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d A Drosophila connectome was reconstructed by 12,995
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d Hierarchical organization, small word, and rich club were

observed in the brain
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In Brief

A draft of the Drosophila connectome

was reconstructed from 12,995 neuron

images. The network showed hierarchical

structure, small world, and rich-club

organization. The present analysis

revealed whole-brain patterns of network

structure and rules of information flow.

The overall organizational scheme

showed fundamental similarities to the

mammalian brain.
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SUMMARY

Understanding the overall patterns of information
flow within the brain has become a major goal of
neuroscience. In the current study, we produced a
first draft of theDrosophila connectome at the meso-
scopic scale, reconstructed from 12,995 images of
neuron projections collected in FlyCircuit (version
1.1). Neuron polarities were predicted according to
morphological criteria, with nodes of the network
corresponding to brain regions designated as local
processing units (LPUs). The weight of each directed
edge linking a pair of LPUs was determined by the
number of neuron terminals that connected one
LPU to the other. The resulting network showed hier-
archical structure and small-world characteristics
and consisted of five functional modules that corre-
sponded to sensory modalities (olfactory, mecha-
noauditory, and two visual) and the pre-motor center.
Rich-club organization was present in this network
and involved LPUs in all sensory centers, and rich-
club members formed a putative motor center of
the brain. Major intra- and inter-modular loops were
also identified that could play important roles for
recurrent and reverberant information flow. The pre-
sent analysis revealed whole-brain patterns of
network structure and information flow. Additionally,
we propose that the overall organizational scheme
showed fundamental similarities to the network
structure of the mammalian brain.

INTRODUCTION

Understanding the structural network of the brain—the connec-

tome [1, 2]—is an essential step in understanding how the brain

controls behavior and cognition [3]. Toward this goal, we used a

database of 23,579 images of single neurons in the Drosophila
Current Biology 25, 124
brain, FlyCircuit version 1.1 (http://www.flycircuit.tw/v1.1) [4],

to assemble awiring diagram of the femaleDrosophila brain con-

sisting of 12,995 projection neurons.

We previously proposed a criterion different from conventional

anatomy to divide the brain into several functional units,

including 43 local processing units (LPUs) and six interconnect-

ing units [4]. An LPU is defined as having its own population of

local interneurons (LNs) whose fibers are limited to that region

and as delivering or receiving information via bundled neural

tracts to or from other units. An interconnecting unit lacks its

own population of LNs. Since LNs are presumed to be essential

for information processing andmodulation within the units, these

interconnecting units appear to relay information to other LPUs

unmodified by any local network interactions. For simplicity,

‘‘LPU’’ is used in the following text to represent all functional

units in the brain discussed. The structure of the standard brain

composed of LPUs is shown in Figure S1.

A comprehensive network of the synaptic connections be-

tween neurons is beyond the resolution of our confocal micro-

scopy-based images. However, neuron-to-LPU connections

can be determined accurately, and recent advances in morpho-

logical analyses of neuronal fibers have allowed for accurate pre-

dictions of the polarities of projection neurons [5–8], and hence

the construction of a directed mesoscopic brain network. The

weight of a link contributed by a single neuron between two

LPUs, which were respectively innervated by dendrites and

axons of the neuron, was set as the geometrical average of the

number of dendritic and axonal terminals located in the two

LPUs. The weight of each directed edge linking a LPU pair was

the summation of the weight of all neurons that connected one

LPU to the other in that direction (Figure S2). The resulting

network was analyzed using methods from complex network

theory.

