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Abstract

Cognitive neuroscience, especially in the fields of learning and decision-making, is witnessing
the blossoming of computational model-based analyses. Several methodological and review
papers have indicated how and why candidate models should be cozzpared by trading off their
ability to predict the data as a function of their complexity. However, the importance of
simmlating candidate models has been so far largely overlooked, which entails several
drawbacks and leads to invalid conclusions. Here we argue that the analysis of model
simulations is often necessary to support the specific claims about behavioral function that
most of model-based studies make. . We defend this argument both informally by providing
a large-scale (N>300) review of recent studies, and formally by showing how model
simulations are necessary to interpret model comparison results. Finally, we propose
guidelines for future work, which combine model comparison and simulation.
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Computational model comparison as theory selection

In cognitive science, and especially in the field of learning and decision-making, the
utilization of computational modeling has remarkably increased during the past decade
(Figure 1). Models are taking an important place also in neuroimaging and neuropsychiatry
as powerful tools to understand normal, as well as diseased, cognition and brain function'™.
The importance of computational models in cognitive neuroscience is not surprising, since
the intrinsic function of the brain is information processing at the service of goal-directed
behavior, and cognitive theories can thus be formulated as computational theories”” (Box 1).
As a consequence, if computational models are to be considered theories of brain function,
they should be submitted to a theory selection process. In this paper we argue that the
current practice of model comparison (in the purpose of selecting a winning model) often
omits an important, and even necessary, step of theory selection.

One universally recognized theory selection heuristic is Occam’s Jex parsimoniai®. In short,
this precept dictates that amongst “equally good” explanation of data, the less complex
should be held as more likely to be true. Translated in more formal terms, there is a trade off
between the complexity of a given model (which grows with its number of free parameters)
and its accuracy (the likelihood of the data given the model). Different quantitative solutions
have been proposed to take parsimony into account when comparing different models,
based on their predictive performance — i.e., their ability to predict observed data®''. All these
methods are rooted in the Bayesian conception of statistics, based on relative model
comparison criteria. They do not imply any absolute criterion of performance: the winning
model is the model having more evidence (quality of the prediction minus model
complexity) compared to a rival one®? even if all candidate models provide a poor

b

description of important features of the fitted data.

Another important heuristic, recognized by contemporary epistemology, applies to theory
selection. To propose a novel theory, the scientist should be able to show that a pre-extant
theory is contradicted by an experimental observation (i.e. is falsified), whereas a novel and
proposed theory is not". Theory rejection represents the logic substratum of hypothesis
testing as implemented in classical ‘frequentist’ statistics'>'*. Translated into computational
terms, to reject a model one rests on showing that it is not able to account for a least one
behavioral (or neural) phenomenon of interest — called a rgection criterion. The ability of a
model to reproduce the phenomenon — called the generative performance of the model — should
be assessed by simulating the model and comparing the simulations to the observed
phenomenon.

Relative model comparison criteria (i.e. various approximation of the model evidence, such
as BIC, AIC,) are not appropriate to falsify models because they do not capture certain
features of the fitted data: 1) they focus on the evidence 7z favor of the best, instead of
evidence against the rival model, and 2) they are blind to the capacity of tested models to
reproduce (or not) any particular phenomenon of interest. Importantly, good predictive
performance do not imply good generative performance (Box2).

@ “Pluralitas non est ponenda sine necessitate.”’ Plurality is never to be posited without necessity. (Quaestiones et
decisiones in quatuor libros Sententiarum cum centilogio theologico, Book II) (A.D 1319)
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Current common practice and associated problems

Whereas relative model comparison is now often implemented in computational modeling
studies of brain activity and behavior, model simulations are only rarely performed and
studied. This claim is supported by a meta-analysis of >300 studies published since 2009 in
six high rank journals in the field of learning and decision-making® (Science, Nature, Nature
Neuroscience, Neuron, PNAS, PLOS Biology and The Journal of Neuroscience; Table 1).
First, we note that in this sample, about 40% of studies (N=140) implicated computational-
model based analyses. This result is in line with the observation of a remarkable increase of
computational model-based analyses (Figure 1). Amongst the model-based studies, more
than 50% (N=80) implemented a model selection step, based on a relative model
comparison criterion. Crucially, within the pool of the model selection studies, only few (less
than 20%; N=15) simulated the best as well rival/losing model(s). Here, we atgue that the
lack of model simulations is problematic in respect to the specific claims that are defended in
most computational model-based cognitive studies.

