
TenderMint: Consensus without Mining

Jae Kwon
yk239@cornell.edu

Draft v.0.5

Abstract. Cryptocurrencies such as Bitcoin enable users to submit
payment transactions without going through a centralized trusted orga-
nization. The blockchain provides part of the solution, but much of the
benefits are lost in securing the blockchain with computational proof-
of-work mining which is needlessly expensive and slow. We propose a
solution to the blockchain consensus problem that does not require min-
ing by adapting an existing solution to the Byzantine Generals Problem.

1. Introduction

Cryptocurrencies have come into the spotlight since the introduction of Bit-
coin [1]. The Bitcoin transaction log is secured by a network of miners who compete
for rewards in the blockchain. This mining, or proof-of-work, comes with a hefty
cost. At today’s Bitcoin prices and reward schedule, miners are rewarded on the
order of $1,500,000 a day to secure the blockchain – and a significant portion of that
money is spent on electricity. Proof-of-work based consensus algorithms are also
slow, requiring up to an hour to fully confirm a payment to prevent double-spending.

Other protocols (e.g. proof-of-stake protocols) have been proposed by the
cryptocurrency community to solve this problem, but they typically suffer from
the fallacy of false choices; nodes have nothing to lose by contributing to multiple
blockchains, so consensus is not guaranteed. Unless there is actually “something at
stake”, all participants would be incentivized to sign any block that they encounter
to earn fees. Yet other protocols suffer from assumptions of good behavior on the
part of some participants, but these assumptions don’t hold when the participants
are financially motivated.

Our protocol overcomes the fallacy of false choices problem by requiring a
surety bond deposit to participate in the consensus process, ensuring consensus at
every block, and strongly incentivizing participants to only sign the block agreed
upon. We make a weak assumption about the participant’s abilities to keep time,
and we assume partial synchrony of the network. Our algorithm is based on a
modified version of DLS (the solution to the Byzantine Generals Problem by Dwork,
Lynch, and Stockmeyer [2]), and is resilient up to 1/3 of bonded coins belonging to
byzantine participants.

1

2. Terms

Nodes are connected to each other in a peer-to-peer fashion and relay new
information by gossip. Each node keeps a complete copy of a totally ordered se-
quence of events in the form of a blockchain as in Bitcoin. Users (clients) keep
an account in the system, where the user’s account is identified by the hash of the
user’s public key called an address. Each account can hold a sum of coins that can
change with new transactions. Nodes relay new transactions as they are signed and
submitted by users to a node of the network. There are 3 types of transactions.

• Send: Send some amount of coins from the signer’s account to another.

• Bond: Lock coins as a surety bond.

• Unbond: Unlock the bonded coins.

A transaction is valid if it follows the rules of our protocol (e.g. sufficient
funds to send, etc). Valid transactions are grouped into blocks. A block is valid if
all the transactions in the block are valid. Validators are users with accounts that
have bonded coins. We say that a validator has voting power in the amount of the
bonded coins. Validators are good if the validator acts according to the protocol.
Other validators are considered byzantine. Blocks are proposed and then committed
into the blockchain by validators using the consensus algorithm. The network is
responsive if transactions that pay sufficient fees get committed in a timely manner.

3. Validators

An account becomes a validator by posting some amount of coins as a surety
bond. Once the bonding transaction is committed, the validator can participate
in the consensus protocol with voting power in proportion to the amount of coins
bonded. Bonded coins cannot be used in any transaction except for an unbonding
transaction, afterwards the coins remain locked in the unbonding period of X blocks.
If the validator fails to meet its obligations before the unbonding period is over, the
validator can lose all of its bonded coins. The validator fails to meet its obligations
if any of the following occur:

• Signing two conflicting messages at the same block height

• Signing an invalid checkpoint

Given the punitive nature of the algorithm and the long unbonding period,
validators with significant voting power are unlikely to sign conflicting or invalid
messages (at least until the unbonding period is over).

4. Consensus

2

4.1 On Byzantine Consensus

While most existing literature on byzantine consensus systems assume that
each process is a discrete unit with equal weight and import, we extrapolate these
studies into our problem domain where abstract processes (validators) have frac-
tional presence in the form of voting power.