RESULTS

FlyCircuit 1.1
The FlyCircuit database, a public resource for online archiving,

cell type inventory, browsing, searching, analysis, and 3D visual-

ization of individual neurons in the Drosophila brain [4], has been
9–1258, May 18, 2015 ª2015 Elsevier Ltd All rights reserved 1249
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Table 1. Numbers of Gal4 Neurons in the Standard Brain

Gal4 Driver

(Neurotransmitter)

Total Gal4 Neurons in

the Female Brain

Total Gal4 Neurons in

the Male Brain

FlyCricuit FlyCircuit 1.1 FlyCircuit FlyCircuit 1.1

Cha-GAL4 2,348 3,377 0 0

fru-GAL4 1,454 2,758 2,055 3,378

G0239-GAL4 12 12 0 0

Gad1-GAL4 1,002 3,632 0 0

GH146-GAL4 1 1 6 6

npf-GAL4 41 159 41 200

Tdc2-GAL4 264 265 0 0

TH-GAL4 514 514 377 379

Trh-GAL4 989 995 1,186 1,188

VGlut-GAL4 5,867 6,005 0 0

5-HT1B-GAL4 41 41 57 58

E0585-GAL4 0 193 0 0

5-HT1A-GAL4 0 227 0 191

See also Tables S1 and S2.
updated to incorporate several new features: (1) additional im-

age data of 23,579 neurons (Table 1), (2) assignment of axon/

dendrite polarity for all individual neurons, and (3) transformed

coordinates in a standard brain for all imaging data. Based

on the assumption that major information is transmitted in a

neuron from dendrite to axon, we used 12,995 projection neu-

rons in the female brain collected in the FlyCircuit 1.1 to

construct a network indicating directions of information flow

among the various LPUs.

Basic Measurements
Strength, s

!
The node strength for a weighted network was set as the sum-

mation of the weights of all edges connecting the node and its

neighbors (Figure 1A). The dorsomedial protocerebrum (DMP),

ventromedial protocerebrum (VMP), ventrolateral protocere-

brum dorsal part (VLP-D), fanshaped body (FB), caudal ventro-

lateral protocerebrum (CVLP), and superior dorsofrontal

protocerebrum (SDFP) were the strongest nodes.

Node Polarity, p
!

Positive and negative values indicated ‘‘receivers’’ and

‘‘senders,’’ respectively (Figure 1B). The protocerebral bridge

(PB) in the central complex had the strongest sender character-

istic, with a polarity of �0:87, and the first-layer sensory LPUs,

like antennal lobes (AL) for olfaction [9] and antennal mechano-

sensory and motor center (AMMC) for hearing [10, 11], were

also senders (negative polarity). AL sent signals to the lateral

horn (LH) and mushroom bodies (MB), and AMMC sent to

CVLP. Both AL and AMMC received signals from peripheral sen-

sory neurons, not included in the present study, and also from

their counterparts in the opposite hemisphere. Polarity for

medulla (MED), the first-layer LPU for vision [12], was positive

with VMP and CVLP, the strongest upstream LPUs, implying

that MED has functions other than purely visual input, for

example, the integration of visual and auditory signals.

Another heavily connected LPU FB in central complex had a

moderately negative polarity of �0:265. The link from FB to infe-
1250 Current Biology 25, 1249–1258, May 18, 2015 ª2015 Elsevier L
rior dorsofrontal protocerebrum (IDFP) was the strongest link in

the whole network.

Downstream LPUs of strong senders, such as IDFP (down-

stream of FB and PB), LH, MB (downstream of AL), and lobula

(LOB) (downstream of MED), naturally tended to be receivers.

An exception was for CVLP (downstream of AMMC). We conjec-

ture that the function of CVLP is not limited solely to a second-

layer center of the auditory/mechanical modality.

Polarities of most of the heavily connected LPUs, like DMP,

VMP, VLP-D, SDFP, and CVLP, were close to zero. These versa-

tile nodes simultaneously act as both senders and receivers.

Edge Polarity

Most edges between LPUs are bi-directional, and approximately

15% of them are uni-directional (defined as edge polarity >0.9)

(Figure S3A). The ratio for C. elegans and macaque are 53%

[13] and 20% [14], respectively.

Betweenness Centrality, b
!

The betweenness centrality of a node is the number of shortest

paths between pairs of other nodes passing through the original

node (Figure 1C). This term measures the node’s relative impor-

tance in the efficient flow of information.

