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We introduce comparative connectomics, the quantitative study of cross-spe-
cies commonalities and variations in brain network topology that aims to
discover general principles of network architecture of nervous systems and
the identification of species-specific features of brain connectivity. By compar-
ing connectomes derived from simple to more advanced species, we identify
two conserved themes of wiring: the tendency to organize network topology into
communities that serve specialized functionality and the general drive to enable
high topological integration by means of investment of neural resources in short
communication paths, hubs, and rich clubs. Within the space of wiring possi-
bilities that conform to these common principles, we argue that differences in
connectome organization between closely related species support adaptations
in cognition and behavior.

Comparing Brains
Comparative biology and comparative neuroscience generally aim to discover common plans of
organization while also accounting for diversity among species. A key objective of comparative
studies of brain architecture is to achieve an understanding of the neurobiological basis for
the emergence of complex brain structure and function. For example, several classic studies on
the cellular composition of the primate cortex have addressed cross-species homologies [1–3]
and contemporary comparative analyses have highlighted common cortical phenotypes and
important roles of genetic and epigenetic interactions in development for creating cross-species
diversity [4,5]. Together, these and many other comparative studies have laid the foundations for
our understanding of mammalian brain anatomy and function.

One major focus has been on the growing size of brains from smaller to larger animals [6–9] and,
in particular, the significant increase in volume required by the expansion of anatomical con-
nections [10–12]. A seminal observation is that the proportion of brain mass spent on cortical
white matter follows an allometric scaling (see Glossary) relation between body and brain size
across the entire spectrum of simpler to higher-order mammalian species [13,14]. In small
mammals, such as the mouse, only approximately 11% of total cortical volume comprises white
matter, in contrast to 27% in the macaque monkey, 40% in chimpanzees, and 41% in humans
(data from [13]). However, despite a larger volume of white matter, maintaining constant
connection density among an increasing number of neurons and regions in larger brains will
quickly outstrip the volume that can be allocated to long-distance neural wiring [15–17]. Thus,
the scaling between brain size and white matter volume implies a lower proportion of directly
connected neural elements in larger-sized brains [15,17,18], making it increasingly difficult for
neural elements to communicate via direct connections. Maintaining fast and efficient neural
communication brings significant benefits to brain function, arguably leading to a fundamental
tension or tradeoff [19] between the conservation of neural resources that can be spent on long-
distance connectivity and the promotion of efficient communication to support complex neural
processing. These apparent opposing or competitive pressures highlight the importance of the
topological organization of nervous systems that must provide an arrangement of neural
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elements and connections to balance the amount of neural resources used for connectivity while
simultaneously enabling effective information transfer in the service of brain function.

Comparative Connectomics
The examination of brain network topology is a core element of the field of connectomics [20],
the emerging science of structural and functional brain networks [21–24]. The increasing
availability of connectomes of multiple animal species (Figure 1, Key Figure) provides a new
opportunity for the comparative analysis of network architecture across species. In this review,
we introduce ‘comparative connectomics’, defined as the comparison of the topological
layout of nervous systems across species, with the aim of identifying common principles and
variations in network features. Comparative connectomics can provide insight into general
principles of neural wiring that apply across species and can examine to what extent variations in
connectivity between species may form the basis for differences in brain function. As we discuss,
connectomes of different species reconstructed by a broad range of methodologies (Box 1) can
be compared by applying a consistent set of network analysis measures and graph analytical

Glossary
Adjacency matrix: a systematic
description of the absence or
presence of a connection or edge
between all pairs of nodes of a
network, represented by a square
matrix.
Allometric scaling: relation between
body size and shape, morphometry,
and function of brain parts across
species where one or more of these
measures change exponentially or
nonlinearly.
Association matrix: a summary of
the absence or presence (potentially
including information about the
strength of an association) of all
pairwise associations of network
nodes, represented by a square
matrix.
Brain network: any set of structural
or functional relations among brain
elements.
Comparative connectomics: the
quantitative study of cross-species
commonalities and variations in brain
network topology.
Connectivity: description of the
anatomical projections (e.g., synaptic
connections or axonal tracts)
between brain network nodes (e.g.,
neurons or cortical areas).
Connectome: comprehensive
network map of the neural
connections of a nervous system.
Connectomics: a subfield of
neuroscience that studies the
reconstruction and analysis of
connectomes.
Functional connectivity: statistical
relation between time-series of
physiological activity (e.g., fMRI or
spike trains) of neural elements (e.g.,
neurons or brain regions).
Graph: a mathematical description of
a network, comprising a collection of
nodes (e.g., neurons or brain areas)
and a collection of edges describing
the pairwise relations between nodes
(e.g., synaptic connections or
macroscopic axonal projections)
(Box 2).
Graph theory: a branch of
mathematics that studies the
topological organization of graphs.
Homology: properties of nervous
system organization (e.g., cellular
architecture or wiring organization)
that are shared between species.
Morphospace: originally defined in
evolutionary theory as the space of all
possible body shapes or
morphologies for a given group of
organisms.

