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We have developed a device for pinpoint delivery of chemicals, proteins, and nucleic acids into
cultured cells. The principle underlying the technique is the flow of molecules from the culture medium
into cells through a rupture in the plasma membrane made by a needle puncture. DNA transfection is
achieved by stabbing the needle tip into the nucleus. The CellBee device can be attached to any
inverted microscope, and molecular delivery can be coupled with conventional live cell imaging.
Because the position of the needle relative to the targeted cultured cells is computer-controlled,
efficient delivery of molecules such as rhodamine into as many as 100 HeLa cells can be completed in
10 min. Moreover, specific target cells within a single dish can be transfected with multiple DNA
constructs by simple changes of culture medium containing different plasmids. In addition, the nano-
sized needle tip enables gentle molecular delivery, minimizing cell damage. This method permits DNA
transfection into specific hippocampal neurons without disturbing neuronal circuitry established in
culture.

Introduction

Several methods have been developed for the
transfer of chemicals, proteins, and nucleic acids
into live cells (Stephens and Pepperkok, 2001).
Most conventional methods, including carrier-med-
iated transfer (Felgner et al., 1987) and electropor-
ation, aim to transfect an entire cell population,
while target cell transfection has typically been
achieved using glass pipettes to microinject (Gra-
essmann et al., 1974). Recently, new methods of
transfecting individual cells have been developed

with the help of advanced technologies, such as
femtosecond lasers (Stevenson et al., 2006), atom-
ic force microscopy (AFM) probes (Cuerrier et al.,
2007), and carbon nanotubes (Chen et al., 2007;
Han et al., 2005). Transfection of individual live
cultured cells at high spatial resolution has been
achieved using AFM with an ultrathin needle
sharpened to a diameter of 200–300 nm by focused
ion beam etching (Tseng, 2005). The AFM tip was
decorated with DNA encoding green fluorescent
protein (GFP) and was inserted into cells and held
there for some time, resulting in accumulation of
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GFP fluorescence in the treated cells (Obataya
et al., 2005). Repeated insertion of DNA-decorated
AFM probes into cultured cells resulted in a trans-
fection rate of 30% (Cuerrier et al., 2007).

Here, we describe a simple, efficient, and
gentle method for molecular delivery into cultured
cells. We have developed a device with an ultrathin
needle that can be attached to any inverted
microscope. To simplify the procedure, interactions
between the tip end and the cell membrane are not
monitored, and molecules for delivery are added to
the culture medium. Using a three-dimensional
stage controller, as many as 100 cells can be
transfected within 10 min. DNA and chemical
(Rhodamine101) delivery into HeLa cells was
achieved with high success rates (75% and
100%, respectively), and DNA was transfected into
cultured neurons without causing any damage.

Results

To improve the means of molecular delivery into
individual cells, we developed an apparatus called
a CellBee that can be attached to an inverted
microscope (IX81, Olympus) (Fig. 1A). A silicon
needle composed of a tip and a lever is attached to
a motor-controlled z-stage (LAS20-025-52S,
SMAC JAPAN) via an anchor and a holder (Fig. 1
B). This apparatus is attached to the condenser
component of the inverted microscope so that the
tip is oriented vertically (Fig. 1C, D). The needle
can be mobilized along the z-axis with a resolution
of 0.1 lm. Cells cultured on a coverslip are set on a
stage, and the medium is replaced with Hank’s
solution supplemented with the molecules to be
delivered. Cell morphology is monitored by phase
contrast (PC) or differential interference contrast
(DIC). The 488-nm beam from an Ar+ laser is
introduced through the objective, and the reflected

Fig. 1. The CellBee device attached to an inverted confocal

microscope. (A) A diagram of a laser confocal microscopy

system (FV300, Olympus) with an inverted microscope (IX81,

Olympus), onto which the CellBee device is attached. SU,

scanning unit; PMT, photomultiplier tube; PC, personal com-

puter. (B) A schematic of the fine needle. (C) A view of the

CellBee device attached to the IX81. (D) An expanded view

corresponding to the dotted box in B. (D) An expanded view

corresponding to the dotted box in C.

c
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light that passes through a pinhole is detected
using a photomultiplier tube (PMT). This laser-
scanning confocal microscopy can determine the
z-position of the tip end (Fig. 2A) and the bottom of
the coverslip (Fig. 2B).