As expected, heavily connected nodes also had higher

betweenness centralities. The Pearson’s correlation between

strength and betweenness of nodes was rð s.; b
.Þ= 0:817. How-

ever, the exceptions were more interesting, e.g., the between-

ness ranks of lobula (LOB and lob), 10th and 8th, respectively,

were much higher than their ranks in strength (26th and 17th).

This finding suggests that LOB and lob are more important in

passing information than expected based on their moderate

node strength. Similarly, the betweenness ranks of LH and lh

(19th and 13th) were also higher than expected from their

strengths (27th and 24th).

Global Centrality

Besides strength and betweenness, five other types of central-

ities weremeasured: degree, vulnerability, page rank, closeness,

and dynamical importance (Figures 1D and S3). For each type of

centrality, the top 12 out of 49 nodes (top quartile) earned 1 point.

The total number of points collected by each node from the

seven centralities was defined as its global centrality. Nodes

with high global centrality correspond to network hubs.

Edge Betweenness

Edge betweenness is a measure of the importance of each

edge in efficient communication (Figure S4A). The top five edges

with highest betweenness were (FB / dmp), (SDFP / FB),

(sdfp / FB), (FB / DMP), and (lob / vlp-d).

Strength Distribution

The data indicate the presence of a broad range of node

strengths (black bars), clearly distinguishable from the more

sharply peaked distribution (gray bars) in the randomized

network (Figure 1E).

Small-World Characteristics

Small-world attributes were tested for the network (Figure 1F)

[15]. The small size of the LPU network (49 nodes) and the large

number of pathways (80% of all possible pathways contained at

least one fiber) limited the level of small-world attributes. Thresh-

olding was performed on the structural connection matrix by

gradual removal of the weakest pathways (whichmay also be re-

garded as potential false positives) from the analysis. Retention

of stronger pathways tended to boost normalized clustering
td All rights reserved



Figure 1. Basic Measurements for the

Directed Brain Network

(A–D) Sorted total strength (A), node polarity (B),

betweenness centrality (C), and global centrality

(D) of the nodes. Other centralities can be found in

Figure S3.

(E) Distribution of the total (black bars), incoming

(filled circles), and outgoing (empty circles)

strengths. Gray bars show the distribution for the

network by randomly assigning the LPUs inner-

vated by the fibers (averaged from 1,000 re-

alizations; error bars are smaller than the border

line of the gray bars).

(F) Small-world index versus the cut ratio, which is

defined as the ratio between the total strength of

the removed weakest links divided by the sum of

the strengths of all links. For example, a cut ratio

of 0.2 corresponds to a removal of 20%of the total

link weights. Inset: normalized clustering coeffi-

cient (filled circles) and normalized path lengths

(open circles).

See also Figures S1, S2, S3, and S10.
while leaving the normalized path length unaffected, and hence

revealed stronger small-world attributes.

Modular Structure
The brain network can be divided into five functional modules by

maximizing modularity [16]. The modular structure and connec-

tivity matrix are shown in Figures 2A and S4B, respectively. Four

of the five modules corresponded to sensory modalities—olfac-

tion (containing the known LPUs AL, MB, and LH), auditory and

mechanosensation (containing CVLP and AMMC), and bilateral

areas for vision (containing MED). The central complex module,

composed of the LPUs FB, ellipsoid body (EB), PB, IDFP, and

noduli (NOD), is the integration center for visuo-locomotor be-

haviors in all arthropods [17, 18] and is important for decision

making and locomotor output [19–23]. Given its known functions

and intensive connections with the sensory modules, we refer to

it as the ‘‘pre-motor’’ center.

Based on the within-module strengths, z, and participation co-

efficients, P, of the nodes in Figure S4C, we identified the central

node for each functional module and the main connectors be-

tween modules [24]. The central nodes SDFP, DMP, LOB, and
Current Biology 25, 1249–1258, May 18, 2015 ª
FB had the highest within-module

strengths for olfactory, auditory, visual,

and pre-motor centers, respectively.

Superpenduncular protocerebrum (SPP;

olfactory), DMP (auditory), VLP-D (visual),

and IDFP (pre-motor) had the highest

normalized participation coefficients in

their modules, implying that they were

the inter-modular connectors. The main

connectors between module pairs are

listed in Document S2.