Key Figure

Connectomes across Species

C. elegans Drosophila Pigeon Mouse

Rat Cat Macaque Human

Connectomes

Figure 1. The Figure displays reconstructed connectomes of eight different species: Caenorhabditis elegans (roundworm)
[26], Drosophila (fruit fly) [40], pigeon [44], mouse [45], rat [49], cat [51], rhesus monkey (macaque, FE91 atlas) [53,160], and
human (Human Connectome Project data, [128]). Connectomes are represented as connectivity matrices with rows and
columns depicting source and target regions (grouping regions participating in the same community together) and with the
elements of the connectivity matrices showing the reconstructed projections. Pathways are grouped accordingly to whether
they are weak (blue), medium (yellow), or strong (orange).
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Network: in nervous systems, a
network describes the set of neural
elements (e.g., neurons or brain
regions) and their relations (e.g.,
synaptic connections, macroscale
pathways, or functional interactions).
Rich club organization: the
property of a network to display an
increasing level of connectivity
between subsets of highly connected
nodes, a level of connectivity higher
than would be expected on the basis
of the individual degree of the subset
of nodes alone.
Scale-free organization: a class of
networks with a degree distribution
that follows a power law, or, more
generally, a type of broad-scale or
fat-tailed degree distribution.
Small-world organization: a class
of networks that shows both a high
level of clustering (such as a regular
lattice) and short characteristic paths
(such as a random graph).
Spectral graph theory: a branch of
graph theory that studies networks
by examining the spectrum of
eigenvalues and eigenvectors of the
adjacency matrix of the network.
Topology: the topological structure
of a network describes the
arrangement of connections in a
network and is invariant to any
continuous spatial deformation of the
system.

tools (Box 2) to enable quantitative comparison of the topological architecture of the nervous
systems across and between species. We begin with an overview of currently available systems-
level connectome maps, ranging from invertebrates, such as Caenorhabditis elegans (a nema-
tode or roundworm) and Drosophila melanogaster (fruit fly), to the macroscale connectome
maps of mammalian species, such as rodents, Old World monkeys, great apes, and humans
(Figure 1). Using graph theory as a general framework to quantify topological features of
network organization, we first identify common aspects of brain network topology. We then
turn to differences in neural wiring and brain network organization among closely related species,
suggesting that variations in connectome topology subserve species-specific behavioral and
cognitive adaptations.

Connectomes from Simpler to More Advanced Animals
Nearly 30 years ago, serial electron microscope reconstructions of the nervous system of the
hermaphrodite nematode C. elegans [25] served as the foundation for the assembly of a near-
complete neuronal connectivity network of 890 gap junctions, 6393 chemical synapses, and
1410 neuromuscular junctions among 279 neurons of the somatic nervous system of the worm
[26]. This seminal work inspired later efforts to map the posterior nervous system of the
C. elegans adult male [27], as well as the reconstruction of (partial) neuronal connectomes
of other worm species, including that of the roundworm Pristionchus pacificus [28] and the
marine worm Platynereis dumerilii [29].

Early graph theoretical analyses showed the C. elegans nervous system to exhibit a small-
world network organization [30] with high clustering (Box 2) and short paths, indicating
preferred connectivity into locally clustered circuits, combined with the presence of relatively
few long-distance connections that mediate topological short-cuts and facilitate efficient global
communication [31]. Further analyses disclosed preferential formation of specific local motifs
[26] and a community structure of densely intraconnected and sparsely interconnected
subnetworks or modules [32], an organization that roughly aligns with a classification of neurons
into sensory, motor, and interneuronal categories [26] (Figure 2).

Box 1. Connectome Reconstruction Methods

Different methodologies can be applied for the reconstruction of connectome maps. Electron microscopy techniques
have enabled reconstruction of the Caenorhabditis elegans nervous system at the synaptic level [25]. Tracer injection
techniques combined with high-throughput serial tomography optical imaging have enabled the high-resolution recon-
struction of the mouse connectome [45] and systematic collations of data across high numbers of tracing experiments
have resulted in grouped consensus matrices of the cat, macaque, and rat brains. Advances in in vivo diffusion MRI
techniques have made it increasingly feasible to reconstruct macroscale connectomes of individual brains of great apes
[144] and humans. The development of techniques such as CLARITY [161] and 3D Polarized Light Imaging (3D-PLI) may
bring unprecedented high-resolution reconstructions of animal and human connectome wiring in the near future.

Today, the field of comparative connectomics is limited by the fact that connectome maps of different species are being
acquired with different types of methodology, restricting direct comparison of connectomes across a range of species.
For example, the C. elegans connectome describes neuron-to-neuron interactions at the microscale, while the macaque
and cat connectomes describe region-to-region connections at the macroscale level of nervous system organization. In
addition, while electron microscopy, tract-tracing and MRI-derived connectome reconstructions can provide information
about the strength of connections (often referred to in graph theoretical analysis as ‘weighted networks’), connectome
maps derived from cumulative collation of data across published literature are often limited in only providing information
about the presence or absence of connections (referred to in the connectome literature as ‘binary networks’) or coarse
categorization of the magnitude of pathways.

