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There is enduring interest in why some of us have clearer
memories than others, given the substantial individual variation
that exists in retrieval ability and the precision with which we can
differentiate past experiences. Here we report novel evidence
showing that variation in the size of human hippocampal subfield
CA3 predicted the amount of neural interference between episodic
memories within CA3, which in turn predicted how much retrieval
confusion occurred between past memories. This effect was not
apparent in other hippocampal subfields. This shows that subtle
individual differences in subjective mnemonic experience can be
accurately gauged from measurable variations in the anatomy and
neural coding of hippocampal region CA3. Moreover, this mecha-
nismmay be relevant for understanding memory muddles in aging
and pathological states.
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Our memories often contain overlapping elements, because
they tend to feature the same people and places that form

the cornerstones of our lives. Nevertheless, we are generally able
to recall many of these past experiences as distinct episodes,
although we are not all equally adept at doing so. There is
substantial individual variation in retrieval ability and the pre-
cision with which we can differentiate past events (1, 2). This is
most acute as we age and in conditions such as dementia, where
confusion about the past is often evident (2). There is keen in-
terest, therefore, in elucidating the neural mechanisms that allow
us to recollect numerous life experiences despite a high degree of
intermemory similarity.
We know little about how this is achieved in humans, but the-

oretical models propose that computations within hippocampal
subfields facilitate the efficient storage and retrieval of similar
memories (3–7). When we experience an event, pattern separation
leads to the formation of a distinct neural representation within
region CA3 (8–11). At retrieval, a previously stored memory
representation within CA3 can be reactivated through the process
of pattern completion (12, 13). However, when episodes are highly
similar, the CA3 neuronal representations may not be completely
distinct, leading to partial overlap (14). It is therefore not clear
precisely what the limits of CA3 pattern separation might be. Here
we directly tested the capacity of human CA3 to maintain distinct
episodic representations in the presence of overlapping elements.
We further investigated whether variation in this ability provides
an explanatory account of individual differences in the precision of
episodic memory retrieval.

Results
We combined high-resolution functional MRI (14) (fMRI) with
an ultra-high resolution structural MRI scanning protocol that
permitted the separate identification of CA1, CA3, dentate gyrus
(DG), and subiculum (15, 16). Stimuli were created by filming
two brief action events against a green-screen background. Each
event was then superimposed onto the same two spatial contexts,
creating four movie clips that included every combination of the
two events and the two contexts (17) (Fig. 1). Each participant
viewed the four movies before scanning and then vividly recalled
each one numerous times during fMRI. Because the four epi-
sodes completely overlapped with one another in terms of their
constituent elements, any successful differentiation of the four

memories from patterns of activation would suggest the presence
of individual episodic memory traces (note that an alternative
possibility based on the presence of separate event and spatial
context components is considered and ruled out below). Using
this paradigm we could also assess whether the recall of an ep-
isode led to the coactivation of overlapping episodes through
CA3 pattern completion. Such a result would suggest that the
episodic representations were not entirely distinct, but over-
lapped with one another owing to a partial failure of pattern
separation. This design therefore allowed us to test for the pres-
ence of episodic information within CA3, as well as any possible
overlap between the episodic representations.
Data were analyzed using a model-based decoding approach

(18–20) called multivariate Bayes (21–23) (MVB) in which a hi-
erarchical Bayesian model is used to discover the pattern of
voxels that best explains a given target variable from the exper-
imental design (in this case, the activity profile associated with
recalling a specific episodic memory). For each model, this voxel
pattern was used to produce a predicted information time
course, and model fit was assessed by correlating the predicted
time course against the target variable. Statistical significance
was assessed using a nonparametric permutation approach (24).
This involved shuffling the memory labels, which provided a
baseline level of information taking into account general re-
trieval processes, thereby ensuring that any significant results
could only be due to the presence of information about each
individual memory (Methods).
We first assessed whether information about each of the four

