
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

  

 Brain Behav Evol 2006;68:191–195 
 DOI: 10.1159/000094088 

 Building Complex Brains – 
Missing Pieces in an Evolutionary Puzzle 

 Hanna Jaaro1    Mike Fainzilber 

 Department of Biological Chemistry, Weizmann Institute of Science,  Rehovot , Israel 

represent the most complex nervous systems outside the 
vertebrate lineage, thus we suggest that genome sequenc-
ing of different mollusk models will provide useful insights 
into the evolution of complex brains. 

 Copyright © 2006 S. Karger AG, Basel 

 Introduction 

 The evolutionary mechanisms underlying the genera-
tion of complex nervous systems are a topic of keen inter-
est to both scientists and the general public, especially 
when the discussion touches upon the differences (or lack 
thereof) between humans and other primates. A diffi-
culty in this debate is that complexity is much easier to 
recognize than to define. Most (although perhaps not all) 
researchers would agree that their political leaders have 
more complex brains than their house pets, however a 
rigorous quantitative definition of nervous system com-
plexity is not yet available. Much of the debate on this is-
sue can be categorized under the heading ‘Does size mat-
ter?’, but there is no clear consensus on whether one 
should give weight to absolute brain size (in which case 
humans do not compare favorably to elephants), relative 
brain size (in which case shrews clearly outrank humans), 
or measures such as the encephalization quotient (see be-
low), wherein humans come out ahead, but other pri-
mates do not line up according to subjective perceptions 
of their relative intelligence [Roth and Dicke, 2005]. Dif-
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 Abstract 
 The mechanisms underlying evolution of complex nervous 
systems are not well understood. In recent years there have 
been a number of attempts to correlate specific gene fami-
lies or evolutionary processes with increased brain complex-
ity in the vertebrate lineage. Candidates for evocation of 
complexity include genes involved in regulating brain size, 
such as neurotrophic factors or microcephaly-related genes; 
or wider evolutionary processes, such as accelerated evolu-
tion of brain-expressed genes or enhanced RNA splicing or 
editing events in primates. An inherent weakness of these 
studies is that they are correlative by nature, and almost ex-
clusively focused on the mammalian and specifically the pri-
mate lineage. Another problem with genomic analyses is 
that it is difficult to identify functionally similar yet non-ho-
mologous molecules such as different families of cysteine-
rich neurotrophic factors in different phyla. As long as com-
prehensive experimental studies of these questions are not 
feasible, additional perspectives for evolutionary and ge-
nomic studies will be very helpful. Cephalopod mollusks 
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ferent authors have suggested various measures of infor-
mation-processing capacity as surrogates for estimation 
of complexity, such as neuronal number factored with 
synapse number and type [Jaaro et al., 2001]; or the en-
cephalization quotient, defined as the number of cortical 
neurons factored with average nerve conduction veloci-
ties [Roth and Dicke, 2005]. None of the proposed op-
tions gives a satisfactory estimation available throughout 
the animal kingdom, but regardless of which surrogate 
one prefers, much of the focus on evolutionary complex-
ity of neuronal systems has been on factors or genes that 
influence neuronal numbers or brain size. 

 Regulation of Neuronal Numbers: 
Roles of Neurotrophic Factors 

 One of the primary mechanisms for the regulation of 
neuronal numbers is regulation of neuronal survival by 
neurotrophic factors, most prominently the nerve growth 
factor family of neurotrophins [Huang and Reichardt, 
2003; Glebova and Ginty, 2005]. Although neurotrophins 
have been found throughout the vertebrate lineage [Hall-
böök, 1999; Hallböök et al., 2006; von Bartheld and Frit-
zsch, 2006] and none of their known properties would 
predict their existence only in vertebrates [Barde, 1994], 
neurotrophin homologuess were not identified in first 
drafts of the  C. elegans  or  Drosophila  genome sequences 
[Chao, 2000; Jaaro et al., 2001]. However, the recent ex-
pansion of genome sequences and cloning efforts have 
facilitated the identification of neurotrophins and/or 
their trk or p75 receptors in a number of invertebrate phy-
la [van Kesteren et al., 1998; Beck et al., 2004; Ormond et 
al., 2004; Benito-Gutierrez et al., 2005; Bothwell, 2006]. 
Interestingly, the extracellular ligand-binding domains 
of trk family members have strikingly diverged in differ-
ent phyla, leading to the suggestion that an important 
driving force for divergence of receptors is the ease of di-
vergence of their ligands [Sossin, 2006]. For example Cys-
teine Rich Neurotrophic Factor (CRNF) is the only vali-
dated p75 ligand found to date in mollusks [Fainzilber et 
al., 1996], yet its sequence is not similar to that of the neu-
rotrophins. Nonetheless, like the neurotrophins, CRNF 
forms a non-covalent dimer in solution, and acts as a sur-
vival and outgrowth factor for its target neurons [Jaaro, 
2004]. The cysteine scaffold of CRNF shares some simi-
larities to that of TCEN49, a neurotrophic factor from a 
freshwater planarian [Bueno et al., 2002], as well as to 
various cysteine-rich peptides involved in innate immu-
nity or prey intoxication mechanisms in other inverte-

