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Abstract

We construct a new polynomial commitment scheme for univariate and multivariate
polynomials over finite fields, with logarithmic size evaluation proofs and verification
time, measured in the number of coefficients of the polynomial. The underlying tech-
nique is a Diophantine Argument of Knowledge (DARK), leveraging integer representa-
tions of polynomials and groups of unknown order. Security is shown from the strong
RSA and the adaptive root assumptions. Moreover, the scheme does not require a
trusted setup if instantiated with class groups. We apply this new cryptographic com-
piler to a restricted class of algebraic linear IOPs, which we call Polynomial IOPs,
to obtain doubly-efficient public-coin interactive arguments of knowledge for any NP
relation with succinct communication. With linear preprocessing, the online verifier’s
work is logarithmic in the circuit complexity of the relation.

There are many existing examples of Polynomial IOPs (PIOPs) dating back to
the first PCP (BFLS, STOC’91). We present a generic compilation of any PIOP
using our DARK polynomial commitment scheme. In particular, compiling the PIOP
from PLONK (GWC, ePrint’19), an improvement on Sonic (MBKM, CCS’19), yields a
public-coin interactive argument with quasi-linear preprocessing, quasi-linear (online)
prover time, logarithmic communication, and logarithmic (online) verification time in
the circuit size. Applying Fiat-Shamir results in a SNARK, which we call Supersonic.

Supersonic is also concretely efficient with 10KB proofs and under 100ms verifi-
cation time for circuits with 1 million gates (estimated for 120-bit security). Most
importantly, this SNARK is transparent : it does not require a trusted setup. We ob-
tain zk-SNARKs by applying a hiding variant of our polynomial commitment scheme
with zero-knowledge evaluations. Supersonic is the first complete zk-SNARK system
that has both a practical prover time as well as asymptotically logarithmic proof size
and verification time.

1 Introduction

Since the landmark discoveries of interactive proofs (IPs) [GMR85] and probabilistically
checkable proofs (PCPs) [BFLS91, ALM+92] in the 90s, there has been tremendous de-
velopment in the area of proof systems whereby a prover establishes the correct performance
of an arbitrary computation in a way that can be verified much more efficiently than per-
forming the computation itself. Such proof systems are succinct if they also have a low
communication cost between the prover and the verifier, i.e., the transcript of the protocol
is much smaller than a witness to the computation. There are also zero knowledge variants
of these efficient proof systems, beginning with ZK-IPs [BGG+88] and ZK-PCPs [Kil92], in
which the computation may involve secret information and the prover demonstrates correct
performance without leaking the secrets. As a toy example, one could prove that a chess
position is winning for white without actually revealing the winning moves themselves. Gen-
eral purpose zero-knowledge proofs [GMW91] can be very expensive in terms of proof size
and verification time even for computations that would be easy to perform given the secret
inputs (e.g., by proving that one decrypted a file properly without leaking the key or the
plaintext). The same techniques that are used to build efficient proof systems for expensive
computations are also useful for making zero-knowledge proofs more practical.
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In recent years, there has been a surge of industry interest in verifiable outsourced compu-
tation [WB15] (such as trustless cloud computing) as well as zero-knowledge proofs. In par-
ticular, blockchains use efficient zero-knowledge proofs as a solution for balancing privacy and
publicly-verifiable integrity: examples include anonymous transactions in ZCash [BCG+14,
Zca, HBHW19] and verifying Ethereum smart contracts over private inputs [Ebe]. In these
applications, zero-knowledge proofs are posted to the blockchain ledger as a part of transac-
tions and nodes must verify many proofs in the span of a short period of time. Therefore,
succinctness and fast verification are necessary properties for the deployment of such proof
systems. Verifiable computation is also being explored as a scaling solution for blockhain
transactions [But16], and even as a way to entirely eliminate the need for maintaining his-
torical blockchain data [Lab18].

Following this pragmatic interest, there has also been a surge of research focused on
obtaining proof systems with better concrete efficiency characteristics: succinctness (the
proof size is sublinear in the original computation length T ), non-interactivity (the proof is
a single message), prover-scalability (proof generation time scales linearly or quasi-linearly in
T ), and verifier-scalability (verification time is sublinear in T ). Proof systems that achieve all
of these properties for general NP statements are called SNARGs (“succinct non-interactive
arguments”). The proof is called an argument when it is only sound assuming the prover
is computationally bounded, i.e., computationally sound as opposed to statistically sound.
Succinct statistically sound proofs are unlikely to exist [GVW02, Wee05].

Currently, there are numerous constructions that achieve different tradeoffs between proof
size, proof time, and verification time, but also under different trust models as well as
cryptographic assumptions. Some constructions also achieve better efficiency by relying on
a preprocessing model in which a one-time expensive setup procedure is performed in order
to generate a compact verification key VK, which is later used to verify proof instances
efficiently. Somewhat unfortunately, the best performing proof systems to date (considering
proof size and verification time) require a trusted preprocessing. These are the pairing-based
SNARKs extending from GGPR [GGPR13, SBV+13, BCI+13, BCG+13, Gro16], which have
been implemented in numerous libraries [BCG+13, Bow16], and even deployed in live systems
such as the ZCash [Zca] cryptocurrency. The trusted setup can be performed via multi-party
computation (MPC) by a committee of parties, such that trust in only one of the parties is
sufficient. This has been done on two occasions for the ZCash blockchain, involving elaborate
“ceremonies” to engender public trust in the process [Wil16].

A proof system is called transparent if it does not involve any trusted setup. Re-
cent progress has yielded transparent proof systems for special types of computations: zk-
STARKs [BBHR19] generate zero-knowledge proofs of size O(log2 T ) for a uniform computa-
tion1, and the GKR protocol produces interactive proofs with communication O(d log T ) for
computations expressed as low-depth circuits of total size T and depth d [GKR08]. In both
cases, non-interactivity can be achieved in the random oracle model with the Fiat-Shamir
heuristic [FS87, CCH+19]. These transparent proof systems perform significantly worse
than SNARKs based on preprocessing. For computations expressed as an arithmetic circuit
of 1-million gates, STARKs [BBHR19] report a proof size of 600KB, whereas preprocess-
ing SNARKs achieve 200 bytes [Gro16]. Bulletproofs [BBB+18, BCC+16a] is a transparent
zero-knowledge proof system whose proofs are much smaller than those of STARK, but these
proofs have a verification time that scales linearly in the size of the circuit; for an arithmetic
circuit of one million gates the verification time is close to 1 minute, more than 1,000 times
more expensive than verifying a STARK proof for the same computation.

Another thread of research has produced proof systems that remove trust from the circuit
preprocessing step, and instead have a universal (trusted) setup: a one-time trusted setup
that can be reused for any computation [MBKM19, XZZ+19, GWC19]. All of these systems
build SNARKs by combining an underlying reduction of circuit satisfiability to probabilistic
testing of polynomials (with degree at most linear in the circuit size) together with polynomial
commitment schemes. In a polynomial commitment scheme, a prover commits to a µ-variate
polynomial f over F of total degree at most d with a message that is much smaller than
sending all the coefficients of f . The prover can later produce a non-interactive argument
that f(z) = y for arbitrary z ∈ Fµ and y ∈ F. The trusted portion of the universal SNARK
is entirely confined to the polynomial commitment scheme’s setup. These constructions use

1A uniform computation is expressed as a RAM program P and a time bound T on the running time of
the program. A uniform computation depends on the size of P ’s description but not on the time bound T .
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variants of the Kate et al. commitment scheme for univariate polynomials [KZG10], which
requires a trusted setup.