individual episodes was present within each of the four hippo-
campal subfields. Using a Bonferroni-corrected threshold of P <
0.0125, we found that only CA3 contained episodic information
[t (14) = 3.34, P = 0.0049], whereas the other three subfields did
not [CA1: t (14) = 2.02, P = 0.063; DG: t (14) = −0.53, P = 0.6;
subiculum: t (14) = 2.09, P = 0.056]. This result is consistent with
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How does the brain allow us to recall numerous life experi-
ences despite there often being a high degree of similarity
between memories? This is a key question in neuroscience.
Moreover, there is also keen interest in understanding why
some people are able to recall memories with greater clarity
than other people. In this study, we identified a specific brain
region, CA3, an area within a structure called the hippocampus,
and a mechanism within it that helps to explain individual
differences in recollection. These findings have relevance for all
of us in elucidating memory muddles in general, in aging, and
possibly also in conditions such as dementia, where confusion
about the past is often evident.
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the theoretical role of CA3 as the recipient of pattern-separated
episodic information, which can then be retrieved at recall via
pattern completion. Furthermore, it demonstrates that such in-
formation is still present and detectable despite the high degree of
overlap between the four episodes. In a further MVB analysis we
focused specifically on the cue period (Methods). This failed to find
any significant cue-related information in any of the subfields (all
P > 0.05). Furthermore, a direct comparison of the information
contained within subfield CA3 revealed significantly greater in-
formation during memory retrieval than during cue presentation
[one-tailed t test t (15) = 1.90, P = 0.039]. Thus, our effects seemed
to be driven by episodic memory retrieval, rather than visual in-
formation related to the cues. After scanning, participants com-
pleted a debriefing questionnaire assessing eight factors relating to
each memory (e.g., vividness). None of these factors differed sig-
nificantly across the four episodes, demonstrating that they could
not explain the decoding results (Table S1).
We next asked whether the overlapping episodes within CA3

were coded as entirely distinct neural representations or whether
they partially overlapped with one another, leading to coac-
tivation of similar episodes during retrieval. Because each MVB
model estimates the pattern of voxel activity, we were able to
assess memory overlap by correlating the MVB voxel patterns
for each overlapping pair of memories. Pattern correlations for
each pair of nonoverlapping memories were also calculated to
provide a baseline measure of similarity. Fig. 2 displays the av-
erage overlap information after subtracting the baseline overlap
for each subfield. Any information that is significantly greater
than zero can only be due to the presence of overlapping mne-
monic representations within that subfield. We found that CA3
contained a significant amount of neural overlap information
[t (14) = 2.18, P = 0.047]. Given that only CA3 was found to
contain episodic information in the initial analysis, it was no
surprise that there was no evidence for the presence of overlap
information in the other subfields [CA1: t (14) = −0.66, P = 0.52;
DG: t (14) = −1.28, P = 0.22; subiculum: t (14) = 0.16, P = 0.88].
Thus, it seems that CA3 displays a significant degree of coac-
tivation between overlapping episodic representations during
recall. We suggest that this result may be due to a partial failure

of pattern separation in the presence of highly overlapping epi-
sodes. Such a failure would lead to the creation of partially
overlapping CA3 neural representations, which are then coac-
tivated during pattern completion. Notably, the specificity of this
effect within CA3 cannot be explained by the number of voxels
within this region compared with the other subfields, because
CA1 was the largest subfield tested. Thus, if the effect were
simply driven by number of voxels, we would have found a result
within CA1 rather than CA3 (see Supporting Information for
further consideration of this point).
So far the results suggest that individual episodic representa-

tions are present within CA3, but that the retrieval of an episode
also partially coactivates overlapping memory traces. This sug-
gests a competitive pattern completion process, whereby the
desired memory trace is activated alongside the undesired,
overlapping memory traces. If this process is indeed competitive,
we would expect an increase in interfering memory traces to lead
to a decrease in the desired memory trace through a process of
inhibitory interference. We made use of a degree of intersubject
variance in neural information for both the recalled episodic
memory (episodic information) and the overlapping memories
(overlap information) within CA3 to test this prediction and
discovered a negative correlation between the two [r (13) =
−0.63, P = 0.012]. This was not the case in any other subfield

Fig. 1. The movie stimuli. A set of overlapping episodes was created by
filming two brief action events against a green-screen background (Left).
Each event was then superimposed onto the same two spatial contexts
(Upper), creating four movie clip “episodes” (A–D) that included every
combination of the two events and contexts. Participants recalled memories
of these movies during fMRI scanning.

Fig. 2. (A) Coronal (Upper) and sagittal (Lower) views of the subfields in the
hippocampi of an example participant. (B) The amount of overlapping
memory coactivation within each subfield during episodic retrieval. This is
measured as the average correlation between the MVB voxel patterns for
overlapping memories, minus the correlation for nonoverlapping memories
(baseline). The group mean is shown with SE bars. Only CA3 displayed a sig-
nificant degree of coactivation, demonstrating that the overlapping episodes
were not represented by completely distinct neuronal representations.