brate phyla [Jaaro, 2004]. In addition to CRNF, Epider-
mal Growth Factor (EGF) superfamily members can act 
as trophic factors in invertebrates [Hermann et al., 2000; 
Beck and Fainzilber, 2002; Hidalgo, 2002; Hidalgo et al., 
2006]. Thus, although early workers thought that neuro-
nal survival was primarily regulated by neurotrophins, 
diverse families of molecules can fulfill this role in inver-
tebrate phyla. Furthermore, recent work in mammalian 
models has shown that Transforming Growth Factor  �  
(TGF � ) superfamily members control or modulate sur-
vival of certain neuron subpopulations [Peterziel et al., 
2002; Eketjall et al., 2004; Airaksinen et al., 2006], and 
that proteins originally characterized as axon guidance 
molecules can regulate the survival of neuronal progeni-
tors [Depaepe et al., 2005] or developing neurons [Ben-
Zvi et al., 2006]. One is left therefore with the disconcert-
ing conclusion that even if one can sequence every single 
base pair of an organism’s genome, functional studies 
will still be required for definitive conclusions on the im-
portance of neurotrophic mechanisms in sculpting its 
nervous system. 

 Other Factors Controlling Brain Size 

 If secreted growth factors and their receptors are not 
easily linked to the increased capacity of an organism to 
develop brain complexities that endow it with the capac-
ity to watch daytime television (for example), what about 
other factors that control brain size? Single gene muta-
tions or deletions can have profound effects on forebrain 
or cortex size due to shortening of the cell cycle, thus 
leading to premature differentiation of neuronal precur-
sors [Martynoga et al., 2005; Lien et al., 2006]. Mutations 
in at least six human genes have been associated with se-
vere forms of small head size (congenital microcephaly) 
[Gilbert et al., 2005], apparently due to their roles in con-
trolling the assembly and orientation of the mitotic spin-
dle in neuronal precursors, thus indirectly controlling 
precursor cell numbers and cortex size [Bond and Woods, 
2006]. Evolutionary studies on these genes have suggest-
ed that three of them reveal molecular signatures for ac-
celerated evolution in the human lineage [Gilbert et al., 
2005; Ponting and Jackson, 2005]. The most comprehen-
sive studies were carried out on the ASPM (Abnormal 
Spindle-like Microcephaly-associated) gene, and show 
that although most of the ASPM sequence is highly con-
served, specific segments reveal high Dn/Ds ratios 
[Zhang, 2003; Evans et al., 2004]. Dn/Ds is defined as the 
ratio of nonsynonymous mutations (Dn, reflecting muta-
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tions in DNA that cause an amino acid change in an en-
coded protein) to synonymous mutations (Ds, reflecting 
mutations in DNA that do not change the sequence of the 
encoded protein). A high Dn/Ds ratio is one feature 
thought to be consistent with strong positive selection for 
evolutionary change. This criterion suggests that the 
ASPM gene sequence underwent accelerated evolution in 
the African hominoid clade, preceding hominid brain 
expansion by several million years [Kouprina et al., 2004]. 
These and other studies have lead to the proposition that 
accelerated evolution of microcephaly-associated genes 
was important for the evolution of increased brain size in 
humans [Gilbert et al., 2005; Ponting and Jackson, 2005]. 
It is difficult however to judge the broad relevance of a 
hypothesis based solely on correlations. Moreover, the re-
lationship between brain size and cognitive capacity is 
not necessarily straightforward. The intracranial volume 
of  Homo floresiensis , a fossil dwarf hominid recently de-
scribed from Indonesia, is comparable to that of micro-
cephalic individuals of  Homo sapiens , yet the  H. floresien-
sis  brain had relatively large temporal lobes and highly 
folded and convoluted frontal lobes [Falk et al., 2005]. 
These areas of the brain are implicated in higher cogni-
tive functions, and more recent fossil evidence suggests 
that  H. floresiensis  engaged in sophisticated behavior in-
cluding use of fire and cooperative hunting [Morwood et 
al., 2005]. 

 Claims for accelerated evolution leading to increased 
brain capacity in hominids are not limited to microceph-
aly-associated genes and brain size. An initial analysis of 
Dn/Ds ratios in 200 nervous system genes did not find 
high absolute values, but as the values for primates were 
higher than for rodents, the authors took them as evi-
dence for positive selection in genes implicated in ner-
vous system development in the primate lineage [Dorus 
et al., 2004]. Subsequent genome-wide primate studies 
did not find a higher preponderance of positively selected 
genes in the nervous system as compared to other tissues, 
although a small fraction of nervous system genes clearly 
exhibit high Dn/Ds ratios [Khaitovich et al., 2005b; 
Nielsen et al., 2005]. This discrepancy can be rationalized 
if a small subset of neural genes are positively selected, 
whereas most are targets of strong purifying selection 
due to the fitness cost of deleterious mutations in brain 
function [Hill and Walsh, 2005]. It should also be noted 
that a high Dn/Ds value can arise in a data-set with 
skewed amino acid composition or unusual transition-
transversion ratios, thus it cannot be used definitively as 
sole proof of positive selection [Dagan et al., 2002]. Even 
if positive selection is widespread in nervous system 

genes, the notion that this drives human brain evolution 
must now contend with the fact that there is actually 
stronger evidence for positive selection in testis-specific 
genes than in those associated with the nervous system 
[Nielsen et al., 2005]. 