Sub-modular Structures of
Olfactory and Auditory Modules
A hierarchical modular structure of the

brain was reflected in our finding that
the olfactory and auditory centers had sub-modular structures

(shown in Figured 2B and 2C) when inter-modular connections

were removed. The olfactory module consisted of four sub-mod-

ules, two of which (yellow and purple in Figure 2B) were the

outermost sensory inputs on each side. One unidirectional

pathway (defined as having a minimal but non-zero link in the

reverse direction), AL/LH/DLP, was even stronger than the

well-known AL/MB pathway. Furthermore, this analysis re-

vealed that DLP integrated information from LH, SPP, and

SOG, which then communicated with SDFP. These findings sug-

gest that this pathway deserves more attention for understand-

ing olfactory computation in the fly brain. The sub-module of

green nodes, MB and SDFP of both hemispheres, formed the

core for olfactory signal processing. MB and SDFP also received

signals from AL and DLP, respectively. The four LPUs in this core

were densely connected to each other. The last sub-module

(shown in red) was the bilateral SOG. The SOG communicated

mainly with SDFP, but also sent feedback signals to SPP and

DLP. Finally, the major decussate connections in the olfactory

module were SDFP/mb, sdfp/MB, SDFP4sog, and

sdfp4SOG, and these connections help to form more loops,
2015 Elsevier Ltd All rights reserved 1251



Figure 2. Modular Structure of the

Drosophila Brain

There are five modules in the brain network:

olfaction (yellow), auditory/mechanosensation

(magenta), right vision (orange), left vision (purple),

and pre-motor (red) (A). The LPUs with thick

black and green boundaries indicate the inner-

most and second innermost rich-club members,

respectively. Node size is proportional to the

strength of the LPU. Arrows denote the direction

of the connections. Darker and thicker lines

represent stronger connections; (B) and (C)

show the sub-modular structures of olfactory

and auditory modules, respectively. See also

Figure S4.
whose significance for signal processing warrants further

investigation.

The three major modalities differed in their degree of left-right

separation, from the most segregated (vision) to the least

segregated (auditory). For example, left and right visual

inputs were completely separated into different modules. The

olfactory system AL sent signals to MB and LH in the

same hemisphere and was thus only separated into sub-

modules. On the other hand, auditory module LPUs (magenta

in Figure 2C) formed a very strongly interconnected core. The

sub-structure of this module could be divided into two

parts—auditory and mechanosensory input (green nodes,

including AMMC, CVLP, and CMP) and the processing core

(other nodes in magenta). AMMC projected bilaterally to both

CVLPs, and caudalcentral protocerebrum (CCP) was observed

to connect to LPUs in the opposite hemisphere even more

densely than on the same side, implying that CCPs are involved

in the comparison and analysis of signals from different

directions.

DMP and VMP LPUs in the auditory core, together with the

CVLP, also exhibited strong connections to LPUs in other mod-

ules, suggesting that they have functions beyond auditory signal
1252 Current Biology 25, 1249–1258, May 18, 2015 ª2015 Elsevier Ltd All rights reserved
processing. Further analysis showed that

these nodes, together with VLP-D (vision)

and SDFP (olfaction), formed a ‘‘rich

club’’ (RC) thus making them candidates

for the motor center of the brain (see

below).

Rich Club
An RC is a set of high-strength nodes that

are more densely connected with each

other than expected with reference to

an appropriate null model [25], and RCs

have been found in brain networks of hu-

mans, macaques, and birds [26, 27]. We

detected RC organization with multiple

nested shells in the fly brain (Figure S4D).

The RC member nodes in the three inner-

most shells were DMP, VMP, VLP-D, and

SDFP for both hemispheres and FB in the

central brain, most of which lie deep in the
central brain. By definition, the links between RC members ex-

hibited high edge betweenness.