Chadwick et al. PNAS | July 22, 2014 | vol. 111 | no. 29 | 10721

N
EU

RO
SC

IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319641111/-/DCSupplemental/pnas.201319641SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1319641111/-/DCSupplemental/pnas.201319641SI.pdf?targetid=nameddest=STXT


(all P > 0.25), which is not surprising given that we did not find
evidence for episodic information in any region other than CA3.
We therefore find evidence for a competitive pattern completion
process taking place within CA3. Furthermore, the amount of
neural interference seems to vary across individuals.
One key question is whether these results genuinely reflect the

dynamic competition between individual episodic representations
within CA3, as we have suggested. In theory, our finding of dis-
tinct episodic information with partial overlap between over-
lapping memories could be explained instead by the presence of
separate representations of event content and spatial context
within CA3 without requiring the presence of distinct episodic
representations. In this case, the retrieval of a given memory
would activate the relevant event and context representations
within CA3, rather than any individual episodic memory trace.
However, the correlation data allow us to adjudicate between
these two alternatives. If CA3 contained only separate event and
spatial representations then a participant who has stronger rep-
resentations should have a higher information measure for both
the episodic and overlap measures, because both of these should
be based directly on the strength of the underlying component
representations. In other words, if this were the case, we ought to
see a positive correlation across participants between unique and
overlap information. However, if CA3 contains distinct episodic
representations that are coactivated through a competitive pro-
cess of pattern completion, then a participant with a strong epi-
sodic representation should show a weak overlap representation,
because these overlapping episodes are suppressed. In other
words, we should see a negative correlation between episodic
and overlap information. Importantly, therefore, these two rival
explanations make opposite predictions about the expected di-
rection of the correlation. To formally demonstrate the validity
of these two predictions, we created two sets of simulated fMRI
data (25) based on the two different explanatory models and ran
the same MVB analyses that were applied to our real data. These
analyses confirmed that the presence of separate event and
spatial context information should lead to a positive correlation
between the strength of episodic and overlap information,
whereas the presence of distinct episodic representations with
competitive coactivation should lead to a negative correlation
(see Supporting Information for full details of these simulation
analyses). The fact that we found a significant negative correla-
tion between episodic and overlap information in our real
dataset therefore strongly supports the idea that we have
detected individual episodic representations within CA3.
Another question prompted by this result is whether the neural

interference taking place within CA3 actually influenced retrieval.
Participants could recall the correct memory on each trial, sug-
gesting that the CA3 overlap did not preclude memory retrieval.
However, further analysis revealed a more complex story. In the
postscan session, in addition to assessing possible confounds using
the eight ratings mentioned earlier (Table S1) we also asked par-
ticipants to provide a rating of how aware they were of the simi-
larities across the four episodes during retrieval (from 1 to 5). We
used this rating as a proxy for the degree of subjective confusion
between the overlapping episodes (see Supporting Information for
consideration of the relationship between subjective confusion and
the other behavioral variables). We operationalized CA3 neural
interference as the relative weighting of neural overlap information
compared with episodic information for each participant (Meth-
ods), because this measure accurately reflects individual variation
in the tension between the retrieval of the desired versus com-
peting memories. We found a significant positive correlation be-
tween the degree of CA3 neural interference and subjective
confusion across individuals [r (13) = 0.53, P = 0.04; see also
Supporting Information]. This indicates that measurable neural
processes occurring within CA3, specifically the degree of neural

interference between episodes, can have a significant impact on
retrieval processes (Fig. 3A).
We next asked whether either of these variables might be

predicted by differences in the underlying physical substrate of
subfield CA3. We found that the size of CA3 (adjusting for total
hippocampal volume) correlated negatively with both subjective
confusion [r (13) = 0.70, P = 0.0037] and with CA3 neural in-
terference [r (13) = −0.79, P = 0.0005]. In other words, subjects
with a larger CA3 showed a reduction in both CA3 neural in-
terference and subjective confusion (Fig. 3B). Thus, there seems
to be a tight relationship between CA3 size, CA3 processing, and
subjective levels of retrieval confusion. To explore the relation-
ship between these three variables further, we conducted a me-
diation analysis (26, 27). This determines whether or not a
predictor variable (CA3 size) has a causal effect on another
variable (subjective confusion) via a third, mediator variable
(CA3 neural interference). We found a significant effect of the
mediation pathway (using 10,000 bootstrap samples, P = 0.001),
which demonstrates that these relationships were not inde-
pendent. These findings provide further evidence that variation
in CA3 size can directly influence the amount of neural in-
terference within CA3, which then influences a person’s sub-
jective memory experience, determining how much retrieval
confusion occurs.