1.1 Summary of contributions

Following the observations of the recent universal SNARK constructions [GWC19, MBKM19,
XZZ+19], SNARKs can be built from polynomial commitment schemes where all the trust
is confined to the setup of the commitment scheme. The main technical contribution of our
work is thus a new polynomial commitment scheme without trusted setup (i.e., a transpar-
ent polynomial commitment scheme), which we can use to construct transparent SNARKs.
The observation that transparent polynomial commitments imply transparent SNARKs was
also implicit in the recent works that build transparent SNARKs from multi-round classi-
cal PCPs, and specifically interactive oracle proofs of proximity (IOPPs) [BBHR18]. As a
secondary contribution, we present a framework that unifies all existing approaches to con-
structing SNARKs from polynomial commitments using the language of interactive oracle
proofs (IOPs) [RRR16, BCS16]. We view polynomial commitment schemes as a compiler
for Polynomial IOPs, and re-characterize the results of prior works as providing a variety of
Polynomial IOPs for NP.

New polynomial commitment scheme We construct a new polynomial commitment
scheme for µ-multivariate polynomials of total degree d with optional zero-knowledge argu-
ments of knowledge for correct evaluation that have O(µ log d) size proofs and are verifiable
in O(µ log d) time. The commitment scheme requires a group of unknown order: two can-
didate instantiations are RSA groups and class groups of an imaginary quadratic order.
Using RSA groups, we can apply the scheme to obtain universal preprocessing SNARKs
with constant-size setup parameters, as opposed to the linear-size parameters from previous
attempts. Using class groups, we can remove the trusted setup from trusted-setup SNARKs
altogether, thereby making them transparent. Our polynomial commitment scheme lever-
ages the power of integer commitments and Diophantine Arguments of Knowledge [Lip03];
accordingly, we classify this tool (and others of its kind) as a DARK proof system.

Polynomial IOP formalism All SNARK constructions can be viewed as combining an
underlying information-theoretic statistically-sound protocol with a “cryptographic com-
piler” that transforms the underlying protocol into a succinct argument at the cost of
computational soundness. We define a Polynomial IOP as a refinement of algebraic lin-
ear IOPs [IKO07, BCI+13, BBC+19], where in each round of interaction the prover provides
the verifier with oracle access to a multivariate polynomial function of bounded degree. The
verifier may then query this oracle to evaluate the polynomial on arbitrary points of its
choice. The existing universal and transparent SNARK constructions provide a variety of
statistically-sound Polynomial IOPs for circuit satisfiability (or RAM programs, in the case
of STARKs); these are then cryptographically compiled using some form of a polynomial
commitment, typically using Merkle trees or pairing groups.

The linear PCPs underlying GGPR and its successors (i.e., based on QAPs and R1CS)
can also be transformed into Polynomial IOPs.2 This transformation helps highlight the fun-
damental paradigm shift between constructions of non-transparent non-universal SNARKs
that combine linear PCPs and linear-only encodings versus the more recent ones based on
polynomial commitments: given the lack of efficient3 linear function commitment schemes,
the compilation of linear PCPs necessarily involves a trusted preprocessing step that pres-
elects the verifier’s linear PCP queries, and hides them inside a linear-only encoding. This
linear-only encoding forces the prover to homomorphically output an (encoded) linear tran-
formation of the query, upon which the verifer performs several homomorphic checks (e.g.,
using pairings). The shift towards Polynomial IOPs, which can be compiled more directly
with efficient polynomial commitments, avoids the involvement of a trusted party to place
hidden queries in the preprocessing. The only potential need for non-transparent setup is in
the instantiation of polynomial commitment itself.

2This observation was also implicit in the paper by Ben-Sasson et al. introducing the system
Aurora [BCR+19].

3Lai and Malavota [LM19] provide a n-dimensional linear-map commitment based on bilinear pairings,
extending techniques in functional commitments [LRY16], but verifying claimed evaluations of the committed
function on query points takes O(n).
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The precise definition of Polynomial IOPs as a central and standalone notion raises the
question about its exact relation to other IOP notions. We present a univariate Polynomial
IOP for extracting an indicated coefficient of a polynomial. Furthermore, we present a
univariate Polynomial IOP for proving that the inner product between the coefficient vectors
of two polynomials equals a given value. This proof system is of independent interest.
Together with an offline pre-processing phase during which the correctness of a multivariate
polynomial is ascertained, these two tools enable us to show that any algebraic linear IOP
can be realized with a multivariate Polynomial IOP.

Polynomial IOP compiler We present a generic compilation of any public-coin Poly-
nomial IOP into a doubly-efficient public-coin interactive argument of knowledge using an
abstract polynomial commitment scheme. We prove that if the commitment scheme’s evalu-
ation protocol has witness-extended emulation, then the compiled interactive argument has
this knowledge property as well. If the commitment scheme is hiding and the evaluation is
honest-verifier zero knowledge (HVZK), then the compiled interactive argument is HVZK
as well. Finally, public-coin interactive arguments may be cryptographically compiled into
SNARKs using the Fiat-Shamir heuristic.4

New SNARK without Trusted Setup The main practical outcome of this work is a
new transparent proof system (Supersonic) for computations represented as arbitrary arith-
metic circuits, obtained by cryptographically compiling the Polynomial IOPs underlying
Sonic [MBKM19], PLONK [GWC19], and Marlin[CHM+19] using the DARK polynomial com-
mitment scheme. Supersonic improves the proof size by an order of magnitude over STARKs
without compromising on verification time. For one million gates, Supersonic’s proofs are just
7.8KB and take around 75ms to verify. Using the notation Oλ(·) to hide multiplicative fac-
tors dependent on the security parameter λ, STARKs have size and verification complexity
Oλ(log2 T ) whereas Supersonic has size and verification complexity Oλ(log T ). (The addi-
tional multiplicative factors dependent on λ are actually better for Supersonic as well.) As a
caveat, while the prover time in Supersonic is asymptotically on par with STARKs (i.e., quasi-
linear in T ), the concrete efficiency is much worse due to the use of heavy-weight “crypto
operations” over 1200 bit class group elements in contrast to the light-weight FFTs and hash
functions in STARKs. Furthermore, Supersonic is not quantum-secure due to its reliance on
groups of unknown order, whereas STARKs are a candidate quantum-secure SNARK.