Delivery of molecules is carried out by posi-
tioning the tip over a cell of choice (Fig. 2C), and
then lowering the needle until the tip end reaches a

fixed distance above the upper surface of the
coverslip (Fig. 2D). This technique does not
monitor interactions between the tip and cell
membrane, whereas previously reported tech-
niques using AFM probes measured force-distance
curves (Cuerrier et al., 2007). Once the z-positions
of the tip and coverslip are registered, it is possible
to perform delivery in a programmed fashion.
Therefore, the CellBee is best used in combination
with an x–y stage controller for pinpoint delivery to
multiple cells with high accuracy and speed by
selecting cells using a PC image and then auto-
matically and sequentially injecting cells. Home-
made software coordinates the image acquisition
and stage control. The coverslip is placed on a
motor-controlled x–y stage (BIOS-212T, SIGMAK-
OKI), and an image of the cells on the coverslip is

Fig. 2. Execution of cell stabbing using the CellBee. (A, B) The

scattering images (left) and focus positions (right) of the laser

beam (488 nm) for detecting the needle tip (A) and the bottom of

a coverslip (B). (C) A PC image of the needle over a colony of

HeLa cells. Scale bars in (A), (B), and (C) are 50 lm. (D) A side

view when the needle tip was stabbed into the nucleus of a HeLa

cell. Scale bar, 5 lm.

Fig. 3. Survival of cells stabbed with dull and fine needle tips.

(Top) SEM images of the needle tips. Scale bar, 5 lm. (Bottom)

Survival rates of HeLa cells and neurons stabbed with the

needles (mean ± SE, n ¼ 5 for HeLa cells; n ¼ 3 for

neurons). (A) AC160BN. (B) NanoBlade.
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taken by a CCD camera (ORCA-ER, HAMAMA-
TSU) and displayed on a screen. The position of
each cell is defined by its x–y coordinates.

To develop a suitable needle, conventional
AFM cantilevers made of silicon were first tested.
We noticed that the flexibility of the needle was
critical, with a very flexible cantilever failing to
penetrate cell membranes, and a rigid cantilever
breaking easily when its tip touched the surface of
the coverslip. Thus, we chose a cantilever with
moderate flexibility (AC160BN, Olympus). As re-
vealed by an SEM image (Fig. 3A), the tip of the
AC160BN needle was not extremely fine. To avoid
possible cell damage caused by insertion of such a
dull tip, we shaved the AC160BN using focused ion
beam (FIB) technology. The sharpened cantilever
(Fig. 3B) was given the name ‘‘NanoBlade.’’

Assuming that the tips of AC160BN and the
NanoBlade pierced into round cells, we calculated
the area of the puncture of the plasma membrane
(Fig. 4A) and the volume of the cell displaced with
the tip (Fig. 4B) based on SEM images (Fig. 3).
While both the area and volume increased with the
insertion depth, an almost linear relationship was
calculated for the NanoBlade, whereas a supralin-
ear relationship was determined for the AC160BN
needle. This suggests that the NanoBlade causes
much less cell damage than an AC160BN needle.

Since the NanoBlade caused a small displace-
ment volume, we were concerned about whether or
not a fine needle could introduce a sufficient
amount of chemical dye for identification of stabbed
cells. Thus, we performed stabbing of HeLa cells in
the presence of Rhodamine101 (20 lg/ml) in the

Fig. 4. Comparison of plasmamembrane puncture area and displacement volume between a conventional AFM needle and the NanoBlade.

Table 1. Efficient, gentle delivery of chemicals or DNA into HeLa cells

Stabbed cells Dead cells Fluorescent cells Efficiency (%)

Rhodamine delivery 105 0 105 100
Expression of FL protein 1715 0 1297 75
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medium. One hundred and five cells were selected
on a PC image (a part of the image is shown in
Fig. 5A), and cells were stabbed sequentially with

the CellBee z-stage and the x–y stage controllers
fully active. The whole process took only 10 min.
Immediately after washing with normal medium, we
observed that all of the stabbed cells showed a
detectable amount of red fluorescence (Table 1),
although the fluorescence intensity varied from cell
to cell. A fluorescence image corresponding to the
PC image (Fig. 5A) is shown in Fig. 5B. All the
stabbed cells survived for 24 h (results not shown),
suggesting that the cells were not significantly
damaged. Using a similar protocol, recombinant
DsRed protein was also introduced into HeLa cells
(Fig. 5C, D). In this experiment, selective introduc-
tion into the cytosol was attempted. The tetrameric
complex of DsRed was indeed distributed in the
cytosol and not the nucleus of treated HeLa cells.

