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Abstract- The brain is perhaps one of the most robust and fault
tolerant computational devices in existence and yet little is known
about its mechanisms. Microelectrode arrays have recently been
developed in which the computational properties of networks of
living neurons can be studied in detail. In this paper we report
work investigating the ability of living neurons to act as a set of
neuronal weights which were used to control the flight of a
simulated aircraft. These weights were manipulated via high
frequency stimulation inputs to produce a system in which a
living neuronal network would “learn” to control an aircraft for
straight and level flight.

I. Introduction

Research into the computational properties of living
neuronal networks has seen a rapid explosion in interest of the
last two decades. This interest has been fostered by the advent
of technology able to simultaneously measure neural activity
from hundreds of neurons both in vivo [1-3] and in vitro [4-8].
However, many of the computational properties exhibited by
these networks remain unclear.

Our approach is to use a system where we can measure,
stimulate, and therefore manipulate activity across a grid of 60
electrodes using a planar microelectrode array (MEA). These
arrays, shown in Figure 1 and Figure 2, consist of electrodes
embedded under the surface of what is essentially a tissue
culture dish in which a wide variety of neuronal tissue can be
grown[4, 9]. Hence, the MEA makes the computational
properties of cultured neuronal networks accessible for
investigation using electrophysiological, optical, and
pharmacological techniques.

In this paper, we report the results of an experiment using
a living neuronal network as a matrix of weights that we can
measure and manipulate in a real-time feedback control
system to stabilize the flight of a simulated aircraft. The
system, illustrated in Figure 1, consists of rat cortical neurons
cultured on an MEA that are stimulated periodically to
measure the weights from two different locations (stimulation
sites) in the network. Proportional feedback as the result of
errors in the aircraft’s attitude (pitch and roll) is computed
using the current synaptic weights measured between neurons
within the rat cortical network. These weights were modified
during each evolution based on the flight trajectory
information, measurement of weights, and proportional
feedback, to optimize the aircraft’s stability. In other words,
this living neuronal network essentially “learned” to act as an
autopilot adjusting the aircrafts control surfaces to maintain
straight and level flight.
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Fig. 1. Schematic of Neural Flight Control System using living rat cortical
neurons for pitch and roll control.

II. Method

Rat embryonic (day 18) cortical hemispheres, obtained
from Brain Bits™, were enzymatically digested with papain
and mechanically triturated to remove connective tissue using
the Papain Dissociation Kit from BioWorthington (cat#
LK003150) producing a cell suspension of neurons and glia.
The surface of each MEA was treated with polyethylene-
amine (PEI) and laminin to improve cell adhesion, growth,
and promote a uniform monolayer culture [10]. Twenty ul of
this suspension containing approximately 25,000 cells was
placed over the MEA electrodes shown in Figure 2 and
supported with an additional 1 ml of culture media (DMEM
supplemented w/10% Equine Serum- Hyclone).

Neurons in these cultures become spontaneously active
within 3 to 5 days as connectivity between neurons is re-
established [6, 11-14]. After 10 days the neural activity
becomes synchronized producing spontaneous semi periodic
bursts which will continue through out the network’s lifetime.
Measurements of neural activity were conducted using
Multichannel System’s data acquisition hardware and custom
software on an Apple XServe with 3.5 Terabytes of XRaid
disk storage. Raw electrical activity was recorded for each of



1

< -
i
Nt

BV g
A

5 g
:

-
@
o

¥
2

¥

N
&
2l

Fig. 2. Schematic of Neural Flight Control System using living rat cortical
neurons for pitch and roll control.

the 60 channels on the MEA sampled and digitized at 25KHz
per channel. This data was then streamed via TCP/IP to an
Apple G5 client computer over a local gigabit network. The
client then performed further data processing detecting action
potentials (APs) (deviations in voltage above or below 5.0 x
standard deviation of estimated noise per channel) and
mapping telemetry from the flight simulator to schedule
stimulations, while sending control commands to the aircraft,
and logging the data.

An F-22 Raptor was simulated with the commercially
available XPlane aircraft simulation software. The aircraft
simulator was run on a separate computer (Dell PC)
communicating with a client via UDP (transmitting flight
telemetry: heading, speed, altititude, pitch and roll angle)
every 200 ms. The simulator also received commands to
adjust the angle of the aircraft’s aileron and elevator control
surfaces modifying the plane’s in-flight roll and pitch angles,
respectively.

Two of the 60 electrodes on the MEA where selected as
stimulation sites representing the control for pitch and roll,
respectively. These sites were randomly selected from sites
that were both spontaneously active and could evoke activity
with a stimulation pulse. Stimulations throughout this
experiment consisted of a single 200 us/600 mV bipolar pulse.
Each stimulation pulse evokes a response from neurons near
the stimulating electrode which in turn propogates via
synapses throughout the network resulting in a burst of
activity for approximately 100 to 200 ms. The first 150 ms of
that evoked response was recorded for each of the electrodes.
Hence, stimulation of a single site permits the estimation of
synaptic connectivity between neurons near the stimulation
site to other neurons across the network (c.f. Jimbo, Tateno, &
Robinson [15] for a similar technique used to assess network
wide plasticity). Each stimulation site within the network
produces a fairly reliable spatiotemporally rich response that

varies in both number of APs produced per channel and the
timing of those responses within the burst [16].

