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ABSTRACT

A 2-prover game is called unique if the answer of one prover
uniquely determines the answer of the second prover and
vice versa (we implicitly assume games to be one round
games). The value of a 2-prover game is the maximum ac-
ceptance probability of the verifier over all the prover strate-
gies. We make the following conjecture regarding the power
of unique 2-prover games, which we call the Unique Games
Conjecture :

The Unique Games Conjecture : For arbitrarily small
constants ¢, d > 0, there exists a constant k = k({,d) such
that it is NP-hard to determine whether a unique 2-prover
game with answers from a domain of size k has value at least
1 — ¢ or at most §.

We show that a positive resolution of this conjecture would
imply the following hardness results :

1. For any % < t < 1, for all sufficiently small con-
stants e > 0, it is NP-hard to distinguish between
the instances of the problem 2-Linear-Equations mod
2 where either there exists an assignment that satisfies
1— e fraction of equations or no assignment can satisfy
more than 1 — €' fraction of equations. As a corol-
lary of the above result, it is NP-hard to approximate
the Min-2CNF-deletion problem within any constant
factor.

2. For the constraint satisfaction problem where every
constraint is the predicate Not-all-equal(a, b, ¢), a,b,c €
GF(3) , it is NP-hard to distinguish between the in-
stances where either there exists an assignment that
satisfies 1 — e fraction of the constraints or no assign-
ment satisfies more than % + € fraction of the con-
straints for an arbitrarily small constant ¢ > 0. We
also get a hardness result for a slight variation of ap-
proximate coloring of 3-uniform hypergraphs.

*This work was partly supported by Sanjeev Arora’s David
and Lucile Packard Fellowship and NSF Grant CCR-
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We also show that a variation of the Unique Games Con-
jecture implies that for arbitrarily small constant 6 > 0 it is
hard to find an independent set of size dn in a graph that is
guaranteed to have an independent set of size Q(n).

The main idea in all the above results is to use the 2-prover
game given by the Unique Games Conjecture as an “outer
verifier” and build new probabilistically checkable proof sys-
tems (PCPs) on top of it. The uniqueness property plays a
crucial role in the analysis of these PCPs.

In light of such interesting consequences, we think it is an
important open problem to prove (or disprove) the Unique
Games Conjecture. We also present a semi-definite pro-
gramming based algorithm for finding reasonable prover strate-
gies for a unique 2-prover game. Given a unique 2-prover
game with value 1 — ( and answers from a domain of size k,
this algorithm finds prover strategies that make the verifier

accept with probability 1 — O(k*¢'/® log(%)). This result

shows that the domain size k = k((,d) must be sufficiently
large if the Unique Games Conjecture is true.

1. INTRODUCTION

The discovery of the PCP Theorem ([4], [3]) and subse-
quent quantitative improvements in PCP constructions have
led to (in many cases optimal) hardness of approximation re-
sults for various optimization problems. For example Max-
Clique [14], Max-3-SAT [15] and Set Cover [9] to name a
few.

However the PCP techniques haven’t been successful in
obtaining “good” hardness results for some problems like
Vertex Cover (see [7] for an exciting new result), Min-2CNF-
deletion and coloring of graphs and 3-uniform hypergraphs
with a small chromatic number. In this paper we try to
identify some promising new directions for attacking these
problems.

All PCP constructions today (with the possible exception
of [7]) follow the basic paradigm of composing a so called
“outer verifier” with an “inner verifier” (proof composition
was first introduced by Arora and Safra [4], but the kind of
composition we are referring to was first used by Bellare et
al [5]). The focus of most of the recent research has been
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Hastad ([14], [15]). However the outer verifier has remained
untouched. All PCP constructions use the same outer ver-
ifier, namely the one obtained by parallel repetition of a



2-prover protocol for Gap-3SAT. The soundness property
required of the outer verifier is given by the Raz’s Parallel
Repetition Theorem [20] and we henceforth call this verifier
the Raz Verifier.

In this paper, we point out that one promising route for
getting good hardness results for problems for which PCP
techniques have failed so far, is to construct an outer verifier
with “better properties”. The Raz Verifier is basically a 2-
prover game with the following crucial properties :

1. For arbitrarily small § > 0, it is NP-hard to determine
whether the value of the game is 1 or at most 6.

2. The answers of the provers are from a domain of size
k where k is a constant depending on d.

3. The answer of the second prover uniquely determines
the answer of the first prover.

One might expect the property (3) to be even stronger,
i.e. the answer of the second prover uniquely determines
the answer of the first prover and vice versa. In fact such
games have been considered in literature before ([10], [8])
and they are called “unique games”. However, to the best of
our knowledge, the question whether unique 2-prover games
(with (1 — €, 0) gap in their value) are powerful enough to
capture NP hasn’t been considered before. This question is
precisely the focus of this paper and we make the following
(rather bold) conjecture :

The Unique Games Conjecture : For arbitrarily small
constants ¢, & > 0, there exists a constant k = k((, ) such
that it is NP-hard to determine whether a unique 2-prover
game with answers from a domain of size k has value at least
1 — ¢ or at most J.

An important point here is that one can trivially deter-
mine whether a unique 2-prover game has value 1. Therefore
the gap in the above conjecture is (1 — ¢,d) as opposed to
the gap (1,6) in the Raz Verifier. In other words, NP-hard
unique games must lose perfect completeness.

We show that a positive resolution of this conjecture would
have many interesting consequences. We use the 2-prover
game given by the Unique Games Conjecture as an outer
PCP verifier and build appropriate inner verifiers to prove
the following results :

1. For every % < t < 1, for all sufficiently small € > 0, it is
NP-hard to distinguish between instances of 2-Linear-
Equations mod 2, where either there exists an assign-
ment satisfying at least 1 — e fraction of equations
or no assignment satisfies more than 1 — ¢’ fraction of
equations.