1.2 Related Work

Arguments based on hidden order groups Fujisaki and Okamoto [FO97] proposed
homomorphic integer commitment schemes based on the RSA group. They also provide
protocols to prove that a list of committed integers satisfy modular polynomial equations as
opening a commitment bit by bit. Damg̊ard and Fujisaki [DF02] patched the soundness proof
of that protocol and were the first to suggest using class groups of an imaginary quadratic
order as a candidate group of unknown order. Lipmaa drew the link between zero-knowledge
proofs constructed from integer commitment schemes and Diophantine complexity [Lip03],
coining the term Diophantine Arguments of Knowledge. Recently, Couteau et al. study
protocols derived from integer commitments specifically in the RSA group to reduce the
security assumptions needed; in the process they develop proofs for polynomial evaluation
modulo a prime π that is not initially known to the verifier, in addition to a proof showing
that an integer X lies in the range [a, b] by showing that 1 + 4(X − a)(b −X) decomposes
as the sum of 3 squares [CPP17].

Pietrzak [Pie19] developed an efficient proof of repeated squaring, i.e., proving that
x2T = y with O(log T ) proof size and verification time in order to build a conceptually
simple verifiable delay function [BBBF18] based on the RSW time-lock puzzle [RSW96].
Wesolowski [Wes19] improves on this result by proposing a single-round protocol to prove
correct repeated squaring in groups of unknown order with a constant size proof. Boneh et
al. [BBF19] observe that this protocol generalizes to arbitrary exponents (PoE) and develop
a proof of knowledge of an integer exponent (PoKE), as well as a zero-knowledge variant.

4Security for Fiat-Shamir has been proven secure in the random oracle model for constant-round pro-
tocols, for multi-round protocols satisfying soundness against restoration attacks, and in some cases using
correlation-intractable hash functions [FS87, BCS16, KRR17, CCRR18, CCH+19].
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They use both PoE and PoKE to construct efficient accumulators and vector commitment
schemes.

Transparent polynomial commitments Whaby et al. constructed a transparent poly-
nomial commitment scheme [WTs+18] for multilinear polynomials by combining a ma-
trix commitment of Bootle et al. [BCC+16b] with the inner-product argument of Bünz et
al. [BBB+18]. For polynomials of degree d it has commitments of size O(

√
d) and evaluation

arguments with O(
√
d) communication. Zhang et al. [ZXZS19] and Kattis et al. [KPV19]

recently and independently showed how to build a polynomial commitment from FRI (Fast
Reed Solomon IOPP) [BBHR18, BSGKS19] The commitment is transparent, has O(λ) size
commitments and evaluation arguments with O(log2 d) communication.

Polynomial IOP formalism In concurrent work Chiesa et al. [CHM+19] introduce an
information theoretic framework called algebraic holographic proofs (AHP). They also show
that with a polynomial commitment scheme an AHP can be compiled to a preprocessing
SNARK. The AHP framework is essentially equivalent to our Polynomial IOP framework.
In other concurrent work, Chiesa, Ojha, and Spooner show interesting connections between
algebraic holographic proofs and recursive proof composition. In the same work, the authors
develop an AHP-based transparent SNARK called Fractal [COS19].

2 Technical Overview

This technical overview provides an informal description of our key technical contribution:
a polynomial commitment scheme with logarithmic evaluation proofs and verification time.
The commitment scheme relies on four separate tools.

1. Integer encoding of polynomials Given a univariate polynomial f(X) ∈ Zp[X] the
prover first encodes the polynomial as an integer. Interpreting the coefficients of f(X) as
integers in5 [0, p), define f̂(X) to be the integer polynomial with these coefficients. The
prover computes f̂(q) ∈ Z for some large integer q ≥ p. This is an injective map from
polynomials with bounded coefficients to integers and is also decodable: the coefficients
of f(q) can be recovered from the base-q expansion of f̂(q). For example, suppose that
f(X) = 2X3 + 3X2 + 4X + 1 ∈ Z5[X] and q = 10. Then the integer f̂(10) = 2341 encodes
the polynomial f(X) because its coefficients appear in the decimal expansion of f̂(10).

Note that this encoding is also additively homomorphic, assuming that q is sufficiently
large. For example, let g(X) = 4X3 +1X2 +3 such that ĝ(10) = 4103. Then f̂(10)+ ĝ(10) =
6444 = (ĝ+ f̂)(10). The more homomorphic operations we want to permit, the larger q needs
to be. The encoding additionally permits multiplication by polynomials (f̂(q) · qk is equal
to the encoding of f(X) ·Xk).

2. Succint integer commitments The integer x← f̂(q) encoding a degree d polynomial
f(X) lies between qd and qd+1; in other words, its size is (d + 1) log2 q bits. The prover
commits to x using a succinct integer commitment scheme that is additively homomorphic.
Specifically, we use exponentiation in a group G of unknown order: the commitment is the
single group element gx for a base element g ∈ G specified in the setup. (Note that if the
order n of G is known then this is not an integer commitment; gx could be opened to any
integer x′ ≡ x mod n.)

3. Evaluation protocol The evaluation protocol is an interactive argument to convince
a verifier that C is an integer commitment to f̂(q) such that f(z) = y at a provided point
z ∈ Zp. The protocol must be evaluation binding : it should be infeasible for the prover to
succeed in arguing that f(z) = y and f(z) = y′ for y 6= y′. The protocol should also be an
argument of knowledge, which informally means that any prover who succeeds at any point
x must “know” the coefficients of the committed f .

As a warmup, we first describe how a prover can efficiently convince a verifier that C is a
commitment to an integer polynomial of degree at most d with bounded coefficients. Assume

5The choice to represent the coefficients by integers in [0, p) optimizes for clarity, but later on we will in
fact choose a balanced set of representatives, i.e., [−p−1

2 ; p−1
2 ].
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for now that d = 2k − 1. The protocol uses a recursive divide-and-combine strategy. In each
step we split f(X) into two degree d′ = bd

2
c polynomials fL(X) and fR(X). The left half

fL(X) contains the first d′+ 1 coefficients of f(X) and the right half fR(X) the second, such
that f(X) = fL(X) + Xd′+1fR(X). The prover now commits to fL and fR by computing

CL ← gf̂L(q) and CR ← gf̂R(q). The verifier checks the consistency of these commitments by

testing CLC
qd
′+1

R = C. The verifier then samples random α ∈ Zp and computes C′ ← CαLCR,

which is an integer commitment to αf̂L(q) + f̂R(q). The prover and verifier recurse on the
statement that C′ is a commitment to a polynomial of degree at most d′, thus halving the
“size” of the statement. After log2(d + 1) rounds, the commitment C′ exchanged between
prover and verifier is a commitment to a polynomial of degree 0, i.e., to a scalar c ∈ Zp. So
C′ is of the form gĉ where ĉ is some integer congruent to c modulo p. The prover sends ĉ to
the verifier directly. The verifier checks that gĉ = C′ and also that ĉ < q.6

To also show that f(z) = y at a provided point z, the prover additionally sends yL =
fL(z) mod p and yR = fR(z) mod p in each round. The verifier checks consistency with the
claim, i.e., that yL + zd

′+1yR = y, and also computes y′ ← αyL + yR mod p to proceed to the
next round. (The recursive claim is that C′ commits to f ′ such that f ′(z) = y′ mod p.) In
the final round of recursion, the value of the constant polynomial in z is the constant itself.
So in addition to testing C = gĉ and ĉ < q, the verifier also checks that ĉ ≡ y mod p.

