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Abstract

We analyze the scaling and cost-performance characteristics of current and projected connectomics approaches, with reference
to the potential implications of recent advances in diverse contributing fields. Three generalized strategies for dense connec-
tivity mapping at the scale of whole mammalian brains are considered: electron microscopic axon tracing, optical imaging of
combinatorial molecular markers at synapses, and bulk DNA sequencing of trans-synaptically exchanged nucleic acid barcode
pairs. Due to advances in parallel-beam instrumentation, whole mouse brain electron microscopic image acquisition could cost
less than $100 million, with total costs presently limited by image analysis to trace axons through large image stacks. Optical
microscopy at 50–100 nm isotropic resolution could potentially read combinatorially multiplexed molecular information from
individual synapses, which could indicate the identifies of the pre-synaptic and post-synaptic cells without relying on axon trac-
ing. An optical approach to whole mouse brain connectomics may be achievable for less than $10 million and could be enabled
by emerging technologies to sequence nucleic acids in-situ in fixed tissue via fluorescent microscopy. Novel strategies relying on
bulk DNA sequencing, which would extract the connectome without direct imaging of the tissue, could produce a whole mouse
brain connectome for $100k – $1 million or a mouse cortical connectome for $10k – $100k. Anticipated further reductions in
the cost of DNA sequencing could lead to a $1000 mouse cortical connectome.

1 INTRODUCTION

Wiring diagrams for neuronal microcircuits support efforts to reverse-engineer the brain and to identify structural contributors to
neuropsychiatric pathologies [1–3]. Acquisition of large-scale connectivity data could, for example, help to guide efforts to simulate
emergent network functions in mammalian brains [4], which are currently based on statistical extrapolations from small datasets [5,
6]. Recently, the field of connectomics has sought to develop technologies to rapidly extract comprehensive cellular-resolution maps
of synaptic connectivity [7].

Multiple toolsets could potentially support connectomics at the scale of entire mammalian brains or brain regions. These include
automated electron microscopy and image analysis as well as newer techniques for DNA sequencing of cell-identifying molecular
barcode tags [3]. It is unclear, however, to what degree these could be leveraged to create a scalable, integrated connectomics solution,
and whether this could be done at a reasonable cost.

Here we analyze the design space for connectomics by considering the scaling and cost constraints on a range of solutions. We focus
here on techniques for dense, cellular-resolution circuit mapping of individual brains: we do not consider sparse mapping (e.g., viral
tracers), low-resolution mapping (e.g., diffusion MRI) or mapping based on functional measurements [8, 9].

Approaches differ widely in the cost requirement for obtaining the complete connectome of an individual mammalian brain, such as
the mouse brain, with 7.5× 107 neurons in a volume of 420 mm3 (a large fraction of these are in the cerebellum, roughly 3× more
than in cortex [10]). They also differ in the nature of the additional information which they provide, beyond the abstract cell-cell
connectivity matrix.

In Sections 2 and 3, we review the existing electron microscopy approaches, as well as a recently proposed DNA sequencing approach
called BOINC [3], focusing on their scalability towards the mapping of large volumes of mouse brain tissue. Finally, in Section 4, we
discuss the prospects for connectomics solutions based on direct imaging by optical microscopy.
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1.1 CHALLENGES FOR CONNECTOMICS

Generating microscale anatomical wiring diagrams is a major technological challenge. To understand why this is the case, we begin
by outlining some of the relevant structural features of neural circuits. As discussed in detail below in the context of specific methods,
these features place stringent requirements on technologies for comprehensive measurement of synaptic connectivity. Depending on
the method used to measure connectivity, different sets of features become critical in constraining the design space.

Packing density Neurons are packed densely in a three-dimensional jungle of wiring: there are roughly 100,000 neurons per mm3

and 1–2 synapses per µm3 on average inside mouse neocortex. In rat CA1 hippocampal neuropil, the spatial distribution of synapses
appears to be consistent with a uniform random distribution on length scales above the synaptic size [11, 12], with a mean synapse-
synapse distance of∼480 nm (see [12] for the measured distribution of distances). Measurements in rat layer III somatosensory cortex
also suggested an approximate uniform distribution subject to the constraint that synapses cannot overlap in space [13], again with
nearest-neighbor distances of ∼500 nm. If the locations of synapses are distributed uniformly, the number of synapses per cubic
micron will conform approximately to a Poisson distribution, with mean density of 1–2 synapses per µm3: 13%–37% probability of
no synapses, 27%–37% one synapse, 18%–27% two synapses, 6%–18% three synapses, 1.5%–9% four synapses, 0.3%–4% five synapses
and 0.05%–1% six synapses.

Spatial variability The spatial density and arrangement of synapses varies by region, cortical layer (see [14] for glutamatergic
synapse density vs. layer in mouse neocortex), and so forth, although there appears to be a roughly universal number of neurons
beneath a square of fixed area, say 1 mm2, of the cortical surface, varying by a factor of less than 1.6 in rodents [15]. Furthermore,
on some neurons, specific classes of synaptic contacts are spatially organized on the target dendrites [16, 17]. Unfortunately, detailed
measurements of these distributions are currently only available for a handful of brain locations.

Multiplicity There is a large variation in the number of synaptic contacts between any given connected pair of cells. In hippocam-
pus, synaptically connected neurons are often linked by only one synapse, with higher level redundant connectivity occurring in a
group of nearby neurons. In some areas of cortex there are only a handful of contacts between synaptically-paired cells [18], while in
other areas there can be as many as a dozen or more, e.g., 6±5 (mean± standard deviation) among thick-tufted neurons in developing
rat L5 neocortex [19]. In general these distributions are unknown. At some synapses outside cortex (e.g., the Calyx of held [20]) the
effective number of “synapses” (i.e., vesicle release sites) is much higher.

Small feature sizes Relevant anatomical features of neurons are on the nanoscale, below the wavelength of light: dendritic spine
necks and axons shrink in diameter down to tens of nanometers. Synapses can be as small as ∼200 nm in diameter (including both
pre- and post-synaptic compartments) [21].

Long projections Axons often travel several millimeters along complex paths, with kilometers of axonal wiring present in a cubic
millimeter of cortex. Furthermore, at least a few cubic millimeters of reconstructed volume are likely needed to adequately define
the connectivity of local cortical circuits, though smaller volumes may be sufficient to reconstruct canonical circuit patterns in other
brain areas [7].

Diversity Mammalian connectomes are not identical across different individuals, so many connectomes should be mapped.
Methods for statistical reconstructions of connectomes by combining partial reconstructions from multiple animals [22, 23] can be
useful for determining average connectomes as well as statistical variation around the average. To the greatest extent possible, however,
multi-modality measurements should be integrated such that they can be simultaneously applied to each individual brain under study,
rather than averaging or correlating across different brains. The ideal technique would be sufficiently low cost that many individual
connectomes could be rapidly acquired. Post-hoc correlation across multiple single-brain connectomes could reveal insights at the
level of mechanistic conservation: for example, there are likely connection motifs which are invariant across individuals, e.g. in the
organization of cortical circuits.