This result is essentially due to Hastad [16]. He pro-
posed a so called “codeword test” for testing Long
Codes and analyzed it using Bourgain’s theorem [6]
on Fourier spectrum of boolean functions. However he
wasn’t able to give a “consistency test” which would
work for the Raz Verifier. The (minor) contribution of
this paper is to show that if one uses the outer verifier
given by the Unique Games Conjecture, it is indeed
possible to construct and analyze a consistency test
implying the above hardness result.

This hardness result is tight since the algorithm of
Goemans and Williamson [12] for 2-Linear-Equations

mod 2, on an instance with optimum 1 — e produces
a solution with value 1 — O(\/€).

2. A simple reduction from 2-Linear-Equations to 2-SAT
gives a similar result, i.e. a (1—¢,1—¢") gap for 2-SAT
for any % <t < 1. As a corollary, it is NP-hard to ap-
proximate Min-2SAT-deletion (also called Min-2CNF-
deletion) within any constant factor. On the algorith-
mic side, Zwick’s algorithm [23], on a 2-SAT instance
with optimum 1—e produces an assignment with value
1 — O(e'/?). Klein et al [19] give O(log nloglog n) ap-
proximation for Min-2CNF-deletion.

3. Guruswami et al [13] (also see [18]) show that the con-

straint satisfaction problem associated with the pred-
icate Not-all-equal(a, b, ¢, d) where a,b,c,d are binary
variables, is hard to approximate better than a random
assignment. They use this fact to derive hardness re-
sults for 4-uniform hypergraph coloring. However their
techniques do not work for 3-uniform hypergraphs and
one of the reasons is that for the predicate Not-all-
equal(a, b, ¢) over binary variables, there does exist an
algorithm that does better than a random assignment
[22].
However we show that the Unique Games Conjecture
implies that the predicate Not-all-equal(a,b,c) over
ternary variables is hard to approximate better than
a random assignment. We also derive hardness re-
sult for a variation of 3-uniform hypergraph coloring
which we call “semi-coloring”. In this problem we
are given a 3-uniform hypergraph and the goal is to
color the vertices so that 1 — n fraction of the edges
are non-monochromatic (as opposed to all edges non-
chromatic) where 7 is a given parameter. (the need for
considering this version of coloring is due to the inher-
ent loss of perfect completeness in the Unique Games
Conjecture). We show that it is NP-hard to semi-
color a 3-semi-colorable 3-uniform hypergraph with
constantly many colors.

4. Frieze and Jerrum [11] give an algorithm for Max-k-
cut that achieves a factor roughly 1 — % + 20k There

k2
is an almost-matching hardness result by Kann et al
[17] who show a hardness factor of 1 — 53 for this

problem. However in their reduction the value of the
maximum k-cut in the completeness case is 1 — Q(3)
which is bounded away from 1. It is an interesting open
problem whether a similar hardness result holds with
perfect completeness or near-perfect completeness.

We show that for any ¢ > %, for all sufficiently large

constants k, it is NP-hard to distinguish between the

instances of Max-k-cut where the optimum value of a

k-cut is either 1 — ( or at most 1 — m where
¢ > 0 is an arbitrarily small constant.

We also consider the following relaxation of the uniqueness
property. We say that a 2-prover game has “d-to-1 property”
if the answer of the second prover uniquely determines the
answer of the first prover and for every answer of the first
prover, there are at most d answers for the second prover for
which the verifier would accept. We assume d to be a fixed
integer and d > 2. Consider the following conjecture :

d-to-1 Conjecture : For arbitrarily small constant § > 0,
there exists a constant k¥ = k(d) such that it is NP-hard



to determine whether a 2-prover game with d-to-1 property
and answers from a domain of size at most k has value 1 or
at most 4.

Note that in contrast with the Unique Games Conjecture,
we can hope for perfect completeness in the d-to-1 Conjec-
ture (since d > 2). We use some of the techniques from
Dinur and Safra’s paper [7] to show that the d-to-1 Conjec-
ture implies the following results :

1. For arbitrarily small ¢, 4 > 0, it is hard to find an
independent set of size dn in a graph which is guaran-
teed to have an independent set of size (1 — 21% —e)n.
(see [1] for an algorithmic result). Note that Dinur
and Safra’s result [7] does not imply such a result for
independent sets. Such a result is equivalent to the
existence of a PCP with zero free bits, completeness
Q(1) and arbitrarily low soundness, which is an open
problem.

2. From the above result it follows that if 2-to-1 Conjec-
ture is true, it would imply v/2 — e hardness for Vertex
Cover which is better than the factor 1.3606 by Dinur
and Safra. In fact, Dinur and Safra do use an analog
of 2-to-1 property. We do not elaborate on this due to
space limitations.

In light of such interesting consequences of the Unique
Games Conjecture, we think it is an important open problem
to prove or disprove it. In this paper, we also present a semi-
definite programming based algorithm giving the following
theorem :

THEOREM 1. There exists a (poly-time) algorithm such
that given a unique 2-prover game with value 1 — € and an-
swers from a domain of size k, it finds prover strategies that

k2el/? log(%)).

Andersson et al [2] proved a similar result for the problem
2-Linear-Equations mod p, where the constraints are lin-
ear equations mod p with every equation containing exactly
2 variables. Such constraints have the uniqueness property
since the value to one variable in the equation uniquely de-
termines the value to the second variable. Our algorithm is
simpler and more general than that of Andersson et al.
Theorem 1 shows that if at all the Unique Games Conjec-
ture is true, the domain size required k = k(¢,d) must be
at least 41% A trivial bound k > % also holds, since the

make the verifier accept with probability 1—O(

provers can choose their answers uniformly at random from
the domain of possible answers and satisfy the verifier with
probability at least %

Overview of the paper : Section 2 provides the pre-
liminary background. We prove the results for 2-Linear-
Equations mod 2 and Min-2CNF-deletion in Section 3. We
prove the hardness of predicate Not-all-equal(a,b,c) over
ternary variables in Section 4. We prove Theorem 1 in Sec-
tion 5 and appendix A. Proofs of all the other results are
omitted from this extended abstract since they are quite
lengthy and involved. Section 6 concludes with a few re-
marks as to why it would be difficult to either prove or
disprove the Unique Games Conjecture.