Discussion
This study provides two novel insights into hippocampal pro-
cessing. First, we found evidence that the recall of highly similar
episodes leads to overlapping neural representations selectively
within hippocampal CA3. This result is consistent with the idea

Fig. 3. (A) We found a positive correlation between the degree of sub-
jective confusion and CA3 neural Interference. Subjective confusion ratings
were on a scale of 1–5 (5 indicating high levels of confusion). (B) Both sub-
jective confusion (displayed in red) and CA3 neural interference (shown in
blue) correlated negatively with the relative size of CA3 (measured as a ratio
of total hippocampal volume to control for total hippocampal volume).
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that high levels of episodic similarity may elicit a partial failure of
pattern separation, leading to the creation of overlapping rep-
resentations within CA3. During retrieval, these overlapping
patterns are then partially coactivated through pattern comple-
tion, which can lead to mnemonic confusion. Second, we found
evidence for a neural mechanism underlying individual variation
in retrieval precision whereby CA3 size directly affects the effi-
cacy with which overlapping memories are differentiated, which
in turn influences how we experience our memories. Put to-
gether, this set of results provides a striking demonstration that
subtle individual differences in subjective mnemonic experience
can be accurately predicted from measurable differences in the
anatomy and neural coding of hippocampal region CA3.
These results relate to previous work on mnemonic inter-

ference. Several studies have demonstrated that competing as-
sociative memories are represented within visual cortex (28–30),
and our results now demonstrate that such interference can
also take place within hippocampal CA3. This suggests a possible
explanatory mechanism underlying cortical interference effects,
whereby cortical interference is the output of associative retrieval
processes taking place within the hippocampus. This would be
fully consistent with the idea that cortical reinstantiation of
memory traces follows pattern completion within the hippocam-
pus (3). Specifically, our results suggest that a partial failure of
pattern separation occurred, leading to the presence of over-
lapping representations within CA3. At retrieval, the presence
of this representational overlap leads to a competitive pattern
completion process, and concomitant mnemonic interference.
Although we did not set out to test cortical representations in
this study, our findings nevertheless suggest the possibility that
cortical interference observed in previous studies may reflect the
output of competitive processes taking place within CA3.
We also found a clear relationship between hippocampal

structure and both neural function and subjective memory.
There is a long history of studying the relationship between
hippocampal structure and cognition (e.g., refs. 31–33), and re-
cent studies have also begun to investigate the structure of spe-
cific hippocampal subfields (e.g., refs. 34–36). However, none of
these studies focused on how individual variation in neural
anatomy may relate to the computations taking place within the
hippocampal subfields. To our knowledge, only one previous
study has investigated this issue, and that was in aging partic-
ipants in the context of being unable to separate CA3 from DG,
and using simple objects as stimuli (37). They found that white
matter integrity in the CA3/DG region correlated with both
behavioral pattern separation and a neural measure of pattern
separation within the same region. This suggests that the degree
of memory decline with aging may depend on these hippocampal
computations, which in turn may be associated with the integrity
of white matter. Here we provide the first evidence, to our
knowledge, of substantial individual variation in, specifically,
CA3 anatomy and functioning on the one hand and complex
episodic memory on the other in healthy, young participants.
This three-way relationship places individual variation in com-
plex episodic memory within the framework of computational
theory for the first time to our knowledge and is an advance over
previous studies that have simply shown correlations between
anatomy and episodic memory with no accompanying mecha-
nism to explain these correlations. Furthermore, as discussed
above, our results provide a direct link between CA3 variation
and individual differences in mnemonic interference. Put to-
gether, these results offer an important bridge between
the neural computations of the hippocampus and mnemonic
interference.
The evidence presented here supports the conclusion that

there is a tight correspondence between CA3 anatomy, pattern
separation and completion, and the subjective experience of
episodic memory recall. We speculate that a larger CA3 may

promote a decrease in retrieval confusion via an increased
number of CA3 neurons, or enhanced lateral connectivity within
CA3, either of which could precipitate more efficient pattern
separation. We suggest that the precise neural mechanisms un-
derlying normal variation in episodic memory are now tractable
and may prove fruitful in elucidating why some people have
clearer memories than others, and why confusion about past
experiences often characterizes normal aging (37) and patholog-
ical states (36, 38), issues that continue to provoke wide interest.