Thus, we argue that there are two aspects that are critical for enabling comparative studies in the future. First, it is crucial
to establish ways to interpolate across different methodologies, ideally by directly comparing brain connectivity patterns
derived by multiple techniques in the same organism, for example tract-tracing and noninvasive neuroimaging
[76,162,163]. Second, the application of the same technique to multiple species (e.g., [28,144]) facilitates cross-species
comparisons.
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Network analyses of the C. elegans connectome have had a prominent role in discussions of
wiring minimization models [33,34], which advocate that the conservation of wiring governs the
spatial placement of neuronal elements and accounts for the formation of spatially localized
circuits. However, these analyses have also revealed that some neurons and their connections
deviate from optimal spatial placement, as predicted by a strict minimization of wiring cost
[33,35,36], which argues for other, nongeometric biological factors to have a role in the topology
of the C. elegans nervous system. Indeed, one of the most prominent features of the con-
nectome of the adult worm is the non-uniform distribution of synaptic connectivity (i.e., node
degree) across neurons [26,37], with most synaptic connections maintained by a small set of
highly connected neurons. These hub neurons maintain dense interconnectivity with each other
despite being spatially distributed in both the anterior and posterior extremities of the body of the
worm. These findings are indicative of a biologically expensive rich club organization of the adult
C. elegans connectome in which high-degree elements form a densely centralized core [32].
Interestingly, hub neurons constituting the rich club of the adult C. elegans had previously been
categorized as command interneurons with known functional importance for information inte-
gration [26], coordinated movement, and adaptive behaviors of the animal [32]. Furthermore, in
C. elegans, these hub neurons have been noted to appear as one of the first elements of the
nervous system [38], suggesting a central role of rich club architecture in nervous system
development [32,39].

Box 2. Graph Theory

The connectomes of different species can be compared by applying a consistent set of network analysis methods. These
methods are principally drawn from the mathematical field of graph theory, enabling quantitative comparison between
species using the same mathematical language. Within this approach, a nervous system is described as a graph,
comprising a collection of nodes (e.g., neurons or brain areas) and a collection of edges describing the pairwise relations
between nodes (e.g., synaptic connections or macroscopic axonal projections) (Figure I). Once such a mathematical
description of a network is made, graph theoretical metrics can be used to describe and, across species, compare
topological properties of the network. The metric of degree represents the number of connections attached to a node of
the network. Clustering describes the tendency of nodes to form closed triangles, such that the nearest neighbors of a
node are also directly connected to each other. The metric of clustering reflects the tendency of a network to form
topologically local circuits, and is often interpreted as a metric of information segregation in networks. A path describes a
route of information transfer between two nodes in a network, with the metric of path length describing the number of
steps (comprising unique edges) crossed when traveling from one node to another node in a network. The shortest path
length expresses the minimal number of steps needed to travel between nodes, and is often interpreted as a metric of the
efficiency of information transfer between nodes of a network. Hubs are nodes with a high degree and a topologically
central position in the overall network, with the core of a network describing a set of highly connected nodes that are
mutually densely connected. The related concept of rich club organization describes the propensity of highly connected
nodes to be more densely connected to each other than expected based on the individual degree of the nodes. The
community structure of a network refers to the tendency of a network to form densely connected subgraphs or modules,
corresponding to a subset of nodes that are densely connected to each other and sparsely connected to nodes in other
modules. In nervous systems, anatomical modules often overlap with known functional systems.

Node

Edge Path

Community structureClustering

Rich club

Degree

Hub

Figure I. Graph Metrics. Figure illustrates (from left to right) the mathematical description of a network as a graph
comprising nodes and edges, the metric of degree, a communication path, the metric of clustering, the formation of a
densely connected rich club or core, and the community structure of a network, reflecting the formation of densely
connected subgraphs or modules within the network.
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Other projects aiming to establish neuron-scale connectivity maps have focused on the
reconstruction of the connectome of Drosophila, for example by imaging a sample of approxi-
mately 12 000 of the >100 000 neurons that comprise the adult fly brain [40]. Grouping of
individually imaged neurons into over 40 morphologically distinguishable brain areas resulted in a
detailed interregional connectome map [40]. Subsequent refinement of this map and detailed
graph theoretical analysis showed several highly connected hub regions as well as five network
communities (modules) of densely interconnected regions [41]. These five communities largely
correspond to known olfactory, visual, mechanosensory/auditory, and premotor systems of the
fly brain, suggesting that their topological structure forms the anatomical substrate for special-
ized functional processing (Figure 2). Wiring economy has been suggested to have a major role
in local neuron and connectivity placement in the Drosophila brain [42]. However, as in
C. elegans, a modular structure minimizing the expense of wiring is supplemented by the
presence of a highly connected rich club [41]. Rich club regions are found distributed across all
modules of the Drosophila nervous system and their remote geometric placement implies a high
cost of wiring of their interconnecting pathways [41] (Figure 3). Parallel mapping efforts using
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Figure 2. Community Structure. Studies have shown consistent community organization of nervous systems across
species, including (A) the Caenorhabditis elegans neuronal network, and (B) Drosophila, (C) macaque, and (D) human
connectomes. Anatomical communities obtained by graph theoretical analysis often with known functional domains, as for
example the olfactory (yellow), visual (purple and orange, left and right), auditory/mechanosensory (magenta), and premotor
(red) functional systems of the fly brain (B) [41]. Modular decomposition of the human connectome as derived from diffusion-
weighted imaging revealed the formation of at least six anatomical communities overlapping spatial domains of the human
brain. Reprinted under the creative Commons Attribution License from [26] (A), [62] (B), and [68] (C); adapted and
reproduced with permission from [41] (B).
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electron microscopy serial sectioning and reconstruction of neuronal circuits in the Drosophila
larva have provided detailed wiring diagrams of multisensory circuits that are similar to those of
the adult fly brain in demonstrating complex patterns of convergence to enable multimodal
information integration [43]. These and other studies have established important links between
the topology of neuronal circuits and the sensory/behavioral functions of the brain.