Size of dataset The amount of data needed to store the abstract connectivity matrix of a mouse brain is roughly N · s · log2(N ) =
2.65×1012 bits< 1 terabtye, where N ≈ 108 is the number of neurons and c ≈ 103 is the average number of synapses per neuron [24].
Including synaptic weights and molecular profiles has been estimated to increase this storage requirement by < 100× [25].

1.2 CAVEATS FOR COST CALCULATIONS

Below, we attempt to estimate the costs associated with hypothetical whole-mouse-brain connectomics projects – normalized to a
three-year project – based on a variety of technology platforms. These estimates are intended as rough approximations and should not
be taken literally as proposed figures for particular projects. Despite these caveats, it is of interest to explore how even crude estimates
of project cost vary with changes to the technology architecture adopted, or with improvements to particular parameters, such as the
speed of super-resolution optical microscopy or the number of parallel electron beams per electron microscope.
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2 ELECTRON MICROSCOPY (EM) CONNECTOMICS

Electron microscopy is the most thoroughly developed approach for the dense reconstruction of neural circuits. Because the wave-
length of an electron under 10 kV accelerating voltage is∼10 pm, imaging with electrons can (in principle) reach spatial resolutions in
the sub-nanometer to nanometer range [26], more than sufficient to trace the finest morphological sub-structures of neurons. The ba-
sic strategy employed by the current EM approaches is to obtain many morphological images of thin tissue sections, segmenting those
images into regions corresponding to distinct neuronal processes, and tracing individual axons from one image to another. Because
axons are thin, long, and densely interspersed with other neuronal processes, tracing their entire lengths is a challenge.

2.1 EM DATA ACQUISITION: BASIC PROPERTIES

Beam current and bit precision The physical constraints on large-scale electron microscopy for neural circuit reconstruction
were first studied in the 1980s [27], following the acquisition of the C. elegans connectome by electron microscopy [28]. The electron
dose per pixel is one property which constrains the resolution and speed of an imaging system. An exemplary recent connectomics
study used roughly 14 electrons per nm2 [29], or 3812 electrons per 16.5nm× 16.5nm pixel. Due to Poisson counting statistics, the
fractional error in the estimate of the stain density in a voxel goes roughly as 1/

p
N , where N is the number of electrons passing

through the voxel [27], so the analog bit precision in that study was roughly log2

p
3812= 6 bits at each pixel.

Merkle [27] used the number of electrons per voxel, the number of parallel electron microscopes available, and the total project time
to estimate the beam current per microscope: imaging a whole human brain in 3 years at 10nm×10nm×10nm voxel size, with 7-bit
precision and 1000 parallel microscopes, would give 0.1 mA beam current, comparable with that of electron microscopes circa 1989.

TEM vs. SEM Transmission electron microscopy (TEM) involves passing electrons through a sample, whereas scanning electron
microscopy (SEM) relies on back-scattered or secondary electrons emitted from the sample’s surface. High-resolution EM analysis was
originally limited to transmission electron microscopy, which necessitated the use of ultra-thin (< 100 nm), grid-suspended sections
to allow electron penetration through the slice. Although TEM sections cannot easily be made thinner than a few tens of nanometers,
z-resolution can be improved by tilting the sample and performing a tomographic reconstruction [30]; only a handful of additional
tilts are required if sparse reconstruction techniques are used. Indeed, the first proposals for whole-mouse-brain electron microscopy
circuit tracing [27] assumed a TEM tomography strategy.

Unfortunately, large-scale automation of transmission electron microscopy has been difficult in practice due to the need to isolate
fragile ultra-thin sections which can be penetrated by the electron beam [31, 32]. TEM is still used today, at rates approaching
10 megapixels per second using camera arrays [33], but in a recent study, ∼30 of ∼4000 thin sections were lost in the preparation
process [33]. Thus, improvements in TEM sample handling are needed to trace connectivity at whole-mouse-brain scale, and we focus
on scanning electron microscopy techniques below. With improvements in sample handling, TEM could be a promising approach
for large-scale circuit reconstruction [30].

Maximum block size and the importance of lossless subdivision EM cannot take advantage of parallel imaging on multiple
machines unless lossless subdivision of the tissue into “blocks” is performed prior to imaging: it must be possible to separately image
two adjacent sub-blocks and stitch the resulting images together in software. The finest neuronal processes must be traceable from
one sub-block to the other, and features localized at the block-block interface must be preserved. In one demonstrated technique for
lossless subdivision [31, 34], a hot diamond knife reduces the cutting stress locally and reversibly, and an oil film prevents damage due
to scraping of the tissue block along the knife edge. This process appears amenable to large-scale automation.

Parallel beam instruments The speed of SEM can be increased by using multiple parallel beams in a single instrument. For
example, Zeiss is developing an instrument with 60-fold parallelization. It is incorrect to assume, however, that the speed of a
multibeam SEM scales proportional to the number of beams. Because of the limitations of electron optics and charge repulsion, the
total current in each beam is typically much smaller than can be achieved in a single-beam system. A 10× speed improvement over
an equivalent single-beam instrument would be a more conservative estimate, even though the system has 61 beams. Parallelization
of a 40 mega-pixel per second SEM by a factor of 25 would lead to gigapixel per second rates, which appears to be a reasonable
upper bound for the immediate future. More optimistically, advanced SEMs could potentially use thousands of parallel beams, and
instrument costs could be reduced to the $100k regime via solid-state lithographic electron optics [31]; such systems may be a natural
offshoot of the development of next-generation electron-beam lithography systems by the semiconductor industry.

Reliability and cost of sectioning Reliability of ultra-thin-sectioning is a key issue for SEM approaches. Empirically, it is
currently difficult to knife-section a 300µm× 300µm× 300µm block at 30 nm slice thickness, and usually takes multiple attempts;
reliable sectioning becomes more difficult for larger block sizes. We highlight scenarios below where reliability of physical sectioning
is likely to become the major limiting factor.
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Diamond knives used in electron microscopy routinely perform 10k sections before incurring damage. Assuming that only 1000
sections are used per knife to keep damage rates conservatively low, and that each knife costs $2500, the cost of the knives for
420mm3/(1cm2× 25nm) = 168000 sections would be <$500k.

2.2 APPROACHES TO AUTOMATED SEM

Three strategies for large-scale electron-microscopy of brain tissue — SBEM, ATLUM and FIB-SEM — are depicted in Figure 1.