Loops in the Brain
Signal transmission in the brain occurs on a scale of tens of

milliseconds, and the small-world characteristics of the network

imply that signal transmission time between any pair of LPUs will

be hundreds of milliseconds. On the other hand, looped struc-

tures in the network would be capable of sustaining electrical

signals for longer periods of time, and thus be important for

recurrent circuits, such as those hypothesized for intermediate

memory reverberation [28–30].

Traditional analyses of complex networks have focused on the

properties of the shortest paths, which contain no loops, to

address the efficiency of information transfer, or else examined

looped structures statistically for the frequency of isomorphic

network motifs [31]. Instead of this statistical approach, we

have examined the strength and detailed structures of individual

loops (Figure 3 and Figures S5–S7).

The two-loops (i.e., containing two LPUs) shown in Figures S5

and S6A were highly correlated with, but not identical to, tracts

between LPUs (addressed in [4]). The two-loopswere comprised



Figure 3. Major Loops in the Network

(A and B) Intra-modular LPU three-loops of the left auditory/mechanosensory module with loop strength >900 (at least for one direction) (A) and olfactory module

with loop strength >420 (B).

(C) Three-loops connecting three modules with loop strength >490.

(D) LPU four-loops connecting four modules with loop strength >360. Note that the numbers in the figure (and in Figures S5–S7) are the loop strength

divided by 10.

(A–D) Due to the hemispherical symmetry, only the left visual module is shown in (C) and (D). Some loops are only shown in one hemisphere in the figures. For

example, although only the dmp% vmp% CCP % dmp loop in the left brain is shown in (A), the symmetric loop DMP% VMP% ccp% DMP in the left brain

exists, although it is not shown in the figure. This was done to reduce the complication of figures. More detailed information for the loops can be found in Figures

S5–S7. For clarity, only one (left) of the two visual modules is shown in these figures.

(E) The persistence of the olfactory signal injected to AL and sent out to the body from DMP and dmp.

See also Figures S5–S7.
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of bi-directional connections between the LPUs, whereas tracts

could be uni- or bi-directional.

Some three- and four-loops could be predicted from the two-

loops. For example, the bi-directional LOB4LOP4MED4LOB

loop depicted in Figure S5B could be reduced to the three two-

loops in the left part of Figure S5A. In contrast, the existence of

irreducible loops implies a more complicated function that

requires re-iteration or reverberation of information among

more brain regions. Such irreducible long loops were found to

be unidirectional and have large ‘‘loop polarity.’’ For example,

dmp4CVLP and dmp4FB were both strong two-loops (Fig-

ures S5D and S6A), but FB/CVLP was unidirectional. As a

result, FB/CVLP/dmp/FB became a unidirectional loop

with a polarity of 3.32 (Figure S6B).

The strongest three-loop (composed of three LPUs) in the

olfactory module was the grouping mb4sdfp4SDFP4mb

([= 1:94, Figure 3B), whereas in the auditory module it was

VMP4dmp4DMP4VMP ( [= 1:11, Figure 3A). All three of

the nodes were RC members.

Figure 3C showsmultiple three-loops that connect three mod-

ules. The strongest of these was dmp4sdfp4FB4dmp

ð[= 1:8Þ, which connects the auditory, olfactory, and pre-motor

modules.

Figure 3D shows the four-loops connecting four different mod-

ules, of which the strongest was DMP/vlp-d/sdfp/FB/

DMP. It was also strongly polarized ð[= 3:95Þ.
In general, intra-modular loops were stronger than inter-

modular loops, and shorter loops were stronger than longer

ones. Further studies will be needed to address the function of

these loops. One possibility is that they allow signals to persist

in the brain over short to medium timescales, such as those

involved in the early stages of memory formation.