Reconstructions of whole-brain connectome maps of more complex species predominantly
involve the tracking of macroscale axonal projections between large-scale brain areas. Such
reconstructions include mappings of the avian pigeon brain, revealing a modular network
architecture and densely connected hub areas [44], as well as detailed mappings of the
macroscale systems of several rodent and primate species. Recent comprehensive mapping
efforts utilized a large number of injections of anterograde tracers combined with high-through-
put serial tomography optical imaging for a detailed reconstruction of the mouse connectome
[45]. Although such automated reconstruction procedures will inevitably be prone to some level
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Figure 3. Hubs and Rich Club Organization across Species. Connectome studies have shown hub and rich club
organization for (A) the microscale Caenorhabditis elegans nervous system, as well as for the macroscale brain networks of
(B) mouse, (C) rat, (D) macaque, and (E) human. Analysis of the C. elegans connectome revealed a small set of highly
connected rich club hub neurons distributed across anterior (red nodes) and posterior (yellow nodes) parts of the animal. (B)
Network analysis of the mouse connectome showed the existence of highly connected and highly central connector hubs
(red nodes), which mediated most of the intermodular connections between functionally specialized modules of the
community structure (nodes are color coded by modular affiliation). (C) Network analysis of the rat connectome has shown
the rich club (red line) to participate across multiple functional domains (depicted as colored blocks). (D) Connectome
analysis of the macaque brain has revealed rich club members (red nodes) to be spatially distributed across the cortex. (E)
Network studies of the human connectome have similarly shown the existence of highly connected hubs in the human brain
(depicted as red, yellow, blue, and green regions). These hub areas are distributed across multiple functional domains and
show strong rich club organization. Adapted and reproduced from [32] (A) and [72] (E) under the Creative Commons
Attribution-Noncommercial-Share License; adapted and reproduced, with permission, from [47] (B) and [49] (C); reprinted
under the Creative Commons License from [66] (D).
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of measurement error and statistical noise [45], standardized experimental conditions allowed
tracking of an unprecedented number (>15 000) of directed projections among more than 200
areas of the mouse brain. A parallel effort involved the detailed mapping of over 600 macroscale
corticocortical pathways combining both anterograde and retrograde tracer experiments [46].
Network analysis of these mouse connectome maps revealed dense local clustering of wiring
and modular organization, combined with the existence of topologically short pathways [45,46].
Furthermore, the strength of anatomical connectivity was noted to approximate a log-normal
distribution ranging over five orders of magnitude [45]. Projection strengths of anatomical
pathways generally were strongest between spatially neighboring regions and decayed mono-
tonically as a function of increasing connection distance. This argues in favor of an important role
of geometric factors in shaping the topology of mouse wiring [45]. However, similar to the
invertebrate species considered earlier, the wiring cost of the mouse connectome is not strictly
minimized and its modular organization is complemented by the existence of high-degree rich
club hubs mediating biologically expensive (long-distance) connections between modules
[47,48] (Figure 3). Generative modeling approaches proved successful in reproducing the
modular aspects of connectome topology of the mouse brain simply by minimizing wiring cost,
but these models failed to account for the emergence of long-distance connections until the
penalty imposed on spatial distance was adaptively relaxed for higher degree hubs [47].

A different approach aiming to build a rat cortical connectome involved collating data across
>16 000 literature reports of tract-tracing experiments. Collectively, these data captured over
1900 cortical association macroconnections spanning >70 distinct gray-matter areas of the rat
cerebral cortex, together with an ordinal assessment of connection strength [49]. Graph theoretical
examination revealed short communication paths, and high clustering, connected communities
largely coinciding with functionally specialized systems [49], and a central rich club [49,50] com-
prising a set of highly connected, spatially distributed, and multimodal cortical areas [49] (Figure 3).

Consensus matrices obtained by collating data across large numbers of tracing experiments
have also been built for the cat [51], ferret [52], and macaque brains [53]. One of the earliest
mappings of a mammalian cerebral system involved the compilation of the macroscale cat
connectome, describing 65 cortical areas and >1000 corticocortical pathways [51]. Network
analysis of the cat connectome showed short-length paths and strong clustering of anatomical
wiring within functionally specialized motor, visual, auditory, and frontolimbic subsystems [54].
Follow-up analysis identified different types of hub area in the cat cortex [55], and defined a
central, reciprocally interconnected core module [56,57] corresponding to a rich club of cortical
hubs [58].