Next, we tried DNA transfection into cultured
HeLa cells using the CellBee system. The culture
medium was supplemented with 0.1 mg/ml plasmid
DNA (pVenus-N1) encoding Venus (Nagai et al.,
2002), a bright version of yellow fluorescent protein.
Cells were stabbed with the needle tip in their nuclei.
To determine the percentage of cells transformed by
pVenus-N1 DNA, cellular morphology and fluores-
cence were observed after 24 h by acquiring a DIC
(Fig. 5E) and fluorescence image (Fig. 5F). Similar
experiments were repeated 11 times. Taking into
account the increase in the number of cells due to
cell division over 24 h, we determined that 75% of
the stabbed cells had been transformed, and that no
cells died from the cell surgery.

Differential transfection of targeted cells with
two distinct plasmid DNA constructs is also possi-
ble. After some HeLa cells had been stabbed in the
medium containing pVenus-N1 (0.1 mg/ml), the
medium was replaced with that containing mRFP1
cDNA (mRFP1/pcDNA3, 0.1 mg/ml) and new cells
were stabbed. After 24 h, two populations of HeLa
cells with yellow or red fluorescence emerged
(Fig. 5G, H). It is notable that the boundary between
the two cell populations was clear. This differential
transfection technique may be useful for studying
the function of membrane-bound heterophilic
molecules involved in cell adhesion or repulsion.

In order to demonstrate that stabbing with the
NanoBlade does not cause significant cell damage,
we attempted the CellBee technique on more
fragile primary cells. Transfection of cultured
hippocampal neurons with mRFP1 cDNA was
performed (0.1 mg/ml mRFP1/pcDNA3 in the
medium). Because primary neurons do not prolif-
erate, it is relatively easy to identify stabbed

Fig. 5. Delivery of chemicals, proteins, or DNA into HeLa cells.

(A, B) Delivery of Rhodamine101. A PC image of a confluent

monolayer of HeLa cells. Stab points are indicated by red

crosses (A). A fluorescence image acquired immediately after

washing the medium (B). (C, D) Delivery of recombinant DsRed.

A PC image of a colony of HeLa cells. Stabbed points (cytosol)

are indicated by red crosses (C). A fluorescence image acquired

immediately after washing the medium (D). (E, F) A DIC image

(E) and fluorescence image (F) of a colony of HeLa cells 24 h

post-transfection with Venus plasmid DNA. (G, H) A DIC image

(G) and fluorescence image (H) of HeLa cells 24 h after

differential transfection of Venus and mRFP1 plasmid DNA.

Scale bar, 50 lm.
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neurons in images acquired 24 h post-transfection.
Stabbed neurons are indicated by arrows in a DIC
image (Fig. 6A). A fluorescence image shows that
the same neurons emitted red fluorescence (Fig. 6
B). Furthermore, dual-color labeling of hippocam-
pal neurons in a circuit is possible (Fig. 6C, D). This
technique results in extremely high viability of
stabbed neurons (96%), compared with previous
results using a conventional AFM cantilever (64%).

Discussion

Pinpoint molecular delivery into cultured cells is
generally performed using a glass pipette that

approaches the cell at a 45� angle (Graessmann
et al., 1974). Such oblique needle positioning is
disadvantageous for the following reasons: First,
because the position of the pipette tip relative to a
targeted cell is not regular, rapid delivery into
numerous cells is hard to perform. Second, in the
case of DNA transfection, in which a pipette tip must
reach the nucleus, the Golgi apparatus next to the
nucleus is often damaged. By contrast, the CellBee
system described in this article uses a needle that is
oriented and moved vertically. Thus, the x–y
position of the needle tip is always identifiable in
PC or DIC images, and damage to the Golgi
apparatus can be avoided. Furthermore, the Cell-
Bee technique does not monitor interactions

Fig. 6. DNA transfection of primary cultured neurons. (A, B) A DIC image (A) and a fluorescence image (B) of primary hippocampal neurons

24 h post-transfection with mRFP1 plasmid DNA. Stabbed neurons are indicated by arrows in A. (C, D) A DIC image (C) and fluorescence

image (D) of primary hippocampal neurons 24 h after differential transfection of Venus and mRFP1 plasmid DNA. Scale bar, 50 lm.
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between the needle tip and the plasma membrane
of a targeted cell, thus simplifying the process.
Instead, the needle pierces the cell or nucleus at a
pre-set distance above the upper surface of the
coverslip. In our experiments, delivery of chemicals
or DNA into about 100 cells was achieved in a short
period of time (<15 min) with high cell viability.