Typically, a modeling study proceeds along the following scheme. First, an experimental
intervention (a task) is designed to elicit detectable behavioral (or neural) effects of interest.
Let us consider the simplest case in which the behavioral effect of interest takes the form of
different behavior in condition ‘A’ compared to ‘B’ (Figure 2). This dependent variable
could be represented by very diverse observables, such as the proportion of certain choices
in a decision-making task. Accordingly, the two conditions could be represented by different
levels of reward magnitude (10 cents versus 1 euro) in an incentive motivation task, of
proposed delay in a temporal discounting economic task (present versus future), or
coherence in a random-dot motion discrimination task (high versus low)'>'’. The eventual
aim is then to decide which model (noted as Model 1 and Model 2) accounts for this effect,
under the (more or less implicit) assumption that this model selection analysis will allow
arbitrating between competing hypotheses of cognitive function. Thus, in this case, a model
not being able to reproduce the behavioral difference between the two conditions A & B
represents the model rejection criterion, in such ‘falsification’ framework.

However, most studies (N=060; in our sample) start by determining, for each model, the free
parameters that maximize the likelthood of the data given the model (model fitting). The
likelihood is subsequently used to calculate a relative model comparison criterion and to
identify the winning model among candidates being tested (i.e. the model with the best
trade-off between the quality of the prediction and the complexity, say Model 1 in our
example). The preponderant omission of model simulations in the field may betray how
common the misconception is that a relative model comparison result is sufficient to
conclude that the winning model accounts for a specific “behavior of interest” (i.e. the
behavioral difference between A and B in the example; Figure 2). In fact, this is not the case,
since the model’s predictive performance and its capacity to reproduce the behavior of
interest are formally independent.

To further clarify this point, let us systematically explore and interpret possible relationships
between relative model selection criteria and model simulation in our schematic example. We

DThe full list of the included articles can be obtained by emailing the corresponding author.
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will consider all possible relationships between a given relative model comparison result (i.e.
“Model 1 fits better than Model 2”) and the corresponding model simulation results.

First, even the rather extreme situation in which the Model 1 (the winning model) is not
capable to reproduce the difference between conditions A and B, whereas Model 2 does,
cannot be formally ruled out, uniquely based on a relative criterion (Figure 2A). Although
unlikely, this situation can nonetheless occur in cases in which the effect size is particularly
small and the model particularly complex, so that the penalization of the extra free
parameters cannot be overcome. This rather odd configuration should motivate an
amendment in the task design, in order to magnify the effect (more trials or contrast), or the
conception of a more parsimonious model, capable of generating the behavior of interest.

Second, it could be possible that neither (Figure 2B) or both (Figure 2C) models surpass
the rejection criterion, which therefore do not afford to identify a winning model. This can
be easily the case when the behavioral data may be projected into multiple, possibly
orthogonal, dimensions (a frequent situation, since behavioral tasks are rarely mono-
dimensional). In our example, these dimensions are the average level of responses and the
difference between conditions, respectively. As suggested by the relative criterion, in both
these intermediate cases Model 1 does account better for the behavioral data, because it
generates a overall higher level of responses compared to Model 2. However it happens that
these results are completely neutral in respect to our question of interest, which is proposing
a theory explaining the difference between A and B. It is nevertheless true that in both cases
we could have confidently rejected Model 2, in favor of Model 1, if we were interested in the
average level of responses (instead of the difference between A and B). However, in both
cases, relative model comparison criteria being blind to the rejection criteria (in our example
the difference between A and B), further highlight the importance of analyzing model
simulations.

Finally, it could be that Model 1 proves itself capable of reproducing the A>B contrast,
whereas Model 2 does not (Figure 2D). In this case relative model comparison and model
simulation analyses concordantly point out the rejection of Model 2 and the acceptance of
Model 1 as a possible explanation for such behavioral effect.

