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ABSTRACTA 2-prover game is 
alled unique if the answer of one proveruniquely determines the answer of the se
ond prover andvi
e versa (we impli
itly assume games to be one roundgames). The value of a 2-prover game is the maximum a
-
eptan
e probability of the veri�er over all the prover strate-gies. We make the following 
onje
ture regarding the powerof unique 2-prover games, whi
h we 
all the Unique GamesConje
ture :The Unique Games Conje
ture : For arbitrarily small
onstants �; Æ > 0, there exists a 
onstant k = k(�; Æ) su
hthat it is NP-hard to determine whether a unique 2-provergame with answers from a domain of size k has value at least1� � or at most Æ.We show that a positive resolution of this 
onje
ture wouldimply the following hardness results :1. For any 12 < t < 1, for all suÆ
iently small 
on-stants � > 0, it is NP-hard to distinguish betweenthe instan
es of the problem 2-Linear-Equations mod2 where either there exists an assignment that satis�es1�� fra
tion of equations or no assignment 
an satisfymore than 1 � �t fra
tion of equations. As a 
orol-lary of the above result, it is NP-hard to approximatethe Min-2CNF-deletion problem within any 
onstantfa
tor.2. For the 
onstraint satisfa
tion problem where every
onstraint is the predi
ate Not-all-equal(a; b; 
), a; b; 
 2GF (3) , it is NP-hard to distinguish between the in-stan
es where either there exists an assignment thatsatis�es 1� � fra
tion of the 
onstraints or no assign-ment satis�es more than 89 + � fra
tion of the 
on-straints for an arbitrarily small 
onstant � > 0. Wealso get a hardness result for a slight variation of ap-proximate 
oloring of 3-uniform hypergraphs.�This work was partly supported by Sanjeev Arora's Davidand Lu
ile Pa
kard Fellowship and NSF Grant CCR-0098180
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We also show that a variation of the Unique Games Con-je
ture implies that for arbitrarily small 
onstant Æ > 0 it ishard to �nd an independent set of size Æn in a graph that isguaranteed to have an independent set of size 
(n).The main idea in all the above results is to use the 2-provergame given by the Unique Games Conje
ture as an \outerveri�er" and build new probabilisti
ally 
he
kable proof sys-tems (PCPs) on top of it. The uniqueness property plays a
ru
ial role in the analysis of these PCPs.In light of su
h interesting 
onsequen
es, we think it is animportant open problem to prove (or disprove) the UniqueGames Conje
ture. We also present a semi-de�nite pro-gramming based algorithm for �nding reasonable prover strate-gies for a unique 2-prover game. Given a unique 2-provergame with value 1� � and answers from a domain of size k,this algorithm �nds prover strategies that make the veri�era

ept with probability 1 �O(k2�1=5qlog( 1� )). This resultshows that the domain size k = k(�; Æ) must be suÆ
ientlylarge if the Unique Games Conje
ture is true.
1. INTRODUCTIONThe dis
overy of the PCP Theorem ([4℄, [3℄) and subse-quent quantitative improvements in PCP 
onstru
tions haveled to (in many 
ases optimal) hardness of approximation re-sults for various optimization problems. For example Max-Clique [14℄, Max-3-SAT [15℄ and Set Cover [9℄ to name afew.However the PCP te
hniques haven't been su

essful inobtaining \good" hardness results for some problems likeVertex Cover (see [7℄ for an ex
iting new result), Min-2CNF-deletion and 
oloring of graphs and 3-uniform hypergraphswith a small 
hromati
 number. In this paper we try toidentify some promising new dire
tions for atta
king theseproblems.All PCP 
onstru
tions today (with the possible ex
eptionof [7℄) follow the basi
 paradigm of 
omposing a so 
alled\outer veri�er" with an \inner veri�er" (proof 
ompositionwas �rst introdu
ed by Arora and Safra [4℄, but the kind of
omposition we are referring to was �rst used by Bellare etal [5℄). The fo
us of most of the re
ent resear
h has beenon improving the quality of the inner veri�er. Many sophis-ti
ated inner veri�ers have been 
onstru
ted (see [14℄, [15℄,[21℄, [13℄) based on the Long Codes introdu
ed by Bellareet al [5℄ and the Fourier Analysis te
hniques developed byH�astad ([14℄, [15℄). However the outer veri�er has remaineduntou
hed. All PCP 
onstru
tions use the same outer ver-i�er, namely the one obtained by parallel repetition of a



2-prover proto
ol for Gap-3SAT. The soundness propertyrequired of the outer veri�er is given by the Raz's ParallelRepetition Theorem [20℄ and we hen
eforth 
all this veri�erthe Raz Veri�er.In this paper, we point out that one promising route forgetting good hardness results for problems for whi
h PCPte
hniques have failed so far, is to 
onstru
t an outer veri�erwith \better properties". The Raz Veri�er is basi
ally a 2-prover game with the following 
ru
ial properties :1. For arbitrarily small Æ > 0, it is NP-hard to determinewhether the value of the game is 1 or at most Æ.2. The answers of the provers are from a domain of sizek where k is a 
onstant depending on Æ.3. The answer of the se
ond prover uniquely determinesthe answer of the �rst prover.One might expe
t the property (3) to be even stronger,i.e. the answer of the se
ond prover uniquely determinesthe answer of the �rst prover and vi
e versa. In fa
t su
hgames have been 
onsidered in literature before ([10℄, [8℄)and they are 
alled \unique games". However, to the best ofour knowledge, the question whether unique 2-prover games(with (1 � �, Æ) gap in their value) are powerful enough to
apture NP hasn't been 
onsidered before. This question ispre
isely the fo
us of this paper and we make the following(rather bold) 
onje
ture :The Unique Games Conje
ture : For arbitrarily small
onstants �; Æ > 0, there exists a 
onstant k = k(�; Æ) su
hthat it is NP-hard to determine whether a unique 2-provergame with answers from a domain of size k has value at least1� � or at most Æ.An important point here is that one 
an trivially deter-mine whether a unique 2-prover game has value 1. Thereforethe gap in the above 
onje
ture is (1 � �; Æ) as opposed tothe gap (1; Æ) in the Raz Veri�er. In other words, NP-hardunique games must lose perfe
t 
ompleteness.We show that a positive resolution of this 
onje
ture wouldhave many interesting 
onsequen
es. We use the 2-provergame given by the Unique Games Conje
ture as an outerPCP veri�er and build appropriate inner veri�ers to provethe following results :1. For every 12 < t < 1, for all suÆ
iently small � > 0, it isNP-hard to distinguish between instan
es of 2-Linear-Equations mod 2, where either there exists an assign-ment satisfying at least 1 � � fra
tion of equationsor no assignment satis�es more than 1� �t fra
tion ofequations.This result is essentially due to H�astad [16℄. He pro-posed a so 
alled \
odeword test" for testing LongCodes and analyzed it using Bourgain's theorem [6℄on Fourier spe
trum of boolean fun
tions. However hewasn't able to give a \
onsisten
y test" whi
h wouldwork for the Raz Veri�er. The (minor) 
ontribution ofthis paper is to show that if one uses the outer veri�ergiven by the Unique Games Conje
ture, it is indeedpossible to 
onstru
t and analyze a 
onsisten
y testimplying the above hardness result.This hardness result is tight sin
e the algorithm ofGoemans and Williamson [12℄ for 2-Linear-Equations

