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ABSTRACTA 2-prover game is alled unique if the answer of one proveruniquely determines the answer of the seond prover andvie versa (we impliitly assume games to be one roundgames). The value of a 2-prover game is the maximum a-eptane probability of the veri�er over all the prover strate-gies. We make the following onjeture regarding the powerof unique 2-prover games, whih we all the Unique GamesConjeture :The Unique Games Conjeture : For arbitrarily smallonstants �; Æ > 0, there exists a onstant k = k(�; Æ) suhthat it is NP-hard to determine whether a unique 2-provergame with answers from a domain of size k has value at least1� � or at most Æ.We show that a positive resolution of this onjeture wouldimply the following hardness results :1. For any 12 < t < 1, for all suÆiently small on-stants � > 0, it is NP-hard to distinguish betweenthe instanes of the problem 2-Linear-Equations mod2 where either there exists an assignment that satis�es1�� fration of equations or no assignment an satisfymore than 1 � �t fration of equations. As a orol-lary of the above result, it is NP-hard to approximatethe Min-2CNF-deletion problem within any onstantfator.2. For the onstraint satisfation problem where everyonstraint is the prediate Not-all-equal(a; b; ), a; b;  2GF (3) , it is NP-hard to distinguish between the in-stanes where either there exists an assignment thatsatis�es 1� � fration of the onstraints or no assign-ment satis�es more than 89 + � fration of the on-straints for an arbitrarily small onstant � > 0. Wealso get a hardness result for a slight variation of ap-proximate oloring of 3-uniform hypergraphs.�This work was partly supported by Sanjeev Arora's Davidand Luile Pakard Fellowship and NSF Grant CCR-0098180
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We also show that a variation of the Unique Games Con-jeture implies that for arbitrarily small onstant Æ > 0 it ishard to �nd an independent set of size Æn in a graph that isguaranteed to have an independent set of size 
(n).The main idea in all the above results is to use the 2-provergame given by the Unique Games Conjeture as an \outerveri�er" and build new probabilistially hekable proof sys-tems (PCPs) on top of it. The uniqueness property plays aruial role in the analysis of these PCPs.In light of suh interesting onsequenes, we think it is animportant open problem to prove (or disprove) the UniqueGames Conjeture. We also present a semi-de�nite pro-gramming based algorithm for �nding reasonable prover strate-gies for a unique 2-prover game. Given a unique 2-provergame with value 1� � and answers from a domain of size k,this algorithm �nds prover strategies that make the veri�eraept with probability 1 �O(k2�1=5qlog( 1� )). This resultshows that the domain size k = k(�; Æ) must be suÆientlylarge if the Unique Games Conjeture is true.
1. INTRODUCTIONThe disovery of the PCP Theorem ([4℄, [3℄) and subse-quent quantitative improvements in PCP onstrutions haveled to (in many ases optimal) hardness of approximation re-sults for various optimization problems. For example Max-Clique [14℄, Max-3-SAT [15℄ and Set Cover [9℄ to name afew.However the PCP tehniques haven't been suessful inobtaining \good" hardness results for some problems likeVertex Cover (see [7℄ for an exiting new result), Min-2CNF-deletion and oloring of graphs and 3-uniform hypergraphswith a small hromati number. In this paper we try toidentify some promising new diretions for attaking theseproblems.All PCP onstrutions today (with the possible exeptionof [7℄) follow the basi paradigm of omposing a so alled\outer veri�er" with an \inner veri�er" (proof ompositionwas �rst introdued by Arora and Safra [4℄, but the kind ofomposition we are referring to was �rst used by Bellare etal [5℄). The fous of most of the reent researh has beenon improving the quality of the inner veri�er. Many sophis-tiated inner veri�ers have been onstruted (see [14℄, [15℄,[21℄, [13℄) based on the Long Codes introdued by Bellareet al [5℄ and the Fourier Analysis tehniques developed byH�astad ([14℄, [15℄). However the outer veri�er has remaineduntouhed. All PCP onstrutions use the same outer ver-i�er, namely the one obtained by parallel repetition of a



2-prover protool for Gap-3SAT. The soundness propertyrequired of the outer veri�er is given by the Raz's ParallelRepetition Theorem [20℄ and we heneforth all this veri�erthe Raz Veri�er.In this paper, we point out that one promising route forgetting good hardness results for problems for whih PCPtehniques have failed so far, is to onstrut an outer veri�erwith \better properties". The Raz Veri�er is basially a 2-prover game with the following ruial properties :1. For arbitrarily small Æ > 0, it is NP-hard to determinewhether the value of the game is 1 or at most Æ.2. The answers of the provers are from a domain of sizek where k is a onstant depending on Æ.3. The answer of the seond prover uniquely determinesthe answer of the �rst prover.One might expet the property (3) to be even stronger,i.e. the answer of the seond prover uniquely determinesthe answer of the �rst prover and vie versa. In fat suhgames have been onsidered in literature before ([10℄, [8℄)and they are alled \unique games". However, to the best ofour knowledge, the question whether unique 2-prover games(with (1 � �, Æ) gap in their value) are powerful enough toapture NP hasn't been onsidered before. This question ispreisely the fous of this paper and we make the following(rather bold) onjeture :The Unique Games Conjeture : For arbitrarily smallonstants �; Æ > 0, there exists a onstant k = k(�; Æ) suhthat it is NP-hard to determine whether a unique 2-provergame with answers from a domain of size k has value at least1� � or at most Æ.An important point here is that one an trivially deter-mine whether a unique 2-prover game has value 1. Thereforethe gap in the above onjeture is (1 � �; Æ) as opposed tothe gap (1; Æ) in the Raz Veri�er. In other words, NP-hardunique games must lose perfet ompleteness.We show that a positive resolution of this onjeture wouldhave many interesting onsequenes. We use the 2-provergame given by the Unique Games Conjeture as an outerPCP veri�er and build appropriate inner veri�ers to provethe following results :1. For every 12 < t < 1, for all suÆiently small � > 0, it isNP-hard to distinguish between instanes of 2-Linear-Equations mod 2, where either there exists an assign-ment satisfying at least 1 � � fration of equationsor no assignment satis�es more than 1� �t fration ofequations.This result is essentially due to H�astad [16℄. He pro-posed a so alled \odeword test" for testing LongCodes and analyzed it using Bourgain's theorem [6℄on Fourier spetrum of boolean funtions. However hewasn't able to give a \onsisteny test" whih wouldwork for the Raz Veri�er. The (minor) ontribution ofthis paper is to show that if one uses the outer veri�ergiven by the Unique Games Conjeture, it is indeedpossible to onstrut and analyze a onsisteny testimplying the above hardness result.This hardness result is tight sine the algorithm ofGoemans and Williamson [12℄ for 2-Linear-Equations

