
ISSN 1819-7124, Neurochemical Journal, 2018, Vol. 12, No. 3, pp. 210–221. © Pleiades Publishing, Ltd., 2018.

THEORETICAL
ARTICLES
A Predicted Molecular Model for Development
of Human Intelligence1, 2

Hadi Najafia, Seyed Mostafa Hosseinib, Mahmood Tavallaieb, 3, and Bahram M. Soltania

aTarbiat Modares University, faculty of biological sciences, Tehran, Iran
bDepartment of genetics, Baqiyatallah University of Medical Sciences, Tehran, Iran

Received June 26, 2017; in final form, October 26, 2017

Abstract⎯Intelligence is the core construct of behavioral genetics studies and is one of the most heritable
behavioral traits. Molecular genetics studies attempt to identify the genes which are responsible for the levels
of intelligence and its heritability. In order to understand the main signaling and biochemical pathways that
are involved in intelligence, functional genomics could be applied. Herein, we selected a total of 181 intelli-
gence-related genes (IRGs), selected from genome-wide association studies and literatures, to incorporate
these genes in related signaling pathways, aiming to understand the underlying biological mechanisms. Dis-
regarding the tissue types, computational pathway analyses demonstrated that IRGs were mostly enriched in
the Wnt signaling pathway. Nevertheless, pathway enrichment of brain-specific IRGs, highlighted the role of
G-protein- and dopamine-mediated signaling pathways. These findings represent a comprehensive and
assembled intracellular molecular network for intelligence. It is of great importance to identify RNA or pro-
tein molecules, responsible for regulation of these signaling pathways.
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INTRODUCTION
For a long period of time, intelligence was one of

the first human traits to be the target of genetic
research. Studies in the 1950s-1960s showed the
important contribution of genetics to individual differ-
ences for diverse cognitive and learning abilities [1, 2].
In 1963, a review in Science of genetic research on
intelligence presented the convergence of evidence
from family, twin, and adoption studies pointing to
genetic influence [3]. Influence of genetics in complex
traits and bolding the role of environmental factors
made an intense criticism on the field of behavioral
genetic research [4], especially researches in the area
of intelligence [5]. However, another influential Sci-
ence article [6], followed by other studies [7, 8]
accepted genetic influence on intelligence. Nowadays,
it is concluded that the human intelligence is affected
by interaction of genetic and environmental factors,
with contribution of about 56 and 12% for genetics and
environment, respectively [9]. There is currently a
large body of candidate-gene studies that have shown

associations between genes and intelligence [3, 9, 10].
Intelligence is also one of the most heritable behav-
ioral traits (about 20% in infancy to 80% in later adult-
hood) [10]. Genetic studies attempting to link genes to
intelligence have uncovered many “candidates” but
without conclusive evidence. In other words, no gene
or set of genes has been conclusively linked to the
development of intelligence.

In this study, we exploit the data of published arti-
cles to prepare a list of intelligence-related genes and
draw corresponding signaling pathways which would
be useful to understand the mechanism of action of
genetics in the brain’s performance.

METHODS

Dataset preparation. We exploited the data of orig-
inal research articles and reviews in the published lit-
erature to find the genes which previously were con-
sidered as intelligence-related genes (IRGs). The
resultant genes belong to many independent studies
that were done on different world population groups.
The raw list of these genes was compared among dif-
ferent populations to remove redundancy. The
acquired non-redundant list, which includes a total of
181 genes, was afterward used as “input” for following
investigations (S1 file).

1 The article is published in the original.
2 Supplementary materials are available for this article at

10.1134/S1819712418030091 and are accessible for authorized
users.

3 Corresponding author; address: Baqiyatallah University of
Medical Sciences, Tehran Province, Tehran, Vanak Square,
Molla-Sadra Avenue, P.O. box: 19945, Iran; phone: +98(21)
86034956; e-mail: mahmood_259@yahoo.com.
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Unifying the gene names. Since the genes in the lit-
erature were represented as official or unofficial sym-
bols, after preparing the gene list, we must unify this
heterogeneity to be recognized and processed by the
functional enrichment tools. To this end, the DAVID
conversion tool (https://david.ncifcrf.gov/conver-
sion.jsp) was used and unofficial gene symbols and
aliases were converted to official NCBI gene symbols.
In addition, the full name of the listed genes was
retrieved from the DAVID conversion tool and then
included in the gene list (S1 file).