mod 2, on an instan
e with optimum 1� � produ
esa solution with value 1�O(p�).2. A simple redu
tion from 2-Linear-Equations to 2-SATgives a similar result, i.e. a (1��; 1��t) gap for 2-SATfor any 12 < t < 1. As a 
orollary, it is NP-hard to ap-proximate Min-2SAT-deletion (also 
alled Min-2CNF-deletion) within any 
onstant fa
tor. On the algorith-mi
 side, Zwi
k's algorithm [23℄, on a 2-SAT instan
ewith optimum 1�� produ
es an assignment with value1�O(�1=3). Klein et al [19℄ give O(log n log log n) ap-proximation for Min-2CNF-deletion.3. Guruswami et al [13℄ (also see [18℄) show that the 
on-straint satisfa
tion problem asso
iated with the pred-i
ate Not-all-equal(a; b; 
; d) where a; b; 
; d are binaryvariables, is hard to approximate better than a randomassignment. They use this fa
t to derive hardness re-sults for 4-uniform hypergraph 
oloring. However theirte
hniques do not work for 3-uniform hypergraphs andone of the reasons is that for the predi
ate Not-all-equal(a; b; 
) over binary variables, there does exist analgorithm that does better than a random assignment[22℄.However we show that the Unique Games Conje
tureimplies that the predi
ate Not-all-equal(a; b; 
) overternary variables is hard to approximate better thana random assignment. We also derive hardness re-sult for a variation of 3-uniform hypergraph 
oloringwhi
h we 
all \semi-
oloring". In this problem weare given a 3-uniform hypergraph and the goal is to
olor the verti
es so that 1 � � fra
tion of the edgesare non-mono
hromati
 (as opposed to all edges non-
hromati
) where � is a given parameter. (the need for
onsidering this version of 
oloring is due to the inher-ent loss of perfe
t 
ompleteness in the Unique GamesConje
ture). We show that it is NP-hard to semi-
olor a 3-semi-
olorable 3-uniform hypergraph with
onstantly many 
olors.4. Frieze and Jerrum [11℄ give an algorithm for Max-k-
ut that a
hieves a fa
tor roughly 1� 1k + 2 ln kk2 . Thereis an almost-mat
hing hardness result by Kann et al[17℄ who show a hardness fa
tor of 1 � 134k for thisproblem. However in their redu
tion the value of themaximum k-
ut in the 
ompleteness 
ase is 1 � 
( 1k )whi
h is bounded away from 1. It is an interesting openproblem whether a similar hardness result holds withperfe
t 
ompleteness or near-perfe
t 
ompleteness.We show that for any t > 12 , for all suÆ
iently large
onstants k, it is NP-hard to distinguish between theinstan
es of Max-k-
ut where the optimum value of ak-
ut is either 1 � � or at most 1 � 1k(log k)t where� > 0 is an arbitrarily small 
onstant.We also 
onsider the following relaxation of the uniquenessproperty. We say that a 2-prover game has \d-to-1 property"if the answer of the se
ond prover uniquely determines theanswer of the �rst prover and for every answer of the �rstprover, there are at most d answers for the se
ond prover forwhi
h the veri�er would a

ept. We assume d to be a �xedinteger and d � 2. Consider the following 
onje
ture :d-to-1 Conje
ture : For arbitrarily small 
onstant Æ > 0,there exists a 
onstant k = k(Æ) su
h that it is NP-hard



to determine whether a 2-prover game with d-to-1 propertyand answers from a domain of size at most k has value 1 orat most Æ.Note that in 
ontrast with the Unique Games Conje
ture,we 
an hope for perfe
t 
ompleteness in the d-to-1 Conje
-ture (sin
e d � 2). We use some of the te
hniques fromDinur and Safra's paper [7℄ to show that the d-to-1 Conje
-ture implies the following results :1. For arbitrarily small �; Æ > 0, it is hard to �nd anindependent set of size Æn in a graph whi
h is guaran-teed to have an independent set of size (1� 121=d � �)n.(see [1℄ for an algorithmi
 result). Note that Dinurand Safra's result [7℄ does not imply su
h a result forindependent sets. Su
h a result is equivalent to theexisten
e of a PCP with zero free bits, 
ompleteness
(1) and arbitrarily low soundness, whi
h is an openproblem.2. From the above result it follows that if 2-to-1 Conje
-ture is true, it would imply p2� � hardness for VertexCover whi
h is better than the fa
tor 1:3606 by Dinurand Safra. In fa
t, Dinur and Safra do use an analogof 2-to-1 property. We do not elaborate on this due tospa
e limitations.In light of su
h interesting 
onsequen
es of the UniqueGames Conje
ture, we think it is an important open problemto prove or disprove it. In this paper, we also present a semi-de�nite programming based algorithm giving the followingtheorem :Theorem 1. There exists a (poly-time) algorithm su
hthat given a unique 2-prover game with value 1� � and an-swers from a domain of size k, it �nds prover strategies thatmake the veri�er a