mod 2, on an instane with optimum 1� � produesa solution with value 1�O(p�).2. A simple redution from 2-Linear-Equations to 2-SATgives a similar result, i.e. a (1��; 1��t) gap for 2-SATfor any 12 < t < 1. As a orollary, it is NP-hard to ap-proximate Min-2SAT-deletion (also alled Min-2CNF-deletion) within any onstant fator. On the algorith-mi side, Zwik's algorithm [23℄, on a 2-SAT instanewith optimum 1�� produes an assignment with value1�O(�1=3). Klein et al [19℄ give O(log n log log n) ap-proximation for Min-2CNF-deletion.3. Guruswami et al [13℄ (also see [18℄) show that the on-straint satisfation problem assoiated with the pred-iate Not-all-equal(a; b; ; d) where a; b; ; d are binaryvariables, is hard to approximate better than a randomassignment. They use this fat to derive hardness re-sults for 4-uniform hypergraph oloring. However theirtehniques do not work for 3-uniform hypergraphs andone of the reasons is that for the prediate Not-all-equal(a; b; ) over binary variables, there does exist analgorithm that does better than a random assignment[22℄.However we show that the Unique Games Conjetureimplies that the prediate Not-all-equal(a; b; ) overternary variables is hard to approximate better thana random assignment. We also derive hardness re-sult for a variation of 3-uniform hypergraph oloringwhih we all \semi-oloring". In this problem weare given a 3-uniform hypergraph and the goal is toolor the verties so that 1 � � fration of the edgesare non-monohromati (as opposed to all edges non-hromati) where � is a given parameter. (the need foronsidering this version of oloring is due to the inher-ent loss of perfet ompleteness in the Unique GamesConjeture). We show that it is NP-hard to semi-olor a 3-semi-olorable 3-uniform hypergraph withonstantly many olors.4. Frieze and Jerrum [11℄ give an algorithm for Max-k-ut that ahieves a fator roughly 1� 1k + 2 ln kk2 . Thereis an almost-mathing hardness result by Kann et al[17℄ who show a hardness fator of 1 � 134k for thisproblem. However in their redution the value of themaximum k-ut in the ompleteness ase is 1 � 
( 1k )whih is bounded away from 1. It is an interesting openproblem whether a similar hardness result holds withperfet ompleteness or near-perfet ompleteness.We show that for any t > 12 , for all suÆiently largeonstants k, it is NP-hard to distinguish between theinstanes of Max-k-ut where the optimum value of ak-ut is either 1 � � or at most 1 � 1k(log k)t where� > 0 is an arbitrarily small onstant.We also onsider the following relaxation of the uniquenessproperty. We say that a 2-prover game has \d-to-1 property"if the answer of the seond prover uniquely determines theanswer of the �rst prover and for every answer of the �rstprover, there are at most d answers for the seond prover forwhih the veri�er would aept. We assume d to be a �xedinteger and d � 2. Consider the following onjeture :d-to-1 Conjeture : For arbitrarily small onstant Æ > 0,there exists a onstant k = k(Æ) suh that it is NP-hard



to determine whether a 2-prover game with d-to-1 propertyand answers from a domain of size at most k has value 1 orat most Æ.Note that in ontrast with the Unique Games Conjeture,we an hope for perfet ompleteness in the d-to-1 Conje-ture (sine d � 2). We use some of the tehniques fromDinur and Safra's paper [7℄ to show that the d-to-1 Conje-ture implies the following results :1. For arbitrarily small �; Æ > 0, it is hard to �nd anindependent set of size Æn in a graph whih is guaran-teed to have an independent set of size (1� 121=d � �)n.(see [1℄ for an algorithmi result). Note that Dinurand Safra's result [7℄ does not imply suh a result forindependent sets. Suh a result is equivalent to theexistene of a PCP with zero free bits, ompleteness
(1) and arbitrarily low soundness, whih is an openproblem.2. From the above result it follows that if 2-to-1 Conje-ture is true, it would imply p2� � hardness for VertexCover whih is better than the fator 1:3606 by Dinurand Safra. In fat, Dinur and Safra do use an analogof 2-to-1 property. We do not elaborate on this due tospae limitations.In light of suh interesting onsequenes of the UniqueGames Conjeture, we think it is an important open problemto prove or disprove it. In this paper, we also present a semi-de�nite programming based algorithm giving the followingtheorem :Theorem 1. There exists a (poly-time) algorithm suhthat given a unique 2-prover game with value 1� � and an-swers from a domain of size k, it �nds prover strategies thatmake the veri�er aept with probability 1�O(k2�1=5qlog( 1� )).Andersson et al [2℄ proved a similar result for the problem2-Linear-Equations mod p, where the onstraints are lin-ear equations mod p with every equation ontaining exatly2 variables. Suh onstraints have the uniqueness propertysine the value to one variable in the equation uniquely de-termines the value to the seond variable. Our algorithm issimpler and more general than that of Andersson et al.Theorem 1 shows that if at all the Unique Games Conje-ture is true, the domain size required k = k(�; Æ) must beat least 1�1=10 . A trivial bound k � 1Æ also holds, sine theprovers an hoose their answers uniformly at random fromthe domain of possible answers and satisfy the veri�er withprobability at least 1k .Overview of the paper : Setion 2 provides the pre-liminary bakground. We prove the results for 2-Linear-Equations mod 2 and Min-2CNF-deletion in Setion 3. Weprove the hardness of prediate Not-all-equal(a; b; ) overternary variables in Setion 4. We prove Theorem 1 in Se-tion 5 and appendix A. Proofs of all the other results areomitted from this extended abstrat sine they are quitelengthy and involved. Setion 6 onludes with a few re-marks as to why it would be diÆult to either prove ordisprove the Unique Games Conjeture.