The systematic analysis of anatomical connectivity patterns in the macaque brain was propelled
forward by the early connectomics pioneer Rolf Kötter (1961–2010) who founded the open-
access Collation of Connectivity Data for the Macaque (CoCoMac) database, which aggregated
data from hundreds of macaque tract-tracing experiments [53,59]. Graph theoretical analyses of
macaque connectome maps revealed high clustering, a hierarchical ordering of wiring from
primary to multimodal areas [60], short path lengths, pronounced modular organization [61–63],
and the presence of spatially distributed but centrally connected cortical hub areas [55,62]
(Figure 3). As already noted by early computational analyses of macaque interareal connectivity
[64], inverse correlations between projection density and geometric length suggest an important
role of spatial or geometric factors in shaping the topology of macaque interareal projections
[65]. However, modeling analyses of macaque connectivity have also pointed out an important
role for topological factors in shaping macaque connectivity, such as the drive to enable efficient
communication pathways by means of the formation of high-cost long-distance projections [35]
and the high investment of connectivity around hubs and a rich club core [55,66,67]. These
network attributes are difficult to account for by purely geometric factors.
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The development of diffusion-weighted imaging combined with tractography has enabled the
assembly of the macroscale human connectome [68–72]. Despite the caveats and limitations
regarding the interpretation of the diffusion MRI signal [73–75] and its use in connectome
reconstruction (discussed in [68,76–78]), diffusion-weighted imaging is currently one of the most
widely used methods for the assessment of anatomical connectivity in the human brain. Several
large-scale efforts, including the Human Connectome Project [79], are delivering unprecedented
amounts of high-quality human connectome data, and advances in ex vivo imaging techniques
might provide even more-detailed maps of postmortem animal and human wiring in the future
(Box 1). Paralleling key features of connectome topology already reviewed for other animals,
network analysis of the human connectome has shown an organization of densely connected
communities that form the anatomical wiring skeleton of known functional domains [80–85]
(Figure 2). This modular structure is complemented by anatomically long-distance projections
that support topologically short-distance global communication paths [68,69], combined with
densely connected and topologically central communication hubs [68,71,86–88] that form a
central rich club in the human brain [39,89–92] (Figure 3).

Having surveyed our current knowledge of connectome topology across a range of species, we
are now in a position to examine the potential principles that may drive common themes in wiring
patterns, as well as the important roles of cross-species variations in differentiating behavioral
and cognitive adaptations.

Common Principles of Connectome Wiring
We first discuss which general principles may underlie common themes of connectome organi-
zation observed across species. Across the range of species studied so far, we observe a strong
tendency at both the micro- and macroscale of network organization for neurons (micro) or brain
regions (macro) to connect to their spatial and topological neighbors, favoring the formation of
spatially colocalized, topologically clustered cliques or communities [80] (Figure 2). This community
architecture largely coincides with the formation of physiologically specialized functional domains in
nervous systems, consistent with the idea that anatomical wiring has an important role in the
functional differentiation of cortical areas [93–95]. Cross-species comparison shows a high level of
consistency of functional domains across species, with human, macaque, and rodents showing
several homologous primary and higher-order associative limbic and cognitive networks [96–99].
The conservation of wiring has long been proposed as a fundamental rule governing the local layout
of circuits [34,47,64,65,100–102]. Geometric constraints promote the emergence of functionally
specialized network communities in nervous systems. It has been hypothesized that the growth of
brain volume across species favors the existence of local modules [103,104] while penalizing the
formation of long-range connectivity because such connections become increasingly expensive in
terms of neural resources. Support for such notions comes from studies examining the volume of
white matter connectivity tracts across a range of primate species, revealing long-distance (and,
thus, costly) connectivity in the corpus callosum to be lower in larger primate brains, while
intrahemispheric white matter volume is enlarged [105]. A more local organization of cortical
wiring in larger brains may promote the emergence of specialized brain functionality in larger
animals [103,104,106–108]. For example, a stronger modularity structure of connectome wiring
may have had a role in the formation of more spatially localized cortical fields for visual, sensory, and
motor information processing in larger mammalian brains [5], as well as increased brain lateraliza-
tion, preferred hand use, and the development of specialized traits, such as language processing,
in humans [109–111].

A second general theme of connectome topology includes the drive of nervous systems to invest
resources in network attributes that result in topological integration (Figure 3). Across the range
of examined species, all nervous systems show topologically short and efficient paths, regard-
less of increasing brain network size. Although modeling studies have generally succeeded in
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accounting for parsimonious local wiring and cost-controlled community structure, they have
difficulty explaining the formation of long-distance pathways (essential for efficient communica-
tion paths) unless constraints on wiring cost are relaxed [47,101,102,112]. Across species, the
consistent presence of long-distance connections that violate strict minimization of wiring
suggests a general drive of neural systems to invest neural resources in network attributes
that maintain short communication relays.

The strong drive to invest costly resources in network attributes that result in topological
integration may become even more apparent from the consistent allocation of neural assets
to the formation of a densely connected core or rich club [32,87,113]. This general tendency to
centralize connectivity appears to be ubiquitous: it is observed across spatial scales (e.g., from
patterns of information flow in microcircuits [114–116] to whole-brain systems), as well as across
small and large nervous systems of vastly different species (Box 3).