Relative model comparison has limited explanatory/interpretational power

To summarize, in our simplified example, out of four possible relationships between the
same relative model comparison result and different model simulations performance, only
one fulfilled the necessary and sufficient conditions to formally conclude in favor of a
“winning model”. However, only rarely model-based studies push their analyses that far.
This is probably due to the misunderstanding of the complementarity between parsimony
and falsification in theory selection. Whereas relative model comparison aims to identify the
most probable model among tested candidates, only model simulation can provide #be reasons
of its good (or bad) predictive/fitting performance, thus allowing to conclude on the
possible relation about a given model and behavioral phenomenon. In other terms, whereas
the relative model comparison criteria inform on “which model” is the best, the model
simulation analyses, by exanimating models’ behavior, inform on “why this model” is the best.
Accordingly, whereas demonstrations uniquely based on relative model comparison criteria
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are doomed to produce tautological conclusions with no explanatory power in the form of
“Model A wins because has the lover BIC”, only the analysis of model simulation can
provide an insight on the behavioral (or neurophysiological) bases of the rejection of a given
model.

In summary, given the widespread absence of model simulations to support the results of
relative model comparison, it cannot be excluded that some previous computational
modeling studies (up to 82%, in our sample) have incorrectly condemned or praised
particular computational theories, with no compelling evidence, since only model simulation
can provide explanatory power to relative model comparison.

Model space: does size matters?

When dealing with model comparison a big issue is the selection of the model space. By
model space, we mean the set of computational models that are compared in a given study.
By definition, there is no theoretical upper limit to the model space — even in simplest
paradigms. However, model simulations can be used to define a lower limit of a model
space: a model space cannot be considered “sufficient” until there is, at least, one model
that is able to reproduce the effect of interest.

Intuitively, it may be argued that the more models are compared, the stronger our model
comparison result is. Here, in line with our arguments presented above, we argue that a
small, well-justified model space is to be preferred to a larger one. The logic of scientific
progress imposes that we replace old theories with new ones, as soon as we are able to show
that an old theory cannot account for a new experimental findings"”. Following from this
view, the essential model space should include a “reference” (the model considered as the
currently accepted solution for a given computational process) and a “target” model (the
new model proposed to replace the “reference” one). Of course, this is quite an idealized
case, since, as opposite to physics for example, in cognitive neuroscience there is rarely such
a unique “reference” model for a cognitive process. However, on the other side, the
invention of new ad hoc, often “straw-man”, models, neither “reference” nor “target”, may
undermine the clarity and the logic of a computational modeling study.

Proposed guidelines

In this section, we will propose archetypal analytical guidelines for computational modeling
studies of brain function and behavior, which include both relative model comparison and
model simulations (see '’ for an example of a study including the whole process).

1. Define a task, which implements a cognitive process of interest and include conditions,
which are supposed to challenge different ways in which this process is computationally
implemented.

2. Simulate ex ante the two (or more) competing computational theories across a large range
of parameters (sometimes called a ‘parameter recovery’ procedure) in order to ensure that
the task allows the discrimination of the two models (i.e. their model predictions diverge
in front of a key experimental manipulation). Concomitantly verify that, under the
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experiment conditions, a given relative model comparison criterion allows to correctly
retrieve in both cases the true generative model as the “winning model” (model recovery:
see Box 3).

3. Run the experiment and analyze the data to verify that subjects’ behavior was affected by
task conditions (model-free analysis).

4. Fit the competing computational models to the data, in order to obtain, for each model
an estimation of the best fitting model parameters and an approximation of the model
evidence, that trades off quality of fit and model complexity.

5. Simulate ex post the models, using for each subject its the best fitting parameters, in order
to verify that only the best fitting model, and ideally the rival one(s) is not capable to
reproduce the effect, that we are trying to explain.

In practice, computational model-based cognitive neuroscience studies mainly belong to two
categories that differ in the place given to the behavioral data and computational models,
respectively. The first category of studies, “behavior first”"®, implicates the authors looking
for a computational explanation for a previously documented behavioral phenomenon of
interest. The second category of studies, “modeling first”"’, concerns cases in which the aim
of the study is to discriminate between competing computational theories. Typical “behavior
first” studies may relay only in steps 3-to-5 (since the behavioral task pre-exist the modeling
attempt). On the other side a typical “modeling first” study may not require steps 4-5, if the
competing models produce mutually exclusive predictions. Note that the two approached
can be combined. For example the “modeling first” approach may also require ex post model
simulation, if the two models provide partial overlapping predictions for particular ranges of
parameters. Model fitting can be seen as the way to get an insight on the value the
parameters could take in the real population (e.g., in the particular case of reinforcement
learning, different learning rates such as a=0.2 or o =0.8 do not generate the same learning
curves). This is particularly relevant for nested models in which a more complex model can
be reduced to a simpler for some specific parameter values.