In order to test this idea, we simulated the persistence of an

olfactory signal. A signal injected into the AL from time steps

t = 1–3 propagated in the network until t = 30 according to the

connectivity matrix. A portion of the signals were exported as

motor output from the DMP and dmp (see the Supplemental

Experimental Procedures). The resulting signal strength versus

time for several LPUs is shown in Figure 3E. SDFP, sdfp, and

FB had the strongest responses for an olfactory stimulus. In

contrast, signals in MB andmbwere less persistent but were still

stronger than that in LH, which was the strongest downstream

LPU of the AL. Signal strength in the SDFP and FB persisted

for one to three time steps after the input stopped. On the other

hand, signals in LH and al, the counterpart of the AL in the left

hemisphere and immediately downstream from AL, decayed

quickly after the input ceased. The persistence of the signal in

SDFP, sdfp, and FBwas a consequence of the strong loop struc-

ture discussed above. In contrast, the rapid decay of the signal in

the LH was due to a lack of loops.

Information Flow during Behavior
As discussed previously, the dense intra- and inter-modular

connectedness of the core of the auditory module suggests

that it has more functions than just processing auditory signals.

RC members DMP and VLP-D were found to be heavily inner-

vated by dendrites of the giant fiber neurons (Figure S8) de-

scending from the brain into the thoracic ganglion and critical

for the fly’s escape response. This suggests that DMP and
1254 Current Biology 25, 1249–1258, May 18, 2015 ª2015 Elsevier L
VLP-D pairs are the main gateways that send motor action com-

mands. Another LPU, SOG, although not part of the RC, received

its main signals from RC members DMP, SDFP, and VMP and

projected down to the thoracic ganglion. This implies that the

RC/SOGpathway is an alternative or parallel information chan-

nel from sensory input to motor output.

Aside from innervating the giant fiber, DMP and VLP-D had the

highest scores in nearly all measurements of centrality. Further-

more, they were the innermost members of the RC. According to

the overall structure of connections discussed above, we

conjecture that the RC members form the motor center in the

Drosophila brain (black square in Figure 4), which may be the hy-

pothesized second function of the auditory module.

Figure S9A shows the inter-modular connections of the

network. The auditory module was heavily connected to all other

modules, with the auditory-olfactory connection being the stron-

gest. We deconstructed these super-modular connections into

two types, as shown in Figure S9B. The first type of connection

directly joined the motor center and sensory input modules

(black and gray arrows), whereas the second type formed loops

among olfactory, pre-motor, and motor centers (red arrows).

Based on Figure S9B, together with the RC and loop struc-

tures discussed above, possible pathways of information flow

for different types of Drosophila behaviors are summarized in

Figure 4.

ACh/GABA Network
The foregoing discussions of connectivity did not distinguish

between excitation and inhibition. Since the imaged neurons in

FlyCircuit were labeled using genetic drivers based on neuro-

transmitter synthetic enzymes and one vesicle transporter, we

can predict their transmitter identity with reasonable certainty.

For this initial treatment, we focused on the two major neuro-

transmitters in the fly brain, acetylcholine (ACh) and GABA,

where ACh is generally excitatory and GABA inhibitory. The re-

sulting network was based on 3,377 putatively cholinergic and

3,632 putatively GABAergic neurons.

First, we focused on the intra-modular connections of the two

neurotransmitters for the five modules shown in Figure 5A. The

net strength of the edges shown in this network was defined

as snetij = seij � siij, where seij and siij describe the excitatory and

inhibitory strength of the link directed from ith to jth node. Red

links represent positive net strength (i.e., stronger excitatory

features), and black links exhibit negative net strength (i.e.,

inhibitory).

The strongest intra-modular inhibition occurred in the pre-

motor module. Specifically, we found that PB inhibited the FB

and IDFP pair and that FB also inhibited the IDFP pair. Inhibition

of this region could reduce noise and could balance excitation in

order to avoid seizure-like activity.

In the sensory modalities, the main visual input, MED, and the

center of the module, LOB, both appeared to be mutually

excited. In contrast, the main olfactory input, AL, was found to

send more inhibitory connections to MB and LH, which may be

related to the combinatorial mechanism of odor coding [32].

The strength of excitatory and inhibitory links from the AMMC,

the main auditory input, to CVLP was comparable. Thus, the

three main sensory modalities exhibited different excitatory/

inhibitory ratios.
td All rights reserved



Figure 4. Information FlowduringBehaviors

Sensory stimuli for different modalities acted on

first layer LPUs: AL for olfactory, AMMC for audi-

tory, and MED for visual signals. Stimuli were then

processed in their corresponding sensorymodules

along the pathway indicated by the blue arrows.