2. PRELIMINARIESThis setion gives a preliminary bakground on PCPs, 2-prover games, Long Codes and the basi paradigm of PCPonstrutions.
2.1 Probabilistically Checkable ProofsA language L is said to have a probabilisti hekableproof system with parameters (r; q; ; s) if there exists aprobabilisti polynomial time veri�er whih on input x ofsize n and a proof �,� Uses r = r(n) random bits and queries q = q(n) bitsfrom the proof �.� Depending on the bits read from the proof it aeptsor rejets.� It has the following two properties :(Completeness) : If x 2 L, there exists a proof � whihthe veri�er aepts with probability � .(Soundness) : If x 62 L, the veri�er aepts any proofwith probability at most s.The parameters 1 �  > s > 0 are alled ompletenessand soundness parameters respetively. We reall the PCPTheorem ([4℄, [3℄) that every language in NP has a PCPsystem with  = 1; s = 12 and the veri�er uses O(log n)random bits and queries only a onstant number of bits fromthe proof.
2.2 2-Prover 1-Round GamesConsider the following game between 2 provers and a ver-i�er. There is a set V of all possible \questions" that theveri�er an ask the �rst prover and a set of questions Wthat the veri�er an ask the seond prover.A \strategy" of the �rst prover is a map LV : V ! Nwhere N is a set of possible answers of the �rst prover. Ona question v 2 V , the prover returns an answer LV (v) to theveri�er. Similarly the strategy of the seond prover is a mapLW : W !M where M is the set of his possible answers.The \aeptane prediate" of the veri�er is a map� : V �N �W �M ! fTRUE;FALSEgThe game works in the following way. The veri�er piks apair of questions (v; w), v 2 V; w 2 W with a ertain prob-ability distribution on the set of all pairs. He asks questionv to the �rst prover and the question w to the seond proverwho return answers LV (v) and LW (w) respetively. Theveri�er aepts i��(v; LV (v); w; LW (w)) = TRUEThe value of the game is de�ned as the maximum, overall possible prover strategies, of the aeptane probabilityof the veri�er.We will be interested in games where the answer of theseond prover uniquely determines the answer of the �rstprover, i.e. for every question pair (v; w) asked by the veri�erand every answer b 2 M of the seond prover, there is aunique answer a 2M suh that the veri�er aepts. In thisase, we an assoiate a funtion �vw : M ! N for everypair (v; w) so that the veri�er aepts i��vw(LW (w)) = LV (v)



A game is alled \unique" (see [10℄, [8℄) if M = N andevery funtion �vw is a bijetion, i.e. the answer of theseond prover uniquely determines the answer of the �rstprover and vie versa.Remarks : (1) We assume throughtout this paper thatthe sets of answers M and N are of onstant size. (2) Thede�nition of the unique games di�ers slightly in ([10℄, [8℄).In their de�nition, for every answer of one prover, there is atmost one possible answer of the other prover and vie versa.
2.3 The Label Cover ProblemWe de�ne a problem alled Label Cover whih is equiv-alent to 2-prover games with the property that the answerof the seond prover uniquely determines the answer of the�rst prover. For the sake of onveniene, we prefer to talk interms of the Label Cover problem instead of 2-prover games.De�nition 1. A Label Cover problem L onsists of a om-plete bipartite graph G(V;W ), with bipartition V;W . Anedge (v; w) has a weight pvw with Pv;w pvw = 1. Everyvertex in V is supposed to get a label from a set N andevery vertex in W is supposed to get a label from a set M .With every edge (v; w) there is assoiated a \projetion"�vw :M ! N . For an assignment of labels to the verties ofthe graph, that is for funtions LV : V ! N; LW : W !M ,an edge (v; w) is said to be satis�ed if �vw(LW (w)) = LV (v).The goal is to �nd an assignment of labels that maximizesthe total weight of the satis�ed edges. We de�ne OPT (L)to be the maximum weight of edges satis�ed by any label-ing. A Label Cover problem is alled \unique" if M = Nand every projetion �v;w : M ! M is a bijetion (i.e. apermutation).Clearly, a Label Cover problem is same as a 2-prover gamewhere V;W are sets of questions the veri�er an ask thetwo provers and N;M are sets of answers by the proversrespetively.The following theorem is a onsequene of the PCP The-orem ([4℄, [3℄) and Raz's Parallel Repetition Theorem [20℄.It an be found in any of the papers ([5℄, [15℄, [13℄).Theorem 2. For every onstant Æ > 0, there exists aonstant k = k(Æ) suh that it is NP-hard to determinewhether a Label Cover problem L with answers from setsof size at most k (i.e. jM j; jN j � k) has OPT (L) = 1 orOPT (L) � Æ.Remark : It turns out that in the redution given byTheorem 2, we have jM j � jN j and the projetions �v;w :M ! N are highly many-to-one (this many-to-one-ness in-reases as Æ dereases). The PCP onstrutions in this paperdo not work for suh projetions. Our onstrutions needa very stringent ondition that the projetions be bijetionsor d-to-1 for some �xed d independent of Æ.It is lear that the Unique Label Cover problem orre-sponds to a unique 2-prover game. Hene the Unique GamesConjeture an be restated as :Unique Games Conjeture : For arbitrarily small on-stants �; Æ > 0, there exists a onstant k = k(�; Æ) suh thatit is NP-hard to determine whether a unique Label Coverinstane with the label sets of size k (i.e. jM j = k) hasoptimum at least 1� � or at most Æ.