ept with probability 1�O(k2�1=5qlog( 1� )).Andersson et al [2℄ proved a similar result for the problem2-Linear-Equations mod p, where the 
onstraints are lin-ear equations mod p with every equation 
ontaining exa
tly2 variables. Su
h 
onstraints have the uniqueness propertysin
e the value to one variable in the equation uniquely de-termines the value to the se
ond variable. Our algorithm issimpler and more general than that of Andersson et al.Theorem 1 shows that if at all the Unique Games Conje
-ture is true, the domain size required k = k(�; Æ) must beat least 1�1=10 . A trivial bound k � 1Æ also holds, sin
e theprovers 
an 
hoose their answers uniformly at random fromthe domain of possible answers and satisfy the veri�er withprobability at least 1k .Overview of the paper : Se
tion 2 provides the pre-liminary ba
kground. We prove the results for 2-Linear-Equations mod 2 and Min-2CNF-deletion in Se
tion 3. Weprove the hardness of predi
ate Not-all-equal(a; b; 
) overternary variables in Se
tion 4. We prove Theorem 1 in Se
-tion 5 and appendix A. Proofs of all the other results areomitted from this extended abstra
t sin
e they are quitelengthy and involved. Se
tion 6 
on
ludes with a few re-marks as to why it would be diÆ
ult to either prove ordisprove the Unique Games Conje
ture.

2. PRELIMINARIESThis se
tion gives a preliminary ba
kground on PCPs, 2-prover games, Long Codes and the basi
 paradigm of PCP
onstru
tions.
2.1 Probabilistically Checkable ProofsA language L is said to have a probabilisti
 
he
kableproof system with parameters (r; q; 
; s) if there exists aprobabilisti
 polynomial time veri�er whi
h on input x ofsize n and a proof �,� Uses r = r(n) random bits and queries q = q(n) bitsfrom the proof �.� Depending on the bits read from the proof it a

eptsor reje
ts.� It has the following two properties :(Completeness) : If x 2 L, there exists a proof � whi
hthe veri�er a

epts with probability � 
.(Soundness) : If x 62 L, the veri�er a

epts any proofwith probability at most s.The parameters 1 � 
 > s > 0 are 
alled 
ompletenessand soundness parameters respe
tively. We re
all the PCPTheorem ([4℄, [3℄) that every language in NP has a PCPsystem with 
 = 1; s = 12 and the veri�er uses O(log n)random bits and queries only a 
onstant number of bits fromthe proof.
2.2 2-Prover 1-Round GamesConsider the following game between 2 provers and a ver-i�er. There is a set V of all possible \questions" that theveri�er 
an ask the �rst prover and a set of questions Wthat the veri�er 
an ask the se
ond prover.A \strategy" of the �rst prover is a map LV : V ! Nwhere N is a set of possible answers of the �rst prover. Ona question v 2 V , the prover returns an answer LV (v) to theveri�er. Similarly the strategy of the se
ond prover is a mapLW : W !M where M is the set of his possible answers.The \a

eptan
e predi
ate" of the veri�er is a map� : V �N �W �M ! fTRUE;FALSEgThe game works in the following way. The veri�er pi
ks apair of questions (v; w), v 2 V; w 2 W with a 
ertain prob-ability distribution on the set of all pairs. He asks questionv to the �rst prover and the question w to the se
ond proverwho return answers LV (v) and LW (w) respe
tively. Theveri�er a

epts i��(v; LV (v); w; LW (w)) = TRUEThe value of the game is de�ned as the maximum, overall possible prover strategies, of the a

eptan
e probabilityof the veri�er.We will be interested in games where the answer of these
ond prover uniquely determines the answer of the �rstprover, i.e. for every question pair (v; w) asked by the veri�erand every answer b 2 M of the se
ond prover, there is aunique answer a 2M su
h that the veri�er a

epts. In this
ase, we 
an asso
iate a fun
tion �vw : M ! N for everypair (v; w) so that the veri�er a

epts i��vw(LW (w)) = LV (v)



A game is 
alled \unique" (see [10℄, [8℄) if M = N andevery fun
tion �vw is a bije
tion, i.e. the answer of these
ond prover uniquely determines the answer of the �rstprover and vi
e versa.Remarks : (1) We assume throughtout this paper thatthe sets of answers M and N are of 
onstant size. (2) Thede�nition of the unique games di�ers slightly in ([10℄, [8℄).In their de�nition, for every answer of one prover, there is atmost one possible answer of the other prover and vi
e versa.
2.3 The Label Cover ProblemWe de�ne a problem 
alled Label Cover whi
h is equiv-alent to 2-prover games with the property that the answerof the se
ond prover uniquely determines the answer of the�rst prover. For the sake of 
onvenien
e, we prefer to talk interms of the Label Cover problem instead of 2-prover games.De�nition 1. A Label Cover problem L 
onsists of a 
om-plete bipartite graph G(V;W ), with bipartition V;W . Anedge (v; w) has a weight pvw with Pv;w pvw = 1. Everyvertex in V is supposed to get a label from a set N andevery vertex in W is supposed to get a label from a set M .With every edge (v; w) there is asso
iated a \proje
tion"�vw :M ! N . For an assignment of labels to the verti
es ofthe graph, that is for fun
tions LV : V ! N; LW : W !M ,an edge (v; w) is said to be satis�ed if �vw(LW (w)) = LV (v).The goal is to �nd an assignment of labels that maximizesthe total weight of the satis�ed edges. We de�ne OPT (L)to be the maximum weight of edges satis�ed by any label-ing. A Label Cover problem is 
alled \unique" if M = Nand every proje
tion �v;w : M ! M is a bije
tion (i.e. apermutation).Clearly, a Label Cover problem is same as a 2-prover gamewhere V;W are sets of questions the veri�er 
an ask thetwo provers and N;M are sets of answers by the proversrespe
tively.The following theorem is a 
onsequen
e of the PCP The-orem ([4℄, [3℄) and Raz's Parallel Repetition Theorem [20℄.It 
an be found in any of the papers ([5℄, [15℄, [13℄).Theorem 2. For every 
onstant Æ > 0, there exists a
onstant k = k(Æ) su
h that it is NP-hard to determinewhether a Label Cover problem L with answers from setsof size at most k (i.e. jM j; jN j � k) has OPT (L) = 1 orOPT (L) � Æ.Remark : It turns out that in the redu
tion given byTheorem 2, we have jM j � jN j and the proje
tions �v;w :M ! N are highly many-to-one (this many-to-one-ness in-
reases as Æ de
reases). The PCP 
onstru
tions in this paperdo not work for su
h proje
tions. Our 
onstru
tions needa very stringent 
ondition that the proje
tions be bije
tionsor d-to-1 for some �xed d independent of Æ.It is 
lear that the Unique Label Cover problem 
orre-sponds to a unique 2-prover game. Hen
e the Unique GamesConje
ture 
an be restated as :Unique Games Conje
ture : For arbitrarily small 
on-stants �; Æ > 0, there exists a 
onstant k = k(�; Æ) su
h thatit is NP-hard to determine whether a unique Label Coverinstan
e with the label sets of size k (i.e. jM j = k) hasoptimum at least 1� � or at most Æ.