Gene classification based on subcellular localiza-
tion. Subcellular localization of genes may reflect their
functional roles. Therefore, all collected IRGs were
analyzed in databases of human genome to determine
their subcellular localization. For this purpose, the
genes were searched in the NCBI-Entrez gene
(http://www.ncbi.nlm.nih.gov/gene), Gene Ontology
consortium (http://geneontology.org/) and UniProt
(http://www.uniprot.org/) which display the informa-
tion of subcellular localization of genes. The data of
subcellular localization of all studied proteins are rep-
resented in the supplementary data (S1 file). This data
was also used to classify the studied proteins based on
their subcellular localizations and represented in the
supplementary data (S2 file).

Gene classification based on protein classes and bio-
logical processes. Functional enrichment analyses of
the intelligence-related and brain-enriched genes were
performed by categorizing the studied genes in differ-
ent protein classes and biological processes. For this
purpose, a gene set was submitted to PANTHER
functional classifier website (http://pantherdb.org/),
then the protein classification was performed. Gene
Ontology enrichment of biological processes was also
performed for the studied genes by the same way
(using the PANTHER website).

Gene classification and overrepresentation analyses.
After collecting the IRGs from the literature, we
decided to investigate in which signaling pathway(s)
these genes are primarily enriched. For this purpose,
pathway analysis of the 181 IRGs was performed by
PANTHER pathway analyzer.

Another pathway analysis by PANTHER, was per-
formed to explore the putative signaling pathway(s)
associated with those of IRGs, whose expression is
enriched in the human brain (brain-enriched IRGs).
To this end, the brain-enriched genes were initially iden-
tified and selected from the 181-gene list by DAVID tis-
sue enrichment tool (https://david.ncifcrf.gov/tools.jsp),
and were then analyzed by PANTHER pathways pre-
diction. The PANTHER Overrepresentation Test
(Version 12.0; Released 2017-08-14) was used to
search the data against the PANTHER database and
the GO database to identify either protein classes or GO
annotations overrepresented in our data when compared
to a reference human genome. P-values were adjusted
using a Bonferroni correction [11].
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To check the validity of the predicted signaling
pathways for brain-enriched IRGs, previously-known
Wnt pathway-related genes (S3 file) were used as
query, and were separately investigated in parallel with
the analysis of the genes-of interest.

Accuracy test of the predicted signaling pathways.
The process of representing a gene set in signaling
pathways, associated with the neural system was car-
ried out by the PANTHER pathway analyzer
(http://pantherdb.org/). To test the accuracy of that
prediction, several pathway analyzer tools including
Reactome (http://www.reactome.org/), KEGG
(http://www.genome.jp/kegg/) and GeneMANIA
(http://www.genemania.org/) were used. Based on
the quality, quantity, and completeness of the compu-
tational analyses and experimental evidences else-
where, a proposed model for development of human
intelligence was built.

RESULTS

Identification of intelligence-related genes. More is
known about the genetics of intelligence than about
any other behavioral trait. In order to address specific
genes responsible for intelligence, we assume basic
understanding of the brain physiology and included
the genes which are potentially linked to functionality
of the human brain. The genes mostly were described
in previous articles where are functionally linked to
brain functioning. Some other genes are derived from
the articles that performed GWAS [12, 13] and microar-
ray [14], in addition to OMIM database
(https://www.omim.org/) to identify the intelligence
related genes. After search in the literature, a total of
181 genes were selected and included in the down-
stream pathway analyses. The heterogeneously
reported gene names in various references used in this
study were converted by DAVID tool into official gene
symbols and represented in the supplementary data
(S1 file).

Intelligence-related genes are localized to different
compartments of the cell. Knowing the localization of
proteins may provide key insights to their function.
Therefore, we firstly decided to classify the intelli-
gence-related genes based on their localization pat-
terns.