2. PRELIMINARIES

This section gives a preliminary background on PCPs; 2-
prover games, Long Codes and the basic paradigm of PCP
constructions.

2.1 Probabilistically Checkable Proofs

A language L is said to have a probabilistic checkable
proof system with parameters (r,q,c,s) if there exists a
probabilistic polynomial time verifier which on input z of
size n and a proof II,

e Uses r = r(n) random bits and queries ¢ = g(n) bits
from the proof II.

e Depending on the bits read from the proof it accepts
or rejects.

e It has the following two properties :

(Completeness) : If z € L, there exists a proof II which
the verifier accepts with probability > c.

(Soundness) : If ¢ ¢ L, the verifier accepts any proof
with probability at most s.

The parameters 1 > ¢ > s > 0 are called completeness
and soundness parameters respectively. We recall the PCP
Theorem ([4], [3]) that every language in NP has a PCP
system with ¢ = 1,5 = 1 and the verifier uses O(logn)
random bits and queries only a constant number of bits from

the proof.
2.2 2-Prover 1-Round Games

Cousider the following game between 2 provers and a ver-
ifier. There is a set V of all possible “questions” that the
verifier can ask the first prover and a set of questions W
that the verifier can ask the second prover.

A “strategy” of the first prover is a map Ly : V — N
where NV is a set of possible answers of the first prover. On
a question v € V| the prover returns an answer Ly (v) to the
verifier. Similarly the strategy of the second prover is a map
Lw : W — M where M is the set of his possible answers.

The “acceptance predicate” of the verifier is a map

I':VxNxWxM— {TRUE, FALSE}

The game works in the following way. The verifier picks a
pair of questions (v,w), v € V, w € W with a certain prob-
ability distribution on the set of all pairs. He asks question
v to the first prover and the question w to the second prover
who return answers Ly (v) and Lw (w) respectively. The
verifier accepts iff

I'(v, Ly (v),w, Lw (w)) = TRUE

The value of the game is defined as the maximum, over
all possible prover strategies, of the acceptance probability
of the verifier.

We will be interested in games where the answer of the
second prover uniquely determines the answer of the first
prover, i.e. for every question pair (v, w) asked by the verifier
and every answer b € M of the second prover, there is a
unique answer a € M such that the verifier accepts. In this
case, we can associate a function m,, : M — N for every
pair (v, w) so that the verifier accepts iff

o (Liw (w)) = Ly (v)



A game is called “unique” (see [10], [8]) if M = N and
every function m,, is a bijection, i.e. the answer of the
second prover uniquely determines the answer of the first
prover and vice versa.

Remarks : (1) We assume throughtout this paper that
the sets of answers M and NN are of constant size. (2) The
definition of the unique games differs slightly in ([10], [8]).
In their definition, for every answer of one prover, there is at
most one possible answer of the other prover and vice versa.

2.3 The Label Cover Problem

We define a problem called Label Cover which is equiv-
alent to 2-prover games with the property that the answer
of the second prover uniquely determines the answer of the
first prover. For the sake of convenience, we prefer to talk in
terms of the Label Cover problem instead of 2-prover games.

Definition 1. A Label Cover problem £ consists of a com-
plete bipartite graph G(V, W), with bipartition V,W. An
edge (v,w) has a weight p,.,, with >3  p,» = 1. Every
vertex in V is supposed to get a label from a set N and
every vertex in W is supposed to get a label from a set M.
With every edge (v, w) there is associated a “projection”
Tyw : M — N. For an assignment of labels to the vertices of
the graph, that is for functions Ly : V — N, Lw : W — M,
an edge (v, w) is said to be satisfied if myw (Lw (w)) = Lv (v).
The goal is to find an assignment of labels that maximizes
the total weight of the satisfied edges. We define OPT(L)
to be the maximum weight of edges satisfied by any label-
ing. A Label Cover problem is called “unique” if M = N
and every projection m,,., : M — M is a bijection (i.e. a
permutation).

Clearly, a Label Cover problem is same as a 2-prover game
where V, W are sets of questions the verifier can ask the
two provers and N, M are sets of answers by the provers
respectively.

The following theorem is a consequence of the PCP The-
orem ([4], [3]) and Raz’s Parallel Repetition Theorem [20].
It can be found in any of the papers ([5], [15], [13]).

THEOREM 2. For every constant 6 > 0, there exists a
constant k = k(8) such that it is NP-hard to determine
whether a Label Cover problem L with answers from sets
of size at most k (i.e. |M|,|N| < k) has OPT(L) =1 or
OPT(L) < 4.

Remark : It turns out that in the reduction given by
Theorem 2, we have |M| > |N| and the projections 7y, :
M — N are highly many-to-one (this many-to-one-ness in-
creases as 0 decreases). The PCP constructions in this paper
do not work for such projections. Our constructions need
a very stringent condition that the projections be bijections
or d-to-1 for some fixed d independent of 4.

It is clear that the Unique Label Cover problem corre-
sponds to a unique 2-prover game. Hence the Unique Games
Conjecture can be restated as :

Unique Games Conjecture : For arbitrarily small con-
stants ¢, & > 0, there exists a constant k = k((, d) such that
it is NP-hard to determine whether a unique Label Cover
instance with the label sets of size k (i.e. |M| = k) has
optimum at least 1 —{ or at most J.

2.4 Constructing PCPs, Long Codes and Fourier

Analysis

We briefly explain a basic paradigm for PCP constructions
(see [5], [14], [15], [21], [13]). The verifier can be conceptu-
ally divided into an “outer” part and an “inner” part.

The verifier reduces an arbitrary language in NP to a gap-
version of Label Cover instance £ as given by Theorem 2.
This is called the “outer” part of the verifier.

The verifier then expects the proof to contain “Long Codes”
of the labels of vertices in the instance £. The verifier picks
some edge(s) of the instance £ and performs some local
checks on the supposed long codes of the supposed labels
of the endpoints of these edge(s). This local checking is
called the “inner” part of the verifier.