Box 3. Nerve Nets

The nematode, insect, avian, and mammalian species discussed in this review are all species that display a central brain
system. Others, such as jellyfish, hydra, and starfish, do not have a centralized brain. Instead, their nervous system
comprises a ‘nerve net’ (Figure IA), with neurons distributed across most parts of the animal, a type of system
organization reflecting their distinct body plan [164,165]. The nervous systems of jellyfish and hydra are often described
as a simple network in which neurons are only connected to their spatial neighbors (in network terms, this would make a
simple ‘regular graph’ or spatial ‘grid’ with no modules, short paths, or hubs).

However, recent studies have suggested that the nervous systems of adult jellyfish and hydra may exhibit a more diverse
architecture, including potential concentration of neural elements into complex structures facilitating information inte-
grative processes [165–167]. The nervous systems of adult jellyfish comprise multiple components (see [164] for an
introduction to jellyfish nervous systems), including sensory structures (rhopalia, Figure IB) that are connected via an
interconnecting nerve ring(s) system running around the bell (Figure IB). This nerve ring is involved in integrating the
swimming, visual, and tentacle system [165] and is argued to represent a rudimentary central nervous system [168,169].

Thus, although the basic plan of the nerve nets of species such as jellyfish and hydra may be laid out differently from the
nervous systems of the species discussed in this review, we argue that there may be common topological attributes, for
example a centralized system of interconnected neuronal structures. This suggestion calls for further expansion of the
currently available set of connectomes beyond those discussed here, and emphasizes the need for comparative con-
nectomics to examine commonalities and differences in nervous system architecture across a (much) wider range of species.

(A)

Rhopalia

ULE

LLE
RN

(B)

(C)

Figure I. Jellyfish Nerve Net. (A) The nervous system of a jellyfish involves a nerve net. (B) Sensory structures (rhopalia,
with the insert showing a magnification with details of lower [LLE] and upper [ULE] lens eyes [164]) in several jellyfish
species include concentrated neural structures that are interconnected by an organized nerve ring [RN in (B) and also
shown in (C)], potentially supporting multiple communication pathways. Adapted and reproduced with permission from
[165] (A) and [164] (B). Abbreviations: LLE, Lower Lens Eye; ULE Upper Lens Eye.
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Communication in nervous systems goes beyond the simple relaying of messages along
shortest paths and involves continual processing of information at each neural step. Thus,
the centralization of neural connectivity into a connective core may have important benefits with
regard to information integration [32,87,117,118], potentially facilitating higher-order brain
functionality that thrives on integrated information, such as coordinated movement in the worm
[32] and/or executive functioning in humans [119]. Due to their central embedding in network
topology, hubs and their connections can attract and disseminate a large proportion of all neural
communication [89,118], forming an anatomical substrate for the exchange of information
between otherwise segregated domains. This has led to the theory that hubs and rich clubs
provide an anatomical infrastructure [87] for the formation of a ‘global workspace’ [120–122] or
‘connective core’ [123], a functional construct in which information from different parts of the
system is integrated. These ideas are supported by observations demonstrating that hub
regions in mammalian species tend to overlap with multimodal association cortex [124,125],
display an intricate neuronal architecture with heavily branched pyramidal neurons [126–130],
pose high energy demands [19,90,131], and form convergence zones between different
functional networks [132–134].

The common theme across nervous systems to invest neural resources in network attributes
that bring topological integration argues for a more diverse set of principles than strict conser-
vation of neural resources to shape the connectivity layout of nervous systems [135,136].
Rather, the drive to invest neural resources in dense connectivity around an integrative core
appears to favor the emergence of connectome attributes that are advantageous for enabling
short pathways and transmodal communication. Offsetting their greater biological cost in terms
of neural and metabolic resources, these topological features may bring strong potential benefits
for integrative neural processing and cognitive brain function and behavior.

Variations Support Behavioral and Cognitive Adaptations
Although we argue for common cross-species themes in connectome organization, a proposed
trade-off between pressures to conserve wiring cost and pressures to maximize topological
integration [19,137] cannot, by itself, account for the abundant diversity in brain connectivity and
nervous system organization across species. Multiple factors, including variations in environ-
mental factors, genes, and genetic regulatory networks operating during development, combine
to generate a diverse set of brain networks even across closely related species. A natural next
question, then, is how differences in connectome wiring between species relate to species-
specific differences in behavior and information processing. This question is most productively
explored by comparing connectomes of relatively closely related species that share a basic
anatomical plan and an overlapping behavioral repertoire.