2.4 Constructing PCPs, Long Codes and Fourier
AnalysisWe brie
y explain a basi
 paradigm for PCP 
onstru
tions(see [5℄, [14℄, [15℄, [21℄, [13℄). The veri�er 
an be 
on
eptu-ally divided into an \outer" part and an \inner" part.The veri�er redu
es an arbitrary language in NP to a gap-version of Label Cover instan
e L as given by Theorem 2.This is 
alled the \outer" part of the veri�er.The veri�er then expe
ts the proof to 
ontain \Long Codes"of the labels of verti
es in the instan
e L. The veri�er pi
kssome edge(s) of the instan
e L and performs some lo
al
he
ks on the supposed long 
odes of the supposed labelsof the endpoints of these edge(s). This lo
al 
he
king is
alled the \inner" part of the veri�er.For proving the soundness property of the veri�er, oneshows that if the veri�er a

epts the en
oded proof with\good" probability, then the proof 
an be \de
oded" to de-�ne labels for the Label Cover instan
e L with a \good"value of OPT (L). This gives a 
ontradi
tion provided westarted with an instan
e L with suÆ
iently small value ofOPT (L). Theorem 2 guarantees that OPT (L) 
an be madearbitrarily small. The proof of the soundness of the veri�errelies on the Fourier analysis of the Long Codes.We de�ne the Long Codes in the following.De�nition 2. A binary Long Code on a set of labels M isindexed by all fun
tions f : M ! f�1; 1g. The long 
ode Aof a label a 2M is given byA(f) = f(a) 8 f : M ! f�1; 1gA 
heating proof might 
ontain an arbitrary string/tableA instead of a 
orre
t Long Code. Su
h tables are handledby their Fourier expansion (see [15℄ for a detailed exposition)A = X��M Â���(f) where ��(f) = Yx2� f(x)The Fourier 
oeÆ
ients bA� satisfy the Parseval's identity,P� bA2� = 1.

3. HARDNESS OF 2-LINEAR-EQUATIONS
MOD 2In this se
tion we present a proof of the following theorem.Theorem 3. The Unique Games Conje
ture implies thatfor every 12 < t < 1, for all suÆ
iently small 
onstants� > 0, it is NP-hard to distinguish between the instan
esof 2-Linear-Equations mod 2, where the fra
tion of satis�edequations is at least 1� � or at most 1� �t.This result is essentially due to H�astad [16℄. He proposeda test for 
he
king a long 
ode and analyzed it using Bour-gain's re
ent theorem [6℄ on Fourier spe
trum of booleanfun
tions, whi
h itself was inspired by a question raised byH�astad.The (minor) 
ontribution of this paper is to introdu
e theUnique Games Conje
ture and to show that H�astad's test
an be extended to test the 
onsisten
y between two long
odes, giving a PCP veri�er that makes a linear test on 2query bits, has 
ompleteness 1� � and soundness 1� �t.Following the standard paradigm, the PCP veri�er takesthe gap-version of the unique Label Cover problem L guar-anteed by the Unique Games Conje
ture and expe
ts the



proof to 
ontain, for every vertex v 2 V , the long 
ode ofthe label LV (v) and for every vertex w 2 W , the long 
odeof the label LW (w). These long 
odes are assumed to befolded, i.e. A(�f) = �A(f) (see [15℄).The veri�er pi
ks some edges and 
he
ks that the labelsalong these edges satisfy the 
orresponding bije
tions. Thereis a te
hni
al issue of how the edges are pi
ked. Let pv =Pw pvw. That is if an edge is pi
ked with a probability equalto its weight, pv is the probability that the left endpoint isv. Let 	v : W ! [0; 1℄ be de�ned as 	v(w) = pvwpv . That is	v(w) is the 
onditional probability that the right endpointof an edge is w given that the left endpoint is v.A
tion of the veri�er :1. Pi
k v 2 V with probability pv. Let A be the (sup-posed) long 
ode of the (supposed) label of v.2. Pi
k a random fun
tion f : M ! f�1; 1g and a \per-turbation fun
tion" � : M ! f�1; 1g. For ea
h x 2M , �(x) = 1 with probability 1 � � and �(x) = �1with probability �.3. With probability 12 ea
h, sele
t one of the followinga
tions :(a) (Codeword test) A

ept i� A(f) = A(f�)(b) (Consisten
y test) Pi
k a vertex w 2W with thedistribution 	v. Let B be the (supposed) long
ode of the (supposed) label of w and � = �vw :M ! M be the bije
tion between v and w. A
-
ept i� A(f) = B(f Æ �)where f Æ� denotes the 
omposition of fun
tions.Remark : H�astad proposed and analyzed the 
odewordtest. We propose the 
onsisten
y test and show that H�astad'sanalysis 
an be extended to 
he
k 
onsisten
y provided theUnique Games Conje
ture is true.
3.1 CompletenessIt is easy to see that the 
ompleteness of the test is 1� �+�2where the outer label 
over instan
e has 
ompleteness 1� �.The test may fail due to 2 reasons : (1) The edge (v; w)pi
ked by the veri�er may be an unsatis�ed edge of the label
over instan
e whi
h happens with probability �. In this
ase, the 
onsisten
y test fails. (2) In a 
orre
t proof A isa long 
ode of some a 2 M . The 
odeword test fails when�(a) = �1 whi
h happens with probability �.The 
laim about the 
ompleteness follows. Note that bythe Unique Games Conje
ture, � 
an be assumed to be ar-bitrarily small.
3.2 Soundness AnalysisWe use the following (deep) theorem of Bourgain [6℄.Theorem 4. Let A be any boolean fun
tion (for instan
ea supposed long 
ode) and k > 0 an integer. Then for every12 < t < 1, there exists a 
onstant 
t > 0 su
h thatIf X� : j�j>k bA2� < 
tk�t then X� : j bA�j� 110 4�k2 bA2� < 1100