2.4 Constructing PCPs, Long Codes and Fourier
AnalysisWe briey explain a basi paradigm for PCP onstrutions(see [5℄, [14℄, [15℄, [21℄, [13℄). The veri�er an be oneptu-ally divided into an \outer" part and an \inner" part.The veri�er redues an arbitrary language in NP to a gap-version of Label Cover instane L as given by Theorem 2.This is alled the \outer" part of the veri�er.The veri�er then expets the proof to ontain \Long Codes"of the labels of verties in the instane L. The veri�er pikssome edge(s) of the instane L and performs some loalheks on the supposed long odes of the supposed labelsof the endpoints of these edge(s). This loal heking isalled the \inner" part of the veri�er.For proving the soundness property of the veri�er, oneshows that if the veri�er aepts the enoded proof with\good" probability, then the proof an be \deoded" to de-�ne labels for the Label Cover instane L with a \good"value of OPT (L). This gives a ontradition provided westarted with an instane L with suÆiently small value ofOPT (L). Theorem 2 guarantees that OPT (L) an be madearbitrarily small. The proof of the soundness of the veri�errelies on the Fourier analysis of the Long Codes.We de�ne the Long Codes in the following.De�nition 2. A binary Long Code on a set of labels M isindexed by all funtions f : M ! f�1; 1g. The long ode Aof a label a 2M is given byA(f) = f(a) 8 f : M ! f�1; 1gA heating proof might ontain an arbitrary string/tableA instead of a orret Long Code. Suh tables are handledby their Fourier expansion (see [15℄ for a detailed exposition)A = X��M Â���(f) where ��(f) = Yx2� f(x)The Fourier oeÆients bA� satisfy the Parseval's identity,P� bA2� = 1.

3. HARDNESS OF 2-LINEAR-EQUATIONS
MOD 2In this setion we present a proof of the following theorem.Theorem 3. The Unique Games Conjeture implies thatfor every 12 < t < 1, for all suÆiently small onstants� > 0, it is NP-hard to distinguish between the instanesof 2-Linear-Equations mod 2, where the fration of satis�edequations is at least 1� � or at most 1� �t.This result is essentially due to H�astad [16℄. He proposeda test for heking a long ode and analyzed it using Bour-gain's reent theorem [6℄ on Fourier spetrum of booleanfuntions, whih itself was inspired by a question raised byH�astad.The (minor) ontribution of this paper is to introdue theUnique Games Conjeture and to show that H�astad's testan be extended to test the onsisteny between two longodes, giving a PCP veri�er that makes a linear test on 2query bits, has ompleteness 1� � and soundness 1� �t.Following the standard paradigm, the PCP veri�er takesthe gap-version of the unique Label Cover problem L guar-anteed by the Unique Games Conjeture and expets the



proof to ontain, for every vertex v 2 V , the long ode ofthe label LV (v) and for every vertex w 2 W , the long odeof the label LW (w). These long odes are assumed to befolded, i.e. A(�f) = �A(f) (see [15℄).The veri�er piks some edges and heks that the labelsalong these edges satisfy the orresponding bijetions. Thereis a tehnial issue of how the edges are piked. Let pv =Pw pvw. That is if an edge is piked with a probability equalto its weight, pv is the probability that the left endpoint isv. Let 	v : W ! [0; 1℄ be de�ned as 	v(w) = pvwpv . That is	v(w) is the onditional probability that the right endpointof an edge is w given that the left endpoint is v.Ation of the veri�er :1. Pik v 2 V with probability pv. Let A be the (sup-posed) long ode of the (supposed) label of v.2. Pik a random funtion f : M ! f�1; 1g and a \per-turbation funtion" � : M ! f�1; 1g. For eah x 2M , �(x) = 1 with probability 1 � � and �(x) = �1with probability �.3. With probability 12 eah, selet one of the followingations :(a) (Codeword test) Aept i� A(f) = A(f�)(b) (Consisteny test) Pik a vertex w 2W with thedistribution 	v. Let B be the (supposed) longode of the (supposed) label of w and � = �vw :M ! M be the bijetion between v and w. A-ept i� A(f) = B(f Æ �)where f Æ� denotes the omposition of funtions.Remark : H�astad proposed and analyzed the odewordtest. We propose the onsisteny test and show that H�astad'sanalysis an be extended to hek onsisteny provided theUnique Games Conjeture is true.
3.1 CompletenessIt is easy to see that the ompleteness of the test is 1� �+�2where the outer label over instane has ompleteness 1� �.The test may fail due to 2 reasons : (1) The edge (v; w)piked by the veri�er may be an unsatis�ed edge of the labelover instane whih happens with probability �. In thisase, the onsisteny test fails. (2) In a orret proof A isa long ode of some a 2 M . The odeword test fails when�(a) = �1 whih happens with probability �.The laim about the ompleteness follows. Note that bythe Unique Games Conjeture, � an be assumed to be ar-bitrarily small.
3.2 Soundness AnalysisWe use the following (deep) theorem of Bourgain [6℄.Theorem 4. Let A be any boolean funtion (for instanea supposed long ode) and k > 0 an integer. Then for every12 < t < 1, there exists a onstant t > 0 suh thatIf X� : j�j>k bA2� < tk�t then X� : j bA�j� 110 4�k2 bA2� < 1100