One example is offered by comparative studies of the nervous systems of roundworms.
Comparison between reconstructions of microscale neural networks of the pharyngeal systems
of C. elegans and P. pacificus showed significant differences in neural connectivity that could be
linked to their distinct feeding behaviors [28]. In contrast to the bacterial feeder C. elegans,
P. pacificus is a predator with a distinct anatomy of its mouth areas. Side-by-side comparison of
the layout of synaptic connectivity of the pharyngeal systems of the two species revealed
significant differences [28] (Figure 4), with P. pacificus showing increased connectivity around
neural elements controlling tooth-like denticles. Comparative network centrality analysis further
showed that presumptive communication paths and information flow in P. pacificus are more
tuned towards the control of pharyngeal motor neurons. Thus, differences in connectome
topology appear to constitute at least part of the biological basis for the substantial divergence in
feeding behavior between the two worm species [28]. In addition, a second comparative
example in the roundworm (not across species but gender) is provided by dimorphic differences
in neural wiring of the reproductive system of C. elegans. Male worms have 383 neurons
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(C)

P. pacificus

Human Chimpanzee Macaque

Node degree
group difference

<Macaque <Humans

C. elegans

Figure 4. Connectivity Comparison across Species. (A) A side-by-side comparison of the neuronal organization
(upper panel) and wiring (graphs in the lower panel) of the pharyngeal system across two worm species, Pristionchus
pacificus (right) and Caenorhabditis elegans (left). A comparison between the two systems (comprising the same
number and same types of neuron) reveals wiring differences: the predator P. pacificus shows higher complexity of
connectivity around neural elements controlling the tooth-like denticles compared with C. elegans [28]. (B) Comparison
of macroscale connectivity between macaque (top), chimpanzees (middle), and humans (bottom) revealed more
elaborate connectivity of the arcuate fasciculus in humans, a tract important for complex language processing
[109]. (C) Comparison of whole-brain functional connectivity patterns between macaques and humans revealed areas
of both weaker (blue areas) and stronger functional connectivity across the cortex (red areas) in humans compared with
macaques, as well as an overall more spatially diffuse hub structure in humans [145]. Adapted and reproduced with
permission from [28] (A) and [109] (B); adapted and reproduced under the Creative Commons Attribution-Noncom-
mercial-Share License from [145] (C).
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(in comparison to 302 in hermaphrodites) with dimorphic changes in neurons and connectivity
mostly focused around the formation of circuits related to mating and reproduction [25,27]. Male
worms, but not hermaphrodites, are capable of sexual adaptive learning that facilitates effective
mate finding and, interestingly, a recent study reported a key role of specific neurons and their
wiring in the emergence of this behavior [138]. Detailed reconstruction of synaptic connectivity
revealed two newly discovered neurons to be incorporated in existing circuits during late devel-
opment, with the newly added connectivity and accompanying change in network structure
allowing the male worm to add sex-specific learning plasticity to its functional repertoire [138].

Comparative connectivity analyses between primate species have similarly argued for a relation
between subtle differences in connectome wiring and divergent behavior [139]. For example,
bonobos and chimpanzees share a recent common ancestor, but they show distinct social
interactive behavior, with bonobos showing less aggression and higher social tolerance com-
pared with chimpanzees (discussed in [139,140]). Comparative analysis of MRI-derived recon-
structions of brain connectivity between the two species showed anatomical connectivity
between the amygdala and anterior cingulate regions (a network of subcortical and cortical
areas involved in the modulation of social and emotional behavior [141,142]) to be stronger in
bonobos than in chimpanzees [139]. Furthermore, comparative MRI studies among macaques,
chimpanzees, and humans [109] have linked elaboration of anatomical connectivity of the
arcuate fasciculus connecting temporal and frontal cortical areas to the development of
language and speech processing in humans (Figure 4) [109,143].

In addition to evidence for behaviorally related connectivity differences in specific circuits,
comparative connectome examinations between primates and humans have further offered
support for a role of variations in system-level connectivity patterns in the evolutionary emer-
gence of specific advanced brain functions. Although studies have reported a general homology
of connectome organization across macaque, chimpanzee, and human, there is evidence for
significant species-specific differences in the wiring of parietal and medial prefrontal regions
[67,144]. Comparative connectome analyses suggest that areas of the frontal cortex in humans
exhibit a less central position compared with homologous areas in macaques and chimpanzees
[67,104]. In addition, functional connectivity hubs in the human brain have been argued to exhibit
a more spatially distributed organization compared with nonhuman primates [145], differences
that may contribute to the increasing functional specialization of frontal cortical areas [104].
Potentially more, including more centrally connected, hubs in other parts of the cortex may
confer higher robustness and bring greater support for the functional involvement of other areas
in global processing [145]. These hypotheses are supported by recent comparisons between
chimpanzees and humans, which revealed strong expansion of the precuneus in humans [146].
Indeed, the precuneus is one of the most central and most connected hub areas of the human
brain [68,113]. These ideas parallel observations that variations in connectome organization and
hub wiring relate to individual variation in cognitive processing in humans [119,147–151].

Concluding Remarks and Future Directions
The central idea of this review is that nervous systems of different species exhibit both common
themes and important variations in connectome organization. We argue that connectome
architecture may follow general principles of wiring, shaped by forces that minimize the
expenditure of biological resources and forces that favor functionally important topological
attributes that benefit efficient communication and global integration. Competition and trade-
offs between these opposing forces can account for the ubiquity of connectomes that are
generally parsimoniously wired, while allowing for features that can promote topological inte-
gration. We further argue that, within the envelope of wiring solutions that conform to these
general principles, subtle variations in connectome organization support species-specific adap-
tations in behavior and cognitive functioning.