The probability of a

eptan
e of the veri�er is 
learlyPr[A

℄ = 12Ev;f;� �1 +A(f)A(f�)2 +Ew �1 +A(f)B(f Æ �)2 ��Using the Fourier expansion A =P� bA��� we getEf;�[A(f)A(f�)℄ = Ef;�[ X�1;�2 bA�1 bA�2��1(f)��2 (f)��2 (�)℄Note that �1; �2 are subsets of M . We have��1(f)��2 (f) = Yx2�1 f(x) Yx2�2 f(x) = Yx2���2 f(x)where �1��2 is the symmetri
 di�eren
e between the sets�1 and �2. The expe
tation over f is non-zero only if�1��2 = ;, i.e. �1 = �2 = �. Also E�[��(�)℄ = (1� 2�)j�j.Hen
e Ef;�[A(f)A(f�)℄ =X� bA2�(1� 2�)j�jUsing the Fourier expansion B =P� bB���, we haveEf;�[A(f)B(f Æ �)℄ = Ef;�[X�;� bA� bB���(f)��(f Æ �)��(�)℄(1)We have��(f Æ �) = Yx2� f(�(x)) = Yy2�(�)f(y) = ��(�)(f)Substituting this in (1) and taking expe
tation over f wesee that the expe
tation is non-zero only if � = �(�). Sin
e� is a bije
tion, � = ��1(�). Thus (1) 
an be written asEf;�[A(f)B(f Æ �)℄ =X� bA� bB��1(�)(1� 2�)j�jHen
e the probability of a

eptan
e isPr[A

℄ = 12 + 14Ev "X� bA2�(1� 2�)j�j +X� bA�Ew h bB��1(�)i#= 12 + 14Ev[Rv + Tv℄If this probability is � 1� 18 
t�t where 
t is as in Theorem4, we have Ev[Rv + Tv℄ � 2� 12 
t�t. This implies that overthe 
hoi
e of v, with probability at least 12 , Rv+Tv � 2�
t�t.Fix any su
h \good" v. We have Rv � 1 � 
t�t and Tv �1� 
t�t > 12 .1� 
t�t � Rv � X� : j�j � ��1 bA2� + e�2 X� : j�j > ��1 bA2�=) X� : j�j > ��1 bA2� < 
t�t (2)Taking k = ��1 in Theorem 4, we getX� : j bA�j � 110 4�k2 bA2� < 1100 (3)Now we use the fa
t that Tv > 12 . Call � \good" if � �Mis nonempty, j�j � ��1 and j bA�j � 1104�k2 . We will showthat the 
ontribution of bad �'s to Tv is small. First of all,



sin
e the tables are folded, bA� = 0 when j�j is even (see[15℄). In parti
ular bA� = 0 when � is empty. Also������ X� : j�j>��1 bA�Ew[ bB��1(�)℄������ �s X� : j�j>��1 bA2� sX� ���Ew[ bB��1(�)℄���2 �s X� : j�j>��1 bA2� <p
t�twhere we used (2). Similarly we use (3), and show that the
ontribution of �'s su
h that j bA�j � 1104�k2 to Tv is at most110 . This implies that Tv when restri
ted to good �'s, stillremains at least 14 . We haveEw "X� bA2� bB2��1(�) 1j�j# � � Ew 24 X� good bA2� bB2��1(�)35(4)� � 11004�2k2Ew hP� good bB2��1(�)i� � 11004�2k2Ew � ��� P� good bA� bB��1(�)���2 �� � 11004�2k2 ���Ew hP� good bA� bB��1(�)i ���2� � 11004�2k2 116The expression on the se
ond-last line is just Tv restri
tedto good �'s whi
h we showed to be at least 14 . Note that weare assuming that v is good itself, whi
h holds with proba-bility 12 .Now we de�ne a labeling for the Label Cover instan
e asfollows : For a good vertex v 2 V , pi
k � with probabilitybA2�, pi
k a random element of � and de�ne it to be the labelof v. For any vertex w 2 W , pi
k � with probability bB2� ,pi
k a random element of � and de�ne it to be the label ofw.It is easy to see that the weight of the edges satis�ed bythis labeling equals the expression (4). Label of v will bede�ned to be a random element x 2 � and the label of wwill be de�ned to be a random element y 2 ��1(�). Withprobability 1j�j it holds that �(y) = x and the edge (v; w) inthe Label Cover instan
e is satis�ed.Sin
e the expression (4) is at least 
(�4�2k2), we get a la-belling that satis�es edges of total weight 
(�4�2k2 ). How-ever this 
ontradi
ts the fa
t that OPT (L) � Æ if Æ was 
ho-sen suÆ
iently small (see the Unique Games Conje
ture).This shows that the soundness is at most 1 � 18 
t�t wheret > 12 is arbitrary, proving Theorem 3.Remark : A simple gadget (x� y = 0 7! x _ y; x _ y)redu
es 2-Linear-Equations to 2-SAT and implies a (1 ��; 1� �t) gap for 2-SAT for any t > 12 .
4. HARDNESS OF THE PREDICATE NOT-

ALL-EQUAL(A,B,C), A,B,C 2 GF (3)In this se
tion we will show hardness of the predi
ateNot-all-equal(a,b,
) over GF (3). This predi
ate is TRUEi� a; b; 
 do not all have the same value. We will prove that