4. Outsourcing exponentiation for efficiency The evaluation protocol requires com-
municating only 2 group elements and 2 field elements per round. However, the verifier needs

to check that CLC
(qd
′+1)

R = C, and näıvely performing the exponentiation requires Ω(d · log q)
work. To reduce this workload, we employ a recent technique for proofs of exponentiation
(PoE) in groups of unknown order due to Wesolowski [Wes19] in which the prover computes
this exponentiation and the verifier verifies it in essentially constant time. This outsourcing
reduces the total verifier time (i.e., of the entire protocol) to a quantity that is logarithmic
in d.

3 Preliminaries

3.1 Assumptions

The cryptographic compilers make extensive use of groups of unknown order, i.e., groups for
which the order cannot be computed efficiently. Concretely, we require groups for which two
specific hardness assumptions hold. First the Strong RSA Assumption [BP97] which roughly
states that it is hard to take arbitrary roots of random elements. Secondly, the much newer
Adaptive Root Assumption [Wes19] which is the dual of the Strong RSA Assumption and
states that it is hard to take random roots of arbitrary group elements. Both of these
assumptions hold in generic groups of unknown order [DK02, BBF19].

The r-strong RSA assumption as presented below is a parameterization on the Strong
RSA assumption. For r = 1, our definition is identical to the standard Strong RSA Assump-
tion. Higher values of r allows the adversary to take certain roots efficiently. For r = 2,
the adversary is efficiently able to take square roots. In class groups of imaginary quadratic
order taking square roots is easy. In rth order class groups taking rth roots is easy.

Assumption 1 (r-Strong RSA Assumption). The r-Strong RSA Assumption states that an
efficient adversary cannot compute `th roots for a given random group element, if ` not a
power of r. Specifically, it holds for GGen if for any probabilistic polynomial time adversary
A:

Pr

u` = g ∧ ` 6= rk, k ∈ N :

G← GGen(λ)

g
$← G

(u, `) ∈ G× N← A(G, g)

 ≤ negl(λ) .

Assumption 2 (Adaptive Root Assumption). The Adaptive Root Assumption holds for
GGen if there is no efficient adversary (A0,A1) that succeeds in the following task. First,
A0 outputs an element w ∈ G and some st. Then, a random prime ` in Primes(λ) is chosen

6In the full scheme, the verifier actually checks that ĉ < B for a bound B < q that depends on the field
size p and the polynomial’s maximum degree d
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and A1(`, st) outputs w1/` ∈ G. For all efficient (A0,A1):

Pr

u` = w 6= 1 :

G $← GGen(λ)

(w, st)
$← A0(G)

`
$← Primes(λ)

u← A1(`, st)

 ≤ negl(λ) .

Groups of unknown order. We consider two candidate groups of unknown order. Both
have their own upsides and downsides.

RSA Group. In the multiplicative group Z∗n of integers modulo a product n = p · q of
large primes p and q, computing the order of the group is as hard as factoring n. The
Adaptive Root Assumption does not hold for Z∗n because −1 ∈ Z∗n can be easily computed
and has order two. This can be resolved though by working instead in the quotient group
Z∗n/〈−1〉 ∼= QRn. The downside of using an RSA group, or more precisely, the group of
quadratic residues modulo an RSA modulus, is that this modulus cannot be generated in a
publicly verifiable way without exposing the order, and thus requires a trusted setup.

Class Group. The class group of an imaginary quadratic order is defined as the quotient
group of fractional ideals by principal ideals of an order of a number field Q(

√
∆), with ideal

multiplication. A class group C`(∆) is fully defined by its discriminant ∆, which needs to
satisfy only public constraints such as ∆ ≡ 1 mod 4 and −∆ must be prime. As a result,
∆ can be generated from public coins, thus obviating the need for a trusted setup. A
group element can be represented by two integers strictly smaller (in absolute value) than
−∆, which in turn is on the same order of magnitude as RSA group elements for a similar
security level. We refer the reader to Buchmann and Hamdy’s survey [BH01] and Straka’s
accessible blog post [Str19] for more details.

Working in C`(∆) does present an important difficulty: there is an efficient algorithm due
to Gauss to compute square roots of arbitrary elements [BS96], and by repetition, arbitrary
power of two roots. As a result, such class groups cannot be used to commit to integers
but rather to dyadic rationals, which are rational numbers whose denominator is a power
of two. Additionally, the standard Strong RSA Assumption is broken if computing square
roots is easy. We therefore give a weakening of the Strong RSA assumption, called 2-Strong-
RSA assumption, which is believed to still hold even if computing square roots is easy. The
2-Strong-RSA assumption assumes that computing non square roots is hard.

3.2 Interactive Arguments of Knowledge

Interactive arguments are interactive proofs [GMR85] in which security holds only against
a computationally bounded prover. In an interactive argument of knowledge for a relation
R, the prover convinces the verifier that it “knows” a witness w for a statement x such
that (x,w) ∈ R. In this paper, knowledge means that the argument has witness-extended
emulation.

Definition 1 (Interactive Argument). Let (P ,V) denote a pair of PPT interactive algorithms
and Setup denote a non-interactive setup algorithm that outputs public parameters pp given
a security parameter. Both P and V have access to pp. Let 〈P(pp, x, w),V(pp, x)〉 denote
the output of V on input x after its interaction with P , who has witness w. The triple
(Setup,P ,V) is called an argument for relation R if for all non-uniform PPT adversaries A
the following properties hold:

• Perfect Completeness.

Pr

[
(x,w) 6∈ R or

〈P(pp, x, w),V(pp, x)〉 = 1
:

pp← Setup(1λ)
(x,w)← A(pp)

]
= 1

• Computational soundness.

Pr

[
∀w (x,w) 6∈ R and

〈A(pp, x, st),V(pp, x)〉 = 1
:

pp← Setup(1λ)
(x, st)← A(pp)

]
≤ negl(λ)
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Definition 2 (Witness-extended emulation [GI08, Lin01]). Given a public-coin interactive
argument tuple (Setup,P ,V) and arbitrary prover algorithm P∗, let Record(P∗, pp, x, st)
denote the message transcript between P∗ and V on shared input x, initial prover state
st, and pp generated by Setup. Furthermore, let ERecord(P∗,pp,x,st) denote an machine E with
a transcript oracle for this interaction that can be rewound to any round and run again
on fresh verifier randomness. The tuple (Setup,P ,V) has witness-extended emulation if for
every deterministic polynomial time P∗ there exists an expected polynomial time emulator E
such that for all non-uniform polynomial time adversaries A the following condition holds:

Pr

A(tr) = 1 :
pp← Setup(1λ)
(x, st)← A(pp)

tr← Record(P∗, pp, x, st)

 ≈
Pr

 A(tr) = 1 and
tr accepting⇒ (x,w) ∈ R :

pp← Setup(1λ)
(x, st)← A(pp)

(tr, w)← ERecord(P∗,pp,x,st)(pp, x)


Generalized special soundness The following lemma due to Bootle et al. [BCC+16b] is
a helpful tool for showing that an interactive argument has witness-extended emulation. It
reduces the analysis to a generalized version of special soundness.