Fischer et al have shown in a seminal paper [3] that in an asynchronous
system (where no assumptions are made about time) of deterministic processes,
no protocol can guarantee consensus even with one faulty process. This is called
the FLP impossibility result. Much research has gone into understanding ways
to circumvent the FLP impossibility result by slightly modifying the problem do-
main, e.g. by sacrificing determinism, adding time, adding oracles etc [4]. Bitcoin
circumvents the FLP impossibility result by making some assumptions about the
synchrony of the network (i.e. nodes soon sync up with the network) and time (i.e.
miners dedicate limited time and resources to the best blockchain). For example,
if the Bitcoin network were such that the time for a block to be broadcasted takes
longer than some multiple of the average block generation time, a minority mining
pool with a superior connectivity can keep the network forked indefinitely.

Our algorithm is based on algorithm 2’ from section 4 of [2] (Dwork et al).
It assumes that the network is partially synchronous; there is assumed to be some
unknown upper bound ∆ on the time of messages to be delivered. Intuitively, there
may be arbitrary but finite latency in the network. We also assume that all non-
byzantine nodes have access to an internal clock that can stay sufficiently accurate
for a short duration of time until consensus on the next block is achieved. The
clocks do not need to agree on a global time. It is possible to construct a consensus
protocol with weaker assumptions about the validator’s clocks [2], but we omit
this possibility for simplicity. As in the algorithm proposed by Dwork et al, it can
tolerate of up to 1/3 byzantine voting power.

4.2 On Byzantine Consensus

The blockchain is composed of sequential blocks connected by the hash of
each block, which is computed by hashing the contents of the block.

Figure 1: Block chain

3

A block is composed of a header (which includes information such as the
block’s height) and three hashes:

• The previous block’s hash

• The root hash of a merkle tree of validator signatures for the previous block

• The hash of a list of new transactions

When a validator signs a block at height h, the signatures get hashed into
a merkle tree and the result gets included in the next block. The signatures are
ordered by the ordinal of the validator (i.e. by the chronological order of the
validator’s address), and missing signatures are denoted by an empty sequence of
zeros.

Figure 2: Signatures merkle tree

The transactions hash need not be a merkle tree.

Figure 3: Transactions

4.3 Agreeing on the next block

After each validator sees that a more than 2/3 of the voting power has signed
for the block(s) at height h-1, the consensus process begins for the next block at
height h.

Lemma 1: The consensus process for block height h for all good validators begins
within ∆ of each other in global time.

4

The proof follows from the definition of ∆. The first good validator to see at
least 2/3 of voting power for the previous block will broadcast all those signatures
by gossip, thus all remaining good validators will see at least 2/3 of voting power
for the previous block within ∆.

Let T be some fixed duration of time that is suspected to be at least 2∆.
We don’t know what ∆ actually is, so T is merely a guess that is baked into the
algorithm. LetW ≥ T be some lower threshold on the amount of time between each
successive block. The consensus process begins by first waiting W , then proceeds
in rounds until consensus is reached.

At each consensus round, we use a deterministic algorithm based on the
prior blockchain history to compute a proposer; proposers are chosen in proportion
to their voting power.

// First, copy AccumPower over to RoundAccumPower
for each Validator {

Validator.RoundAccumPower = Validator.AccumPower;
}

// Determine proposer for the next round
function getNextProposer():

// Increment voting power
TotalIncremented := 0
for each Validator {

Validator.RoundAccumPower += Validator.Power;
TotalIncremented += Validator.Power

}

// Determine the designated Proposer for this round
Proposer := Validator with the most RoundAccumPower;

// Decrement from Proposer and make Sum(RoundAccumPower) zero.
Proposer.RoundAccumPower -= TotalIncremented;

return Proposer;
}

Once a block is committed we increment Validator.AccumPower similarly.

// Increment voting power
TotalIncremented := 0
for each Validator {

Validator.AccumPower += Validator.Power;
TotalIncremented += Validator.Power

}

// Determine the designated Proposer for round zero
ProposerR0 := Validator with the most AccumPower;

5

// Decrement from ProposerR0 and make Sum(AccumPower) zero.
ProposerR0.AccumPower -= TotalIncremented;

// Adjust Validators membership and other state data
// based on the Block we’re committing
...

Lemma 2: For a given block height and a round of the consensus process, all good
validators agree on a proposer for that round.

Since the previous block was signed by more than 2/3 of the voting power and
less than 1/3 of the voting power is byzantine, no other block could have received
2/3 of the voting power. This implies that all good validators start the consensus
process off of the same blockchain. The sequence of proposers is completely deter-
mined by a common blockchain, so all must agree on the sequence.