For proving the soundness property of the verifier, one
shows that if the verifier accepts the encoded proof with
“good” probability, then the proof can be “decoded” to de-
fine labels for the Label Cover instance £ with a “good”
value of OPT(L). This gives a contradiction provided we
started with an instance £ with sufficiently small value of
OPT(L). Theorem 2 guarantees that OPT (L) can be made
arbitrarily small. The proof of the soundness of the verifier
relies on the Fourier analysis of the Long Codes.

We define the Long Codes in the following.

Definition 2. A binary Long Code on a set of labels M is
indexed by all functions f : M — {—1,1}. The long code A
of a label a € M is given by

A(f) = f(a)

A cheating proof might contain an arbitrary string/table
A instead of a correct Long Code. Such tables are handled
by their Fourier expansion (see [15] for a detailed exposition)

A=) Auwxa(f)  where xa(f) =[] (@)

aCM TEa

VM- {—1,1}

The Fourier coefficients Aq, satisfy the Parseval’s identity,
L AL =1

3. HARDNESS OF 2-LINEAR-EQUATIONS
MOD 2

In this section we present a proof of the following theorem.

THEOREM 3. The Unique Games Conjecture implies that
for every % < t < 1, for all sufficiently small constants
e > 0, it 2s NP-hard to distinguish between the instances
of 2-Linear-Equations mod 2, where the fraction of satisfied

equations is at least 1 — e or at most 1 — €',

This result is essentially due to Hastad [16]. He proposed
a test for checking a long code and analyzed it using Bour-
gain’s recent theorem [6] on Fourier spectrum of boolean
functions, which itself was inspired by a question raised by
Hastad.

The (minor) contribution of this paper is to introduce the
Unique Games Conjecture and to show that Hastad’s test
can be extended to test the consistency between two long
codes, giving a PCP verifier that makes a linear test on 2
query bits, has completeness 1 — € and soundness 1 — ¢’

Following the standard paradigm, the PCP verifier takes
the gap-version of the unique Label Cover problem £ guar-
anteed by the Unique Games Conjecture and expects the



proof to contain, for every vertex v € V, the long code of
the label Ly (v) and for every vertex w € W, the long code
of the label Lw (w). These long codes are assumed to be
folded, i.e. A(—f) = —A(f) (see [15]).

The verifier picks some edges and checks that the labels
along these edges satisfy the corresponding bijections. There
is a technical issue of how the edges are picked. Let p, =
> Pow. That is if an edge is picked with a probability equal
to its weight, p, is the probability that the left endpoint is
v. Let ¥, : W — [0, 1] be defined as ¥, (w) = 22=. That is
W, (w) is the conditional probability that the rlght endpoint
of an edge is w given that the left endpoint is v.

Action of the verifier :

1. Pick v € V with probability p,. Let A be the (sup-
posed) long code of the (supposed) label of v.

2. Pick a random function f: M — {—1,1} and a “per-
turbation function” p: M — {—1,1}. For each z €
M, u(z) = 1 with probability 1 — € and p(z) = —1
with probability e.

3. With probability % each, select one of the following
actions :

(a) (Codeword test) Accept iff A(f) = A(fu)

(b) (Consistency test) Pick a vertex w € W with the
distribution ¥,. Let B be the (supposed) long
code of the (supposed) label of w and m = myy, :
M — M be the bijection between v and w. Ac-
cept iff

A(f) = B(f o)

where f om denotes the composition of functions.

Remark : Hastad proposed and analyzed the codeword
test. We propose the consistency test and show that Hastad’s
analysis can be extended to check consistency provided the
Unique Games Conjecture is true.

3.1 Completeness

It is easy to see that the completeness of the test is 1 —
where the outer label cover instance has completeness 1 — (.
The test may fail due to 2 reasons : (1) The edge (v,w)
picked by the verifier may be an unsatisfied edge of the label
cover instance which happens with probability ¢. In this
case, the consistency test fails. (2) In a correct proof A is
a long code of some a € M. The codeword test fails when
u(a) = —1 which happens with probability e.

The claim about the completeness follows. Note that by
the Unique Games Conjecture, ( can be assumed to be ar-
bitrarily small.

Ste

3.2 Soundness Analysis
We use the following (deep) theorem of Bourgain [6].

THEOREM 4. Let A be any boolean function (for instance

a supposed long code) and k > 0 an integer. Then for every
% <t <1, there exists a constant ¢; > 0 such that
~ ~ 1
I AL <kt th AL < —
i Z Ct en Z 100
o la|>k o |Aq|<La—k2

=10

The probability of acceptance of the verifier is clearly

Pr{Acd] = 1 Buz {w 4 B [%H

Using the Fourier expansion A =3} Eaxa we get

Er u[AGHAG W] = Erul Y Aay Aoy Xar (F)Xas (F)Xao (10)]

1,02

Note that a1, as are subsets of M. We have

Xaq (f)Xan (f H f(z H f(x) =

rEa] TEQD

[ #@

rEalAas

where a1 Aas is the symmetric difference between the sets
a1 and az. The expectation over f is non-zero only if
arAas =0, ie a1 =as =a. Also E,[xa(p)] = (1-2¢)°

Hence
Z A2(1 = 2¢)

Using the Fourier expansion B = ZB ﬁgxg, we have

EpulA(HB(f o m)] = Eru[Y AaBoxa (f)xs(f o m)xs(w)]
a8
(1)

Er AN A(fw]

We have

xs(fom) =[] fx( I r»

z€eB yen(B)

= xx(8)(f)

Substituting this in (1) and taking expectation over f we
see that the expectation is non-zero only if @ = w(8). Since
m is a bijection, 8 = 7 *(a). Thus (1) can be written as

Epu[A(f)B(fom)] = AaB,-1(4(1—2¢)"

Hence the probability of acceptance is

1 ~
+ 7B Yy AL

1
+ ZE’U[R’U + Tv]

Pr[Acc] =

e)! +ZA E. [B, l(a]]

N = N =

If this probability is > 1 — 1ct et where ¢t 1s as in Theorem
4, we have Ey[R, +Ty] > 2 — —cte This implies that over
the choice of v, with probability at least 1 3> Bo+Ty > 2— ceet.
Fix any such “good” v. We have R, Z 1— et and T, >
1—ciet > %

1—cet <R, < Z

a:lal < et

/Ti +e? Z Xi

a:lal > et

= Z A2 < e (2)
a:lal > e !