Theorem 5. If the Unique Games Conje
ture is true,then the following holds : for a 
onstraint satisfa
tion prob-lem with all 
onstraints of the form Not-all-equal(a; b; 
) andthe variables from a ternary alphabet, it is NP-hard to deter-mine whether there exists an assignment that satis�es 1��fra
tion of the 
onstraints or no assignment satis�es morethan 89 + � fra
tion of the 
onstraints, where � > 0 is anarbitrarily small 
onsatnt.We will 
onstru
t a PCP that reads 3 symbols from aproof over ternary alphabet, a

epts i� the 3 symbols arenot all equal, has 
ompleteness 1� � and soundness 89 + �.We use Long Code over GF (3) on the set of labels M .Su
h a 
ode is indexed by all fun
tions f : M ! f1; !; !2gwhere ! is the 
ube root of unity. The Long Code A ofa 2M is de�ned as A(f) = f(a). The Fourier expansion inthis setting isA(f) =X� bA���(f) where ��(f) = Yx2M f(x)�(x)and � ranges over all fun
tions � :M ! GF (3). The Fourier
oeÆ
ient bA� is given bybA� = 13jMj Xf :M!f1;!;!2gA(f)��(f)Remark : In a 
orre
t Long 
ode A, we will have A(!f) =!A(f) and we may want to for
e this 
ondition on every(supposed) Long 
ode in the proof. This is 
alled \folding"in the PCP literature. However the spe
i�
 nature of thepredi
ate Not-all-equal(a; b; 
) forbids us from doing so andthis makes the analysis more diÆ
ult. See [13℄ for a detaileddis
ussion on this issue.The veri�er is given a unique Label Cover instan
e L guar-anteed by the Unique Games Conje
ture. It expe
ts as aproof the Long 
odes of the labels of all the verti
es in L.The veri�er works as follows :1. Pi
k a vertex v 2 V with probability pv.2. Pi
k 3 verti
es w1; w2; w3, ea
h of them independentlyfrom the distribution 	v. Let A;B;C be the (sup-posed) long 
odes of the (supposed) labels of the ver-ti
es w1; w2; w3 respe
tively. Let � = �vw1 , �0 = �vw2 ,�00 = �vw3 be the respe
tive proje
tions.3. Pi
k two random fun
tions f; g : M ! f1; !; !2g.4. Pi
k a fun
tion � : M ! f!; !2g by de�ning for ea
hx 2 M , �(x) = ! with probability 12 and �(x) = !2with probability 12 .5. A

ept i�Not-all-equal(A(fÆ�); B(gÆ�0); C(((fg)Æ�00)��))The 
ompleteness is 1�3� where 1�� is the 
ompletenessof the outer label 
over instan
e. The veri�er pi
ks 3 edgesand ea
h of them 
an be an unsatis�ed edge of the LabelCover instan
e with probability �. If all the 3 edges aresatis�ed, A;B;C are the long 
odes of some a; b; 
 2 Mrespe
tively and �(a) = �0(b) = �00(
) = d for some d 2M .ThusA(fÆ�) = f(�(a)) = f(d); B(gÆ�0) = g(�0(b)) = g(d) and



C((fg) Æ �00 � �) = (fg)(�00(
)) � �(
) = f(d)g(d)�(
)and not all three 
an be equal sin
e �() takes values only inthe set f!; !2g.
4.1 Soundness AnalysisThe following lemma is easily proven.Lemma 1. Let x; y; z 2 f1; !; !2g. Then the expression1� 19 Xr1;r2;r32GF (3)r1+r2+r3=0 xr1yr2zr3equals 0 if x = y = z and 1 otherwise.From this lemma it is 
lear that the expression1� 19 Xr1;r2;r32GF (3)r1+r2+r3=0 A(f Æ �)r1B(g Æ �0)r2C((fg) Æ �00 � �)r3equals 1 if the test a

epts and 0 otherwise. Hen
e the a

ep-tan
e probability of the veri�er is equal to the expe
tationof this expression over the 
hoi
e of (v; w1; w2; w3; f; g; �).Let us 
onsider this expe
tation for a �xed v. We dividethe terms in the summation into 3 
ases and 
onsider theexpe
tation of ea
h term separately : (a) r1 = r2 = r3 = 0(b) (r1; r2; r3) take values (0; 1;�1) in some order (
) r1 =r2 = r3 = 1 (d) r1 = r2 = r3 = �1.The 
ase (a) is trivial, the expe
tation being 1 in this 
ase.In 
ase (b), lets say (r1; r2; r3) = (1;�1; 0), the other 
asesbeing similar. The expe
tation isEw1;w2;f;g[A(f Æ �)B(g Æ �0)℄Sin
e �; �0 are bije
tions, f Æ � and g Æ �0 are distributedidenti
ally as f and g respe
tively. Hen
e the expe
tation isEw1;w2;f;g [A(f)B(g)℄ = Ew1;f [A(f)℄ �Ew2;g[B(g)℄For a �xed v, let � = Ew;f [A(f)℄ = Ew[ bA0℄. Sin
e w1; w2are identi
ally distributed, the above expe
tation is same asEw;f [A(f)℄ �Ew;f [A(f)℄ = jEw;f [A(f)℄j2 = j�j2Now 
onsider 
ase (
). The expe
tation isE[A(f Æ �)B(g Æ �0)C((fg) Æ �00 � �)℄Substituting Fourier expansions of A;B;C, we getEh X�;�;
 bA� bB� bC
 � ��(f Æ �) ��(g Æ �0) �
((fg) Æ �00 � �) iNote that��(fÆ�) = Yx2M f(�(x))�(x) = Yy2M f(y)�(��1(y)) = ��(�)(f)where we de�ne, by an abuse of notation, �(�) to be thefun
tion � Æ ��1. The previous expression redu
es toEh X�;�;
 bA� bB� bC
 � ��(�)��00(
)(f) ��0(�)��00(
)(g)�
(�)iTaking expe
tation over f; g, we see that the terms in thissummation are zero unless �(�) = �0(�) = �00(
). Also itis easy to 
he
k that E�[��(
)(�)℄ = (�12 )j
j where for afun
tion 
 : M ! GF (3) we de�ne j
j to be the number ofx 2M su
h that 
(x) 6= 0. Thus the expe
tation redu
es toEw1;w2;w3h X�(�)=�0(�)=�00(
) bA� bB� bC
(�12)j
ji (5)