 In addition to positive Darwinian selection, other evo-
lutionary processes such as RNA editing, differential 
splicing, or modified gene expression might all correlate 
with increased brainpower in the human lineage [see e.g., 
Hoopengardner et al., 2003; Herbert, 2004; Khaitovich et 
al., 2005a; Levanon et al., 2005]. As with other factors de-
tailed above, the evidence for involvement of the latter 
processes in the evolution of complexity in the nervous 
system is correlative only, and in some cases tinged with 
a healthy dose of wishful thinking. Because direct exper-
imental testing of hypotheses of brain evolution is not yet 
possible, new perspectives from evolutionary genomics 
on additional organisms will be very helpful. The ques-
tion then becomes where can one find such a perspective? 
Although there could be some utility in assessments of 
adjacent twigs on the evolutionary tree, such as cetaceans 
[Hof et al., 2005], fundamental insights in comparative 
genomics often arise from information derived from dis-
tant relatives, and the more distant the better [see e.g., 
Koonin, 2000; Koonin et al., 2004]. We would like to ar-
gue that comparative genomics on mollusk models offer 
the best chances for such insights on the question at hand, 
as cephalopod mollusks represent the most complex ner-
vous systems outside the vertebrate lineage. 

 Octopus and Squid: More than Just a Dinner 

 The Cephalopoda are an ancient group of mollusks 
originating in the late Cambrian. Ancestors of modern 
coleoid cephalopods (octopus and squid) diverged from 
the externally-shelled nautiloids in the Ordovician, with 
approximately 600 million years of separate evolution be-
tween the cephalopod and the vertebrate lineages. The 
evolution of modern coleoids has been strongly influ-
enced by competition and predatory pressures from fish, 
to a degree that the behavior of squid and octopus are 
more akin to that of fast-moving aquatic vertebrates than 
to other mollusks [Hanlon and Messenger, 1996; Boyle, 
2000]. Squid and octopuses are agile and active animals 
with sophisticated sensory and motor capabilities. Their 
central nervous systems are much larger than those of 
other mollusks, with the main ganglia fused into a brain 
that surrounds the esophagus with additional lateral op-
tic lobes. The number of neurons in an adult cephalopod 



 Jaaro/Fainzilber

 

Brain Behav Evol 2006;68:191–195194

brain can reach 200 million [Giuditta et al., 1971], ap-
proximately four orders of magnitude higher than the 
20–30,000 neurons found in model mollusks such as  Ap-
lysia  or  Lymnaea . Cephalopods exhibit sophisticated be-
haviors [Hanlon and Messenger, 1996; Boyle, 2000; Cole 
and Adamo, 2005] and a number of studies have present-
ed evidence for diverse modes of learning and memory in 
 Octopus  and cuttlefish models [Fiorito and Scotto, 1992; 
Robertson et al., 1996; Moriyama and Gunji, 1997; Boal 
et al., 2000; Dickel et al., 2001]. This learning capacity is 
reflected in a sophisticated circuitry of neural networks 
in the cephalopod nervous system [Budelmann, 1995; 
Williamson and Chrachri, 2004]. Moreover, electrophys-
iological studies have revealed vertebrate-like properties 
in the cephalopod brain, such as compound field poten-
tials [Bullock and Budelmann, 1991; Budelmann, 1995] 
and long-term potentiation [Hochner et al., 2003]. Thus 
cephalopods exhibit all the attributes of complex nervous 
systems on the anatomical, cellular, functional and be-
havioral levels. The American National Human Genome 

Research Institute (NHGRI) recently announced a com-
mitment  to  fund  a  ten-fold coverage draft sequence of 
the genome of  Aplysia californica  (see www.genome.gov/
13014443). This effort will provide a reference mollusk 
genome sequence for a model with a nervous system com-
prising 25,000 neurons. A parallel effort on a well-studied 
octopus or squid should provide insights on the evolu-
tionary processes that allowed development of the so-
phisticated cephalopod nervous system. For example, 
have cephalopods undergone accelerated evolution in 
specific nervous system genes, as has been suggested for 
primates? Have specific gene families undergone expan-
sion in the cephalopod lineage and are these expressed in 
the nervous system? Are there clear parallels in acceler-
ated evolution, gene family expansion, and other evolu-
tionary processes between cephalopods and vertebrates? 
Answers to these and related questions will provide use-
ful perspectives for evaluation of the processes thought 
to be involved in the evolution of the vertebrate brain. 
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