Signals then converged on RC (motor center)

members in their respective modules: SDFP,

VLP-D, andCVLP for olfactory, visual, and auditory

signals, respectively. After processing in the motor

center (black arrows), output commandswere sent

mainly through DMP and VLP-D, or alternatively

via RC/SOG. The motor center communicated

with the pre-motor center, and involved the

SDFP4FB4DMP (indicated by green circles),

whichwas the strongest three-loop that connected

three modules (Figure 3C). The motor center was

composed of edges with highest edge between-

ness (Figure S4A). Taken together, these data

suggest that decision-making is processed

through an alternative pathway after a certain

amount of reiteration between the pre-motor and

motor centers. The motor center then launches a

command of actions according to that decision.

See also Figures S8 and S9.
Inter-modular connections for snetij are shown in Figure 5B. FB

and PB (pre-motor) displayed the greatest inhibition of DMP and

CVLP pairs. Moreover, the VLP-D (visual) exhibited more

excitatory-type communication with olfactory and auditory

modules.

DISCUSSION

We present a first draft of a mesoscopic connectome of the

Drosophila brain and perform a quantitative analysis of the

directed, weighted network formed by LPUs and their connec-

tions. Modularity analysis showed that the network could be

organized into five modules, including four sensory modality

centers: olfaction, auditory/mechanosensory, vision (left and

right), and the pre-motor center of the central brain. Furthermore,

we determined that an RC, whose members were located in

auditory and olfactory modules, occupied the role of the senso-

rimotor integration center of the brain.

Our analysis revealed important patterns of connectivity and

information flow and also points to the importance of considering

connection strengths for explaining function. Strong nodes and

edges tend to dominate the results, but weak links, or nodes

with low strength/betweenness centrality, could also play critical

roles in brain functioning [33]. For example, the well-known

importance of MB and EB was not highlighted in this analysis,

which implies that connection strength per se may not be suffi-

cient to evaluate the functional significance of LPUs and their

connections. From an economic point of view, strong connec-

tions must be functionally important due to their large volume

consumption and highmetabolic cost in themaintenance of syn-

apses and neurites. Thus, strong connections are necessary, but

they may not be sufficient for indexing node importance. Ulti-

mately, more detailed and activity-basedmethods will be neces-

sary to gain a fuller picture of the brain [2].

Previous overviews of the insect brain have been based on

compilations of classical anatomical findings. A classic review
Current Biology 25, 124
of the structure of arthropod brains [34] has only a small amount

of connectivity information. Strausfeld’s foundational fly brain

atlas provided the first overall framework based on extensive

staining of neural tracts, and it includes summaries of connection

pathways among major brain regions, generally consistent with

those presented in the current study [35]. Anatomical tracer

studies in the cockroach were collected into a detailed connec-

tivity diagram among brain regions and modalities in an effort

to infer functional organization [36]. While generally consistent

with our findings, these earlier studies could not quantify

relative strengths of connectivity. More importantly, the organi-

zational scheme was based only on morphologically recogniz-

able structures. The current study employs a non-biased

sampling of neurons followed by a non-biased parsing of neu-

rons into LPUs, projection neurons, and connecting units [4].

The fact that the structures often correspond to anatomically

recognizable brain areas is presumably not coincidental, but

the analysis is more powerful for being based on connectivity

criteria per se.