The probability of aeptane of the veri�er is learlyPr[A℄ = 12Ev;f;� �1 +A(f)A(f�)2 +Ew �1 +A(f)B(f Æ �)2 ��Using the Fourier expansion A =P� bA��� we getEf;�[A(f)A(f�)℄ = Ef;�[ X�1;�2 bA�1 bA�2��1(f)��2 (f)��2 (�)℄Note that �1; �2 are subsets of M . We have��1(f)��2 (f) = Yx2�1 f(x) Yx2�2 f(x) = Yx2���2 f(x)where �1��2 is the symmetri di�erene between the sets�1 and �2. The expetation over f is non-zero only if�1��2 = ;, i.e. �1 = �2 = �. Also E�[��(�)℄ = (1� 2�)j�j.Hene Ef;�[A(f)A(f�)℄ =X� bA2�(1� 2�)j�jUsing the Fourier expansion B =P� bB���, we haveEf;�[A(f)B(f Æ �)℄ = Ef;�[X�;� bA� bB���(f)��(f Æ �)��(�)℄(1)We have��(f Æ �) = Yx2� f(�(x)) = Yy2�(�)f(y) = ��(�)(f)Substituting this in (1) and taking expetation over f wesee that the expetation is non-zero only if � = �(�). Sine� is a bijetion, � = ��1(�). Thus (1) an be written asEf;�[A(f)B(f Æ �)℄ =X� bA� bB��1(�)(1� 2�)j�jHene the probability of aeptane isPr[A℄ = 12 + 14Ev "X� bA2�(1� 2�)j�j +X� bA�Ew h bB��1(�)i#= 12 + 14Ev[Rv + Tv℄If this probability is � 1� 18 t�t where t is as in Theorem4, we have Ev[Rv + Tv℄ � 2� 12 t�t. This implies that overthe hoie of v, with probability at least 12 , Rv+Tv � 2�t�t.Fix any suh \good" v. We have Rv � 1 � t�t and Tv �1� t�t > 12 .1� t�t � Rv � X� : j�j � ��1 bA2� + e�2 X� : j�j > ��1 bA2�=) X� : j�j > ��1 bA2� < t�t (2)Taking k = ��1 in Theorem 4, we getX� : j bA�j � 110 4�k2 bA2� < 1100 (3)Now we use the fat that Tv > 12 . Call � \good" if � �Mis nonempty, j�j � ��1 and j bA�j � 1104�k2 . We will showthat the ontribution of bad �'s to Tv is small. First of all,



sine the tables are folded, bA� = 0 when j�j is even (see[15℄). In partiular bA� = 0 when � is empty. Also������ X� : j�j>��1 bA�Ew[ bB��1(�)℄������ �s X� : j�j>��1 bA2� sX� ���Ew[ bB��1(�)℄���2 �s X� : j�j>��1 bA2� <pt�twhere we used (2). Similarly we use (3), and show that theontribution of �'s suh that j bA�j � 1104�k2 to Tv is at most110 . This implies that Tv when restrited to good �'s, stillremains at least 14 . We haveEw "X� bA2� bB2��1(�) 1j�j# � � Ew 24 X� good bA2� bB2��1(�)35(4)� � 11004�2k2Ew hP� good bB2��1(�)i� � 11004�2k2Ew � ��� P� good bA� bB��1(�)���2 �� � 11004�2k2 ���Ew hP� good bA� bB��1(�)i ���2� � 11004�2k2 116The expression on the seond-last line is just Tv restritedto good �'s whih we showed to be at least 14 . Note that weare assuming that v is good itself, whih holds with proba-bility 12 .Now we de�ne a labeling for the Label Cover instane asfollows : For a good vertex v 2 V , pik � with probabilitybA2�, pik a random element of � and de�ne it to be the labelof v. For any vertex w 2 W , pik � with probability bB2� ,pik a random element of � and de�ne it to be the label ofw.It is easy to see that the weight of the edges satis�ed bythis labeling equals the expression (4). Label of v will bede�ned to be a random element x 2 � and the label of wwill be de�ned to be a random element y 2 ��1(�). Withprobability 1j�j it holds that �(y) = x and the edge (v; w) inthe Label Cover instane is satis�ed.Sine the expression (4) is at least 
(�4�2k2), we get a la-belling that satis�es edges of total weight 
(�4�2k2 ). How-ever this ontradits the fat that OPT (L) � Æ if Æ was ho-sen suÆiently small (see the Unique Games Conjeture).This shows that the soundness is at most 1 � 18 t�t wheret > 12 is arbitrary, proving Theorem 3.Remark : A simple gadget (x� y = 0 7! x _ y; x _ y)redues 2-Linear-Equations to 2-SAT and implies a (1 ��; 1� �t) gap for 2-SAT for any t > 12 .
4. HARDNESS OF THE PREDICATE NOT-

ALL-EQUAL(A,B,C), A,B,C 2 GF (3)In this setion we will show hardness of the prediateNot-all-equal(a,b,) over GF (3). This prediate is TRUEi� a; b;  do not all have the same value. We will prove that