Taking k = ¢ ! in Theorem 4, we get

. 1
> AL < 100 3)

= 2
o |Aa| < fak

Now we use the fact that T, > % Call a “good” if « C M

is nonempty, |a| < ' and |4, > %4*’“2. We will show
that the contribution of bad «’s to T, is small. First of all,



since the tables are folded, A, = 0 when |a| is even (see
[15]). In particular Ay, = 0 when « is empty. Also

Z A\aEw[Eﬂ.—l(Q)]

a : |al>et

[ S & \/Z ‘Ew[ﬁrl(a)]r
a:|a|>e? a
Z A\é < eet
o |al>e!

where we used (2). Similarly we use (3), and show that the
contribution of «’s such that |Ea\ < 1—1047'c2 to T, is at most
%. This implies that T, when restricted to good a’s, still
remains at least %. We have

IN

IN

E., [Zggégl(a)ﬁ] > ¢ B, { 3 Agégl(a)}

a good
(4)
1 4—2k2 op)

Z € m4 Ew [Za gOOd B‘rrfl(a)]

1 ,—2k2 T D 2
> € g0t Ew { ‘ 2 good AaBr-1(a) }

1 4—2k? T D 2
> €5t ‘Ew [Za good AaBﬂfl(a)]
> e Lg%t L

100 16

The expression on the second-last line is just 7, restricted
to good a’s which we showed to be at least %. Note that we
are assuming that v is good itself, which holds with proba-
bility 3.

Now we define a labeling for the Label Cover instance as
follows : For a good vertex v € V, pick a with probability
gi, pick a random element of o and define it to be the label
of v. For any vertex w € W, pick 8 with probability ﬁé,
pick a random element of 8 and define it to be the label of
w.
It is easy to see that the weight of the edges satisfied by
this labeling equals the expression (4). Label of v will be
defined to be a random element € a and the label of w
will be defined to be a random element y € 7~ '(a). With
probability ﬁ it holds that m(y) = z and the edge (v, w) in
the Label Cover instance is satisfied.

Since the expression (4) is at least 9(6472162), we get a la-
belling that satisfies edges of total weight Q(e472k2). How-
ever this contradicts the fact that OPT(L£) < § if § was cho-
sen sufficiently small (see the Unique Games Conjecture).
This shows that the soundness is at most 1 — %ctet where
t> % is arbitrary, proving Theorem 3.

Remark : A simple gadget (t®y=0—ZTVy, zVT)
reduces 2-Linear-Equations to 2-SAT and implies a (1 —
e,1 —¢') gap for 2-SAT for any ¢ > 5.

4., HARDNESS OF THE PREDICATE NOT-
ALL-EQUAL(A,B,C), A,B,C eGF(3)

In this section we will show hardness of the predicate

Not-all-equal(a,b,c) over GF(3). This predicate is TRUE

iff a,b,c do not all have the same value. We will prove that

THEOREM 5. If the Unique Games Conjecture is true,
then the following holds : for a constraint satisfaction prob-
lem with all constraints of the form Not-all-equal(a, b, c) and
the variables from a ternary alphabet, it is NP-hard to deter-
mine whether there exists an assignment that satisfies 1 —e
fraction of the constraints or no assignment satisfies more
than & + € fraction of the constraints, where ¢ > 0 is an

9
arbitrarily small consatnt.

We will construct a PCP that reads 3 symbols from a
proof over ternary alphabet, accepts iff the 3 symbols are
not all equal, has completeness 1 —e and soundness % + €.

We use Long Code over GF(3) on the set of labels M.
Such a code is indexed by all functions f : M — {1,w,w?}
where w is the cube root of unity. The Long Code A of
a € M is defined as A(f) = f(a). The Fourier expansion in
this setting is

Af) =" Aaxalf)  where xa(f) = [] f(x)*™

reEM

and «a ranges over all functions @ : M — GF(3). The Fourier
coefficient A, is given by

~ 1
AQZW Z

fM—{l,w,w?}

A(f)xa(f)

Remark : In a correct Long code A, we will have A(wf) =
wA(f) and we may want to force this condition on every
(supposed) Long code in the proof. This is called “folding”
in the PCP literature. However the specific nature of the
predicate Not-all-equal(a, b, ¢) forbids us from doing so and
this makes the analysis more difficult. See [13] for a detailed
discussion on this issue.

The verifier is given a unique Label Cover instance £ guar-
anteed by the Unique Games Conjecture. It expects as a
proof the Long codes of the labels of all the vertices in L.
The verifier works as follows :

1. Pick a vertex v € V with probability p,.

2. Pick 3 vertices w1, w2, ws, each of them independently
from the distribution ¥,. Let A, B,C be the (sup-
posed) long codes of the (supposed) labels of the ver-
tices w1, w2, w3 respectively. Let m = Ty, , T = Tyuwy,

7" = myw, be the respective projections.

3. Pick two random functions f,g: M — {1,w,w?}.

4. Pick a function p: M — {w,w?} by defining for each
x € M, p(z) = w with probability 1 and p(z) = w’
with probability %

5. Accept iff
Not-all-equal(A(for), B(gor'), C((Fg)on")-1)

The completeness is 1 — 3¢ where 1—( is the completeness
of the outer label cover instance. The verifier picks 3 edges
and each of them can be an unsatisfied edge of the Label
Cover instance with probability (. If all the 3 edges are
satisfied, A, B,C are the long codes of some a,b,c € M
respectively and w(a) = 7' (b) = 7" (c) = d for some d € M.
Thus

A(fom) = f(n(a)) = f(d), B(gor') = g(n'(b)) = g(d) and



C((fg)on” - p) = (Fg)(n"(c)) - plc) = f(d)g(d)u(c)
and not all three can be equal since u() takes values only in
the set {w,w?}.