Furthermore, it is unlikely that proteins with differ-
ent subcellular could interact with each other. For this
reason the data of subcellular classification of proteins
is helpful to make a more accurate molecular model
and avoiding false-positive results. Accordingly, secre-
tory proteins were excluded in downstream analyses
and the co-located proteins were used as input for
deducing an intracellular signaling network. These
include plasma membrane integral proteins, nuclear
outer membrane proteins, cytoplasmic proteins and
cytoskeleton-bound proteins (Fig. 1). The categorized
list of proteins are also represented in supplementary
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Fig. 1. IRGs, classified based on subcellular locations. While the intelligence-related genes may be localized inside or outside of
the cells, only the intracellular ones were followed to draw a signaling network. The number of each class refers to as: Integral
components of plasma membrane (1); nuclear outer membrane proteins (2); cytoplasmic proteins (3); perinuclear region of cyto-
plasm (4); actin cytoskeleton (5).
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data with their full name descriptions (S2 file). Cate-
gorizing the proteins based on their subcellular local-
izations showed that significant number of IRGs
encodes for the proteins that are distributed in various
compartments of the cell (Fig. 1). Such diverse subcel-
lular localizations enable the proteins of different
compartments to form a signaling cascade within the
cell [15].

IRGs are enriched for neurodevelopmental pro-
cesses. Analysis of the 181 IRGs by PANTHER “pro-
tein class” identifier, demonstrated that the most rele-
vant classes are nucleic acid binding, signaling mole-
cule, receptors, transferase and enzyme modulator
(Table 1), suggesting that they have a potential to be
involved in biological processes. To investigate which
biological processes could be mediated by these genes,
they were analyzed by PANTHER annotation of
“Gene Ontology (GO)-biological process”. Interest-
ingly, data showed significant enrichment for the biolog-
ical processes linked to the neural system development
(Table 2).
N

IRGs with cytoplasmic localization are enriched in
the wnt signaling pathway. A biological pathway is an
ordered series of molecular events that results in a new
molecular product, or a change in a cellular state or
process. Such an interactive signaling pathway may
confer new state to neural cells to modify intelligence.
To explore the putative signaling pathway(s) and inter-
action network associated with intelligence, pathway
analyses were performed by PANTHER web server.
Thirteen signaling pathways were statistically signifi-
cant, and the Wnt signaling pathway was involved by
most genes of the study, indicating association of the
Wnt pathway in intelligence (Fig. 2b).

Pathway significance is partly dependent on if the
number of IRGs observed in a pathway is larger than
that observed by random chance. Therefore, first, we
investigate the enrichment by well-documented Wnt
pathway-related genes, as a positive control for the
PANTHER database. Expectedly, this database
detected an enrichment for the Wnt signaling pathway
EUROCHEMICAL JOURNAL  Vol. 12  No. 3  2018
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Table 1. Top 5 protein classes for the studied IRGs, categorized by PANTHER

Protein class (ID) Gene count Genes/total 
genes, %

Contribution
in pathways, % Genes

Nucleic acid binding 
(PC00171)

13 8.60 10.20 MTOR, UHMK1, GDA, ATXN2, NR3C2, 
PHOX2B, FOXO4, LHX5, NPAS3, MAP2, 
FOXF2, BCL11A, TCF3

Signaling molecule 
(PC00207)

13 8.60 10.20 VAV3, SEMA3A, DAB1, BDNF, BAX, NPPB, 
BCL2, NRG1, PROK2, NPPA, VAV2, GHR, IL6R

Receptor (PC00197) 13 8.60 10.20 DRD2, NFASC, IL1RAPL1, CNR1, DRD5, 
GRM7, SLIT2, ADRB2, SLIT3, PTPRM, 
ALCAM, LAMB1, SLIT1

Transferase 
(PC00220)

12 7.90 9.40 COMT, EXT1, SGK1, DMPK, PRKCA, SGK2, 
DGKE, MTOR, RPS6KA3, B3GAT1, HIPK2, 
MAPK8

Enzyme modulator 
(PC00095)

12 7.90 9.40 ITSN1, CCND2, GNAS, CABIN1, VAV3, KNDC1, 
Rac2, RAC2, RIT2, CDKN2D, RND1, RGS3, 
VAV2

Table 2. PANTHER enrichment of GO biological process for the studied IRGs. Many neural system-related biological
processes were identified and the top 5 are represented here