Consider a public-coin interactive argument with r rounds and verifier challenges sampled
from an exponentially large message space. An (n1, ...,nr)-tree of accepting transcripts
for the interactive argument on input x is defined as follows. The root of the tree is labelled
with the statement x. The tree has r depth. Each node at depth i < r has ni children, and
each child is labelled with a distinct value for the ith challenge. An edge from a parent node
to a child node is labelled with a message from prover to verifier. Every path from the root
to a leaf corresponds to an accepting transcript, hence there are

∏r
i=1 ni distinct accepting

transcripts overall.

Lemma 1 (Generalized Forking Lemma [BCC+16b]). Let (P ,V) be an r-round public-
coin interactive argument system for a relation R. Let T be a tree-finder algorithm that,
given access to a Record(· · · ) oracle with rewinding capability, runs in polynomial time and
outputs an (n1, . . . , nr)-tree of accepting transcripts with overwhelming probability. Let X
be a deterministic polynomial-time extractor algorithm that, given access to T ’s output,
outputs a witness w for the statement x with overwhelming probability over the coins of T .
Then (P ,V) has witness-extended emulation.

We note that our statement of the Generalized Forking Lemma differs from that of
Bootle et al., which does not mention a tree-finder T and which requires X have success
probability one. The restatement is necessary to take into account adversaries P∗ for which
the tree-finder T outputs a (n1, . . . , nr)-tree of accepting transcripts with negligible but
nonzero probability even when the statement x has no matching witness w. In such cases,
no extractor X with success probability one can exist. Intuitively, the reason why this
modification is okay is because the proof constructs an emulator E that uses X as a black
box. Since E runs in polynomial time, it cannot distinguish an always-correct X from an
overwhelmingly correct X . If X should fail, then E re-runs T and X .

Zero knowledge We recall the definition of honest verifier zero-knowledge (HVZK) for
interactive proofs. HVZK only considers simulating the view of a verifier that follows the
protocol honestly. The Fiat-Shamir transform compiles public-coin proofs that have HVZK
into non-interactive proofs that have statistical zero-knowledge (for malicious verifiers).

Definition 3 (HVZK for interactive arguments). Let View〈P(x,w),V(x)〉 denote the view of the
verifier in an interactive protocol described in Definition 1 on common input x and prover
witness input w. The interactive protocol has δ-statistical honest verifier zero-knowledge if
there exists a probabilistic polynomial time algorithm S such that for every (x,w) ∈ R, the
distribution S(x) is δ-close to View〈P(x,w),V(x)〉 (as distributions over the randomness of P
and V).

3.3 Commitment Schemes

In defining the syntax of the various protocols, we use the following convention with respect
to public values (known to both the prover and the verifier) and secret ones (known only
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to the prover). In any list of arguments or returned tuple (a, b, c; d, e) those variables listed
before the semicolon are public, and those variables listed after it are secret. When there is
no secret information, the semicolon is omitted.

Definition 4 (Commitment scheme). A commitment scheme Γ is a tuple Γ = (Setup,Commit,
Open) of PPT algorithms where:

• Setup(1λ)→ pp generates public parameters pp;

• Commit(pp;x) → (c; r) takes a secret message x and outputs a public commitment c
and (optionally) a secret opening hint r (which might or might not be the randomness
used in the computation).

• Open(pp, c, x, r) → b ∈ {0, 1} verifies the opening of commitment c to the message x
provided with the opening hint r.

A commitment scheme Γ is binding if for all PPT adversaries A:

Pr

b0 = b1 6= 0 ∧ x0 6= x1 :

pp← Setup(1λ)
(c, x0, x1, r0, r1)← A(pp)
b0 ← Open(pp, c, x0, r0)
b1 ← Open(pp, c, x1, r1)

 ≤ negl(λ)

We now extend the syntax to polynomial commitment schemes. The following definition
generalizes that of Kate et. al. [KZG10] to allow interactive evaluation proofs. It also
stipulates that the polynomial’s degree be an argument to the protocol, contrary to Kate et
al. where the degree is known and fixed.

Definition 5. (Polynomial commitment) A polynomial commitment scheme is a tuple of
protocols Γ = (Setup,Commit,Open,Eval) where (Setup, Commit,Open) is a binding com-
mitment scheme for a message space R[X] of polynomials over some ring R, and

• Eval(pp, c, z, y, d, µ; f(X)) → b ∈ {0, 1} is an interactive public-coin protocol between
a PPT prover P and verifier V . Both P and V have as input a commitment c, points
z, y ∈ R, and a degree d. The prover additionally knows the opening of c to a secret
polynomial f(X) ∈ R[X] with deg(f(X)) ≤ d. The protocol convinces the verifier that
f(z) = y. In a multivariate extension of polynomial commitments, the input µ > 1
indicates the number of variables in the committed polynomial and z ∈ Rµ.

A polynomial commitment scheme is correct if an honest committer can successfully
convince the verifier of any evaluation. Specifically, if the prover is honest then for all
polynomials f(X) ∈ R[X] and all points z ∈ R,

Pr

b = 1 :

pp← Setup(1λ)
(c; r)← Commit(pp, f(X))
y ← f(z)
d← deg(f(X))
b← Eval(pp, c, z, y, d; f(X), r)

 = 1 .

A polynomial commitment scheme is evaluation binding if no efficient adversary can
convince the verifier that the committed polynomial f(X) evaluates to different values y0 6=
y1 ∈ R in the same point z ∈ R. However, our applications require a stronger property
called knowledge soundness.

Knowledge soundness Any successful prover in the Eval protocol must know a polyno-
mial f(X) such that f(z) = y and c is a commitment to f(X). More formally, since Eval
is a public-coin interactive argument we define this knowledge property as a special case of
witness-extended emulation (Definition 2).

Define the following NP relation given pp← Setup(1λ):

REval(pp) =

{
〈(c, z, y, d), (f(X), r)〉 :

f ∈ R[X] and deg(f(X)) ≤ d and f(z) = y
and Open(pp, c, f(X), r) = 1

}
The correctness definition above implies that if Γ = (Setup,Commit,Open,Eval) is correct

then Eval is a correct interactive argument for REval(pp), with overwhelming probability over
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the randomness of Setup. We say that Γ has witness-extended emulation if Eval has
witness-extended emulation as an interactive argument for REval(pp).

It is easy to see that witness-extended emulation implies evaluation binding when the
Setup,Commit, and Open part of Γ form a binding commitment scheme. If the adversary
succeeds in Eval on both (c, z, y0, d0) and (c, z, y1, d1) for y0 6= y1 or d0 6= d1 then the emulator
obtains two distinct witnesses f(X) 6= f ′(X) such that c is a valid commitment to both.
This would contradict the binding property of the commitment scheme.

3.4 Proofs of Exponentiation

Wesolowski [Wes19] introduced a simple yet powerful proof of correct exponentiation (“PoE”)
in groups of unknown order. A prover can efficiently convince a verifier that a large expo-
nentiation in such a group was done correctly. For instance, the prover wishes to convince
the verifier that w = ux for known group elements u,w ∈ G and exponent x ∈ Z, and
the verifier wants to verify this with much less work than performing the exponentiation.
To do this, the verifier samples a large enough prime ` at random and the prover pro-
vides him with Q ← uq where q = bx

`
c. The verifier then simply computes the remainder

r ← (x mod `) and checks that Q`ur = w. The protocol is an argument for the relation
RPoE = {〈(u,w, x),∅〉 : ux = w}. The proof verification uses just O(λ) group operations.
When x is x = qd the verifier can compute r ← x mod ` using just log(d) `-bit multiplica-
tions.