4.1 Soundness Analysis

The following lemma is easily proven.

Lemma 1. Let z,y,2z € {1,w,w?}. Then the expression

1 T, T2 T3
1—5 Z Ty “‘z

r1,72,73€GF(3)
r1Fro+rz=0

equals 0 if =y = z and 1 otherwise.

From this lemma it is clear that the expression

-5 Y Afom ' Blger) C(fgon )
rlr,lri,:ffrc;i(om
equals 1 if the test accepts and 0 otherwise. Hence the accep-
tance probability of the verifier is equal to the expectation
of this expression over the choice of (v, w1, w2, ws, f, g, ).
Let us consider this expectation for a fixed v. We divide
the terms in the summation into 3 cases and consider the
expectation of each term separately : (a) r1 =r2 =r3 =0
(b) (r1,72,r3) take values (0,1, —1) in some order (c) r; =
T2=T3=1 (d) T1=1"2=1"3=—1.
The case (a) is trivial, the expectation being 1 in this case.
In case (b), lets say (r1,rz2,73) = (1,—1,0), the other cases
being similar. The expectation is

By s, £.9[A(f o m)B(g o )]

Since m, 7’ are bijections, f o w and g o 7' are distributed
identically as f and g respectively. Hence the expectation is

Eun s, 1.9lA(F)B(9)] = Buy f[A(f)] - Buy o[B(9)]

For a fixed v, let § = E, j[A(f)] = E.[Ao]. Since wi, w,
are identically distributed, the above expectation is same as

Eu i [A(f)] - Buf[A(D] = |Bu s [AN = 16)”
Now consider case (c). The expectation is
E[A(fom)B(gon")C((fg) on” - p)]
Substituting Fourier expansions of A, B, C, we get
E[ Y AaBsC, xa(fom) xslgor) xo(F) o i) ]
a,B,y
Note that
-1
Xa(fom) = T] £(r(@))*™ = T] 1" = xa@) ()
zeM yeM

where we define, by an abuse of notation, w(a) to be the
function @ o w~'. The previous expression reduces to

E[ Y AaBsCy  Xn(a)-n () (F) Xw'(ﬂ)ﬂr“(v)(g)m(u)]
a,B,y

Taking expectation over f, g, we see that the terms in this

summation are zero unless w(a) = 7'(8) = n”(y). Also it

is easy to check that E,[x.(y) ()] = (771)‘7‘ where for a

function v : M — GF(3) we define |y| to be the number of

x € M such that y(x) # 0. Thus the expectation reduces to

~~ A A 1),
> ABG ] )

m(a)=='(B)==""(7)

Ewl ,W2,W3

We will show that if the terms with v # 0 are not small,
one can extract labels for the Label Cover instance £ giving
a “good” value of OPT(L). Lets assume

S AuBaCi(—5)"]

m(a)=n'(B)==""(7)#0

6 S Ev,wl,wg,wg [

Applying Cauchy-Schwartz, this expression can be bounded
by

Buun s [\/Z IS
o ' (B)

=n" (7)#0

~ ~ 1
2 2(=)Il
BaPICu 2]

implying that

S IBsPIC P ]

2
62 < Euvg [ =
' (B)=n""(v)#0

Now we can define labels as follows. For a vertex ws € W,
pick v with probability \67\2, pick a random y € M with
~v(y) # 0 and define it to be the label of ws. For a vertex
v € V, pick a random w» € ¥,, pick 8 with probability
|Bs|?, pick a random z € M with 8(z) # 0 and define 7' ()
to be the label of v. It is easy to see that this gives a labelling
with OPT(L) > §°.

Hence we can choose £ such that OPT(L) is sufficiently
small and ensure that the terms with v # 0 in (5) are arbi-
trarily small. The term with v = 0 contributes

Buy waws[A0BoCo] = (Bu[Ao])® = 6

The case (d) is just the complex conjugate of case (c) and

it contributes @ and terms which can be assumed to be arbi-
trarily small. Thus we can write the acceptance probability
as

1 6

. 1 —3
Pr[dccl=1— = — —E,[|6/*)] — =E,[0* + 0
r[Acc] 99 [16°] 9 6" +67]

+ (Terms with arbitrarily small magnitude )

Since |A| < 1, this probability is maximized when § = 0
(the reader familiar with this area will recognize that this
means the proof better contain folded tables. If tables are
not folded, it can only decrease the acceptance probability).
Hence acceptance probability can be bounded by % + n for
arbitrarily small n > 0.

4.2 Hardness of 3-uniform Hypergraph Semi-
coloring

We show that the Unique Games Conjecture implies that
it is NP-hard to semi-color a 3-uniform hypergraph with
constantly many colors when the hypergraph is given to be
semi-colorable with 3 colors. This is proved by combining
the techniques in the previous section with the idea of cov-
ering complexity of PCPs introduced by Guruswami et al
[13]. We skip the proof.

5. PROOF OF THEOREM 1

In this section we prove Theorem 1. Instead of unique 2-
prover games, we work in a more general setting of constraint
satisfaction problems with uniqueness property.

Problem : We are given a set X of n wvariables which
take values from the set [k] = {1,2,...,k}. For every pair



(u,v) of variables, there is a “constraint” which is a bijec-
tion wyy : [k] = [K]. This constraint has a weight wy, with
Z(u’v) Wy = 1.

For an assignment A : X — [k] to the variables, a con-
straint on the pair (u,v) is satisfied, if Tuo(A(u)) = A(v).
The goal is to find an assignment that mazimizes the total
weight of satisfied constraints.