Rank GO biological process Gene count p-value

1 Neurogenesis (GO:0022008) 79 3.75E-45
2 Generation of neurons (GO:0048699) 77 5.92E-45
3 Nervous system development (GO:0007399) 88 3.53E-42
4 Neuron differentiation (GO:0030182) 59 3.27E-35
5 Neuron development (GO:0048666) 52 3.94E-32
for 46 Wnt signaling components which are mostly
listed in Wnt signaling home page (Fig. 2a).

Brain-enriched IRGs mostly play role in g-protein-
and dopamine-mediated signaling pathways. Among all
IRGs, a list of brain-enriched genes was selected and
pathway analysis was followed by limiting the input
to these brain-enriched genes (48 genes). To this end,
all IRGs (181 genes) were passed through the Gene
Enrichment Profiler (http://xavierlab2.mgh. har-
vard.edu/EnrichmentProfiler/) and only the brain-
enriched genes were selected (S3 file). Afterward, to
achieve closest signaling pathway(s) for this gene set,
PANTHER software was used. As the result,
PANTHER Gene Annotation categorized these brain-
enriched genes in three protein classes: signaling mole-
cules, enzyme modulators, and receptors (Table 3).

In another analysis, all brain-enriched IRGs
(48 genes) were included in the PANTHER database
for signaling pathway enrichment. Significant
PANTHER signaling pathway enrichment showed
that the majority of IRGs are enriched in G-protein-
and dopamine receptor-mediated signaling pathways
(total contribution = 40.90%) (Fig. 3).

Consistent with this data, PANTHER analysis of
the biological process revealed that the brain-enriched
NEUROCHEMICAL JOURNAL  Vol. 12  No. 3  2018
IRGs mostly contribute to signal transduction and sig-
naling pathways related to G-protein- and dopamine-
receptors (Table 4).

An integrated molecular model for human intelli-
gence using the resultant signaling pathways. To con-
struct an integrative genetics network of human intel-
ligence, the common gene set of human cell types (181
genes) together with brain-enriched genes were analyzed
by three additional pathway-based online software (Gen-
eMANIA, KEGG and Reactome). In most cases, these
software confirmed the results of PANTHER pathway
predictor (Table 3). Finally, the data of all prediction
results were incorporated in a suggested model (Fig. 4).
In this model, two distinct types of signaling pathways
are playing role in two different developmental stages of
neurons: (1) maturation from progenitor cells, (2) neu-
ral cell survival and functioning. Growing evidence
indicates that canonical Wnt signaling pathway is
essential for development of the central nervous sys-
tem from neural progenitor or stem cells [16, 17]. Nev-
ertheless, at the late stages of neuronal cell life, other
routs of the Wnt pathway (termed as non-canonical
pathways) are functioning [18]. In addition, the
canonical Wnt signaling pathway has an interplay
between stem cells and neural progenitor cells [19].
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Fig. 2. Pie chart of the pathway enrichment for Wnt signaling pathway genes as control (a) and for intelligence-related genes (b).
Each signaling pathway is denoted as colors (c).
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G-protein- and dopamine-mediated signaling path-
ways act in neuronal networks where the fully-differ-
entiated neural cells (such as dopaminergic neural
cells) are existed. A simple explanation for this process
is represented in Fig. 4.

DISCUSSION

Although the intelligence is considered as complex
trait and many genes are known to be involved [10],
little is known about the underlying biological mecha-
N

Table 3. The PANTHER protein classes in which the brain-e

Protein class (ID) Gene count Genes/total 
genes, %

Contrib
in pathwa

Signaling molecule 
(PC00207)

13 29.5 31

Enzyme modulator 
(PC00095)

12 27.3 28.