Theorem 5. If the Unique Games Conjeture is true,then the following holds : for a onstraint satisfation prob-lem with all onstraints of the form Not-all-equal(a; b; ) andthe variables from a ternary alphabet, it is NP-hard to deter-mine whether there exists an assignment that satis�es 1��fration of the onstraints or no assignment satis�es morethan 89 + � fration of the onstraints, where � > 0 is anarbitrarily small onsatnt.We will onstrut a PCP that reads 3 symbols from aproof over ternary alphabet, aepts i� the 3 symbols arenot all equal, has ompleteness 1� � and soundness 89 + �.We use Long Code over GF (3) on the set of labels M .Suh a ode is indexed by all funtions f : M ! f1; !; !2gwhere ! is the ube root of unity. The Long Code A ofa 2M is de�ned as A(f) = f(a). The Fourier expansion inthis setting isA(f) =X� bA���(f) where ��(f) = Yx2M f(x)�(x)and � ranges over all funtions � :M ! GF (3). The FourieroeÆient bA� is given bybA� = 13jMj Xf :M!f1;!;!2gA(f)��(f)Remark : In a orret Long ode A, we will have A(!f) =!A(f) and we may want to fore this ondition on every(supposed) Long ode in the proof. This is alled \folding"in the PCP literature. However the spei� nature of theprediate Not-all-equal(a; b; ) forbids us from doing so andthis makes the analysis more diÆult. See [13℄ for a detaileddisussion on this issue.The veri�er is given a unique Label Cover instane L guar-anteed by the Unique Games Conjeture. It expets as aproof the Long odes of the labels of all the verties in L.The veri�er works as follows :1. Pik a vertex v 2 V with probability pv.2. Pik 3 verties w1; w2; w3, eah of them independentlyfrom the distribution 	v. Let A;B;C be the (sup-posed) long odes of the (supposed) labels of the ver-ties w1; w2; w3 respetively. Let � = �vw1 , �0 = �vw2 ,�00 = �vw3 be the respetive projetions.3. Pik two random funtions f; g : M ! f1; !; !2g.4. Pik a funtion � : M ! f!; !2g by de�ning for eahx 2 M , �(x) = ! with probability 12 and �(x) = !2with probability 12 .5. Aept i�Not-all-equal(A(fÆ�); B(gÆ�0); C(((fg)Æ�00)��))The ompleteness is 1�3� where 1�� is the ompletenessof the outer label over instane. The veri�er piks 3 edgesand eah of them an be an unsatis�ed edge of the LabelCover instane with probability �. If all the 3 edges aresatis�ed, A;B;C are the long odes of some a; b;  2 Mrespetively and �(a) = �0(b) = �00() = d for some d 2M .ThusA(fÆ�) = f(�(a)) = f(d); B(gÆ�0) = g(�0(b)) = g(d) and



C((fg) Æ �00 � �) = (fg)(�00()) � �() = f(d)g(d)�()and not all three an be equal sine �() takes values only inthe set f!; !2g.
4.1 Soundness AnalysisThe following lemma is easily proven.Lemma 1. Let x; y; z 2 f1; !; !2g. Then the expression1� 19 Xr1;r2;r32GF (3)r1+r2+r3=0 xr1yr2zr3equals 0 if x = y = z and 1 otherwise.From this lemma it is lear that the expression1� 19 Xr1;r2;r32GF (3)r1+r2+r3=0 A(f Æ �)r1B(g Æ �0)r2C((fg) Æ �00 � �)r3equals 1 if the test aepts and 0 otherwise. Hene the aep-tane probability of the veri�er is equal to the expetationof this expression over the hoie of (v; w1; w2; w3; f; g; �).Let us onsider this expetation for a �xed v. We dividethe terms in the summation into 3 ases and onsider theexpetation of eah term separately : (a) r1 = r2 = r3 = 0(b) (r1; r2; r3) take values (0; 1;�1) in some order () r1 =r2 = r3 = 1 (d) r1 = r2 = r3 = �1.The ase (a) is trivial, the expetation being 1 in this ase.In ase (b), lets say (r1; r2; r3) = (1;�1; 0), the other asesbeing similar. The expetation isEw1;w2;f;g[A(f Æ �)B(g Æ �0)℄Sine �; �0 are bijetions, f Æ � and g Æ �0 are distributedidentially as f and g respetively. Hene the expetation isEw1;w2;f;g [A(f)B(g)℄ = Ew1;f [A(f)℄ �Ew2;g[B(g)℄For a �xed v, let � = Ew;f [A(f)℄ = Ew[ bA0℄. Sine w1; w2are identially distributed, the above expetation is same asEw;f [A(f)℄ �Ew;f [A(f)℄ = jEw;f [A(f)℄j2 = j�j2Now onsider ase (). The expetation isE[A(f Æ �)B(g Æ �0)C((fg) Æ �00 � �)℄Substituting Fourier expansions of A;B;C, we getEh X�;�; bA� bB� bC � ��(f Æ �) ��(g Æ �0) �((fg) Æ �00 � �) iNote that��(fÆ�) = Yx2M f(�(x))�(x) = Yy2M f(y)�(��1(y)) = ��(�)(f)where we de�ne, by an abuse of notation, �(�) to be thefuntion � Æ ��1. The previous expression redues toEh X�;�; bA� bB� bC � ��(�)��00()(f) ��0(�)��00()(g)�(�)iTaking expetation over f; g, we see that the terms in thissummation are zero unless �(�) = �0(�) = �00(). Also itis easy to hek that E�[��()(�)℄ = (�12 )jj where for afuntion  : M ! GF (3) we de�ne jj to be the number ofx 2M suh that (x) 6= 0. Thus the expetation redues toEw1;w2;w3h X�(�)=�0(�)=�00() bA� bB� bC(�12)jji (5)