Algorithm : We use a semidefinite program from Feige and
Lovasz’s paper [10] and augment it with a suitable rounding
procedure. Let us first formulate the problem as a quadratic
integer program. For every variable u € X, let w1, u2,..., ux
be auxiliary variables taking 0-1 values. Place the following
constraints :

wi+us+...up=1 YueX (6)
wiu; =0 Vu€ XandVi#j (7)
We intend that if an assignment assigns the value ig € [k] to
a variable u, then u;;, =1 and u; = 0 Vi # dg. This would

satisfy the constraints (6), (7). These constraints imply that
for every pair (u,v) of variables

uiv; 20 Vij (8)
Z Uiv; = 1 (9)
1<i,j<k

It is easy to see that the goal is to maximize the following
function subjected to the above constraints.

Z Wyo (W1Vr(1) + U2V (2) + ... UrUr()) Where m = my, (10)

(u,v)

Now we consider the semidefinite programming relaxation
of the problem. We allow the variables (u1,...,u) to be
vectors in a high dimensional space (in kn-dimensional space
to be precise) and the constraints (6)-(9) replaced by the
constraints :

@@ byl g dr=1 YueX (11)
@i =0 YueX V i#j (12)
@-7,>0 VuveX V ij (13)
Y odi-# =1 VYuveX (14

1<i,j<k
The goal is to maximize the following function subjected to
the above constraints :
Z Wy (U1 - U1y + oo+ U - Ur(r)) where m=my, (15)
(u,v)
Observation : In any feasible solution of the SDP, for any

two variables u,v, we have from the constraints (11), (12)
and (14),

k k k k
I Sl =1 wl=1 and (O i) (D7) =1
i=1 =1

i=1 j=1

This implies that Y'_ ii; = Y7 ;. We denote § =
2?21 i; which is the same for all variables u and ||5]| = 1.
We solve the semidefinite program and construct an as-

signment using the following rounding procedure.

e Choose a vector 7 from the normal distribution, i.e.

choose every coordinate of 7 from the distribution N (0, 1)

independently.

e By replacing 7 by —7 if needed, assume that - §> 0.

e Construct the following assignment A : for every vari-
able u, let

A(u) = ip where

Lo Lo
7 i, = max (7 - ;)
1<i<k

We prove the following theorem in Appendix A which is
sufficient to prove Theorem 1.

THEOREM 6. If there exists an assignment that satisfies
constraints with total weight 1 — €, then the above algorithm
produces an assignment that satisfies constraints with ex-

pected weight 1 — O(k*¢'/® [log(L)).

6. CONCLUSION

It seems quite difficult to prove (or disprove) the Unique
Games Conjecture.

Proving the conjecture is equivalent to constructing a PCP
that reads 2 symbols and accepts iff these symbols satisty a
bijective constraint. However the current tools appear quite
weak for constructing PCPs that read 2 symbols. Paral-
lel repetition of a unique game is a unique game and one
might hope to amplify the soundness by parallel repetition.
However we do not have a hard instance of a unique game
to begin with. Theorem 1 shows that if the Unique Games
Conjecture is true, the domain size k(¢,d) > (1%, thus the
domain size would play a very crucial role.

On the other hand, disproving the conjecture may require
an algorithm that gives a theorem similar to Theorem 1 and
whose performance is independent of the domain size k.

A less ambitious goal (than proving the Unique Games
Conjecture) would be to show that the value of a unique
2-prover game with domain size k£ is hard to approximate
within factor f(k) where f(k) — oo as k — oco. The only
known results are constant factor hardness for 2-Linear-
Equations mod 2 by Hastad [15] and for 2-Linear-Equations
mod p by Andersson et al [2].

7. ACKNOWLEDGEMENT

I am greatful to Johan Hastad for showing me his analysis
using Bourgain’s theorem, which led me think about unique
games. I thank Sanjeev Arora, Venkatesan Guruswami and
Johan Hastad for many helpful discussions and their valu-
able comments on an earlier version of this paper.

8. REFERENCES

[1] N. Alon and N. Kahale. Approximating the
independence number via the f-function. Technical
Report, Tel Aviv University, 1995.

[2] G. Andersson, L. Engebretsen, and J. Hastad. A new
way of using semidefinite programming with
applications to linear equations mod p. Journal of
Algorithms, 39(2):162—-204, 2001.

[3] S. Arora, C. Lund, R. Motawani, M. Sudan, and
M. Szegedy. Proof verification and the hardness of
approximation problems. Journal of the ACM,
45(3):501 555, 1998.

[4] S. Arora and S. Safra. Probabilistic checking of proofs
: A new characterization of np. Journal of the ACM,
45(1):70 122, 1998.



[5] M. Bellare, O. Goldreich, and M. Sudan. Free bits,
pcps and non-approximability. Electronic Colloquium
on Computational Complexity, Technical Report
TR95-024, 1995.

[6] J. Bourgain. On the distribution of the fourier
spectrum of boolean functions. manuscript.

[7] I. Dinur and S. Safra. The importance of being biased.
In Proc. of the 34thth Annual ACM Symposium on
Theory of Computing, 2002.

[8] U. Feige. Error reduction - the state of the art.
Technical Report CS95-32, Weizmann Institute of
Technology, 1995.

[9] U. Feige. A threshold of In n for approximating set
cover. Journal of the ACM, 45(4):634 652, 1998.

[10] U. Feige and L. Lovasz. Two-prover one-round proof
systems, their power and their problems. In Proc. of
the 24th Annual ACM Symposium on Theory of
Computing, pages 733-744, 1992.

[11] A. Frieze and M. Jerrum. Improved approximation
algorithms for max k-cut and max bisection.
Algorihmica, 18:67-81, 1997.

[12] M. Goemans and D. Williamson. 0.878 approximation
algorithms for max-cut and max-2sat. In Proc. of the
26th Annual ACM Symposium on Theory of
Computing, pages 422 431, 1994.

[13] V. Guruswami, J. Hastad, and M. Sudan. Hardness of
approximate hypergraph coloring. In Proc. of the 41st
IEEE Symposium on Foundations of Computer
Science, pages 149-158, 2000.