2.2.1 SERIAL BLOCK FACE SEM (SBEM)

SBEM uses a diamond knife embedded in the SEM to serially remove an ultra-thin section of a pre-stained tissue block [35] after
surface imaging, revealing the next layer to be imaged [36].

Resolution The z-resolution achievable with diamond knife sectioning is on the order of 25–30 nm. The effective z-resolution of
SBEM could be improved by using multi-energy deconvolution SEMs, allowing “virtual sections” thinner than the physical sectioning
thickness of the diamond knife. SBEM also imposes a minimal lateral pixel size, since the higher electron doses associated with smaller
pixels interfere with reliable physical scraping by the diamond knife when pixel densities surpass this limit [31].

Maximum block size Current implementations of SBEM are limited to tissue blocks ∼1 mm on a side, although there appears to
be no block size limitation in principle [30].

2.2.2 AUTOMATED TAPE-COLLECTING LATHE ULTRA-MICROTOMY (ATLUM)

ATLUM [32, 37] allows a block of tissue to be sliced into > 25 nm ultra-thin sections which are arrayed on a tape reel for random-
access imaging.

Resolution Empirically, the reliability of ATLUM-SEM decreases considerably below ∼30 nm section thickness. As for SBEM,
virtual sectioning techniques could potentially be used to achieve higher effective z-resolution.

Unlike SBEM, ATLUM does not suffer from a minimal pixel size limit due to physical tissue damage at high electron doses, since the
tissue sectioning occurs before imaging. This has allowed the lateral pixel size to approach 4nm× 4 nm, such that a voxel size as small
as 4nm× 4 nm× 25nm appears to be possible [38].

Maximum block size ATLUM-SEM can achieve large lateral slice sizes, e.g., 2.5mm× 6mm, and sufficiently-thin sectioning
allows effectively lossless tracing along the axial dimension. Thus, ATLUM-SEM appears to be suitable for whole-mouse-brain-scale
automation [30].

Reliability Reliability of automated ultra-thin sectioning would likely be the key limiting factor for whole-mouse-brain EM
imaging in this approach.

2.2.3 FOCUSED ION BEAM SEM (FIB-SEM)

In FIB-SEM, a gallium ion beam, rather than a diamond knife, removes a thin layer of the tissue block by ablation [39], to expose a
fresh surface for imaging.

Resolution FIB-SEM has achieved 5nm× 5nm× 5nm voxel sizes [39], because it can a) tolerate large electron doses, eliminating
the lateral resolution issues of SBEM and b) slice at a very fine z-resolution [31]. In fact, the z-resolution of FIB-SEM microscopy is
limited by depth of electron penetration into tissue block [31], such that lower voltages and more sensitive electron detectors could
in principle reduce the slice thickness even further.

Maximum block size The major limitation of FIB-SEM, which appears to be fairly fundamental, is that it can only apply to
blocks at most 100µm across along the direction of the milling beam (with an optimal size of ∼20µm), due to the limited depth of
focus within which the ion beam is thin and approximately collimated [31]. Automated FIB-SEM imaging of large volumes of brain
tissue would thus involve lossless subdivision of the tissue into rectangular blocks, with one edge length of ∼20µm and the other
edges much longer: for example, blocks of dimensions ∼20µm× 100µm× 100µm might be a reasonable target.
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Figure 1. EM connectomics tools: A) Serial block face SEM (SBEM) images the top face of a pre-stained tissue block, then removes
the imaged face with a diamond knife, revealing the next layer. B) Focused ion beam SEM (FIB-SEM) operates on a similar principle,
but removes tissue layers by ablation with a focused beam of ions. This enables thinner sections and higher electron doses compared to
SBEM, but the finite depth of focus of the ion beam limits the size of individual blocks. C) Automated tape collecting lathe ultramicro-
tomy SEM (ATLUM) sections tissue with a diamond knife and places the sections on a solid support, before loading samples into the
electron microscope.
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2.3 EM DATA ACQUISITION: COST ESTIMATES

The image-acquisition cost for a 3-year project is given by

C3 year acq =machine cost×
Timaging

3 years

where Timaging, the time it would take to acquire all the data on a single machine, is given by

Timaging =
1

pixels per second per beam
×

tissue volume/pixel volume

number of parallel beams per SEM

In the below, we typically assume a machine cost of $1M, and compute the imaging time for a 420 mm3 brain at the highest achievable
resolution on each machine type. Note that if pre-existing machines are used, or if the machine cost can be amortized over a longer
duration (e.g., multiple projects), then the effective image-acquisition cost would be lower.

2.3.1 SBEM

In one SBEM study, imaging a 325µm× 325µm× 60µm tissue block at 16.5nm× 16.5nm× 25nm voxel size took on the order of
7 weeks at ∼0.5 MHz pixel rate [40]. This is in order-of-magnitude agreement with the simplest calculation, based only on the pixel
size and ∼2 µs dwell time: 2µs× (325µm× 325µm× 60µm)/(16.5nm× 16.5nm× 25nm)≈ 2µs× 1012 pixels≈ 517 hours≈ 3 weeks.
The estimated cost for a single whole mouse brain acquisition in 3 years is roughly $1B without parallelization and $20M–$100M
with 60-fold parallelization. SBEM can likely be operated at lower pixel dwell times (e.g., 0.5µs) without unacceptable loss of image
quality, decreasing the cost proportionately.

2.3.2 ATLUM

ATLUM can achieve 40 megapixel per second imaging rate at 4nm×4nm×25nm pixel size (or an effective imaging rate of 400–2400
megapixels per second with 10- to 60-fold parallelization). The estimated 3 year whole mouse brain imaging cost is then $300M and
$5M–$30M.

2.3.3 FIB-SEM

FIB-SEM can achieve > 5 MHz pixel rate at 5nm× 5 nm× 10nm voxel size [31]. For a 3-year acquisition, we would need

1

3 years
×

1

5 megapixels per second per beam
×

420mm3

�

5nm× 5nm× 10nm per pixel
� ≈ 3600 beams
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Without parallelization, the estimated 3 year imaging cost is $3.6B, comparable to the estimate of $5B in [31] (which considers more
than just imaging costs). At 60-fold parallelization, 60 machines would be needed, giving an estimated cost of $60-$360M.

2.3.4 SUMMARY

Data acquisition costs for whole-mouse-brain automated EM approaches could lie in the range of $10M–$200M. These estimates do
not include the costs of developing reliable systems for lossless tissue subdivision, thin-sectioning and sample handling.

2.4 EM DATA ANALYSIS: BASIC PROPERTIES

A major outstanding challenge in SBEM connectomics is image analysis: reconstructing neuronal wiring from EM image stacks.
Tracing thin axons over long distances is the key difficulty, as opposed to synapse detection [29, 41].

