pay-to-sudoku

Sean Bowe Zcash

Live demo

- Live demos always fail without exception
 - Network will go offline
 - Laptop will start on fire
 - SHA256 collisions destroy Bitcoin network
 - Miners switch to dogecoin

• Alice wants the solution to a puzzle, **P**.

• Alice wants the solution to a puzzle, **P**.

Redeem script:

OP_??? OP_??? OP_??? OP_??? OP_???

• Alice wants the solution to a puzzle, **P**.

Redeem script:

OP_??? OP_??? OP_??? OP_??? OP_???

Problems

- The script (and the solution) could be gigantic for larger puzzles.
- Bitcoin's scripting system isn't expressive enough.
- Everyone else discovers the solution.
- If somebody tries to spend the script, someone else can spend it using their solution first.

Alice wants to pay Bob to solve a puzzle.

Zero-knowledge contingent payments

- Gregory Maxwell described them in 2011
- Relies on two processes:
 - An interactive zero-knowledge proving scheme
 - An atomic swap over the blockchain
- Achieves
 - Privacy of the solution (and the problem)
 - Small transaction size

HTLC (Hashed Timelock Contract)

SHA256(K)

Bob K

HTLC (Hashed Timelock Contract)

SHA256(K)

OP_SHA256 h_key OP_EQUAL OP_IF bob_pubkey OP_CHECKSIG OP_ELSE future_block_height OP_CHECKLOCKTIMEVERIFY OP_DROP alice_pubkey OP_CHECKSIGVERIFY OP_ENDIF Bob K

HTLC (Hashed Timelock Contract)

Alice

SHA256(K)

OP_SHA256 h_key OP_EQUAL OP_IF bob_pubkey OP_CHECKSIG OP_ELSE future_block_height OP_CHECKLOCKTIMEVERIFY OP_DROP alice_pubkey OP_CHECKSIGVERIFY OP_ENDIF

Κ

Bob

- Bob must disclose K to get the money
- Alice gets her money back if Bob doesn't provide K
- The transaction is not that big.

Q

Bob

►

Α

Α

Zero-knowledge proof

- Given a question Q, a hash H, and an encrypted answer E
- I know answer A and key K
- Such that
 - A answers Q
 - E is Encrypt(A, K)
 - **H** is SHA256(**K**)

Alice uses a HTLC to pay Bob in exchange for **K**. Alice decrypts with K to get the solution.

Pros and cons

- Pro: The transaction is *atomic*, *trustless*, and *private*.
- Pro: The transaction is small and completely prunable.
- Pro: We can do it on Bitcoin today!

Pros and cons

- Con: The transaction is interactive.
- Con: Constructing the zero-knowledge proof can take seconds to minutes depending on the complexity of the circuit.
- Con: The proving key can be tens to hundreds of megabytes in size depending on the complexity of the circuit.

Circuit Statistics

- 16x16 sudoku:
 - Proving key: 68MB
 - Only needs to be computed once, so cost can be amortized.
 - Proving time: 10 to 20 seconds
 - Proof: 288 bytes (sent off chain)
 - Verification time: 40ms
 - Circuit cost:
 - Encrypt(A, K) (81.86%)
 - ChaCha20 would be a 3x improvement over the current cipher.
 - SHA256(K) (10.23%)
 - Could use RIPEMD-160?
 - Solution validity (4.42%)
 - Mostly unoptimizable

Wrapping up

• Code:

https://github.com/zcash/pay-to-sudoku

- Thanks:
 - Gregory Maxwell
 - Pieter Wuille
 - Madars Virza
 - Andrew Poelstra
 - Zcash Company