Note also that these principles and guidelines could be applied to neural data, acknowledging
that the simulation of neural data is more complicated, given that the underlying generative
process is less understood and may require additional assumptions (but see® for recent
evidence challenging the possibility of selecting models based on neural data).

Finally, we would like to specify that we are not arguing that all model-based cognitive
neuroscience studies need a model selection procedure (for example when a model has been
extensively previously documented or when the model represents an analytical tool and not
the object of the study), but that, if a model selection procedure is implemented, it is equally
important to investigate both the model’s parsimony, with relative model comparison
criteria, and the model’s simulations to understand the reason why the competing model is
rejected — and why the winning model has been selected.

Concluding remarks

In natural sciences, it has been proposed that the epistemological specificity of a
computational modeling approach, compared to a model-free one, is that, the latter
investigates directly the natural phenomenon of interest, whereas the former builds an
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artificial representation of the natural system (model) and study its behavior”. The ability to
reproduce (or not) the natural phenomenon is used to accept (or reject) the model as an
accurate representation of the natural system (and its internal laws). In other terms,
computational theories have been argued to differ from non-computational, descriptive
theories in that the computational theories are capable of generating (simulated) data, which
can be then analyzed and compared to empirical data. From this perspective, it cleatly
appears that relative model comparison results should not be the final outcome of a
computational cognitive study, but more likely they should be considered as a fitting quality
check, and followed by the comparison of the model simulations of two competing models
in respect to a behavioral phenomenon. In fact, computational models are not merely
supposed to “predict” data, but to mimic the generative processes underlying the behavioral
phenomenon of interest. Accordingly, in cognitive neuroscience, computational theories
have helped proposing and refining neurocognitive theories via a “reverse engineering”
approach, that consist in understanding the brain mechanism by trying to built algorithms
capable to reproduce human behavior®'. After careful consideration of the recent literature,
whereas it is uncontestable that computational modeling is taking increasing importance in
cognitive sciences (especially in the field of learning and decision making), we also found
that the importance of studying the models’ simulations has been overlooked, in favor of
relative model comparison techniques. Here we showed, with theoretical argumentation and
model simulations (see Boxes) that this /luwna prevents from realizing the full potential of
the computational approach in cognitive neuroscience.
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Figure 1: the exponential increase of computational model-based cognitive neuroscience. The curves
on the left show the relative frequency of PubMed entries for “cognitive” (in red) and “cognitive and
computational” (in blue) as a function of the year (from the 1970s to the 2014). Their frequencies are calculated
relative to the number of entries of 2014, which are therefore defined at 1 for both curves. The bars on the left
represent the estimated annual growth of the best fitting exponential curve.
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Figure 2: possible relationships between relative model comparison and model simulation comparison
A stereotyped case in which subjects’ behavioral data can be project into two orthogonal dimensions: the
average level of petformance across both conditions ((condition A+ condition B)/2) and the difference in
performance between the two conditions (condition A - condition B). In all cases Model 1 is the “best” model,
based on relative model comparison criteria. (A) Model 1 accounts for the average level of performance, but is
not able to capture the behavior of interest. Model 2 is not able to explain neither the behavior of interest nor
the average level of performance (B) Model 1 accounts for the average level of performance, but does not
capture the behavior of interest. Model 2 is not able to explain neither the average level of performance nor the
behavior of interest. (C) Model 1 accounts both the average level of performance and the behavior of interest.
Model 2 is not able to explain the average level of performance, but captures the behavior of interest. (D)
Model 1 accounts for both the average level of performance and the behavior of interest. Model 2 capture the
average level of performance, but is not able to capture the behavior of interest. In the literature sample
considered here only the 17% of the model comparison studies, includes the simulation of the “best” as well as
the “rival(s)”” models.
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Sample Computational Relative Best simulation Rival simulation
model compatison

All studies 47.7% (N=143) | 27.3% (N=82) 21.0% (N=63) 5.7% (N=17)
(IN=301)

Model studies | - 57.35% (N=82) | 44.1% (N=063) 11.3% (N=17)
(IN=143)

Relative studies | - - 43 .99 =36 18.1% =15
p, o (N=30) o (N=15)