Receptor (PC00197) 10 22.8 23.8
nisms that lead to the differences in human [10]. Mod-
eling the signaling pathways contributed in human
intelligence provides potential detailed understanding
for its complex genotype-to-phenotype relationships
[20]. More importantly, these results enable us to gen-
erate a concrete molecular mechanism underlying
behind intelligence which can be used as intelligence
molecular measuring tools [21, 22]. While a myriad
numbers of genes previously were attributed to human
intelligence [23], little is known about a comprehen-
sive molecular system for this trait.
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nriched IRGs were primarily categorized

ution
ys, % Genes

VAV3, SEMA3A, DAB1, BDNF, BAX, NPPB, BCL2, 
NRG1, PROK2, NPPA, VAV2, GHR, IL6R

6 NPPB, VAV3, NRG1, IL6R, DAB1, BDNF, BCL2, 
NPPA, PLXNA2, CNTNAP2, PROK2, BAX, GHR, 
SEMA3A, VAV2
CNR1, ADRB2, DRD2, IL1RAPL1, DRD5, GRM7, 
PTPRM, ALCAM, LAMB1, NFASC
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Fig. 3. Pie chart of the pathway enrichment results for brain-specific IRGs from PANTHER gene classifier tool. The top three
signaling pathways (a) had the highest gene count (b). Contributions of other pathways were < 6.8%. The number of genes of each
category (signaling pathway) is represented in part b. The arrow-heads show the most relevant pathways G-protein and dopamine
pathways.
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In this study, we aimed to identify a comprehensive
gene network with functional insight associated with
intelligence using protein-network-based approaches.
The genes selected to be analyzed in our study were
those which have previously been verified by original
researches. We prepared the gene dataset by seeking
into review or original articles. Therefore, the associa-
tions of signaling pathways described here are based
on our literature-based database, which currently rep-
resents the best available depository of IRGs.

Since the analysis of these genes by STRING data-
base resulted in a giant PPI network with a very com-
plicated complex, we initially classified them based on
their subcellular locations. Thereafter, computational
pathway analyses were undertaken. Such a gene classi-
fication not only aids to focus on the biological func-
tion of the genes [24], but to clarify their mode of
actions [25]. Besides, to deduce a bona fide signaling
network for a set of proteins we ought to consider the
proteins which are co-located in the same cellular
NEUROCHEMICAL JOURNAL  Vol. 12  No. 3  2018

Table 4. PANTHER GO biological process for brain-enrich
top 5 are represented here

Rank GO biological process

1 Signal transduction (GO:0007165)
2 G-protein coupled receptor signaling pathway (GO:
3 G-protein coupled receptor signaling pathway, coup

cyclic nucleotide second messenger (GO:0007187)
4 Adenylate cyclase-modulating G-protein coupled re

signaling pathway (GO:0007188)
5 Adenylate cyclase-activating dopamine receptor sign

pathway (GO:0007191)
compartments (e.g. cytoplasm) or in the same cell
types (e.g. in neurons).

In a general cell type model, we uncovered impor-
tance of Wnt signaling pathway and the signaling path-
ways related to Alzheimer’s disease (contribution =
14.1%) (Fig. 2) in human intelligence. However, the
functional enrichment of normal state highlighted the
Wnt signaling pathway (contribution = 14.3%) whose
activity is necessary for neurogenesis [26, 27], specifi-
cally dopaminergic neurons [28]. For positive con-
trols, we test the results of PANTHER pathway analy-
sis for previously-confirmed components of Wnt sig-
naling pathway as input (Fig. 2). As expected, the most
portion of the pie graph of this positive control fell into
the Wnt signaling pathway. However, co-occurrence
of Alzheimer disease-related pathways in the two
results might be due to multi-functionality of the Wnt
signaling pathway genes [29, 30]. This data also adds
extra evidence for linking cancer to cognitive traits,
including intelligence [31].
ed IRGs. Several biological processes were identified and the