PoE(u,w, x) :

1. V samples `
$← Primes(λ) and sends ` to P

2. P computes quotient q and remainder r such that x = q`+ r and
r ∈ {0, . . . , `− 1}

3. P computes Q← uq and sends it to V
4. V computes r ← (x mod `) and checks that Q`ur = w
5. if check passes then return 1 else return 0

Lemma 2 (PoE soundness [Wes19]). PoE is an argument system for Relation RPoE with
negligible soundness error, assuming the Adaptive Root Assumption (Assumption 2) holds
for GGen.

4 Polynomial Commitments from Groups of Unknown

Order

4.1 Information-Theoretic Abstraction

Before we present our concrete polynomial commitment scheme based on groups of unknown
order, we present the underlying information theoretic protocol that abstracts the concrete
cryptographic instantiations. The purpose of this abstraction is two-fold: first, it provides
an intuitive stepping stone from which presenting and studying the concrete cryptographic
protocol is easier; and second, it opens the door to alternative cryptographic instantiations
that provide the same interface but based on alternative hardness assumptions.

Let [[∗]] : Zp[X] → S be a homomorphic commitment function that sends polynomials
over a prime field to elements of some set S. Moreover, let S be equipped with operations
∗+ ∗ : S× S→ S and ∗ · ∗ : Zp[X]× S→ S that accommodate two homomorphisms for [[∗]]:
• a linear homomorphism: a · [[f(X)]] + b · [[g(X)]] = [[af(X) + bg(X)]]
• a monomial homomorphism: Xd · [[f(X)]] = [[Xdf(X)]].

For now, assume both prover and verifier have oracle access to the function [[∗]] and to the
operations ∗ · ∗ and ∗ + ∗. (Later on, we will instantiate this commitment function using
groups of unknown order and an encoding of polynomials as integers.)

The core idea of the evaluation protocol is to reduce the statement that is being proved
from one about a polynomial f(X) of degree d and its evaluation y = f(z), to one about a
polynomial f ′(X) of degree d′ = bd

2
c and its evaluation y′ = f ′(z). For simplicity, assume that

d+1 is a power of 2. The prover splits f(X) into fL(X) and fR(X) such that f(X) = fL(X)+
Xd′+1fR(X) and such that both halves have degree at most d′. The prover obtains a random
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challenge α ∈ Zp from the verifier and proceeds to prove that f ′(X) = α · fL(X) + fR(X)
has degree d′ and that f ′(z) = y′ = αyL + yR with yL = fL(z) and yR = fR(z).

The proof repeats this reduction by using f ′(X), z, y′ and d′ as the input to the next
recursion step. In the final step, f(X) = f is a constant and the verifier checks that f = y.

The commitment function binds the prover to one particular polynomial for every com-
mitment held by the verifier. In particular, at the start of every recursion step, the veri-
fier is in possession of a commitment [[f(X)]] to f(X). The prover provides commitments
[[fL(X)]] and [[fR(X)]], and the verifier checks their soundness homomorphically by testing
[[f(X)]] = [[fL(X)]] +Xd′+1·[[fR(X)]]. From these commitments, the verifier can also compute
the commitment to f ′(X) homomorphically, via [[f ′(X)]] = α · [[fL(X)]] + [[fR(X)]]. In the
last step, the verifier checks that the constant polynomial f matches the commitment by
computing [[f ]] outright.

4.2 Integer Polynomial Encoding

We propose using integer commitments in a group of unknown order as a concrete instanti-
ation of the homomorphic commitment scheme required for the abstract protocol presented
in Section 4.1. At the heart of our protocol is thus an encoding of integer polynomials with
bounded coefficients as integers, which also has homomorphic properties. Any commitment
scheme which is homomorphic over integer polynomials is automatically homomorphic over
Zp[X] polynomials as well (by reducing integer polynomials modulo p). Polynomials over
Zp[X] can be lifted to integer polynomials in a canonical way by choosing representatives in
[0, p). Therefore, from here on we will focus on building a homomorphic integer encoding
of integer polynomials, and how to combine this with a homomorphic integer commitment
scheme.

Strawman encoding In order to encode integer polynomials over an odd prime field Fp,
we first lift them to the ring of polynomials over the integers by choosing representatives
in [0, p). In the technical overview (Section 2) we noted that a polynomial f ∈ Z[X] with
positive coefficients bounded by q can be encoded as the integer f(q). The coefficients of
f can be recovered via the base q decomposition of f(q). This encoding is an injective
mapping from polynomials in Z[X] of degree at most d with positive coefficients less than
q to the set [0, qd+1). The encoding is also partially homomorphic. If f is encoded as f(q)
and g is encoded as g(q) where coefficients of both g, f are less than q/2, then the base-q
decomposition of f(q) + g(q) gives back the polynomial f + g. By choosing a sufficiently
large q � p it is possible to perform several levels of homomorphic operations on encodings.

What goes wrong? Unfortunately, this simple encoding scheme does not quite work yet
for the protocol outlined in Section 2. The homomorphic consistency checks ensure that
if [[fL(X)]] is a homomorphic integer commitment to the encoding of fL ∈ Z[X], [[fR(X)]]
is a homomorphic integer commitment to the encoding of fR ∈ Z[X], and both fL, fR
are polynomials with q/2-bounded coefficients, then [[f(X)]] is an integer commitment to
the encoding of fL + Xd′fR. (Moreover, if fL(z) = yL mod p and fR(z) = yR mod p then
f(z) = yL + zd

′
yR mod p).

However, the validity of [[fL(X)]] and [[fR(X)]] are never checked directly. The verifier only
sees the opening of the commitment at the bottom level of recursion. If the intermediate
encodings use integer polynomials with coefficients larger than q/2 the homomorphism is
not preserved. Furthermore, even if [[f(X)]] is a commitment to f ∗(q) with positive q-
bounded coefficients, an adversarial prover could find an integer polynomial g∗ that does
not have positive q-bounded coefficients such that g∗(q) = f ∗(q) and g∗ 6≡ f ∗ mod p (i.e,
g∗ with coefficients greater than q or negative coefficients). The prover could then commit
to g∗L(q) and g∗R(q), and recurse on αg∗L(q) + g∗R(q) instead of αf ∗L(q) + f ∗R(q). This would
be non-binding. (For example f ∗(X) = q − 1 and g∗(X) = X − 1, or f ∗(X) = q + 1 and
g∗(X) = X + 1).

Inferring coefficient bounds So what can the verifier infer from the opened commitment
[[f ′]] at the bottom level of recursion? The opened commitment is an integer f ′ = αfL + fR.
From f ′, the verifier can infer a bound on the absolute value of the coefficients of the integer
polynomial f(X) = fL + XfR, given that fL and fR were already committed in the second
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to last round. The bound holds with overwhelming probability over the randomness of
α ∈ [0, p). This is reasoned as follows: if f ′0 ← α0fL + fR and f ′1 ← α1fL + fR such
that max(|f ′0|, |f ′1|) < q/(2p) for some distinct α0 6= α1, then |fL| ≤ |f ′1 − f ′0| < q/p and
|fR| ≤ |α0f

′
1 − α1f

′
0| < q/2. If no such pair exists, i.e. the bound only holds for a unique α,

then there is a negligibly small probability 1/p that f ′ would have passed the bound check.