We will show that if the terms with  6= 0 are not small,one an extrat labels for the Label Cover instane L givinga \good" value of OPT (L). Lets assumeÆ � ������ Ev;w1;w2;w3h X�(�)=�0(�)=�00()6=0 bA� bB� bC(�12)jji ������Applying Cauhy-Shwartz, this expression an be boundedbyEv;w1;w2;w3hsX� j bA�j2s X�0(�)=�00()6=0 j bB� j2j bC j2(14 )jjiimplying thatÆ2 � Ev;w2;w3h X�0(�)=�00()6=0 j bB� j2j bC j2 1jjiNow we an de�ne labels as follows. For a vertex w3 2 W ,pik  with probability j bC j2, pik a random y 2 M with(y) 6= 0 and de�ne it to be the label of w3. For a vertexv 2 V , pik a random w2 2 	v, pik � with probabilityj bB� j2, pik a random x 2M with �(x) 6= 0 and de�ne �0(x)to be the label of v. It is easy to see that this gives a labellingwith OPT (L) � Æ2.Hene we an hoose L suh that OPT (L) is suÆientlysmall and ensure that the terms with  6= 0 in (5) are arbi-trarily small. The term with  = 0 ontributesEw1;w2;w3 [ bA0 bB0 bC0℄ = (Ew[ bA0℄)3 = �3The ase (d) is just the omplex onjugate of ase () andit ontributes �3 and terms whih an be assumed to be arbi-trarily small. Thus we an write the aeptane probabilityas Pr[A℄ = 1� 19 � 69Ev[j�j2℄� 19Ev[�3 + �3℄+ (Terms with arbitrarily small magnitude )Sine j�j � 1, this probability is maximized when � = 0(the reader familiar with this area will reognize that thismeans the proof better ontain folded tables. If tables arenot folded, it an only derease the aeptane probability).Hene aeptane probability an be bounded by 89 + � forarbitrarily small � > 0.
4.2 Hardness of 3-uniform Hypergraph Semi-

coloringWe show that the Unique Games Conjeture implies thatit is NP-hard to semi-olor a 3-uniform hypergraph withonstantly many olors when the hypergraph is given to besemi-olorable with 3 olors. This is proved by ombiningthe tehniques in the previous setion with the idea of ov-ering omplexity of PCPs introdued by Guruswami et al[13℄. We skip the proof.
5. PROOF OF THEOREM 1In this setion we prove Theorem 1. Instead of unique 2-prover games, we work in a more general setting of onstraintsatisfation problems with uniqueness property.Problem : We are given a set X of n variables whihtake values from the set [k℄ = f1; 2; : : : ; kg. For every pair



(u; v) of variables, there is a \onstraint" whih is a bije-tion �uv : [k℄ ! [k℄. This onstraint has a weight wuv withP(u;v) wuv = 1.For an assignment A : X ! [k℄ to the variables, a on-straint on the pair (u; v) is satis�ed, if �uv(A(u)) = A(v).The goal is to �nd an assignment that maximizes the totalweight of satis�ed onstraints.Algorithm : We use a semide�nite program from Feige andLovasz's paper [10℄ and augment it with a suitable roundingproedure. Let us �rst formulate the problem as a quadratiinteger program. For every variable u 2 X, let u1; u2; : : : ; ukbe auxiliary variables taking 0-1 values. Plae the followingonstraints :u21 + u22 + : : : u2k = 1 8 u 2 X (6)uiuj = 0 8 u 2 X and 8 i 6= j (7)We intend that if an assignment assigns the value i0 2 [k℄ toa variable u, then ui0 = 1 and ui = 0 8i 6= i0. This wouldsatisfy the onstraints (6), (7). These onstraints imply thatfor every pair (u; v) of variablesuivj � 0 8 i; j (8)X1�i;j�k uivj = 1 (9)It is easy to see that the goal is to maximize the followingfuntion subjeted to the above onstraints.X(u;v) wuv(u1v�(1) + u2v�(2) + : : : ukv�(k)) where � = �uv (10)Now we onsider the semide�nite programming relaxationof the problem. We allow the variables (u1; : : : ; uk) to bevetors in a high dimensional spae (in kn-dimensional spaeto be preise) and the onstraints (6)-(9) replaed by theonstraints :~u1 � ~u1 + ~u2 � ~u2 + : : :+ ~uk � ~uk = 1 8 u 2 X (11)~ui � ~uj = 0 8 u 2 X 8 i 6= j (12)~ui � ~vj � 0 8 u; v 2 X 8 i; j (13)X1�i;j�k ~ui � ~vj = 1 8 u; v 2 X (14)The goal is to maximize the following funtion subjeted tothe above onstraints :X(u;v)wuv(~u1 � ~v�(1) + : : :+ ~uk � ~v�(k)) where � = �uv (15)Observation : In any feasible solution of the SDP, for anytwo variables u; v, we have from the onstraints (11), (12)and (14),k kXi=1 ~uik = k kXj=1 ~vjk = 1 and ( kXi=1 ~ui)�( kXj=1 ~vj) = 1This implies that Pki=1 ~ui = Pkj=1 ~vj . We denote ~s =Pki=1 ~ui whih is the same for all variables u and k~sk = 1.We solve the semide�nite program and onstrut an as-signment using the following rounding proedure.� Choose a vetor ~r from the normal distribution, i.e.hoose every oordinate of ~r from the distributionN(0; 1)independently.

� By replaing ~r by �~r if needed, assume that ~r � ~s � 0.� Construt the following assignment A : for every vari-able u, letA(u) = i0 where ~r � ~ui0 = max1�i�k(~r � ~ui)We prove the following theorem in Appendix A whih issuÆient to prove Theorem 1.Theorem 6. If there exists an assignment that satis�esonstraints with total weight 1� �, then the above algorithmprodues an assignment that satis�es onstraints with ex-peted weight 1�O(k2�1=5qlog( 1� )).
6. CONCLUSIONIt seems quite diÆult to prove (or disprove) the UniqueGames Conjeture.Proving the onjeture is equivalent to onstruting a PCPthat reads 2 symbols and aepts i� these symbols satisfy abijetive onstraint. However the urrent tools appear quiteweak for onstruting PCPs that read 2 symbols. Paral-lel repetition of a unique game is a unique game and onemight hope to amplify the soundness by parallel repetition.However we do not have a hard instane of a unique gameto begin with. Theorem 1 shows that if the Unique GamesConjeture is true, the domain size k(�; Æ) � 1�1=10 , thus thedomain size would play a very ruial role.On the other hand, disproving the onjeture may requirean algorithm that gives a theorem similar to Theorem 1 andwhose performane is independent of the domain size k.A less ambitious goal (than proving the Unique GamesConjeture) would be to show that the value of a unique2-prover game with domain size k is hard to approximatewithin fator f(k) where f(k) ! 1 as k ! 1. The onlyknown results are onstant fator hardness for 2-Linear-Equations mod 2 by H�astad [15℄ and for 2-Linear-Equationsmod p by Andersson et al [2℄.
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APPENDIX