The availability of a complete network map for the brain of an

invertebrate model organism invites comparisons to other such

maps, including the nematode C. elegans [37, 38] and several

vertebrate species [26, 27, 39]. Strikingly, several network attri-

butes detected in the brain of Drosophila have analogs in the

brains of other species, for example the existence of modules,

interconnecting hubs, and a densely connected RC. A particu-

larly intriguing comparison is with the network map of the rodent

neocortex [40] This map resembles our fly scheme in the conver-

gence of inputs from sensory modalities, visual and auditory in

particular, into an interconnected set of structures—anterior

cingulate (ACA), posterior parietal (PTL), and retrosplenial

(RSP) cortical areas—that have extensive outputs tomotor areas

and an important role in motor decisions [41–43]. Thus, the ACA/

PTL/RSP network may have genetic or further connectivity sim-

ilarities to the fly auditory/mechanosensory/motor area and de-

serves further investigation. It may indicate the presence of
9–1258, May 18, 2015 ª2015 Elsevier Ltd All rights reserved 1255



Figure 5. The Network of the Excitatory and Inhibitory Links

The intra-modular (A) and inter-modular (B) connections. The type (color) and

strength (thickness) of the links were determined by the difference between the

strength of the putative cholinergic (excitatory) and GABAergic (inhibitory)

links. Red and black arrows represent stronger excitatory and inhibitory links,

respectively. Node sizes are proportional to their total strength, as in Figure 2.

Note the figure displays the difference between the strength of excitatory and

inhibitory links; thus, original strengths are not shown. The behaviors of the two

hemispheres are not symmetrical, possibly because the subtractive nature of

snetij caused large fluctuations of this value.
similar overall strategies of brain organization across distant

phyla, already suggested by the similarities between central

complex and basal ganglia [18, 44].

Assuming that fly brain regions have counterparts in mam-

mals, we would not expect a one-to-one correspondence.

The mammalian brain has been elaborated into many more

distinct regions than any arthropod brain [34, 45]. Therefore,

it seems reasonable to consider that if the fly brain does indeed

have some correspondence to that of mammals, a given brain
1256 Current Biology 25, 1249–1258, May 18, 2015 ª2015 Elsevier L
region may embody properties that are subdivided into multiple

regions in a mammal. In this instance, the correspondence

would be between fly central complex and mammalian

ACA, PTL, and RSP cortical areas, as well as basal ganglia.

The relevant interconnections among these regions, ACA,

PTL, and RSP [40], and basal ganglia [46–48], have all been

demonstrated.

From both evolutionary and engineering perspectives, the

apparent common organization across phyla may simply be

part of a necessary logic. Information from sensory systems

needs to be integrated so that appropriately adaptive decisions

and plans can be made and executed as motor outputs. If this

integration requires any computational complexity, as it un-

doubtedly does, then it needs to converge into a suitably com-

plex network for those computations to be made.

EXPERIMENTAL PROCEDURES

FlyCircuit: The Neuronal Image Database

23,579 single neurons were imaged and categorized according to their drivers,

updating the collection [4] and including 18,179 neurons from females and

5,400 neurons from males (Table 1). Female neurons were divided into 3,355

local neurons and 14,824 projection neurons. Each neuron with its soma

was confirmed and set as the initial point for tracing its skeleton with an algo-

rithm modified from [49].

Classification of Neuron Polarity

The polarity of each structural domain was classified using the skeleton-based

polarity identification for neurons (SPIN) method [5–8]. The complete list

of neuron polarities can be found in the supplemental spreadsheet file

‘‘connectivity_polarity.xlsx.’’

Network Construction

The position of the dendrite of ith neuron was located at the LPU Di with termi-

nal number di, and the axons at LPU Xi, with terminal number xi, then

A
ðiÞ
Di ;Xi

=
ffiffiffiffiffiffiffiffi
dixi

p
. A

ðiÞ
j;k =0 otherwise. AðiÞ was an NU3NU matrix for each neuron.

The matrix representation of the connectome was A=
Pi =Nn

i =1 AðiÞ. Nn = 12995

and NU = 49 were the number of neurons and the number of LPUs,

respectively. The complete list of the connectivity matrix can be found in

Document S2.

Network Measurements

Standard measurements in the complex network theory were performed on

the Drosophila brain network mostly with the Brain Connectivity Toolbox

[50]. Details for the measurements can be found in the Supplemental Experi-

mental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

ten figures, two tables, and predicted polarities and connectivity matrix and

can be found with this article online at http://dx.doi.org/10.1016/j.cub.2015.

03.021.
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