What about negative coefficients? As shown above, the verifier can infer a bound on
the absolute values of fL and fR, but still cannot infer that fL and fR are both positive
integers. Moreover, if fR > 0 and fL < 0, then it is still possible that fL + qfR > 0, and thus
that there is a distinct g 6= f with q-bounded positive coefficients such that g(q) = f(q). For
example, say fR = q/2 and fL = −1 then fL + qfR = q2/2− 1, and αfL + fR = q/2− α > 0
for every α ∈ [0, p). Yet, also q2/2− 1 = g(q) for g(X) = (q/2− 1)X + q − 1.

Ensuring injectivity How can we ensure the encoding scheme is injective over polyno-
mials with either positive/negative coefficients bounded in absolute value? Fortunately, it
is a fact that if |fL| < q/2 and |fR| < q/2 then at least one coefficient of g must be larger
than q/2. In other words, if the prover had committed instead to f ∗L and f ∗R such that

g(X) = f ∗L +Xf ∗R then the verifier could reject the opening of αf̂ ∗L + f̂ ∗R with overwhelming
probability based on its size.

More generally, for every integer z in the range B = (− qd+1

2
, q

d+1

2
) there is a unique degree

(at most) d integer polynomial h(X) with coefficients whose absolute values are bounded by
q/2 such that h(q) = z. We prove this elementary fact below and show how the coefficients
of h can be recovered efficiently from z (Fact 1). If the prover is committed to h(q) at level
i of the protocol, there is a unique pair of integers polynomial hL and hR with coefficients
of absolute value bounded by q/2 such that hL(q) + q

d+1
2 hR(q) = h(q), and if the prover

recurses on any other h∗L and h∗R with larger coefficients then the verifier’s bound check at
the bottom level of recursion will fail with overwhelming probability.

Optimization with negative coefficients As we have seen, an adversarial prover can
commit to polynomials with positive or negative coefficients. As an optimization, we can
actually allow the honest prover to encode polynomials using a mixture of negative and
positive coefficients as well. A polynomial f(X) ∈ Zp[X] is lifted to an integer polynomial
by replacing each coefficient of f with its unique integer representative from (−p/2, p/2) of
the same equivalence class modulo p. Also, α can be chosen from (−p/2, p/2), leading to a
tighter bound on coefficient growth. This leads us to the following encoding scheme.

Final encoding scheme Let Z(b) := {x ∈ Z : |x| ≤ b} denote the set of integers with
absolute value less than or equal to b. Define Z(b)[X] := {f ∈ Z[X] : ||f ||∞ ≤ b}, the set of
integer polynomials with coefficients from Z(b). (For a polynomial g ∈ Z[X] the norm ||g||∞
is the maximum over the absolute values of all individual coefficients of g.)

• Encoding. For any integer q, the function Enc : Z(b)[X]→ Z maps h(X) 7→ h(q). A
polynomial f(X) ∈ Zp[X] is first mapped to Z(p/2)[X] by replacing each coefficient of
f with its unique integer representative from (−p/2, p/2) of the same equivalence class
modulo p.

• Decoding. Decoding works as follows. Define the partial sum Sk :=
∑k

i=0 fiq
i with

S−1 := 0. Assuming |fi| < q/2 for all i, observe that for any partial sum Sk we have

|Sk| < qk+1

2
. Therefore, when Sk < 0 then Sk mod qk+1 > qk+1/2 and when Sk ≥ 0

then Sk mod qk+1 < qk+1/2. This leads to a decoding strategy for recovering Sk from
y ∈ Z. The decode algorithm sets Sk to y mod qk+1 if this value is less than qk+1/2
and to qk+1− (y mod qk+1) otherwise. Two consecutive partial sums yield a coefficient
of f(X): fk = Sk−Sk−1

qk
∈ Z(b). These operations give rise to the following algorithm.
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Dec(y ∈ Z) :
1. for each k in [0, blogq(|y|)c] do:
2. Sk−1 ← (y mod qk)
3. if Sk−1 > qk/2 then Sk−1 ← qk − Sk−1 end if
4. Sk ← (y mod qk+1)
5. if Sk > qk+1/2 then Sk ← qk+1 − Sk end if
6. fk ← (Sk − Sk−1)/qk

7. return f(X) =
∑blogq(|y|)c

k=0 fkX
k

Fact 1. Let q be an odd integer. For any z in the range B = (− qd+1

2
, q

d+1

2
) there is a unique

degree (at most) d integer polynomial h(X) in Z( q−1
2

)[X] such that h(q) = z.

Proof. Given any degree (at most) d integer polynomial f ∈ Z( q−1
2

), by construction we
see that Dec(Enc(f)) = f . Therefore, Enc is an injective map from degree (at most) d
polynomials in Z( q−1

2
)[X] to B. Furthermore, the cardinality of both the domain and range

of this map is qd+1. This shows that the map is surjective. In conclusion, the map is
bijective.

Encoding of dyadic rational polynomials. There exists an algorithm to compute
square roots of any element of a class group of an imaginary quadratic order, originally
described by Gauß (see Bosma and Stevenhagen for a modern description [BS96]). As a
result, in such class groups an adversary can also commit to dyadic rationals D := { x

2k
:

x ∈ Z ∧ k ∈ N} ⊂ Q, in addition to integers. When using class groups we therefore need to
modify the encoding scheme .

The encoding map is identical, except lifted to the dyadic rationals: Enc : D[X] →
D, g(X) 7→ g(q). The main difference with respect to the integer encoding scheme will be
that decoding works for dyadic rationals where both the numerator and the denominator are
bounded. Let N ∈ N be a bound on the absolute value of the numerator and 2D ∈ N be a
bound on the value of the denominator, and let D(N,D) := { x

2a
∈ D : |x| ≤ N ∧ 2a ≤ D}

denote the set of such bounded dyadic rationals. The encoding scheme is uniquely decodable
if N · 2a < q/2.

Note that denominator of g(q) is bounded by 2blog2(D)c, D rounded down to the next
power of 2. To decode such a dyadic rational, compute the integer y ← g(q) · 2blog2(D)c ∈ Z
and use the decoding algorithm described above to decode a polynomial f(X) in Z(q/2)[X].

From f(X) one derives the polynomial g(X)← f(X)

2blog2(D)c ∈ D(dq/(2D)e, 2blog2(D)c)[X] through
division. If the integer polynomial encoding is uniquely decodable, then so is the scheme
for dyadic rational polynomials. If q is a power of 2, then an adversary can encode Laurent
polynomials, i.e., polynomials where some terms have negative powers. In order to disallow
negative powers, q must be odd.