Error propagation A critical issue is the reliability of the analysis. Each error affecting an axon can cause disproportionate
damage to the reconstruction, by mis-labeling each of the hundreds of downstream synapses in the connectivity matrix. For example,
if an error in an axonal trace occurs on average even once per the length of one axon, which is several mm in mouse brain, then
50% of all connections in the connectivity matrix will be incorrect. In practice, achieving one error per several mm of EM trace is
challenging: in one study [42], the errors in the manual reconstructions from ssTEM data — i.e., the best reconstruction quality
currently available, as compared with automated algorithms — were roughly 1 error per 1000 axonal slices, corresponding to roughly
1 error per∼50–100µm of axonal length, far below the∼4 mm typical axonal length in mouse cortex. In that study, the slice thickness
was 50 nm, so decreased error rates would be expected in the techniques studied here, which use < 30 nm slice thickness.

Dependence on voxel size Currently, the ability of automated algorithms to trace the thinnest axons depends strongly on the
imaging resolution. Given appropriate staining, a voxel size of (< 10nm)×(< 10nm)×(< 10nm) is sufficient to allow fully-automated
axon tracing, whereas larger voxel sizes can lead to tracing ambiguities that are currently only resolvable through human-assisted image
analysis. It is possible, though not proven [30], that a sufficiently small lateral pixel size — e.g., as is achievable in ATLUM-SEM due
to its tolerance of high electron doses, but not in SBEM — can allow for unambiguous automated neurite tracing even at relatively
low z-resolutions.

Dependence on staining method The quality of EM data depends not only on the instrument resolution but also on the properties
of the staining method. Staining of internal structures in axons and dendrites can lead to ambiguities in the resulting images. If only
external surfaces are stained (e.g., along with a synapse stain) then even 25nm×25nm×25nm instrument resolution may be sufficient
for unambiguous axon tracing in some cases. On the other hand, if many internal structures are heavily and non-specifically stained
(i.e., the method produces large “blobs” of dense stain), then even 5nm× 5nm× 5nm instrument resolution may not be sufficient
for axon tracing. Specific staining of the plasma membrane or other structures using genetically encoded contrast generators (e.g.,
APEX [43]) may be one option for programmable control of the staining properties. Genetically encoded contrast agents could be
targeted to specific neuronal compartments, such as the axon (much as are certain ion channels) [44], in order to sparsify the scene.
Reliable and uniform staining of entire mammalian brains prior to tissue sectioning is the subject of ongoing research [35].

Theoretical limits on the tracing error rate In EM tracing, the goal is to trace tube-like structures (axons) through a series of
images using the fact that the tubes are hollow. The tubes are randomly oriented throughout the series of images, running perpen-
dicular or parallel to the slice with roughly equal probabilities (in cortical neuropil). If the axon is perpendicular to the slice, then it
appears as a “circle”. If the axon is oriented parallel to the slice, then it appears as a “blob” of stain arising from its upper and/or lower
membrane surfaces. The fundamental parameters are the largest voxel dimension h and the smallest opening diameter d in the tubes.
If two slice-parallel axons nearly overlap, and are heading in nearly the same direction, then their paths cannot be distinguished, even
when using longer-range structure across multiple images or sections and even as judged by human experts. This led to a model of
the frequency of such “true ambiguities” [42] per micron of axonal wires, as a function of the slice thickness h. Using the observed
distribution of axon diameters ρ(d ), the model predicts one expected true ambiguity per 100–1000 mm of axonal wire for 20–30 nm
sections; recall that there are kilometers of axonal wire per mm3 of tissue.

Data storage requirements Assuming 10nm×10nm×10nm EM voxel size, there are 420mm3/(10nm×10nm×10 nm)≈ 5× 1016

voxels in a 420mm3 mouse brain. At 1 byte per pixel, this is ∼400000 terabytes of EM image data, roughly the total amount of data
transmitted over the internet during a 10 hour period circa 2013 (storage would cost $20M on $100 2TB hard drives).

2.5 EM DATA ANALYSIS: COST ESTIMATES

2.5.1 SBEM AND ATLUM

The standard z-resolution of SBEM and ATLUM of 25–30 nm is not sufficient to allow fully-automated tracing of neuronal processes
with currently available algorithms. Manual volume segmentation from SBEM image stacks by a trained human requires roughly 2
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work-hours per µm3. To get around this, Helmstaedter and colleagues [29] split the analysis pipeline into two separate stages: skeleton
tracing and volume segmentation / contact detection.

For the skeleton tracing step, REdundant-Skeleton COnsensus Procedure (RESCOP) [45] is a human-assisted process for tracing the
center of the axon. The software resolves disputes between users through redundancy and infers an estimate of the skeleton trace
via a statistical model. A redundancy factor of 18 or 19 leads to roughly one tracing error per cell. This method achieved ∼0.0135
work-hours per µm3. At a labor rate of $5 per hour, this corresponds to $70M per mm3; for the whole mouse brain the labor cost
would be of order $30B. To complete the analysis within 3 years using this method, assuming 2000 working hours per year, 945000
laborers would be required.

The human-assisted skeleton tracing does not reveal synapses or detailed local morphology. This information is obtained via fully-
automated volume segmentation algorithms, applied after the skeleton tracing [46, 47]. The estimated volume error rate for this
process is around 3% [29]. Note that this procedure currently does not reveal “ground truth” synapses as defined by the presence of a
post-synaptic density (PSD) and pre-synaptic vesicles, but merely assesses the probability of connected neurons based on the pattern
of contact between two cells (e.g., contact area, which is not a good predictor of actual synapses [29, 48], except at very high contact
areas [29]).

Large-scale internet-based crowd-sourcing could play an important role in reducing the cost of analysis, since tens of thousands of
users appear to be willing to participate in the process for free [49]. These players also collectively generate a large data-set for training
machine learning algorithms to fully automate the system [49]. Other crowd-sourcing approaches for image segmentation are also
being developed [50].

Using today’s tools, analysis costs would be in the tens billions of dollars for a whole mouse brain. The computational connectomics
sub-field aims to reduce the analysis costs by orders of magnitude, ideally leading to full automation.

2.5.2 FIB-SEM

It is possible that the (< 10nm)× (< 10nm)× (< 10nm) resolution of FIB-SEM will enable reliable, fully automated axon tracing
and synapse identification from large volumes [31]. Automated synapse detection from FIB-SEM images has been demonstrated with
error rates comparable to that of human experts (e.g., 0.92 recall at 0.89 precision) [51, 52].