Tablel: percentage of studies as a function of their model-based analytical procedure. “Computational
Model” = studies report a computational model-based analysis. “Relative comparison” = studies report a
model selection step implicating relative model comparison criteria, such as AIC, BIC or similar. “Best
simulation” = studies report the model simulation of the best model, according to relative model selection.
“Rival simulation” = studies report the simulation of the best and the rival(s) models (note that the presence of
rival model simulation represents no guarantee that any statistical analysis is then performed to quantitatively
assess the “similarity” of the model simulations to the actual data). The complete list of the studies included in
the meta-analysis is available online).
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Box1: delineating computational modeling approaches

In cognitive neuroscience computational models can also be simply used as tools to quantify
different features of the behavioral or neural activity. In this approach, the typical results
consist in comparing model free parameters across conditions or group of subject”. In this
approach computational models are not very different from statistical models, such as
multiple regressions, where the statistical tests are performed on regressions coefficients,
instead of parameters. The opposite view is to consider computational models as
quantitative theories of the cognitive function. When a model is used as an analytical tool,
model comparison is not central, because no real competition between cognitive theories is
at stake.

Computational modeling can take place at several levels of description in psychology and
cognitive sciences. Understanding the differences between these levels of description is
mandatory, before engaging in a model comparison analysis. One important distinction is
between aggregate and mechanistic models’. The first class of models aims at describing
average (across subjects and trials) behavior in a mathematically synthetic way, such as the
exponential learning equation behavior™. The second class of models aims at explaining how
a behavior emerges on a trial-by-trial basis, such as the Rescorla-Wagner learning model *.
Naturally, because these two classes of models do not target the same level of description, a
model selection scheme should not compare aggregate and mechanistic models. For
example, in the cases presented above, an aggregate exponential learning curve could derive
from a Rescorla-Wagner mechanism and both models can therefore be considered “true”
once acknowledged that they do not target the same level of description. The distinction
between aggregate and mechanistic models has been further developed by Mart’, who
proposed three different levels of description for computational modeling approaches. The
“computational” level deals with the goal of the computation. For example, in standard
instrumental learning tasks, the goal of the computation is to maximize the occurrence of
rewards. The “representational and algorithmic level” deals with how the computational
theory is realized in terms of input and output (representations) and the mathematical
operations in between the two (algorithms). For example, instrumental behavior is often
formalized within the temporal difference-learning framework that supposes instrumental
behavior driven by prediction errors™. Finally, the “hardware or implementational” level
deals with the way the algorithm is physically implemented in the brain. For example,
temporal difference reward prediction errors are supposed to be represented by phasic

. . . . . 2(
increase in the firing rate of the dopaminergic neurons™.

Again, when engaging in a model selection scheme, it is important to keep in mind which
level of description is targeted. In fact, a model comparison has different meanings at the
“computational”; “algorithmic” and “hardware” levels. At the “computational” level, model
comparison will inform on the “goal” of the subjects and therefore their understanding of
the task. Of course, this description is dissociable from the “algorithmic” level. For example,
the same computational goal, such as reward maximization, could be achieved using a
temporal difference or a Bayesian algorithm®. It also important to note that model selection
at different levels may require different forms of data to be achieved. In fact, whereas at the
“computational” level model selection can generally be based on aggregate behavioral data
(even across subjects), the “algorithmic” level most typically requires trial-by-trial data from
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individual subjects. On the other side, model selection at the “implementational” level will
by definition require neural recordings.
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Box2: good predictive performance does not imply good generative performance