A. PROOF OF THEOREM 6Let �uv =P1�i�k ~ui � ~v�(i); � = �uv whih is the part ofthe SDP objetive funtion (15) orresponding to the on-straint on (u; v). By the hypothesis, the SDP has a solutionwith value at least 1 � � implying that there exist vetors(~ui)u2X;i2[k℄ satisfyingX(u;v)wuv�uv � 1� �=) X�uv�1� 12 �4=5 wuv � 1� 2�1=5Fix any (u; v) with �uv � 1� 12 �4=5. We will show that withprobability 1 � O(k2�1=5qlog( 1� )), �uv(A(u)) = A(v). Let� = �uv for simpliity. The intuition behind the proof issimple : if �uv = 1, the SDP onstraints (11-14) imply that~ui = ~v�(i) 8 i 2 [k℄ (this an be seen by substituting � = 0in Lemma 2). Thus for any vetor ~r, if ~r � ~ui is maximizedfor index i0, then ~r � ~vj is maximized at index �(i0). Henethe rounding proedure will assign, A(u) = i0; and A(v) =�(i0) satisfying the onstraint.We however have �uv � 1� 12 �4=5 and it takes some e�ortto translate the intuition into a rigorous proof. We proeedto prove several simple lemmas.Lemma 2. k~ui � ~v�(i)k � �2=5 8 i 2 [k℄.Proof.1� 12 �4=5 �Xi ~ui � ~v�(i) �Xi k~uikk~v�(i)k�Xi k~uik2 + k~v�(i)k22 = 1=) k~uik2 + k~v�(i)k22 � ~ui � ~v�(i) � 12 �4=5 8 i=) k~ui � ~v�(i)k2 � �4=5 8 iLemma 3. If Y is distributed as N(0; 1),Pr [jY j > ℄ � e�22Proof. Standard inequality.Lemma 4. With probability 1� O(k2�1=5qlog( 1� )), om-ponents of ~r along the diretions of vetorsf~uigi2[k℄; f~ui � ~ujgi6=j ; f~ui � ~v�(i)gi2[k℄have magnitude in the rangeh �1=5rlog(1� ); rlog(1� ) i



Proof. This follows from the fat that ~r is distributedin a spherially symmetri manner and hene its omponentalong any diretion is distributed as N(0; 1). Hene for anyunit vetor ~t,Pr " j~r � ~tj < �1=5rlog(1� ) # < 2�1=5rlog(1� )Pr " j~r � ~tj >rlog(1� ) # < p�where the �rst inequality is trivial and the seond followsfrom Lemma 3. Now we take a union bound along the O(k2)diretions spei�ed in the statement of this lemma.Lemma 5. With probability 1�10k�1=5qlog( 1� ), the om-ponent of ~r along ~s, that is j~r �~sj, is at least 5k�1=5qlog( 1� ).Proof. Trivial.Thus exept with probability 1�O(k2�1=5qlog( 1� )), we anassume that ~r satis�es hypothesis of Lemma 4 and Lemma5. Under this assumption, we prove the following 3 lemmas.Let i0 2 [k℄ be suh that ~r � ~ui0 = max1�i�k ~r � ~ui.Lemma 6. k~ui0k � 5�1=5.Proof. (Pki=1 ~ui) � ~r = ~s � ~r � 5k�1=5qlog( 1� ) by Lemma5 and i0 is the index that maximizes ~r � ~ui. Hene ~r � ~ui0 �5�1=5qlog( 1� ). But by Lemma 4, the omponent of ~r along~ui0 has magnitude at most qlog( 1� ). This implies thatk~ui0k � 5�1=5.Lemma 7. 8 j 6= i0; ~r � ~uj � ~r � ~ui0 � 5�2=5qlog( 1� )Proof.~r � ~ui0 � ~r � ~uj = j~r � ~ui0 � ~r � ~uj j= j~r � (~ui0 � ~uj)j� k~ui0 � ~ujk �1=5qlog( 1� ) by Lemma 4� k~ui0k �1=5qlog( 1� ) Sine ~ui0 ? ~uj� 5�2=5qlog( 1� ) by Lemma 6Lemma 8. 8 i; j~r � ~ui � ~r � ~v�(i)j � �2=5qlog( 1� )Proof.j~r � ~ui � ~r � ~v�(i)j = j~r � (~ui � ~v�(i))j� qlog( 1� ) k~ui � ~v�(i)k by Lemma 4� qlog( 1� )�2=5 by Lemma 2

Now we will show that~r � ~v�(i0) = max1�j�k(~r � ~vj) (16)This would imply that the assignment A given by the round-ing proedure assigns A(u) = i0; A(v) = �(i0) and the on-straint on the pair (u; v) is satis�ed.Let j 6= i0 be any index. By Lemma 8 and Lemma 7,~r � ~v�(j) � ~r � ~uj + �2=5rlog(1� ) � ~r � ~ui0 � 4�2=5rlog(1� )Also by Lemma (8) we have~r � ~v�(i0) � ~r � ~ui0 � �2=5rlog(1� )It follows that ~r � ~v�(i0) > ~r � ~v�(j) 8 j 6= i0�nishing the proof of (16) and Theorem 6.


