of contralateral sequential finger movements resulted in
improved motor sequence learning (as measured by target
accuracy and speed on a sequential key press task) rela-
tive to sham stimulation. Anodal tDCS applied over M1
during practice also led to improvements in: (1) the num-
ber of correct key presses in a sequential finger move-
ment task in a polarity-specific manner since cathodal
tDCS failed to induce this effect73; (2) performance of
a visuomotor coordination task that were transient
(w5 minutes)74; (3) reaction times in the sequence blocks
relative to the random blocks in the SRTT,57 in which
subjects learn a sequence of 12 key presses without ex-
plicit awareness75; and (4) performance of the Jebsen
Taylor Hand function test (JTT), a task often used in
stroke research that mimics activities of daily living
such as lifting cans and picking up small objects.76 Inter-
estingly, this effect has been reported as present in the
nondominant hand only in young healthy adults.77 Of
note, tDCS in these two articles was applied after sub-
jects reached stable JTT performance, likely reflecting a
tDCS-induced performance improvement beyond a pla-
teau level. It is not known if application of noninvasive
cortical stimulation during the learning period of the
task (before it reaches an asymptote) could speed up or
enhance learning of the task.

In contrast to studies that focused on application of TMS
or tDCS to the M1 contralateral to a practicing hand, the
application of 1-Hz rTMS to the M1 ipsilateral to a training
hand results in: (1) increases in motor cortical excitability
of the opposite M166-68 relative to sham stimulation, and
(2) improvements in motor sequence learning65 relative to
stimulation of the contralateral M1, ipsilateral premotor
area, or vertex (Cz). One important consideration is that
the effects of stimulating M1 with either TMS or tDCS
are likely to be dependent on the complexity of the task.
For example, performance of relatively simple repetitive
finger abduction movements was not improved by high-
frequency rTMS over the ‘‘learning’’ M1,79 whereas more
complex sequential motor tasks or encoding of a motor
memory did improve (discussed previously). Similarly, an-
other study showed no performance improvement in a task
engaging single finger tracking motions when the ipsilateral
M1 was stimulated with 1-Hz rTMS during practice.80

In contrast to studies focusing on motor sequence
learning or motor performance, we are not aware of studies
that used TMS or tDCS in an attempt to facilitate motor
adaptation.
0 September 2008 � 3:17 pm
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Caveats and future directions

Although the previous paragraphs depict a relatively con-
sistent and homogenous picture on the effects of up- and
down-regulation of excitability within M1 on motor learn-
ing and motor memory formation, several caveats should be
kept in mind. First, induction of a ‘‘virtual lesion’’ or
enhancement of activity in one cortical area may result in
behavioral changes through specific effects on that area or
secondarily through distant effects on other interconnected
cortical areas. Second, the discussion of results in this
article (as well as those of specific physiologic interactions
across cortical regions61) assume, in general, that the sur-
face of the brain is a smooth sphere, often neglecting that
the folding of the cortex may result in hyperpolarization
of neurons on one side of a gyrus but depolarization on
the other. Third, the history of activity in the stimulated cor-
tex may be of considerable importance. For example, the
effects of stimulation may differ substantially if applied
to a ‘‘fatigued’’ or to a ‘‘well-rested’’ cortex. In one exam-
ple, 1-Hz rTMS may induce facilitatory effects if acting on
a cortex that has been previously inhibited by cathodal
tDCS.81,82 This phenomenon, referred to as homeostatic
plasticity or metaplasticity and discussed elsewhere,83

may potentially impact motor learning.84,85 Fourth, al-
though most of the work in the field focused on studying
the effects of stimulation over M1, some reports indicated
that stimulation of the dorsal premotor or the lateral or me-
dial prefrontal cortex failed to induce overt reaction time
improvements in the SRTT task.75 Similarly, anodal tDCS
applied over the primary visual cortex (V1) did not improve
performance of a visuomotor tracking task in healthy sub-
jects.74 However, findings indicating a lack of effect of
stimulation in a particular site are not proof that the area
is not involved. The most parsimonious interpretation of
these findings is that more elaborated, hypothesis-driven
behavioral paradigms or stimulation strategies may be nec-
essary to study the functional role of these cortical regions
in motor learning and memory formation. Alternatively, it
is possible that the ‘‘threshold’’ for facilitating motor learn-
ing by M1 stimulation is lower than by stimulation of other
cortical areas, an issue to be investigated in future experi-
ments. Fifth, one caveat of many previous investigations
has been the focus on short-term improvements in perfor-
mance. More experiments are required to assess the effects
of repeated applications of TMS or tDCS in association
with multiple training sessions, their interaction with spe-
cific motor learning stages and tasks, and the extent to
which these performance improvements are retained in
the long term. Finally, it should be kept in mind that the ef-
fects of TMS and tDCS cannot be assumed to be the same.
The mechanisms underlying the effects of each technique
on motor cortical function are very likely to differ, as dis-
cussed by Nitsche et al in this issue of Brain Stimulation,
and so will the effects on motor cortical networks and
REV 5.0 DTD � BRS52_proof �
behavioral consequences of its application. Clearly, more
work is needed in this area.
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Summary

In summary, the scarce studies performed so far point to the
encouraging conclusion that noninvasive brain stimulation
can contribute to the understanding of mechanisms under-
lying motor learning and motor memory formation and
raise the exciting hypothesis that this increased understand-
ing could in the future result in the development of new
strategies to enhance specific stages of learning and mem-
ory processing in healthy humans and in patients with brain
lesions, as discussed by Gerloff et al in this issue of Brain
Stimulation.
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