2.6 ANNOTATION OF EM CONNECTOMES

While stains have been developed to couple electron-imaging contrast to neuronal and vesicular membranes, there are few extant
mechanisms to couple electron contrast to other forms of sub-cellular molecular information, such as specific genetic sequences or
specific proteins. Recent attempts have been made to introduce multiplexed labeling capabilities into EM [53], as well as to create
genetically encoded proteins which can serve as EM markers [43, 54]. Furthermore, it may be possible to create nanoscale spatial
patterns of heavy metals or other high-contrast elements which could serve as combinatorially-diverse EM labels (EM barcodes).
Another option for obtaining multiplexed molecular information from a given cell body would be as follows: given the > 1000
sections that contain a single cell body, it would be possible to antibody-stain each section for a different molecular marker, and
thus to assign a “molecular identity” to every EM-reconstructed cell, without requiring any single EM image to be “multi-colored”.
Nevertheless, EM currently lags behind optical microscopy in the ability to readily reveal biochemical information in a multiplexed
fashion and in any neuronal compartment.

2.7 SUMMARY

Electron microscopy imaging using serial block-face SEM (SBEM), automated tape-collection lathe ultramicrotomy (ATLUM) or
focused ion beam SEM (FIB-SEM) would cost hundreds of millions to billions of dollars for whole-mouse brain data acquisition
using current instruments. Next-generation parallel-beam SEMs — e.g., a 60-fold parallelized SEM under development by Zeiss —
could reduce the data-acquisition costs into the range of tens of millions of dollars or below, depending on the degree and cost of
parallelization.

FIB-SEM will likely allow fully-automated image analysis, due to its < 10 nm z-resolution and compatibility with 5 nm in-plane
resolution. However, due to its limited field of view per instrument (∼20 µm along the milling axis), new instrumentation would
be required to automate the sub-division of tissue into appropriate-sized blocks. Hayworth has demonstrated preliminary proof of
principle that this sub-division could be achieved without information loss, to enable tracing of fine axons between blocks. SBEM and
ATLUM-SEM are more readily automated on the hardware side than FIB-SEM due to their compatibility with larger fields of view.
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For SBEM and ATLUM, which have z-sectioning limits of ∼25 nm, tracing of fine axons becomes more difficult for current image-
segmentation software. Recent software advances, which separate skeleton-tracing (human-assisted) from subsequent volume segmen-
tation and synapse identification (automated), have reduced the human labor requirements to roughly one work-minute per cubic
micron (although current semi-automated image analysis methods mandate a staining protocol incompatible with “ground-truth”
synapse identification, i.e., the presence of vesicles and PSD). At a labor rate of $5 per hour, analysis of a whole mouse brain using
this software would cost tens of billions of dollars and require nearly a million workers. Further advances in software are needed,
therefore, to enable fully-automated analysis of image data generated from SBEM and ATLUM. Importantly, the analysis costs could
ultimately become negligible, in principle, through algorithmic advances. Also, the effective z-resolution of SBEM or ATLUM could
be improved through virtual sectioning.

Thus, given either a) construction of an automated tissue sub-division system for FIB-SEM or b) full software automation of SBEM or
ATLUM image analysis (e.g., via machine learning advances), and the emergence of multi-beam SEMs at a cost comparable to current
single-beam SEMs, a whole mouse brain EM connectome project could be achievable for a cost of tens to hundreds of millions of
dollars and a duration of several years per mouse brain. A major advantage of EM connectomics is its ability to trace in detail the
morphology and compartmental structure of neurons, which is tightly coupled to their electrochemical functions [55].

3 TRANS-SYNAPTIC BARCODE PAIRING AND BULK SEQUENCING (BOINC)

A DNA barcode is a unique sequence of DNA used to “tag” an object of interest. Zador has suggested [3] an approach to connectomics,
called Barcoding of Individual Neuronal Connections (BOINC), which leverages large numbers of DNA barcodes. First, each neuron
is given a unique DNA barcode. Copies of each neuron’s barcode are then exchanged with its immediate synaptic neighbors. A
cell’s own barcodes are then stitched together with barcodes received from its synaptic neighbors, forming a set of barcode pairs
corresponding to synaptically connected neurons. In particular, Zador’s original proposal suggested using trans-synaptic tracer viruses
(e.g., engineered pseudorabies replicons) to shuttle copies of the barcode from a given cell to its immediate pre-synaptic neighbors,
whereupon a recombinase (e.g., phiC31 integrase) in the recipient cell would link donor and recipient barcodes into a single strand [3].

The barcode-pair DNA strings from all cells are extracted, pooled, amplified (i.e., creating many copies of each barcode pair) and
sequenced on a bulk DNA sequencing machine, such as an Illumina HiSeq. This results in digital data specifying a set of “on” matrix
elements, corresponding to barcode pairs (synaptic neighbors) which are observed, and a set of “off” matrix elements, corresponding
to barcode pairs which are not observed (e.g., due to the absence of a synapse between the corresponding two neurons).

To allow “annotation” of the connectivity matrix, Zador and colleagues also suggested that additional information, encoded in nucleic
acids, could be appended onto these barcode pairs, e.g., RNA sequences indicative of a cell’s gene expression profile (cell type).

Note that the problem of determining the spatial position of each neuron is not solved by this approach, although coarse-grained
positional information could be included by sectioning the tissue and appending additional, position-encoding DNA barcodes to the
cell-barcode pairs extracted from each physical section, prior to bulk sequencing. The basic idea of BOINC is depicted in Figure 2.

Alternate molecular implementations of the same idea (which obviate the use of trans-synaptic viruses) could be preferable from
a practical standpoint. For example, synaptoneurosomes containing cell-specific barcode RNAs could be extracted from the tissue
and their contents sequenced via a vesicle-barcoded emulsion PCR: synaptoneurosomes typically have some of the pre-synaptic and
some of the post-synaptic membrane still attached and even re-sealed [56], although there would be an issue of synaptoneurosome
collection efficiency in this scheme.

3.1 DNA BARCODES

In one implementation, the DNA barcodes are contiguous strings of random nucleotides (random oligonucleotides) [57, 58]. In
another implementation, the barcodes correspond to an array of direct or inverted DNA sub-strings flanked by recombinase inversion
sites [3] (e.g., with 19 nucleotide inversion sites for Rci recombinase [59]). The stochastic arrays could be generated in-vivo by
recombinase activity, starting from a standard cassette present in all neurons. There is precedent for recombinase-based sequence
diversity generation in biology: the Min system makes 240 distinct variants of its multiple-inversion site, leading to 240 different
isomeric forms of a phage coat protein to evade bacterial defenses [60].

In the first implementation, DNA barcodes consisting of only 20 DNA nucleotides (A, T, C or G) could in principle uniquely label
420 = 1012 neurons, four orders of magnitude larger than the number of neurons in a mouse brain. When barcodes are generated
(or chosen) randomly, there is a need to consider the probability of two neurons acquiring the same barcode. To uniquely identify a
cell with a DNA barcode, the barcodes must be long enough to avoid the occurrence of duplicate barcodes in the population. The
probability of no identical barcodes when n barcodes are chosen with replacement from a test-tube with 4 j barcodes (i.e., with all
possible DNA oligonucleotides of length j) is
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Figure 2. Reading out neuronal connectivity via bulk sequencing: cell-identifying nucleic acid barcodes from synaptically-
neighboring cells are physically linked (e.g., via viral exchange and recombinase activity [3]), and extracted from the neural tissue.
The linked barcodes are then sequenced on a high-throughput DNA sequencer, such that each sequencing read corresponds to a barcode
pair from a synaptically-connected pair of neurons.