Gene count p-value

35 5.37E-11
0007186) 12 4.09E-02
led to 8 3.52E-05

ceptor 8 1.01E-05

aling 3 1.21E-02
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Fig. 4. Main signaling pathways proposed to be functioning during neural cell development. While, the main predicted molecular
signaling in the neural maturation process was the Wnt signaling pathway, G-protein- and dopamine-mediated pathways was pre-
dicted to be regulating the differentiated neuron activity.
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In our constructed pathway models, numerous
genes were involved in cancers (Fig. 2). Consistently,
previous studies showed that there is an extensive con-
nection between cancer and intelligence [32, 33]. For
example, one of most well-known Parkinson’s causal
gene (named PARKIN) has been reported as a tumor
suppressors in several cancer types [34, 35]. Though
there is no direct evidence to associate cognitive pro-
cesses with cancer, previous studies showed that IRGs
were highly related to neuron disorders such as schizo-
phrenia [36, 37], autism [38], and bipolar disorder
[39]. Consistently, our data showed that in addition to
Wnt signaling pathway whose aberration is hallmark of
many cancers [40], the signaling pathways related to
Alzheimer’s disease was the most relevant pathways in
human intelligence (Fig. 2).

A possible problem with pathway analysis of intel-
ligence would be the mixing all IRGs. That is some
genes might not function in intelligence but due to
their indirect effects were included in model develop-
ment. To rule out this problem, another pathway anal-
ysis was performed by using only brain-enriched
IRGs. Results showed that the most relevant cellular
processes were G-protein- and dopamine-related sig-
naling pathways (Fig. 3).

As mentioned, the most relevant signaling path-
ways in the case of brain-specific genes were G-pro-
tein-coupled receptor- and dopamine-mediated sig-
naling pathways (Fig. 3); G-protein-coupled recep-
tors (GPCRs) comprise the largest family of
transmembrane signaling molecules with 600–1000
protein members [41]. A microarray profiling GPCRs
in human and mice showed that over 90% of GPCRs
are mainly expressed in central nervous system; the
most notably expressed in the neuronal tissues was a
cluster of 67 GPCRs [42].

GPCRs found to be expressed in adult neural
stem/progenitor cells as well as the adult differentiated
N

neurons [43], and regulate adult neurogenesis. They
exert this function mainly by binding to the neuro-
modulators such as norepinephrine, dopamine, gluta-
mate, and serotonin [44]. For example, GPRC5B,
which encodes an orphan GPCR, is present in the
ventricular surface of cortical progenitors in the mouse
developing neocortex and is required for their neuro-
nal differentiation [45]. Furthermore, GPRC5B is
associated with Wnt signaling pathway which is crucial
for neural cell development [45]. Besides involvement
in neural development, GPCRs are also functioning in
neuronal responses, synapse formation and function.
For example, BAI3 (a brain-specific GPCR) is pres-
ent in biochemical preparations of brain synapses,
supporting the role of GPCRs in synapse formation
and maintenance [46, 47].

In addition, there are GPCRs that displayed ubiq-
uitous expression with nominal tissue specificity [48].
However, the pancreas, followed by CNS tissues, had
the greatest number of GPCRs, suggesting a high
degree of cellular regulation by GPCR signal trans-
duction [49]. Therefore, it is of great importance to
discriminate which GPCRs are specifically expressed
in brain.

Another predicted intelligence-related pathway in
our study was dopamine-mediated signaling pathway
(Fig. 3). Interestingly, all dopamine receptors are also
belonging to a large superfamily of GPCRs [50].
Dopamine has a tight link with GPCR-mediated
pathways [51]. In fact, once released, dopamine acti-
vates members of GPCRs; they binds to two distinct
classes of GPCRs (termed D1 and D2 receptors) [52, 53]
in which the D1 receptors are exclusively expressed in
postsynaptically on dopamine-receptive cells (such as
GABAergic medium spiny neurons) while D2 dopa-
mine receptors are expressed both postsynaptically
(on dopamine target cells) and presynaptically (on
dopaminergic neurons) [54]. The most recognized
EUROCHEMICAL JOURNAL  Vol. 12  No. 3  2018
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Table 5. Pathway analysis by three extra signaling pathway analyzers. Consistent with PANTHER predictions, Wnt signal-
ing pathway is enriched in progenitor cells, while to other signaling pathways are mostly enriched in fully-differentiated
neural cells. p-value < 0.05 was considered as the statistical significance level

Cells Bioinformatics 
tools Wnt signaling pathway G-protein-mediated 

signaling pathway
Dopamine-mediated 

signaling pathway

Progenitor cells GeneMANIA p-value < 0.05 Not predicted Not predicted
KEGG Not predicted Not predicted Not predicted
Reactome p-value = 3.24E-3 Not predicted Not predicted