Methods
Participants and Experimental Design. Fifteen healthy, right-handed partic-
ipants (eight female) took part in the experiment (mean age 21.17 y, SD 2.18 y,
range 18–25 y). All had normal or corrected-to-normal vision and gave in-
formed written consent to participation in accordance with the University
College London research ethics committee. The participants and experi-
mental design have been reported previously (17) in a study that was fo-
cused on a different set of questions that did not concern the hippocampal
subfields and that did not involve the high-resolution structural MRI scans or
any of the data analysis methods deployed here. Full details of the stimuli
and experimental design are provided in Supporting Information.

Image Acquisition. High-resolution (1.5-mm3) fMRI scans were acquired using
a 3T Magnetom Allegra head only MRI scanner (Siemens Healthcare), taking
a partial volume of 35 slices focused on the temporal lobes. High-resolution
T2-weighted structural images (0.52 × 0.52 × 0.5 mm3) were acquired on a 3T
whole-body MRI scanner (Magnetom TIM Trio; Siemens Healthcare) also in
a partial volume focused on the temporal lobes (39). To ensure optimal data
quality, images were reconstructed online and underwent online quality as-
surance (40). See Supporting Information for further details of the MRI
sequences and Fig. S1 for an example of the high-resolution T2-weighted
structural images.

Segmentation of the Hippocampal Subfields. Manual segmentation of the
hippocampal subfields was conducted using the ITK-SNAP software package
(41) and a recently devised subfield segmentation protocol (15, 16). It took
on average 1 d to segment the subfields of one hippocampus. Crucially, the
T2-weighted images acquired in this study, along with the new segmenta-
tion protocol, permitted the separate delineation of DG and CA3 (as well as
CA1 and the subiculum). Some of the hippocampi from the current study
(four left and three right) were segmented by a second trained operator to
assess interrater reliability using the Dice metric (42). The Dice metric pro-
vides a measure of overlap that is normalized between 0 and 1, where 1
indicates perfect overlap. It is calculated as 2jA∩Bj=jAj+ jBj, where A∩B
represents the number of voxels that overlap between the two segmenta-
tions and A and B represent the number of nonoverlapping voxels in each of
the two segmentations. It is therefore effectively a measure of the ratio of
overlapping to nonoverlapping voxels. Dice scores for each subfield were as
follows: CA1 0.78, CA3 0.68, DG 0.75, and subiculum 0.58. These scores are
similar to those reported by other methods, indicating that the segmenta-
tions were reliable. Further consideration of the subfield segmentation is
provided in Supporting Information.

fMRI Preprocessing. All neuroimaging analyses were conducted using SPM8
(www.fil.ion.ucl.ac.uk/spm). The first six functional volumes were discarded
to allow for T1 equilibration. The remaining functional volumes were spa-
tially realigned to the first image of the series, and distortion corrections
were applied based on the field maps using the unwarp routines in SPM (43,
44). Each participant’s whole-brain MT FLASH structural scan was then cor-
egistered to a mean image of their realigned, distortion-corrected func-
tional scans. Following this, the high-resolution T2-weighted structural
average was coregistered to the MT FLASH structural scan, bringing all
images into alignment (this coregistration was performed before the seg-
mentation of the subfields). Functional data were left unsmoothed for the
decoding analyses so that information present across patterns of voxels
across the small subfields could be detected. All data were analyzed in the
native space of each participant, using subject-specific regions of interest.

Decoding Analysis.We used a Bayesian model-based decoding method, MVB,
for all decoding analyses (21–23). An MVB model maps multivariate voxel
responses to a psychological target variable (e.g., individual memories) using
a hierarchical approach known as parametric empirical Bayes. This modeling
process therefore attempts to find the pattern of voxel responses that
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best explains the target variable, which in this case is the activity profile
associated with a single episodic memory. MVB uses the same design matrix
of experimental variables used in a conventional SPM analysis. When
a decoding contrast is specified, a target variable X is derived from this
contrast, after removing confounds. The multivariate voxel activity can be
used to produce a predictor variable Y. For each MVB model, the model fit
was assessed by measuring the (Fisher-transformed) correlation between
predictor variable Y and target variable X. It is possible to specify priors on
the pattern of voxel weights in an MVB design, and in this case we used
a sparse prior, because the distribution of episodic representations is expec-
ted to be sparse (3–5). The number of greedy search steps in the MVB
modeling was set to three for all analyses for computational efficiency and to
guard against the possibility of overfitting.