Typical relative model comparison criteria evaluate the predictive performance of a model,
ie. the likelihood of observing the experimental data given the model. However, a
computational model can display relatively good predictive performance even if its
generative performance — obtained through independent model simulations, is inaccurate.
This discrepancy is well captured by a simple example, originally reported by Corrado et al’.
Concerning weather prediction, a quite good predictive model is “tomorrow’s weather will
be as today’s”. Indeed, given the important time autocorrelation of weather condition, such a
simple model will provide above chance predictions. Nonetheless, it clearly appears that this
model does not illuminate at all the mechanisms that govern the weather and indeed it will
not allow simulating its evolution in the mid- or long-run. Unfortunately, often such
temporal autocorrelation also applies to behavioral data, especially in the field of
reinforcement learning (good choices naturally tend to be repeated) and decision-making (in
the form of choice hysteresis™). To illustrate this point we simulated a win-stay lose-shift
(WSLS) equivalent e of an RL model (i.e. a Q-learning with a learning rate (¢=1) and a non-
negative choice temperature (3)). We simulated the WSLS behavior in a deterministic two-
armed bandit task in which two responses are associated with a deterministic probability of
being rewarded or not, and in which the contingencies are reversed after an unknown
number of choices. As expected the WSLS model is capable of adapting its responses as a
function of task’s demands (i.e. it mostly chooses the “Right option” when it is rewarded
and mostly chooses the “Left” option, when the contingencies switches (Figure Box 1A)).
We fitted to the WSLS model an equivalent of the “tomorrow’s weather will be as today’s”
model for weather prediction, adapted to this reversal task. The “Repetition” model basically
instantiates choice hysteresis by assuming at each trial Q. (chosen option) = 1 and
Q,+;(unchosen option) = 0. We fitted the “Repetition” model the virtual data to find the
likelihood maximizing free parameter (). We then plotted the trial-by-trial model estimate
of choice probability of the “Repetition” model, based on the individual history of choices
of the WSLS models (black dots, predictive simulations). Unsurprisingly, these predictive
simulations show that the “Repetition” model is capable of switching responses after
reversal and roughly follow the behavior of the WSLS model, even if the “Repetition” model
is completely blind to the outcome history, which determines the WSLS behavior.
However, when we simulate the “Repetition model” behavior ex novo in the very same task,
the probability of choosing right or left remains around chance, thus revealing the model’s
inner inability to follow reward contingencies and their reversal (white dots; true generative
performances). This rather extreme example illustrates to which extent predictive
performance, on which model comparison is performed, may be dissociated from generative
performance and can lead to erroneous conclusions concerning a model’s ability to “explain”
the data.

Importantly, the way in which the relative model comparison criteria are calculated may lead
to an inflated representation of a model performance also in a more subtle way. The relative
model comparison criteria are typically calculated based on the maximum likelihood. The
calculation of the maximum likelihood requires identifying the model parameters that
maximize the chance of observing the data. This imply that if an effect is present in the data,
even if this effect can be, in principle, explained by the model, the likelihood maximization
procedure will favor the set of free parameters that, by chance, maximize the probability of
observing this effect: this closely resembles the problem that in neuroimaging is referred to
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as “double-dipping”. To illustrate this point we simulated a “Metalearning’” model over two
learning sessions of a probabilistic two-armed bandit task, in which, in each session, the
model has to find out which is the most rewarding option. The options are reversed from a
session to another. The “Metalearning” model has the peculiarity of using different set of
parameters (learning rate o), such as in the second session its correct response improves, by
augmenting the learning rate and reducing the exploration (as if the model had integrated the
task statistics to adjust its parameters to perform better; Figure Box 2B). We fitted to these
virtual data a Q-learning model, whose parameters remain the same in the first and in the
second session. As we have done before for the “Repetition” model, we plotted the
predictive performance (i.e. the probability of choosing the most rewarding option given the
subject history of choices and outcomes) and we observe a smaller, but significant,
improvement of correct choice rate moving from the first to the second session, even if the
parameters remain the same and there is not computational process in the Q-learning model
that could underpin this effect (white dots). As a matter of fact, this effect simply arises
because the meta-learning effect is present in the data and the likelihood maximization
procedure has therefore favored the parameters’ values that maximize the probability of
observing this effect. Of course this result does not imply at all that the Q-learning model
has the ability of improving performance from one session to another. In fact, when
simulating the same Q-learning models (with the parameters set retrieved with the model
fitting procedure) in a new task (i.e. not giving the model the precise history of choices and
outcomes of the “Metalearning” virtual subjects) we found that the Q-learning predicts no
difference between the first and the second session (black dots).