Outstanding Questions
How are changes in connectome
topology related to the emergence of
advanced cognitive functions?

Which, if any, topological macroscale
connectome features are unique to
humans?

How are across-species commonali-
ties and differences in connectome
organization related to other biological
differences (e.g., cytoarchitecture, cel-
lular processes, or genetics)?

Are the observed themes of cost mini-
mization versus maximization of integra-
tive topology specifically tuned for the
organization ofnervous systems or com-
mon themes of a wider class of naturally
and artificially selected networks?
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The ideas put forth in this review, in particular our hypotheses on adaptive changes in network
attributes to form biological underpinnings of variations in brain function, of course need
thorough empirical testing. Comparative studies that use uniform acquisition methodology to
map (Box 1) and study (Box 2) connectomes across species are needed to rigorously map
commonalities and differences of connectivity patterns. Furthermore, investments in studies that
explicitly address the diversity of brain architectures are required to draw more secure inferences
about the putatively universal principles shaping connectome evolution. This would necessitate
examinations across a wider range of species. For example, besides the work of reconstructing
connectomes of nematode, insect, avian, and mammalian species, as summarized in this
review, comparative connectomics could be extended further to encompass the nervous
systems of animals with a completely different body plan but that may nevertheless share
universal attributes of connectome organization (Box 3). In addition to the collection of more
comprehensive and consistent empirical data, this burgeoning field would benefit from compu-
tational modeling studies that simulate generative mechanisms behind cross-species network
evolution and test the roles of network attributes with respect to functional diversity [117],
dynamics [83,152], resilience, and integration [153,154].

By focusing on patterns of brain connectivity, comparative connectomics is subject to several
important limitations. First, comparative connectomics is currently constrained by the divergent
methodologies used to assess connectivity at different scales and in different species (e.g.,
electron microscopy, tract-tracing, and MRI; Box 1). This limitation underscores the importance
of finding ways to reconstruct connectomes more uniformly across different nervous systems.
Second, the architecture of a nervous system must be considered in the context of the overall
structural anatomy, physiology, and ecological embedding of the organism [155]. Among many
other factors, the body plan of an organism, the arrangement and physiology of its sensory
apparatus, and the geometry of its musculoskeletal system, are important factors that shape,
constrain, and enable behavioral (and cognitive) function, as well as the layout of the nervous
system. The common themes of connectome organization highlighted in this review cut across
vast differences in body plan and ‘evolutionary complexity’. This suggests that the observed

Box 4. Comparative Analysis of Different Classes of Network

Going beyond the examination of shared topological features across nervous systems, the generalized mathematical
language of graph theory also offers tools for the comparison of the organization of brain networks to other classes of
network studied by different scientific disciplines. Many real-world systems operate as some sort of interaction or
communication network, including, for example, social networks, gene regulatory networks, computer networks, and
transportation networks. Similar to brain networks, many of these real-world networks display an efficient small-world
organization, a pronounced community structure with densely connected modules, as well as the formation of hubs and
rich clubs [30,37,170]. Going beyond the comparison of networks within the class of nervous systems, the field of
‘comparative network analysis’ examines commonalities and differences across a range of network classes.

A core concept in this context is that of network morphospace [156], which examines underlying morphological
characteristics of networks by describing common and differentiating aspects across networks compared with the
total space of possible networks. Applications of morphospace analysis include examinations of the capacity of brain
networks to diffuse and route signals in comparison to social, gene regulatory, and email networks [171]. A comple-
mentary approach is based on applications of spectral graph theory [172], with the spectrum describing the multiset of
eigenvalues of the adjacency matrix of a network. Networks showing overlapping spectra display common organiza-
tional and functional features. For example, spectral examinations have shown similar features between nervous systems
and the organization of ecological networks, an observation that may provide clues to selection pressures with a role in
the evolution of both systems [173].

Comparative network analysis allows for the examination of commonalities and differences between classes of network.
In particular, it provides a powerful approach to answer the question of which topological network attributes are specific
to nervous systems and which represent more universal properties of network organization [174]. As such, it provides a
unique tool to examine which network properties are unique to brain networks, and which properties are shared with
other types of communication and interaction network.
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principles of wiring reflect universal features of efficient and effective network organization that
cause common connectome patterns to be found across a range of species. Viewed from
another perspective, they may define hard limitations to connectome formation that cannot
easily be contravened by natural selection. The competitive pressures of parsimonious wiring
and topological integration impose general trajectories and boundaries that define the space of
network topologies that are geometrically and functionally possible. This space is embedded
within a ‘theoretical morphospace’ of biological forms [156] and defines the realm within which
connectome topologies can vary, at least in principle, and contribute to adaptations that support
different behavioral and cognitive specialization. The size and shape of this common morpho-
space, how it constrains the possible behavioral and cognitive repertoire [157–159], and how it
compares to the total morphospace of natural and human-engineered networks (Box 4) all
remain important open questions (see Outstanding Questions).

We hope that, with growing access to connectome data from a range of species, comparative
connectomics may become a useful addition to the spectrum of approaches aiming to account
for cross-species commonalities and differences in brain structure and function.
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