Decoding Individual Memories. The first analysis examined whether there was
any information about each of the four episodes present within each sub-
field, despite the high degree of overlap across episodes. To do this, we first
set up an appropriate SPM design matrix. We created a single regressor for
each individual memory, where recall trials for that memory were modeled
with a boxcar function covering the length of the recall period. Movement
parameters were included as regressors of no interest. Following this, for each
subfield separately we fitted four MVB models, one to each individual
memory regressor (i.e., one model for memory A, one regressor for memory
B, and so on; Fig. 1). The model fit correlation score was averaged across
these four models, creating a single summary measure of information about
episodic information. For each subfield we tested for significant differences
between the hemispheres and found none. We therefore averaged the in-
formation measures across the hemispheres, and all analyses reported here
are based on these pooled measures.

To determine whether this information was statistically significant, we
used a permutation approach to derive an estimate of the null information.
Each memory recall event was randomly assigned to one of four regressors,
this time ignoring the memory label (e.g., memory A). The four regressors
were matched to the original regressors in terms of the number of memories
included in each. An MVB model was fitted to each of these regressors, and
the model fit correlation score was averaged across the four. Because each
regressor contains a mixture of the four memory types, this new model fit
correlation can only reflect information about general retrieval processes
rather than information about each individual memory. For each participant
and each subfield, this permutation process was repeated 10 times, and the
model fit correlation was averaged across these 10 permutations to derive
a single estimate of the null information. If a region contains information
about each individualmemory, then the empiricalmodel fit should be greater
than the permuted null model fit. To determine statistical significance at the
group level we therefore used a paired t test to compare the empirical model
fit against the null. For the visual cue control analysis, the method was
identical to that described above, with the exception that the regressors for
each “memory” now modeled the onset of each visual cue as a single event,
rather than a boxcar covering the retrieval period.

Overlapping Neural Representations. Our key question was whether evidence
existed for partially overlapping neural representations, particularly within
CA3. If so, this would indicate that pattern separation may have partially
failed because of the high similarity across the episodes. Owing to the nature
of the design, each memory had another memory that shared spatial
background, another memory that shared event content, and one that had
no shared elements. For example, memory A shared the background with
memory C and shared the event content with memory B (Fig. 1). To in-
vestigate the presence of memory overlap during episodic recall, we looked
at the relationship between the MVB voxel patterns. If two memories have
overlapping neural representations, then the MVB patterns for those two
memories should correlate, whereas the MVB patterns for two non-
overlapping memories should not. To test this, for each participant and
subfield we calculated the Fisher-transformed Pearson correlation between
the MVB voxel patterns of each pair of overlapping episodes. These were
averaged to create a single summary statistic of the overlap similarity. We
then did the same for each pair of nonoverlapping memories. These two sets
of similarity scores were compared in each subfield using a paired t test.

To ensure that this analysis was not confounded by differences in corre-
lation between the psychological variable time courses themselves, we
extracted the time course of each memory after convolution with the ca-
nonical HRF.We thenmeasured the correlation between the overlapping and
nonoverlapping memories. Crucially, the overlapping memories are not
significantly more correlated than the nonoverlappingmemories. Indeed, we
found a significant difference in the opposite direction [t (14) = 3.1, P =
0.008], with significantly greater correlation between the nonoverlapping
memories. Thus, if anything, this should bias our data in the opposite di-
rection to the results we actually found, suggesting that our results are ro-
bust even in the presence of this added noise.

CA3 Neural Interference.Given the negative correlation between episodic and
overlap information within CA3 (Results), we argue that the most appro-
priate measure of neural interference for each participant is not simply the
neural overlap score (as described above). Instead, it should take into ac-
count the relative amount of overlap with respect to the amount of unique
information present within CA3. We therefore operationalized CA3 neural
interference as the relative weighting of overlap information compared
with distinct episodic information (the model fit correlation from the in-
dividual memory MVB models) for each individual. To calculate this, we first
calculated the z-score for each participant for each CA3 variable separately,
to normalize the measures. We then subtracted the episodic from the overlap
measure for each individual. The resulting score provides a measure of the
relative impact of the neural overlap for each individual, which we refer to as
CA3 neural interference. A more positive neural interference score indicates
a relatively higher impact of neural overlap within CA3.
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