We will show that if the terms with 
 6= 0 are not small,one 
an extra
t labels for the Label Cover instan
e L givinga \good" value of OPT (L). Lets assumeÆ � ������ Ev;w1;w2;w3h X�(�)=�0(�)=�00(
)6=0 bA� bB� bC
(�12)j
ji ������Applying Cau
hy-S
hwartz, this expression 
an be boundedbyEv;w1;w2;w3hsX� j bA�j2s X�0(�)=�00(
)6=0 j bB� j2j bC
 j2(14 )j
jiimplying thatÆ2 � Ev;w2;w3h X�0(�)=�00(
)6=0 j bB� j2j bC
 j2 1j
jiNow we 
an de�ne labels as follows. For a vertex w3 2 W ,pi
k 
 with probability j bC
 j2, pi
k a random y 2 M with
(y) 6= 0 and de�ne it to be the label of w3. For a vertexv 2 V , pi
k a random w2 2 	v, pi
k � with probabilityj bB� j2, pi
k a random x 2M with �(x) 6= 0 and de�ne �0(x)to be the label of v. It is easy to see that this gives a labellingwith OPT (L) � Æ2.Hen
e we 
an 
hoose L su
h that OPT (L) is suÆ
ientlysmall and ensure that the terms with 
 6= 0 in (5) are arbi-trarily small. The term with 
 = 0 
ontributesEw1;w2;w3 [ bA0 bB0 bC0℄ = (Ew[ bA0℄)3 = �3The 
ase (d) is just the 
omplex 
onjugate of 
ase (
) andit 
ontributes �3 and terms whi
h 
an be assumed to be arbi-trarily small. Thus we 
an write the a

eptan
e probabilityas Pr[A

℄ = 1� 19 � 69Ev[j�j2℄� 19Ev[�3 + �3℄+ (Terms with arbitrarily small magnitude )Sin
e j�j � 1, this probability is maximized when � = 0(the reader familiar with this area will re
ognize that thismeans the proof better 
ontain folded tables. If tables arenot folded, it 
an only de
rease the a

eptan
e probability).Hen
e a

eptan
e probability 
an be bounded by 89 + � forarbitrarily small � > 0.
4.2 Hardness of 3-uniform Hypergraph Semi-

coloringWe show that the Unique Games Conje
ture implies thatit is NP-hard to semi-
olor a 3-uniform hypergraph with
onstantly many 
olors when the hypergraph is given to besemi-
olorable with 3 
olors. This is proved by 
ombiningthe te
hniques in the previous se
tion with the idea of 
ov-ering 
omplexity of PCPs introdu
ed by Guruswami et al[13℄. We skip the proof.
5. PROOF OF THEOREM 1In this se
tion we prove Theorem 1. Instead of unique 2-prover games, we work in a more general setting of 
onstraintsatisfa
tion problems with uniqueness property.Problem : We are given a set X of n variables whi
htake values from the set [k℄ = f1; 2; : : : ; kg. For every pair



(u; v) of variables, there is a \
onstraint" whi
h is a bije
-tion �uv : [k℄ ! [k℄. This 
onstraint has a weight wuv withP(u;v) wuv = 1.For an assignment A : X ! [k℄ to the variables, a 
on-straint on the pair (u; v) is satis�ed, if �uv(A(u)) = A(v).The goal is to �nd an assignment that maximizes the totalweight of satis�ed 
onstraints.Algorithm : We use a semide�nite program from Feige andLovasz's paper [10℄ and augment it with a suitable roundingpro
edure. Let us �rst formulate the problem as a quadrati
integer program. For every variable u 2 X, let u1; u2; : : : ; ukbe auxiliary variables taking 0-1 values. Pla
e the following
onstraints :u21 + u22 + : : : u2k = 1 8 u 2 X (6)uiuj = 0 8 u 2 X and 8 i 6= j (7)We intend that if an assignment assigns the value i0 2 [k℄ toa variable u, then ui0 = 1 and ui = 0 8i 6= i0. This wouldsatisfy the 
onstraints (6), (7). These 
onstraints imply thatfor every pair (u; v) of variablesuivj � 0 8 i; j (8)X1�i;j�k uivj = 1 (9)It is easy to see that the goal is to maximize the followingfun
tion subje
ted to the above 
onstraints.X(u;v) wuv(u1v�(1) + u2v�(2) + : : : ukv�(k)) where � = �uv (10)Now we 
onsider the semide�nite programming relaxationof the problem. We allow the variables (u1; : : : ; uk) to beve
tors in a high dimensional spa
e (in kn-dimensional spa
eto be pre
ise) and the 
onstraints (6)-(9) repla
ed by the
onstraints :~u1 � ~u1 + ~u2 � ~u2 + : : :+ ~uk � ~uk = 1 8 u 2 X (11)~ui � ~uj = 0 8 u 2 X 8 i 6= j (12)~ui � ~vj � 0 8 u; v 2 X 8 i; j (13)X1�i;j�k ~ui � ~vj = 1 8 u; v 2 X (14)The goal is to maximize the following fun
tion subje
ted tothe above 
onstraints :X(u;v)wuv(~u1 � ~v�(1) + : : :+ ~uk � ~v�(k)) where � = �uv (15)Observation : In any feasible solution of the SDP, for anytwo variables u; v, we have from the 
onstraints (11), (12)and (14),k kXi=1 ~uik = k kXj=1 ~vjk = 1 and ( kXi=1 ~ui)�( kXj=1 ~vj) = 1This implies that Pki=1 ~ui = Pkj=1 ~vj . We denote ~s =Pki=1 ~ui whi
h is the same for all variables u and k~sk = 1.We solve the semide�nite program and 
onstru
t an as-signment using the following rounding pro
edure.� Choose a ve
tor ~r from the normal distribution, i.e.
hoose every 
oordinate of ~r from the distributionN(0; 1)independently.