Each consensus round is composed of three steps. Each of these three steps
at round R takes T + Rδ where δ is some fixed duration of time, so each round is
longer than the last one by 3δ. Any messages to be broadcasted are sent in the
beginning of the step, and messages can be received in the background during the
entire duration of the step.

// Consensus rounds at height H
// <Message>σ is a message signed by validator V.
LockedProposal := nil;
for consensus round R {

// Step 1: Propose
Proposal := nil;
if getNextProposer() is me {

if LockedProposal != nil {
Proposal = LockedProposal;

} else {
Proposal = constructProposal();

}
broadcast(<Proposal>σ);

} else {
Proposal = getBroadcastedProposal();

}

// Step 2: Vote
if LockedProposal != nil {

broadcast(<Vote V, H, R, LockedProposal>σ);
} else if Proposal is valid {

broadcast(<Vote V, H, R, Proposal>σ);
}
Votes = getBroadcastVotes();

// Step 3: Pre-Commit

6

if a 2⁄3_majority(Votes) exists {
// Set lock
LockedProposal = 2⁄3_majority(Votes);
broadcast(<Precommit V, H, R, LockedProposal>σ);

}
Precommits := getBroadcastPrecommits();

// End of Step 3: Commit and Unlock
if 2⁄3_majority(Precommits) exists {

nextBlock := 2⁄3_majority(Precommits)
// A Commit by validator V at height H round R
// sets all Votes and Precommits for future rounds
// at height H round R+1, R+2, R+3, ...
broadcast(<Commit V, H, R, nextBlock>σ);
commit(nextBlock);
break; // Consensus complete for height H

} else if 1⁄3_majority(Precommits) exists which isnt LockedProposal {
// My LockedProposal is outdated, unlock!
LockedProposal = nil;

}
}

Lemma 3: If there are less than 1/3 in byzantine voting power & at least one good
validator decides on a block B, then no good validators will decide on any block other
than B.

This is the safety guarantee. Consider the earliest round R where at least
one good validator commits block B at round R. We know that more than 2/3 of
precommits were for block B at round R. Considering that less than 1//3 are byzan-
tine, we know that at least 1/3 of good validators must have pre-committed block
B at round R. These validators must have a lock on block B at round R. No other
block can be committed by good validators in rounds after R unless some of the
good validators unlock from B. The only way these validators can unlock from B is
if more than 1/3 pre-commit for a block other than B after round R. This implies
that at least one good validator pre-committed a block other than B after round R,
which can only happen if more than 2/3 voted for a block other than B after round
R, which is impossible.

Lemma 4: If there are less than 1/3 in byzantine voting power, consensus is eventu-
ally reached (the algorithm terminates).

TODO: Prove liveness. The proof is similar to the one in [2].

4.4 Committing to the agreement

While the consensus process in the previous section gets good validators
to agree on the next block, we also need to ensure that validators stick to their

7

commitments for blocks previously decided upon. We achieve this by incentivizing
validators to sign the agreed upon block by rewarding them with transaction fees in
proportion to their voting power, and strongly incentivizing validators to sign only
one block at a given height. When signing a block, a validator must sign a string
that includes the block’s hash as well as the block height. When a block cheats
by signing more than one block on the same height, a short evidence transaction
can be included by anyone as long as it is committed before the cheater’s bonded
coins are released (after the unbonding period). When such evidence is found
and committed, that validator’s bonded coins get redistributed to the remaining
validators in proportion to their voting power immediately.

Figure 4: Evidence of duplicated height

As long as there are less than 1/3 in byzantine voting power, each successive
block in the blockchain will have at least 2/3 in votes. Thus given a parent block,
the correct child block is the one that has at least 2/3 in votes, and this uniquely
identifies the current blockchain fork.

4.5 Cooperation

Since validators divide the transaction fees of block h amongst themselves, a
greedy validator might be tempted to exclude some signatures when proposing the
next block h+1. This is an inferior strategy when considering that other validators
are game optimal participants. Given that the total amount of fees to be divided
in a block is f1, and that the sum of the voting powers vi of all validators that
have signed and successfully propagated their signatures is 1, consider proposer P
with voting power vp < 1 who is considering whether to include validator Alice’s
signature with voting power va < 1. At stake is Alice’s fair share of the fees which
is f1 · va. Of this, P ’s incremental benefit of excluding Alice’s signature is:

f1 · va · vp/(1 − va)