To summarize, this Box draws the attention to the difference between a model’s predictive
performance (on which the relative model comparison criteria are based) and generative
performance. More particularly this Box illustrates how, either because of the data
autocorrelation, or because of the likelihood-maximization procedure itself, model
predictions resulting from model fitting often provide an inflated image of the model’s
ability to account for the data, whereas only ex novo model simulations (i.e. not based on the
subject history of choices and outcomes) provide an unbiased image of models’ behavioral
abilities.
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Figure Box 2: predictive vs. generative performance. (A) The dark red curve represents the trial-by-trial
average probability (£ s.e.m.) of choosing the “Right” choice in a virtual deterministic two-armed bandit task
simulated with a reinforcement learning equivalent of a win-stay lose-shift model (WSLS; i.e. a Q-learning
model with a=1). The black dots represent the average probability (£ s.e.m.) of observing a “Right” choice,
estimated by a Repetition model (i.e. 2 model whose Q-values update rule consist in Q(chosen option) = 1 and
Q(unchosen option) = 0), based on the individual best fitting parameters and histories of choices and
outcomes ((predictive performance: P(data|model, history of choices and outcomes)). The white dots
represent the average probability (* s.e.m.) of observing a “Right” choice, generated by a Repetition model
simulated ex #ovo on the same task (true generative performance). The dashed line represents the point in which
the contingencies are reversed. The two-headed arrow highlights the discrepancy between the model fitting
(predictive performance) and the model simulations (generative performance) (B) The leftmost panel shows
the mean probability (* s.e.m.) of choosing the “Correct” choice (i.e. the most rewarding one) in a virtual
probabilistic two-armed bandit task simulated with a "Metalearning model that assumes that the subject
adaptively modify the free-patameters (the Metaleanring model increases o and reduces P: Aa=0.05) to
improve performance in the second learning session (i.e. after the dashed line, when the instrumental cues have
been changed). The black dots represent the average probability (£ s.e.m.) of observing a “Correct” choice,
estimated by a basic Q-learning model (i.e. a model whose o and P are not modulated from the first to the
second session: Aa=AB=0.0), based on the individual best fitting parameters and histories of choices and
outcomes (predictive performance: P(data|model, history of choices and outcomes)). The white dots
represent the average probability (+ s.e.m.) of observing a “Correct” choice, generated by a Q-learning model
simulated ex novo on the same task (true generative performance). The two-headed arrow highlights the
discrepancy between the model fitting (predictive performance) and the model simulations (generative
performance).
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Box3: model comparison criteria trade sensitivity with conservativeness

The importance of analyzing model simulations is even greater when considering there is no
such a thing as a ‘perfect’ model comparison criterion. Most of them are rooted in Bayesian
statistics and represent different approximations of the true model evidence. As such, they
display different properties in terms of a sensitivity-conservativeness tradeoff. For example,
the Bayesian information criterion (BIC)™ is typically more conservative, compared to the
Akaike Information Criterion (AIC)™ or the Laplace approximation of the model evidence’
(when the prior over the parameters are relatively flat and non informative as in previous
studies'”*). Crucially the appropriateness of a given model compatison criterion (given that
all are approximations and thus inaccurate) is dependent on the predicted effect size in the
experimental data and the models in consideration, with some criteria being more prone to
false positive or false negative, depending on the case.

To illustrate this point, we simulated data using an influent reinforcement learning and
decision making task”. The task is a two-armed bandit game in which options are
characterized by reciprocal reward probabilities. The task includes a phase during which the
reward contingency is stable and a phase in which it is volatile (i.e. frequently reversed)
(Figure Box 3A). It has been robustly showed that humans optimally adjust their learning
rate, so that it is lower in the stable compared to the volatile phases. We simulated data in
this task with a standard reinforcement-learning model, with no effect of volatility on
learning rates (“No modulation” case: 0g=0.) and an adaptive model, with an effect of
volatility on learning rates (“Modulation” case: 0,g<0.). The data were simulated with as
short version of the task, lasting 60 trials, and a long version, lasting 180 trials (as in the
original paper) (Figure Box 3B). We then fitted the simulated data by maximum likelihood
and LPP maximization (assuming the prior on the learning rate beta(1.1,1.1) and that on the
temperatures gamma(1.2,5.) as in previous studies'”) with two computational models
(Figure Box 3C). Model 1 has only 2 degrees of freedom and assumes the same learning
rate in the stable and the volatile phases. Model 1 is the true generative model for the “No
modulation” simulations. Model 2 has 3 degrees of freedom and assumes different learning
rates in the stable compared to the volatile phase. Model 2 is the true generative model for
the “Modulation” simulations. The two models are nested, so that the likelihood of the data
given the model can only increases moving from the simpler to the more complex model.
We compared in each simulation type (“No modulation” vs. “Modulation” and “Short task”
vs. “Long task”) the two models using the BIC and the LPP: two commonly used quality of
fit criteria that trade off likelthood and model complexity. “Correct” inferences are made,
when the model comparison criterion “detects” the true generative model, even accounting
for its extra complexity and “rejects” the others. “Incorrect” inferences are made when
cither a more complex model is identified as the best fitting one (a condition known as
“overfitting”) or when a less complex model is identified as the best fitting one (a condition
that we call “underfitting”) (Figure Box 3C). The results strikingly show that, in our
example, the two model comparison criteria may disagree, with one being inevitably in error.
More specifically the BIC, more stringent, leads to false incorrect rejection (especially when
the task is short, even if the effect of the modulation of the learning rates is quite evident in
the simulated behavior) whereas the LPP, more permissive, leads to incorrect detections
(Figure Box 3D). This example further highlights that model selection cannot rely only on