[14] J. Hastad. Clique is hard to approximate within n'~¢.
In Proc. of the 387th Annual IEEE Symposium on
Foundations of Computer Science, pages 627 636,
1996.

[15] J. H. stad. Some optimal inapproximability results. In
Proc. of the 29th Annual ACM Symposium on Theory
of Computing, pages 1-10, 1997.

[16] J. Hastad. On a protocol possibly useful for min-2sat.
unpublished manuscript.

[17] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi.
On the hardness of max k-cut and its dual. In Proc. of
the 5th Israel Symposium on Theory and Computing
Systems, pages 61-67, 1996.

[18] S. Khot. Hardness rsults for approximate hypergraph
coloring. In Proc. of the 84thth Annual ACM
Symposium on Theory of Computing, 2002.

[19] P. Klein, S. Plotkin, S. Rao, and E. Tardos.
Approximation algorithms for steiner and directed
multicuts. Journal of Algorithms, 22(2):241-269, 1997.

[20] R. Raz. A parallel repetition theorem. SIAM J. of
Computing, 27(3):763-803, 1998.

[21] A. Samorodnitsky and L. Trevisan. A pcp
characterization of np with optimal amortized query
complexity. In Proc. of the 82nd Annual ACM
Symposium on Theory of Computing, pages 191 199,
2000.

[22] U. Zwick. Approximation algorithms for constraint
satisfaction problems involving at most three variables
per constraint. In Proc. of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 201-210,
1998.

[23] U. Zwick. Finding almost satisfying assignments. In

Proc. of the 30th Annual ACM Symposium on Theory
of Computing, pages 551-560, 1998.

APPENDIX
A. PROOF OF THEOREM 6

Let auy = D ¢,y Ui - Ur(s), T = Tup which is the part of
the SDP objective function (15) corresponding to the con-
straint on (u,v). By the hypothesis, the SDP has a solution
with value at least 1 — ¢ implying that there exist vectors

(i )uex,ic[x) satisfying

Z Wyv Xy Z 1—e¢

(u,v)

= 2

auv217%e4/5

Weyy > 1 — 2¢'/8

Fix any (u,v) with ay, > 1— %64/5. ‘We will show that with
probability 1 — O(k251/5 log(é)), muv(A(u)) = A(v). Let
T = Ty, for simplicity. The intuition behind the proof is
simple : if @y, = 1, the SDP constraints (11-14) imply that
@ = Ur(;) V @ € [k] (this can be seen by substituting e = 0
in Lemma 2). Thus for any vector 7, if 7- 4; is maximized
for index ig, then 7- @; is maximized at index m(io). Hence
the rounding procedure will assign, A(u) = ig, and A(v) =
m(i0) satisfying the constraint.

‘We however have ay,, > 1— %54/5 and it takes some effort
to translate the intuition into a rigorous proof. We proceed
to prove several simple lemmas.

LEMMA 2. ||i; — (]| < €/® Vi € [K].

PROOF.

1 4 - - — —
1- € < Zuz “Ur() < Z Nl 1|0 i) |
Kz e

I + 15w I” 1 45

= |l — ToI” <7 Vi
O
LEMMA 3. IfY is distributed as N(0,1),

2
-

PrjlY|>~] <ez

ProOOF. Standard inequality. [
LEMMA 4. With probability 1 — O(kzel/S,/log(%)), com-
ponents of T along the directions of vectors
{ii Yiew), {8 — @5 }izgs {di — Uri) Yiemm

have magnitude in the range



Proor. This follows from the fact that 7 is distributed
in a spherically symmetric manner and hence its component
along any direction is distributed as N(0,1). Hence for any
unit vector ¢,

1 1
Pr [|F.ﬂ<61/5,/1og(g)] < 27 log(-)

Pr [F~t']> log(l):| < Ve

€
where the first inequality is trivial and the second follows

from Lemma 3. Now we take a union bound along the O(k?)
directions specified in the statement of this lemma. [

LEMMA 5. With probability 1—10kel/5,/log(%), the com-
ponent of 7 along §, that is |7 3|, is at least 5kel/5,/log(%).

Proor. Trivial. [

Thus except with probability 1 —O(k?e'/5 /log(1)), we can
assume that 7 satisfies hypothesis of Lemma 4 and Lemma
5. Under this assumption, we prove the following 3 lemmas.
Let ig € [k] be such that - 1_1:1'0 = maxi<i<k .

LEMMA 6. ||ii,]| > 5¢'/°.

PROOF. (ELI @) -7 =57 > 5ke'/" log(%) by Lemma
5 and g is the index that maximizes - @;. Hence 7 i@;, >
5el/o log(1). But by Lemma 4, the component of 7 along
log().

i;, has magnitude at most This implies that

o]l > 56/, O

LEMMA 7.V j #do, 7-@; <7 i, — 5e”/% /log(L)

PROOF.
Feilyy —F-id; = |F-ii,— 7 i
= |7 (di, — i)
> g, — 4| el/s,llog(%) by Lemma 4
> il €74 [log (1) Since u;, L ;
> 5e%/° log(1) by Lemma 6
O

LEMMA 8. Vi, |7 i — 7 #(iy] < €¥/°y/log(1)

PROOF.

—

|7ty — 7 Ty |7 (@ — Un(s))]

< log(L) |ldi — #.(iy|| by Lemma 4
< ,/log(%)ez/5 by Lemma 2

Now we will show that

7 Uniq) = max (i vj) (16)

This would imply that the assignment A given by the round-
ing procedure assigns A(u) = i9, A(v) = 7(i0) and the con-
straint on the pair (u,v) is satisfied.

Let j # io be any index. By Lemma 8 and Lemma 7,

. Lo 1 Lo 1
T Ungy <7l +62/5\/10g(z) <7l — 4€*/? log(;)

Also by Lemma (8) we have

1
P i) > 7 iy — /%y [log(=)
€
It follows that
V j # o
finishing the proof of (16) and Theorem 6.

7+ Un(io) > T Un(j)