Then, Alice could react tit-for-tat by excluding P ’s signature when it be-
comes Alice’s turn to propose the next block, where the sum of the fees in that
block is f2. In that case, P ’s detriment is:

f2 · vp

P only gains a monetary advantage if the benefit outweighs the costs where:

8

f1 · va · vp/(1 − va) > f2 · vp

f1 > f2/(va/(1 − va))

Thus if P and Alice’s interactions were limited such that they only get to
propose one block each, it’s clear that P doesn’t benefit overall unless the proposed
block contains a much larger sum of fees f1 in reward than what Alice’s later block
will contain, f2, assuming va � 1. Even if Alice’s voting power is large, she could
divide her stake amongst multiple smaller accounts. In the case where P and Alice
aren’t limited to propose one block each, P and Alice might exclude each other’s
signatures indefinitely. In this case, P ’s expected benefit on each block is:

E[fees] · va · vp · vp

whereas P’s expected detriment on each block is:

E[fees] · vp · va

No matter the amount of voting power, no two validators benefit by ex-
cluding each other’s signatures indefinitely. Intuitively, this is because the other
validators gain more when two validators exclude each other.

5. Validator Signature Compression

While the protocol described so far is theoretically feasible, in practice there
are computational, storage, and network limitations to consider. We want to allow
for as many validator nodes as possible, but it may be too costly to store every
validator’s signature for every block. For a concrete example, we estimate the total
number of unique active miners in Bitcoin to be on the order of 50,000. If every
validator signed every block and consensus was reached on average every minute,
and each signature were 32 bytes long, that totals to 840 Gb of storage every year
just for validator signatures. For this reason we propose a checkpointing system
such that the validator signatures of most blocks can be pruned away.

TODO: Describe cryptographic multisignatures.

6. Changing participation

So far we have considered mute validators to simply be byzantine, but ideally
the network adapts in response to validator churn. Validators that haven’t signed
for Y blocks in a row (where 1 ≤ Y � X) are considered to have timed-out and are
implicitly unbonded. As long as validators churn in a staggered fashion, the active
validator set can adjust to account for a changing set of participants. Validators that

9

need to go offline temporarily should be incentivized to sign an explicit unbonding
transaction as opposed to timing out, as that allows the active validator set to
adjust immediately. For example, timeouts could result in a some small penalty fee
in proportion to the amount of bonded coins, or validators may need to participate
for some number of blocks before earning any fees. Later, (both explicitly and
implicitly) unbonded validators can become active once again by signing a block
agreed upon during a consensus process by the remaining active validators, before
the unbonding period is over.

7. Security

While our algorithm achieves consensus at every block given our assump-
tions, it is still possible for a set of validators that collectively had more than 2/3 of
the voting power at some point in the distant past (but has since unbonded their
coins) to create an alternative fork of the blockchain with no recourse of retribution
by the protocol (since the unbonding period had already passed). Such a gratuitous
(sham) blockchain fork must have a most-recent-common-block that is at least X
blocks ago. Thus we require that the unbonding period X be long enough for users
(who may not be actively participating in the consensus process) to periodically
reconnect to the network at least once every X blocks, or to place trust in a set of
persistent nodes of the network that can identify a valid checkpoint within the past
X blocks. Alternatively, users may place trust in a set of known validators to par-
ticipate for an extended duration of time; if any validator signatures in the trusted
set aren’t present, it signals the user to perform a manual check when resyncing
with the network.

This is a significantly different trust model than other protocols that require
persistent trust in a centralized checkpointing authority. In proof-of-work based
consensus protocls such as in Bitcoin, once a user has downloaded a trusted client,
the user can wait indefinitely before connecting to the network for the first time or
reconnecting after an extended period of absence. In contrast, a TenderMint user
must have a trusted client and recent checkpoint when connecting to the network
for the first time or after an extended period of absence; once connected, the user
need not trust any authority for as long as the last synchronized block is recent
(within X blocks of the current block of the network). In practice this isn’t an
onerous requirement as long as the unbonding period is long enough: say, a year.

References

1. S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008. [Online].
Available: http://bitcoin.org/bitcoin.pdf

10

2. C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial
synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288–323, 1988.

3. M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed
consensus with one faulty process,” Journal of the ACM, vol. 32, no. 2, pp.
374–382, 1985.

4. M. Correia, G. S. Veronese, N. F. Neves, and P. Verissimo, “Byzantine consensus
in asynchronous message-passing systems: a survey,” International Journal of
Critical Computer-Based Systems, vol. 2, no. 2, pp. 141–161, 2011.

11