G ACCG G ATA A TAG AC AT TG C

G A ACC AG G T T A ACC AT TG AG

G AC TG ATCG G AG C TG A AT T C

Sequencing
Library

P ( j , n) = n!×Binomial(4 j , n)/(4 j )n

where n is the size of the cell population and j is the DNA barcode length in nucleotides [61].

For n = 7.5 × 107 neurons and j = 31 base-long barcodes, the probability of a duplication 1 − P ( j , n) < 0.001 (the per-neuron
probability of duplication is then roughly 10−11). This corresponds to a total barcode population size of 431 ≈ 5× 1018.

For the case of recombinase inversion barcodes, the number of barcodes generated from k segments is k!× 2k , as long as the recom-
binase inverts but only rarely excises on the relevant timescales [3, 62]. To achieve a similar probability of barcode duplication, only
k ≈ 16 distinguishable segments are needed.

There are many other strategies to create cell-identifying barcodes besides the two just mentioned; the diverse mechanisms involved
in generation of antibody diversity by the immune system provide a range of examples. Indeed, somatic (VDJ) recombination has
been used as a form of in-vivo barcoding for tracing of lymphocyte lineages in the mouse [63].

Error sources PCR amplification and sequencing can introduce errors which would transmute one barcode into another. For-
tunately, the recombinase-based barcode generation strategy leads to barcodes that are highly orthogonal at the sequence level (large
minimal pairwise edit distance between barcodes, compared to the mutation probability), and synthetic barcode libraries introduced
via viral transduction could be designed to be highly orthogonal. On the other hand, short barcodes strings which are generated
stochastically in all cells by other methods will not necessarily be highly orthogonal.

Illumina paired-end sequencing can achieve error rates of roughly p = 0.012 = 10−4 per base. Assuming a 100 bp template, the
probability of two errors is then p2 · Binomial(100,2) = 5 · 10−5. The error rate per cycle of PCR is much lower due to the high
fidelities of proofreading polymerases: f = 5 · 10−7 per base for Pfusion [64]. The fraction of strands with ≥ 1 polymerase-induced
error after d cycles of PCR on a template of length b nucleotides is then F (≥ 1) = 1− e−b · f ·d = 0.00125 [65] for d = 25 cycles and
b = 100 nucleotides. On the other hand, in complex template libraries, errors due to mis-priming and chimeric products can occur at
rates of 5% or higher. It is possible to reduce the effective PCR and sequencer error rates using “digital” sequencing methods like [64,
66], which employ pre-amplification template barcoding and redundant sequencing to factor out these error sources.

Failure to capture any barcode pair corresponding to a given connection, leading to a false negative (missed connection) in the con-
nectivity matrix, will likely be the dominant source of error in most implementations of BOINC. With highly orthogonal barcode
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sequences, false-positives due to sequencing errors can be minimized. Therefore, it is likely possible to implement BOINC in a regime
where almost all errors are false-negatives, in contrast to the electron microscopic axon tracing approaches which are quite vulnerable
to false-positives [3].

3.2 HIGH-THROUGHPUT DNA SEQUENCING

The cost for a BOINC connectome is CBOINC = c · r ·Nsynapses where c is the cost per sequencing read, r is the number of sequencing
reads per synapse and Nsynapses is the number of synapses in the tissue under study. The fraction of un-sampled synapses is funsampled =

e−r [3] so that 1− e−10 = 99.995% of synapses are sampled at r = 10 and 95% of synapses are sampled at r = 3. Because many pairs
of neurons are connected by several synapses, the fraction of un-sampled connections (synaptically linked cell pairs) will be less than
the fraction of un-sampled synapses.

The mouse brain contains roughly Nsynapses = 1011 synapses: an average of 103 synapses per neuron gives Nsynapses = 7.5×1010, whereas
an approximate average spatial density of 1 synapse per µm3 gives Nsynapses = 4.2×1011. Hence 1011–1012 sequencing reads are required
per mouse connectome, depending on the redundancy factor r .

With current sequencing technology, running 3 lanes of an Illumina HiSeq 2500 produces > 109 reads (of up to 100 bp each) in about
10 days for a cost of a few thousand dollars. Roughly 100 HiSeq runs would be required for a full mouse connectome, for a cost of a
few hundred thousand dollars. An existing high-throughput genomics facility (with > 50 HiSeq machines) could sequence a mouse
connectome in 1-2 months.

The cost per base-pair (bp) of DNA sequencing has been decreasing rapidly: 2 bp per dollar in 2004, 106 bp per dollar in 2009 and
107 bp per dollar in 2011 [3, 67]. The “$1000 human genome” corresponds to $1000/(3 · 109 bp · 40×) = $10−8 per bp, assuming 40×
coverage. At these rates, the cost per 100 bp read is $10−6. Thus the minimum cost at these rates is about $10−6/synapse, or about
$100k for 1011 synapses. Three-fold and ten-fold oversampling (r = 3 or r = 10) raise the cost to $300k and $1M per whole mouse
brain, respectively. Corresponding costs for the mouse cortex alone, which contains perhaps 10% of all synapses, range from $10k to
$100k.

If these trends continue, it is not unreasonable to imagine that sequencing costs for a mouse brain connectome could drop by a
further factor of 10 or more in the foreseeable future. At that point other expenses, including mouse and DNA processing costs, will
dominate. Note that we have not included the cost of the bulk sequencing machines in this calculation: we are assuming that existing
machines are used, e.g., at an existing genomics facility.

3.3 ANNOTATION OF BOINC CONNECTOMES

At 100–200 bp, each sequencing read would have enough room to include a minimal amount of transcriptomic information, in
addition to just the connectivity matrix. This could take the form of RNA transcripts attached to the barcodes via RNA trans-
splicing. Quantitating the relative proportions of just a few transcripts could be useful: for example, GAD67 and NeuN can be used
to identify inhibitory neurons [68]. Sequencing and abundance-counting of a few dozen transcripts could be sufficient to identify
known neurobiologically relevant cell types: PV, SOM and VIP to identify the major classes of interneurons, for instance, and DAT,
CHAT and others to identify major classes of neurotransmitter-secreting cells. Reliably implementing such trans-splicing mechanisms
may be difficult in practice, however, and the method does not scale to capture full transcriptomes.