Palminteri, Wyart & Koechlin 16


http://dx.doi.org/10.1101/079798
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint first posted online Oct. 7, 2016; doi: http://dx.doi.org/10.1101/079798. The copyright holder for this preprint (which was not
peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

Model comparison should not replace model simulation

relative model comparison, and would crucially benefit from looking at model simulations.
In our example for instance a quick look to the model simulations would have crucially
informed about a model’s capacity to reproduce (or not) quick reversals in the volatile phase.
Considering the influence of task’s design (e.g. number of trials) on relative model
comparison results, it could be advisable to test ex anfe the sensitivity of different criteria
under different task conditions to optimize the design and identify the most adequate model
comparison criterion for a given task and model. Such procedure (that can be defined
“model recovery”) would consist in simulating two datasets with two different models and
verify (for a given set of models and task specification) which relative model comparison
criterion avoid both over- and under-fitting'’. Alternatively, especially when proposing an
original model for a new behavioral task, it would preferable to select the design, such as
different relative comparison criteria convergence to the same result'™""*,

Palminteri, Wyart & Koechlin 17


http://dx.doi.org/10.1101/079798
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint first posted online Oct. 7, 2016; doi: http://dx.doi.org/10.1101/079798. The copyright holder for this preprint (which was not

peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

Model comparison should not replace model simulation

. Task contingencles Casel : short task (x=6) Case2 : long task (x=9)
§ 09 Swable | Volatile Ll
> <——>

;08 [ 1

2 07 1

2 06 -
2 05 ] J
% 04 - :
E 03 | i = 03| Nomodulaiton Modulation
£

| 2 as=01 as=01
é gf I e g? av=01 av=03
& o0 | 1 oL_P=01 p=01
5—,_____ 0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 160 180
* roxoxrox I:ials trials trials
(C) (D) Short task Long task
Correct Incorrect ABIC ALPP ABIC ALPP

c c 2

2 =

g v Vo8

2 Correct detection | Incorrect detection 2 § \/ X X

(overfitting) — | = ) 1

c — 1 8 e !

©| Correctrejection | Incorrect rejection =

§ (underfitting) E -

. K]

T X o

B e

o
i
T v

Modulation
Model 1 wins Model 2 wins

Figure Box 3: comparison between model comparison criteria. (A) Task design. The task includes a stable
phase, where the same option is rewarded 70% of the time. The task also includes a volatile phase during which
reward contingencies are frequently reversed. The stable and volatile phases last for an equal number of trials,
with each volatile episode being five times shorter than the stable phase. (B) Simulated data. The learning
curves represent data simulated from this task with a standard RL algorithm (in grey; “No modulation” case)
and a model that uses a higher learning rate in the volatile compared to the stable phase (in blue; the
“Modulation” case). Even in an overall short version of the task (60 trials) choice reversals in the volatile phase
are noticeable in the learning curves. (C) Expected results and results’ taxonomy. In the “No modulation” case
the winning model should be “Model 1” (a simple Q-learning with no modulation of the learning rate) in the
“Modulation” case the winning model should be “Model 2” (a model with different learning rates in the stable
and volatile phases). Possible results: a correct detection occurs when relative model comparison correctly
identifies the more complex model as the “best” model; an “incorrect detection” occurs when relative model
comparison wrongly identifies the more complex model as the “best” model (over-fitting); a “correct rejection”
occurs when relative model comparison correctly rejects the more complex model as the “best” model; finally
an “incorrect rejection” occurs when relative model comparison wrongly rejects the more complex model as
the “best” model (under-fitting). (D) Model comparison results. The bars represent BIC and LPP differential
comparing the reference model (Model 1, two degrees of freedom) with a more complex model (Model 2, three
degrees of freedom). The graphs are centered a zero. Positive values indicate that more complex model (Model
2) “wins” compared to the reference model (Model 1).
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