Fully-differentiated 
neural cells

GeneMANIA Not predicted p-value < 0.05 p-value < 0.05
KEGG Not predicted Not predicted p-value = 7.1E-3
Reactome Not predicted p-value = 1.91E-1 Not predicted
dopamine-related disorder is Parkinson’s disease [55].
According to many lines of evidence for known func-
tion of dopamine in neural physiology [56, 57] and our
pathway enrichment data, we conclude that dopa-
mine-mediated signaling pathway is expected to be
functioning in intelligence.

Differences in intelligence-related signaling path-
ways in two different IRG sets may justify the variable
heritability of intelligence in different period of human
lifetime (inheritance of 20 and 80% for childhood and
late adulthood, respectively) [58]. This may be due to
contribution of distinct signaling pathways during dif-
ferent developmental stages of human neural system
(Fig. 4). On the other hand, PANTHER classification
of “protein class” for all studied IRGs (181 genes)
showed many significant (p-value < 0.05) enrichment
category (Table 1), but only three protein classes for the
brain-enriched IRGs (48 genes) (Table 3). This data
suggest that these gene sets include “transferases”,
“receptors”, “signaling molecules”, “enzyme modu-
lators, etc. (Tables 1 and 3) and hence can mediate
biological processes. Therefore, for determination of
the biological processes associated with the IRGs and
also with brain-enriched IRGs, the PANTHER clas-
sification of “GO-biological process” was applied.
Interestingly, we found that significantly enriched bio-
logical processes (p-value < 0.05) are associated with
neural systems, and the top 5 are “neurogenesis”,
“generation of neurons”, ‘nervous system develop-
ment”, “neuron differentiation” and “neuron devel-
opment” (Table 2). This data suggest that since the
expression of the 181 genes is not restricted to neural
cells, they may conduct biological processes in non-
neuronal cells (for example stem or progenitor cells)
enabling them to be developed into neurons. When the
brain-enriched IRGs were analyzed in the same way,
the biological processes of G-protein- and dopamine-
receptors are enriched (Table 4) which again empha-
sizes the crucial role of the G-protein- and dopamine-
receptor signaling pathways in neural cells’ activity. 

Complementary to the dissection of signaling
pathways, we surveyed the function of brain-enriched
IRGs individually and found that these genes contrib-
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ute to neuronal development or function. The main
characteristics of the brain-enriched IRGs which may
link them to the human intelligence include:

SEMA3A. This secreted protein can either inhibit
axonal outgrowth or stimulate the growth of apical den-
drites [59]. Aberrant release of this protein is associated
with the progression of Alzheimer’s disease [60].

DAB1. An adaptor protein that is an obligate effec-
tor of the Reelin signaling pathway, and is essential for
laminar organization of multiple neuron types of the
cerebral cortex [61]. Increased activation of DAB1 by
Reelin signaling pathway is correlated with increased
dendritic spine density and enhanced performance in
associative and spatial learning and memory [62].

BDNF. Several variations in the BDNF gene has
been studied as a source of individual differences in
intelligence [63] and personality [64, 65]. For exam-
ple, most studies report significant effects of a poly-
morphism (Val66Met) in the BDNF gene on intelli-
gence [66, 67].

NRG1. Neuregulin 1 (NRG1) is a schizophrenia-
susceptible gene whose polymorphisms (including
rs35753505) correlate with differences in frontal brain
activation in working memory tasks of healthy individ-
uals [68, 69].

CNR1. This gene encodes for the type 1 cannabi-
noid receptor, a presynaptically expressed Gi/Go-
protein-coupled receptor that is densely localized to
the hippocampus, amygdala, prefrontal cortex, stria-
tum, and cerebellum [70]. It binds and reacts to both
natural and synthetic cannabinoids. Several polymor-
phisms in this gene affect the efficiency of memory
[71, 72] and procedural learning in human [73, 74].
For example, a variant on promoter of the CNR1
(rs2180619) moderates the effect of valence on work-
ing memory [70].