It is possible that relative connection strength annotations could be incorporated into BOINC by counting the number of recovered
barcode pairs corresponding to any given pair of cells. In many potential implementations of BOINC, the number of barcode pairs
recovered from a given cell pair would scale approximately linearly with the total area of synaptic contact between the cells, which
may be correlated with connection strength [69]. Variability in the barcode pair collection efficiency across different cells could
confound such measurements, however, and total contact area is likely not a perfect indicator of connection strength.

While BOINC can also be annotated with coarse-grained positional information, its major limitation is that it does not reveal the
precise spatial position or morphology of each cell. Optical microscopy techniques incorporating BOINC barcodes could potentially
ameliorate this, as discussed below.

4 DIRECT OPTICAL MICROSCOPY FOR CONNECTOMICS

An optical microscopy approach to connectomics would be powerful, in principle, in that it could allow integration with a wide range
of other biochemical measurements that are accessible through modern light microscopy, e.g, Fluorescent In-Situ Hybridization
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(FISH) [70, 71] or serial histology [72, 73]. It is widely believed, however, that electron microscopy is the only approach which
can allow acquisition of connectomes by direct imaging. Indeed, there can be as many 10-40 neurites per diffraction-limited optical
resolution volume [11], which creates severe difficulties with direct optical tracing of axons, even when neurites are tagged with
distinct sets of fluorescent proteins through random genetic recombination (BrainBow) [74–76]. Nevertheless, there may be novel
strategies which can work around this limitation.

4.1 OBSERVING SYNAPSES VS. TRACING AXONS

Because of the comparative sparseness — at 1-2 synapses per µm3 — of synapses in 3D space, optical connectomics approaches
could succeed by restricting their attention only to the synapses themselves [11]. Rather than directly tracing the paths of axons and
dendrites through a series of images, cell-identifying molecules could be physically trafficked — via endogenous cellular processes
— to the pre-synaptic and post-synaptic compartments [77–79]. Then, observations of the synapses alone could reveal the identities
and/or properties of the pre-synaptic and post-synaptic cells.

Resolution requirement to resolve neighboring synapses Diffraction-limited 3D imaging (λ/2NA≈ 200nm xy-resolution and
2λ/NA2 ≈ 533nm z-resolution for numerical aperture NA = 1.5 and wavelength λ = 600nm) is not sufficient to directly resolve
a synapse from its neighboring synapses [11]. Simulations of synapse-labeled fluorescence microscopy based on EM reconstructed
rat hippocampal neuropil have suggested, however, that < 100 nm isotropic resolution is sufficient to resolve >90% of synapses from
their nearest neighbors [11]. These simulations assumed that fluorescence was limited to the pre-synaptic and post-synaptic densities
(PSDs), as opposed to the entire axonal bouton or spine head.

Figure 3 shows a conservative estimate of the resolvability of nearest-neighbor synapses based on the dataset from [11], in which
synapses are present at an average density of 1.85 per µm3. A strict criterion for resolvability is applied: two synapses are considered
to be non-resolved if any of their labeled points are separated by a distance smaller than the isotropic resolution. Since synapses are
extended objects, it is often possible to separate them based on shape, even if they are not resolvable according to the strict criterion;
the strict criterion gives a sufficient but not necessary condition for resolvability.

Labeling only of the PSDs allows resolution of >90% of synapses at isotropic resolution < 125nm, whereas labeling of the entire
pre-synaptic and post-synaptic compartments gave poor performance even at < 50nm isotropic resolution. The poor performance
for whole-compartment labeling is not surprising: synaptic boutons and spine heads often directly contact other nearby boutons and
spine heads, leading to high confusion rates between nearby synaptic puncta, in the whole-compartment labeling scenario, even if the
imaging resolution were to approach to zero. Therefore, to optically resolve individual synapses, it is essential that the labeling be
highly specific to the PSDs, as could perhaps be achieved with a protein-tagging strategy.

Achieving the required resolution Experimentally, confocal microscopy in < 100 nm thin sections and at roughly 200 nm
diffraction-limited xy resolution — in the context of Array Tomography — appears to optically resolve most if not all synapses [72,
73, 80] via antibody staining of synaptic proteins such as synapsin. Isolated fluorescent puncta are observed, in numbers similar to
those expected in the tissue based on EM measurements of synapse density [73]. In one recent study, the fluorescent puncta have
been attributed to individual synapses [81] by comparison with EM imaging of the same serial sections.

Advances in microscopy could minimize the need for ultra-thin 2D sections. The dual-objective imaging technique I 5M achieves
100 nm resolution axially and 200 nm resolution laterally in a wide-field mode [82], and multi-photon 4Pi-confocal microscopy gives
similar axial resolution [83] in a parallelized beam-scanning mode.

A 10–100× improvement to the speed of linear structured illumination microscopy (SIM) has recently been reported [84]. Linear SIM
exceeds the diffraction-limited resolution by a factor of 2 along all three axes, with commercial systems achieving 130nm× 130nm×
270nm resolution voxels. Further improvement to the axial resolution of SIM could allow it to resolve most synapses. For example,
I 5S two-objective detection [85] is a form of SIM with isotropic 100 nm resolution.

Other techniques offer even deeper levels of optical super-resolution. Nonlinear SIM – SIM performed at illumination intensities high
enough to saturate the fluorophore – can improve resolution beyond that of linear SIM [86], and parallelized nanoscopies based on
point-spread function engineering have been demonstrated [87]. Stochastic Optical Reconstruction Microscopy (STORM) achieves
30nm× 30nm× 50nm voxel size in 3D [88], but at its current volume throughput of roughly 15µm3/s, STORM of an entire mouse
brain would take nearly 1000 imaging years.

Molecular methods could be used to increase the effective spatial resolution, relative to that of any given optical setup, by “stratifying”
the observation of different synapses into different imaging frames [89]. This would increase imaging time proportionately. For a
2× cost in the imaging time, molecular stratification could also resolve the pre-synaptic and post-synaptic compartments of a given
synapse: first activate pre-synaptic but not post-synaptic dyes, then switch to a new camera frame and reverse the activation pattern.
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Figure 3. Optical resolution requirements for resolving nearest-neighbor synapses. The fraction of non-resolved synapses as a
function of isotropic resolution for PSD labeling (green) and whole-compartment labeling (red), based on the dataset from [11]. A pair
of synapses is considered unresolved here if and only if they contain labeled points separated by less than the isotropic resolution.
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4.2 STRATEGIES FOR OPTICAL CONNECTOMICS

Fluorescent protein-based synaptic BrainBow A “synaptic BrainBow” strategy [11] has been proposed, in which each cell would
express a distinct combination of fluorescent proteins, which would be targeted to the pre-synaptic and post-synaptic compartments.
Then, by observing the spectrum of colors at each synapse, the corresponding pre-synaptic and post-synaptic cells could be identified,
even if the pre-synaptic and post-synaptic compartments of a given synapse are not optically resolvable from one another. This
could be combined with observation of the corresponding fluorescent protein color patterns expressed in the nuclei, thus labeling the
locations of the corresponding somas.