Previous studies demonstrated that single cell
transfection was possible using AFM probes
decorated with plasmid DNA (Cuerrier et al.,
2007). Those studies extensively investigated the
interaction between probes and cell membranes by
measuring AFM force–distance curves, and their
transfection techniques were performed on rela-
tively robust cells, such as HEK293 cells. In
contrast, we propose here a device that makes
the AFM-based molecular delivery technique more
practical for cell biologists, using conventional light
microscopy systems.

Another rapidly expanding technique for the
introduction of macromolecules into single cells is
photoporation. Targeted transfection by intense
near-infrared femtosecond laser pulses is particu-
larly appealing to many biologists (Tirlapur and
K}onig, 2002), but photoporation requires much
experience and expertise, and the equipment is
fairly expensive and large. While electroporation
usually transfects an entire cell population, target
cell electroporation has also been successfully
performed (Hass et al., 2001; Olofsson et al.,
2003). However, this technique does not permit
transfection of a number of cells in a short period of
time, or selective delivery into the cytoplasm or
nucleus. The CellBee method we describe here
uses a mechanical means of delivery, thereby
permitting high spatiotemporal control. It has the
advantage of simple and easy manipulation, as well
as gentle treatment of fragile cell types, such as
cultured neurons.

Cultured neurons make synapses with one
another to establish functional circuits on a cover-
slip. Co-cultured glial cells (astrocytes) also
actively participate in the development and main-
tenance of neuronal circuitry (Stevens, 2003;
Hama et al., 2004). To analyze the roles of
adhesive/repulsive and signaling molecules in
synaptogenesis or synaptic plasticity in the context
of circuit formation, it is necessary to transfect
specifically targeted neurons or astrocytes with
different plasmid DNA constructs and examine the
effects on cell–cell communication. Since cultured,
post-mitotic neurons participating in a circuit

cannot easily be replaced when damaged, it is
also important to preserve transfected neurons.
Our CellBee device is able to achieve both of
these objectives, using a simple change of
medium to transfect different plasmids and a
nano-sized needle tip that permits high viability
of transfected neurons.

Methods

HeLa cell preparation
HeLa cells were grown on the glass-bottom dish in
Dulbecco’s modified Eagles medium (DMEM,
Sigma) containing 10% FBS.

Neuron preparation
Primary hippocampal neurons were prepared from
Wistar rat fetuses (embryonic day 18–20) and
plated on a poly-L-Lysine coated glass-bottom dish
in Minimum Essential Medium Eagle (MEM, Sig-
ma) containing 2% FBS and N2 supplement.

Plasmid DNA preparation
pVenus-N1, mRFP1/pcDNA3, and EGFP/pcDNA3
were amplified in Escherichia coli and purified
using the endo-toxin free kit (QIAGEN).

DsRed protein preparation
Recombinant DsRed protein fused to His-tag was
produced in E. coli and purified using the Ni-NTA
agarose (Mizuno et al., 2001).

Scanning electron microscopy
Scanning electron microscopy (SEM) images of
needles were taken by Field-emission scanning
electron microscopy FESEM (S-4700, Hitachi) in a
4000 times expand mode.

Construction of the CellBee device
The motor-controlled z-stage (LAS20-025-52S)
was purchased from SMAC JAPAN (http://
www.smac-mca.co.jp/). AC160BN needles were
etched with gallium ions using DualBeam SEM/
FIB (Nova 600 NanoLab) to make Nanoblades.

Injection protocol into cells

(1) The x–y position of the needle was determined
using a screw adjuster on the CellBee and was
almost always placed in the center of the field
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of view. The z position of the needle tip was
adjusted by measuring reflected light.

(2) The culture medium was replaced with Hank’s
Balanced Salt Solution (HBSS, GIBCO) con-
taining 0.1 lg/ll plasmid DNA, 20 lg/ml Rho-
damine (Rhodamine101, DOJINDO), or 1 mg/
ml DsRed protein. The solution contained
1.3 mM CaCl2.

(3) A target cell was placed under the needle by
the x–y stage controller. The needle was
lowered vertically to pierce the cell membrane.
The needle tip stayed inside the cell for one
second.

(4) Cells were washed with fresh culture medium a
few times, followed by incubation in a CO2

incubator.

Measurement of survival rates of stabbed cells
Live and dead cells were detected using calcein
green AM (Molecular Probes) and propidium iodide
(Molecular Probes), respectively. Five minutes
after stabbing, cells were exposed to a mixture of
the two dyes. After incubation for 30 min, green
(live) and dead (red) cells were counted.
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