ADRB2. It encodes beta-2-adrenergic receptor
which is a member of the G protein-coupled receptor
superfamily. There is evidence that the β2-adrenergic
receptors might have a role in memory and learning
formation [75]. Noradrenalin which is the ligand for
these receptors exerts a set of functions in cognition,
behavior and emotion [76]. Reduction in the activity
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of ADRB2 gene causes impairment of memory and
learning [77], while its upregulation increases long-
term memory and learning [78]. Therefore, because of
its causative role, they appear to have significant
potential in managing disorders of CNS, such as Par-
kinson, Alzheimer’s, etc. [79]. Genetic association
study was performed for this gene and human intelli-
gence using two non-synonymous coding SNPs
(rs1042713 and rs1042714). It was found that poly-
morphisms in ADRB2 and DRD2 are directly linked
to intelligence [80].

DRD2. It encodes the D2 subtype of the dopamine
receptor. A study found that individuals with the
DRD2 A1/A1 genotype had a significantly higher
intelligence than A2/A2 carriers [81]. In addition, a
relationship between the striatal dopamine receptor
D2 and verbal intelligence quotient was found [82].

IL1RAPL1. This gene is a member of the interleu-
kin 1 receptor family. It is expressed in various parts of
the human brain, and is closely associated with mem-
ory and concentration abilities [83]. IL-1 signaling
pathway modulates the activity of hippocampus which
suggests a specialized role in the physiological pro-
cesses underlying memory and learning abilities as
well as synapse formation and stabilization. A study on
different population groups with different intelligence
quotient (IQ) levels showed a link between the activity
of this gene and IQ [84]. Deletion, inversion and
mutations were reported for this gene and intellectual
disabilities in patients [85–88]. IL-6R is another class
of interleukin receptors which is associated with
human intelligence [89].

NFASC (neurofascin). This protein functions in
neurite outgrowth, neurite fasciculation, and organi-
zation of the axon initial segment and nodes of Ran-
vier on axons during neuronal development [90].
However, NFASC functions in mature neurons as a
switch between neuronal plasticity and stability [91]
which strongly influence intelligence [92]. Genome-
wide high-throughput transcriptome analyses reveal
that NFASC is one of the most differentially expressed
transcript in manic episode of bipolar disorder (data-
set: GSE46416) [14].

A fundamental follow up work on our built biolog-
ical system would be discovering new regulators of the
described signaling pathways. For example, a major
group of such regulators are microRNAs (miRNAs)
which regulate gene expression at post-transcriptional
and/or translational levels [93]. It would be of great
importance to include the miRNAs in future model
designing studies. Such studies can provide a more
comprehensive insight to the molecular mechanism(s)
behind the intelligence trait. Transcription factors
(TFs) can also influence gene expression through
transcription activation or suppression of their target
genes [94]. Therefore, the genes under the regulation
of such TFs may be included in intelligence-related
signaling pathways. This works adds complexity not
N

only on our molecular model but any types of path-
way-based modeling of other multifunctional traits.
By identification of potential upstream miRNAs
and/or TFs, as possible regulators of the suggested
molecular networks, we can used them as more prom-
ising intelligence determinant factors than the genes
itself [89]. Moreover, the study of changes in PPI net-
work among different individuals (who have different
intelligence quotient) can also assist the identification
of biomarkers or modules for molecular assessment of
IQ [95]. Besides, our molecular model of intelligence
may advance the understanding cellular factors which
modulate human intelligence, which may elucidate
novel pathways for future drug development on intel-
ligence-related mental disorders [96, 97].

CONCLUSIONS

Taken together, in spite of many studies about the
genes whose functions are related to brain activity, a
comprehensive study bearing integrated data of
molecular signaling pathways underlying the human
intelligence was obscure. In the current study, we col-
lect the genes which were potentially linked to brain
function and then we have drawn a molecular model
responsible for human intelligence. The results high-
lighted two signaling pathways, respectively mediated
by G-protein coupled receptors and dopamine recep-
tors, in human intelligence. In addition, the data of
this study will provide an opportunity to use the regu-
lators of these two pathways as identifiers of human
intelligence which confer a novel IQ assessment
method on the basis of genetic markers.
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