This method could have favorable properties with respect to resolution of neighboring synapses, outperforming the conservative
resolution requirements in Figure 3. In particular, synaptic BrainBow relies on tagging synapses based on co-localization (spatial
correlation) of fluorescence from pre-synaptic and post-synaptic markers: even if the fluorophores are not precisely localized to the
pre-synaptic and post-synaptic densities, their emissions co-localize only over the synaptic cleft itself. Therefore, detection based on
fluorescence co-localization can perform better than directly resolving single-colored synaptic puncta.

Unfortunately, the originally-proposed form of synaptic BrainBow [11] does not scale to entire mouse brains because of the limited
color palette of available fluorescent proteins: 2 · log2(108) = 54 spectrally distinguishable fluorophores would be required [11].

Fluorescent In-Situ Sequencing (FISSEQ) for 4N -“color” synaptic labeling Novel methods could potentially allow variants of
the synaptic BrainBow strategy to scale to mammalian systems. An alternative method could leverage Fluorescent In-Situ Sequencing
(FISSEQ) [89], a recently-developed method for sequencing of DNA or RNA by optical microscopy in the context of intact tissue
slices. In effect, FISSEQ constitutes a form of fluorescent microscopy in which there are 4N distinguishable labels, corresponding to
the 4N possible nucleotide sequences of a DNA molecule of length N nucleotides. By leveraging FISSEQ, it may therefore be possible
to create a 4N -“color” variant of the synaptic BrainBow strategy, which would scale readily to whole mouse brains, despite using only
four actual spectrally distinguishable fluorophores. In one possible implementation, cell-identifying RNA barcodes (similar to those
used in BOINC) could be targeted to the pre-synaptic and post-synaptic densities, and their nucleotide sequences could be read out
by fluorescent microscopy in-situ.

If the fluorescent sequencing frame rate of an Illumina HiSeq machine1 were directly translated to in situ sequencing of 100 nm thick

1Illumina machines can achieve cluster densities on the sequencing flow cell (essentially a glass microscope slide) of 1,000,000 clusters per mm2, similar to the areal
density of synapses in a 0.5–1 µm thick tissue section. Given that a HiSeq run takes roughly 250 hours (11 days) and generates 300 billion bases of sequence (e.g., 3
billion 100 bp reads), the time to sequence a 1 cm2 area is

TIllumina = 250 hours/(3 · 109 reads)× (108 clusters/cm2)× (1 read per cluster) = 8.3 hours
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tissue slices in a diffraction-limited microscope, similar to the setup used in Array Tomography [72, 73], the imaging time2 and
imaging cost for a 3-year mouse brain connectome would be

8.3 hours

100nm× 1cm× 1cm slice
× 42000 slices = 40 years

and $13M respectively, assuming $1M per Illumina-rate machine.

5 TECHNOLOGY DEVELOPMENT PATHWAYS

These approaches could be validated in smaller brains. For example, the Drosophila brain, with 135k neurons, is roughly 1000×
smaller than the mouse brain. In the electron microscopy approaches, only a few microscopes would be required for Drosophila,
although image analysis would still pose significant challenges.

For BOINC, a single 11 day run on a HiSeq produces> 109 reads, more than sufficient for a Drosophila connectome (e.g., 108 synapses
× r = 10 reads per synapse). Reads of length 100 bp could include two 20-base barcodes, to uniquely label all neurons in the fly, as well
as additional barcodes to provide spatial information. Indexing 10 sections along the x, y and z axes – forming blocks of < 100µm
edge length – would require only log4(103) = 5 additional nucleotides, or < 10 additional nucleotides for a highly orthogonal set.

For an optical microscopy approach based on in-situ sequencing of synapse-localized RNA barcodes, roughly 5000 z-sections of 75 nm
thickness and 400µm×1000µm xy cross-section would be sufficient to cover the entire Drosophila brain. The totality of these sections
would fit on a single standard microscope slide. If a 4-color 2D saturated SIM [86] image at 50 nm xy resolution takes 1 s to acquire
and comprises a 50µm×50µm field of view, then the time to image all the slices from a single fly is roughly 9 days. This is multiplied
by a factor of 20 to account for 20 FISSEQ cycles. Therefore, ultra-thin-sectioning 2D SIM FISSEQ of an entire Drosophila brain at
50–100nm× 50–100nm× 75nm resolution – likely sufficient to resolve nearly all synapses – could be performed in < 6 months on a
single automated SIM microscope.

Once validated in a smaller model organism, extension to mammalian systems could be straightforward, although different model
systems pose different obstacles for genetic engineering tasks like whole brain cellular-resolution barcoding. In addition, technologies
like bulk EM staining may need to be adapted [35] to larger volumes. Due to its small brain size, with only a few million cortical
neurons [96], the Etruscan shrew may be a desirable early target.

6 SUMMARY

Several approaches for whole-mouse-brain connectomics may be nearly within reach for roughly $100M–$200M in a three-year
project. For electron microscopy approaches, this would require dramatic improvements in the speed and accuracy of computer-
ized axon tracing. Improvements to the reliability and automation of electron microscopy sample handling would also be essential.

Approaches leveraging a new “exponential resource” — nucleic acid sequence-space — appear to have the potential to further reduce
the cost by a factor of 10–100 or more. For example, BOINC [3], a set of approaches based on bulk sequencing of nucleic acid
barcodes that have been exchanged across the synaptic cleft and physically paired into a single sequencing read, could potentially
obtain a mouse connectome for under $1M at today’s sequencing costs. Further cost reductions are anticipated given the exponential
improvement of DNA sequencing technology [67].

More speculatively, the ability to measure combinatorially-multiplexed molecular information (the 4N possible RNA sequences of
length N ) in situ via optical microscopy, and to localize this readout specifically to synapses, could enable optical microscopy to
directly acquire connectomes from fixed tissue samples. This approach could be feasible in the $10M range via a suitable combination
of fast super-resolution microscopy [84, 86, 87], physical and/or optical thin-sectioning microscopy [72, 73, 85, 94, 97] and molecular
stratification techniques.

The development of a whole mammalian brain connectomics capability will be a significant engineering challenge, regardless of the
technology platform(s) adopted. Even once the component technologies are developed, there will be a need to integrate compo-
nents into an automated pipeline for connectome acquisition. This is most likely to take place if technological innovations enabling
significant cost reductions are introduced as early as possible.

2For comparison, whole mouse brain fluorescence Micro-Optical Sectioning Tomography (fMOST) at 0.6µm×0.8µm×1µm xyz voxel size took 19 days [90–95].
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