� By repla
ing ~r by �~r if needed, assume that ~r � ~s � 0.� Constru
t the following assignment A : for every vari-able u, letA(u) = i0 where ~r � ~ui0 = max1�i�k(~r � ~ui)We prove the following theorem in Appendix A whi
h issuÆ
ient to prove Theorem 1.Theorem 6. If there exists an assignment that satis�es
onstraints with total weight 1� �, then the above algorithmprodu
es an assignment that satis�es 
onstraints with ex-pe
ted weight 1�O(k2�1=5qlog( 1� )).
6. CONCLUSIONIt seems quite diÆ
ult to prove (or disprove) the UniqueGames Conje
ture.Proving the 
onje
ture is equivalent to 
onstru
ting a PCPthat reads 2 symbols and a

epts i� these symbols satisfy abije
tive 
onstraint. However the 
urrent tools appear quiteweak for 
onstru
ting PCPs that read 2 symbols. Paral-lel repetition of a unique game is a unique game and onemight hope to amplify the soundness by parallel repetition.However we do not have a hard instan
e of a unique gameto begin with. Theorem 1 shows that if the Unique GamesConje
ture is true, the domain size k(�; Æ) � 1�1=10 , thus thedomain size would play a very 
ru
ial role.On the other hand, disproving the 
onje
ture may requirean algorithm that gives a theorem similar to Theorem 1 andwhose performan
e is independent of the domain size k.A less ambitious goal (than proving the Unique GamesConje
ture) would be to show that the value of a unique2-prover game with domain size k is hard to approximatewithin fa
tor f(k) where f(k) ! 1 as k ! 1. The onlyknown results are 
onstant fa
tor hardness for 2-Linear-Equations mod 2 by H�astad [15℄ and for 2-Linear-Equationsmod p by Andersson et al [2℄.
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APPENDIX

A. PROOF OF THEOREM 6Let �uv =P1�i�k ~ui � ~v�(i); � = �uv whi
h is the part ofthe SDP obje
tive fun
tion (15) 
orresponding to the 
on-straint on (u; v). By the hypothesis, the SDP has a solutionwith value at least 1 � � implying that there exist ve
tors(~ui)u2X;i2[k℄ satisfyingX(u;v)wuv�uv � 1� �=) X�uv�1� 12 �4=5 wuv � 1� 2�1=5Fix any (u; v) with �uv � 1� 12 �4=5. We will show that withprobability 1 � O(k2�1=5qlog( 1� )), �uv(A(u)) = A(v). Let� = �uv for simpli
ity. The intuition behind the proof issimple : if �uv = 1, the SDP 
onstraints (11-14) imply that~ui = ~v�(i) 8 i 2 [k℄ (this 
an be seen by substituting � = 0in Lemma 2). Thus for any ve
tor ~r, if ~r � ~ui is maximizedfor index i0, then ~r � ~vj is maximized at index �(i0). Hen
ethe rounding pro
edure will assign, A(u) = i0; and A(v) =�(i0) satisfying the 
onstraint.We however have �uv � 1� 12 �4=5 and it takes some e�ortto translate the intuition into a rigorous proof. We pro
eedto prove several simple lemmas.Lemma 2. k~ui � ~v�(i)k � �2=5 8 i 2 [k℄.Proof.1� 12 �4=5 �Xi ~ui � ~v�(i) �Xi k~uikk~v�(i)k�Xi k~uik2 + k~v�(i)k22 = 1=) k~uik2 + k~v�(i)k22 � ~ui � ~v�(i) � 12 �4=5 8 i=) k~ui � ~v�(i)k2 � �4=5 8 iLemma 3. If Y is distributed as N(0; 1),Pr [jY j > 
℄ � e�
22Proof. Standard inequality.Lemma 4. With probability 1� O(k2�1=5qlog( 1� )), 
om-ponents of ~r along the dire
tions of ve
torsf~uigi2[k℄; f~ui � ~ujgi6=j ; f~ui � ~v�(i)gi2[k℄have magnitude in the rangeh �1=5rlog(1� ); rlog(1� ) i



Proof. This follows from the fa
t that ~r is distributedin a spheri
ally symmetri
 manner and hen
e its 
omponentalong any dire
tion is distributed as N(0; 1). Hen
e for anyunit ve
tor ~t,Pr " j~r � ~tj < �1=5rlog(1� ) # < 2�1=5rlog(1� )Pr " j~r � ~tj >rlog(1� ) # < p�where the �rst inequality is trivial and the se
ond followsfrom Lemma 3. Now we take a union bound along the O(k2)dire
tions spe
i�ed in the statement of this lemma.Lemma 5. With probability 1�10k�1=5qlog( 1� ), the 
om-ponent of ~r along ~s, that is j~r �~sj, is at least 5k�1=5qlog( 1� ).Proof. Trivial.Thus ex
ept with probability 1�O(k2�1=5qlog( 1� )), we 
anassume that ~r satis�es hypothesis of Lemma 4 and Lemma5. Under this assumption, we prove the following 3 lemmas.Let i0 2 [k℄ be su
h that ~r � ~ui0 = max1�i�k ~r � ~ui.Lemma 6. k~ui0k � 5�1=5.Proof. (Pki=1 ~ui) � ~r = ~s � ~r � 5k�1=5qlog( 1� ) by Lemma5 and i0 is the index that maximizes ~r � ~ui. Hen
e ~r � ~ui0 �5�1=5qlog( 1� ). But by Lemma 4, the 
omponent of ~r along~ui0 has magnitude at most qlog( 1� ). This implies thatk~ui0k � 5�1=5.Lemma 7. 8 j 6= i0; ~r � ~uj � ~r � ~ui0 � 5�2=5qlog( 1� )Proof.~r � ~ui0 � ~r � ~uj = j~r � ~ui0 � ~r � ~uj j= j~r � (~ui0 � ~uj)j� k~ui0 � ~ujk �1=5qlog( 1� ) by Lemma 4� k~ui0k �1=5qlog( 1� ) Sin
e ~ui0 ? ~uj� 5�2=5qlog( 1� ) by Lemma 6Lemma 8. 8 i; j~r � ~ui � ~r � ~v�(i)j � �2=5qlog( 1� )Proof.j~r � ~ui � ~r � ~v�(i)j = j~r � (~ui � ~v�(i))j� qlog( 1� ) k~ui � ~v�(i)k by Lemma 4� qlog( 1� )�2=5 by Lemma 2

Now we will show that~r � ~v�(i0) = max1�j�k(~r � ~vj) (16)This would imply that the assignment A given by the round-ing pro
edure assigns A(u) = i0; A(v) = �(i0) and the 
on-straint on the pair (u; v) is satis�ed.Let j 6= i0 be any index. By Lemma 8 and Lemma 7,~r � ~v�(j) � ~r � ~uj + �2=5rlog(1� ) � ~r � ~ui0 � 4�2=5rlog(1� )Also by Lemma (8) we have~r � ~v�(i0) � ~r � ~ui0 � �2=5rlog(1� )It follows that ~r � ~v�(i0) > ~r � ~v�(j) 8 j 6= i0�nishing the proof of (16) and Theorem 6.