The weights within the network were modified using an
effect originally reported by Eytan et al. (2002) in which low
frequency (1/50 Hz) and high frequency (1/5 Hz) single site
stimulation pulses where shown to selectively enhance or
depress, the network wide response. For example, high
frequency stimulations of a single site would, over the course
of 15 minutes, reduce the number of evoked APs detected
across the network. In contrast, low frequency stimulations
delivered to a second stimulation site would result in a gradual
increase in the number of APs.

More importantly, these stimulations could be conducted
concurrently in the same network, increasing the evoked
response from one stimulation site while simultaneously
decreasing the response from another. Hence, the weights
within the network could be systematically manipulated,
measured, and used as a living neural analog of a set of
weights to adjust the response of a simple flight control
system.

In this experiment, two stimulation sites where chosen to
represent the weights for pitch and roll control. The evoked
response from one site was used for pitch control, while the
evoked response from the second site was used for roll. The
average number of APs 150 ms following each stimulation
was recorded and divided into 1 ms bins producing a 150
element weight vector. The difference between the current
weights and the initial weights established the current flight
weight vector that was used to control the aircraft.

The current pitch and roll error from aircraft telemetry,
ranging from straight and level (0 degrees) to a maximum of
+180 degrees (inverted flight), was mapped to the 150 ms
interval. A proportional control signal was achieved by
summation of the current flight weights from 0 ms to the
millisecond value corresponding to the current error.

Each evolution began with a series of nine high frequency
stimulation pulses delivered to both the pitch and roll channel.
Following this, a single probe stimulation to the pitch and roll
channel measured the current weights within the network for
that channel. Every 200 ms during this period the telemetry
from the aircraft was used to determine any corrective
feedback. This feedback was based on the current flight
weights determined from the prior evolution.

Initially, no difference is present between the weights
measured before high frequency stimulation was delivered and
the first few evolutions. Thus, any errors in pitch or roll will
not result in any corrective feedback. However, as the network
is modified the control signals (and correspondingly the
movement of the control surfaces) should increase in
magnitude. After, several minutes of flight, the network will
slowly begins to correct for any errors in the flight path
resulting in straight and level flight.



III. Results

Average Evoked Response Before and After High Frequency
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Fig. 3. Average number of APs across channels 150 ms following 6 probes
before and after 15 minutes of high frequency stimulation (n = 4 cultures).

The effect of high frequency stimulation was assessed by
comparing the network’s response to single site stimulation
during the first versus the last six stimulation pulses. Figure 3
shows the average number of evoked APs, 150 ms following
each stimulation, before and after high frequency stimulation.
This average represents the response across all 60 electrodes.
There was a significant decrease in the number of APs
between the first 6 and last 6 stimulation probes (ANOVA,
F(1,149) = 161.59, p < 0.01) which is consistent with the
effect originally reported by Eytan and Marom[5].

As the network’s response is modified over time resulting
in an increase in the flight weights, the system will begin to
correct for errors in the aircrafts pitch and roll. Figure 4 shows
the pitch and roll angles of the aircraft during the last eight
minutes of flight for one culture. The typical performance of
the network’s control was within 10 degrees of desired for
both pitch and roll. However, as the high frequency
stimulations increase the weights used to fly the aircraft these
weights will eventually become too large resulting in over
corrections from even the smallest in errors. Moreover, the
rate at which pitch and roll channels change (as a result of the
high frequency stimulation) over time can lead to differences
in control. This over correction is apparent in the data for the
roll angles whose flight weights caused the aircraft to begin to
oscillate.

IV. Discussion

A system was created in which a network of living rat
cortical neurons were slowly adapted to control an aircrafts
flight trajectory. This was accomplished by using high
frequency stimulation pulses delivered to two independent
channels, one for pitch, and one for roll. This relatively simple
system was able to control the pitch and roll of a simulated
aircraft.

However, the system is susceptible to continued increases
in flight weights as long as high frequency stimulation is
present leading eventually to over corrections. This problem
can be alleviated by simply removing high frequency
stimulation when the weights are optimized or by switching to
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Fig. 4. Pitch and roll error during the last 8 minutes of a 30 min experimental
run for one culture. Note the oscillations present in the roll axis. With
continued high frequency stimulation, the response from the network
associated with roll channel will decrease to the point of overcorrecting for
small errors.

low frequency stimulation. This would then reverse the effect,
and therefore, decrease the weights.

In this experiment, the network’s response was
manipulated from only two of the sixty possible sites.
However, if the network’s response for each channel can be
selectively increased or decreased, dependant on the frequency
of stimulation, it may be possible to adjust the response of the
network at all sixty sites. In other words, perhaps much more
of the network can be controlled, essentially treating the
network as a set of living neuronal weights and manipulating
those weights in much the same way as artificial neural
networks (ANN) do during training.

In this system the weights measured from two of the sixty
possible sites were used to control the aircraft. However, if
more sites can be manipulated it may be possible to adjust the
weights within this network on a much broader scale than
what was accomplished here. For example, imagine an image
containing sixty pixels in which each pixel was mapped as a
desired weight onto the 60 sites of the MEA. If the network’s
weights were then modified to represent those weights using a
combination of high and low frequency stimulations, we could
embed those weights into the network and examine whether
degraded images (e.g., missing pixels) are “filled in” by the
network. In other words, examine the potential for pattern



recognition within these networks. This question, and many
others are among those we are currently pursuing in our
research in an effort to study the computational properties of
these living neuronal networks.
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