4.3 Concrete Polynomial Commitment Scheme

We now instantiate the abstract homomorphic commitment function [[∗]]. To this end we
sample a group of unknown order G, and sample a random element g from this group.
Lift the field polynomial f(X) ∈ Zp[X] to an integer polynomial with bounded coefficients,

i.e., f̂(X) ∈ Z(p−1
2

)[X] such that f̂(X) mod p = f(x). We encode f̂(X) as an integer by
evaluating it at a “large enough” integer q. Finally we use exponentiation in G to commit
to the integer. Therefore, [[f(X)]], corresponds to gf̂(q). This commitment function inherits
the homomorphic properties of the integer encoding for a limited number of additions and
multiplications-by-constant. The monomial homomorphism for Xd is achieved by raising
the group element to the power qd. To maintain consistency between the prover’s witness
polynomials and the verifier’s commitments, the prover operates on polynomials with integer
coefficients f̂(X), ĝ(X), etc., without ever reducing them modulo p.

The Setup,Commit and Open functionalities are presented formally below. Note that the
scheme is parameterized by p and q.

• Setup(1λ) : Sample G $← GGen(λ) and g
$← G. Return pp = (λ,G, g, q).

• Commit(pp; f(X) ∈ Zp[X]) : Compute C← gf̂(q) and return (C; f̂(X)).

13



• Open(pp,C, f(X), f̂(X)) : Check that f̂(X) ∈ Z(q/2)[X] and gf̂(q) = C and f(X) =
f̂(X) mod p.

Evaluation protocol Using the cryptographic compilation of the information theoretic
protocol we get an Eval protocol with logarithmic communication. In every round, however,
the verifier needs to check consistency between [[fL(X)]], [[fR(X)]] and [[f(X)]]. This is done

by checking that CL · Cq
d′+1

R = C. This naive check is highly inefficient as the exponent qd
′+1

has O(d) bits. To resolve this inefficiency, we utilize a proof of exponentiation (PoE) [Pie19,
Wes19] to outsource the computation to the prover. The PoE protocol is an argument that
a large exponentiation in a group of unknown order was performed correctly. Wesolowski’s
PoE [Wes19] is public coin, has constant communication and verification time, and is thus
particularly well-suited here.

We now specify subtleties that were previously glossed over. First, we handle the case
where d + 1 is not a power of 2. Whenever d + 1 is odd in the recursion, the polynomial
is shifted by one degree — specifically, f ′(X) = Xf(X) and the protocol proceeds to prove
that f ′(X) has degree bounded by d′ = d + 1 and evaluates to y′ = zy at z. The verifier
obtains the matching commitment C′ ← Cq.

Second, the coefficients of f(X) grow by a factor of p+1
2

in every recursion step, but
eventually the transmitted constant f has to be tested against some bound because if it is
too large it should be rejected. However, the function interface provides no option to specify
the allowable size of coefficients. We therefore define and use a subroutine EvalBounded,
which takes an additional argument b and which proves, in addition to what Eval proves,
that all coefficients fi of f(X) satisfy |fi| ≤ b. Importantly, b grows by a factor for p+1

2
in

every recursion step. This subroutine is also useful if commitments were homomorphically
combined prior to the execution of EvalBounded. The growth of these coefficients determines
a lower bound on q: q should be significantly larger than b. Exactly which factor constitutes
“significantly” is determined by the knowledge-soundness proof.

In the final round we check that the constant f satisfies |f | ≤ b and the protocol’s
correctness is guaranteed if b = p−1

2
(p+1

2
)dlog2(d+1)e. However, q needs to be even larger than

this value in order for extraction to work (and hence, for the proof of witness-extended
emulation to go through). In RSA groups, where computing square roots is hard, we need
q > p2 log(d+1)+1; whereas in class groups where computing square roots is easy, we need
p3 log(d+1)+1. When this condition is satisfied, we can prove that the original committed
polynomial has coefficients smaller than q

2
. To avoid presenting two algorithms whose only

difference is the one constant, we capture this constant explicitly in the variable ςp,d and set
its value depending on the context:

ςp,d =

{
p log2(d+1) (in RSA groups)
p 2 log2(d+1) (in class groups)

.

We now present the full, formal Eval protocol below.
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Eval(pp,C ∈ G, z ∈ Zp, y ∈ Zp, d ∈ N; f̃(X) ∈ Zp[X]) : // f̃(X) =
∑d
i=0 f̃iX

i

1. P computes fi ∈ [−p−1
2
, p−1

2
] such that fi ≡ f̃i mod p for all i ∈ [0, d].

2. P computes f(X)←
∑d

i=0 fi ·X i ∈ Z(p−1
2

)[X] ⊂ Z[X]

3. P and V run EvalBounded(pp,C, z, y, d, p−1
2

; f(X))

EvalBounded(pp,C ∈ G, z ∈ Zp, y ∈ Zp, d ∈ N, b ∈ Z; f(X) ∈ Z(b)[X])
1. if d = 0:
2. P sends f(X) ∈ Z to the verifier. // f = f(X) is a constant

3. V checks that b · ςp,d < q// ςp,d = O(p2 log(d)) (see Theorem 1 and 2)

4. V checks that |f | ≤ b
5. V checks that f ≡ y mod p
6. V checks that gf = C
7. V outputs 1 if all checks pass, 0 otherwise.
8. if d+ 1 is odd
9. d′ ← d+ 1,C′ ← Cq, y′ ← y · z mod p and f ′(X)← X · f(X).

10. P and V run EvalBounded(pp,C′, z, y′, d′, b; f ′(X))
11. else : // d ≥ 1 and d+ 1 is even

12. P and V compute d′ ← d+1
2
− 1

13. P computes fL(X)←
d′∑
i=0

fi ·X i and fR(X)←
d′∑
i=0

fd′+1+i ·X i

14. P computes yL ← fL(z) mod p and yR ← fR(z) mod p
15. P computes CL ← gfL(q) and CR ← gfR(q)

16. P sends yL, yR,CL,CR to V . // See Section 4.5 for an optimization

17. V checks that y = yL + zd
′+1 · yR mod p, outputs 0 if check fails.

18. P and V run PoE(CR,C/CL, q
d′+1)// Showing that CLC

(qd
′+1)

R = C

19. V samples α
$← [−p−1

2
, p−1

2
] and sends it to P

20. P and V compute y′ ← αyL + yR mod p, C′ ← CαLCR, b′ ← bp+1
2

.
21. P computes f ′(X)← α · fL(X) + fR(X) ∈ Z[X] // deg(f ′(X)) = d′

22. P and V run EvalBounded(pp,C′, z, y′, d′, b′; f ′(X))

4.4 Security Analysis

Lemma 3. The polynomial commitment scheme is binding for polynomials in Z(b)[X] for
b < q/2 if either the Adaptive Root Assumption or the Strong RSA Assumption hold.

Lemma 4. The polynomial commitment scheme is correct for polynomials in Zp[X] of degree
at most d if q > pdlog2(d+1)e+1.

The proofs of the previous lemmas are in Appendix A.1 and A.2. Next is the main
security theorem, which states that the evaluation protocol has witness-extended emulation.
We start with a high-level intuitive overview where we also identify potential obstacles.

Proof idea. The goal is to construct an extractor by recursively computing f(X) from
f ′(X). In the final round the verifier receives f such that |f | ≤ b, and therefore the extractor
possesses this constant polynomial as well. Working backwards from here, the extractor
uses rewinding in every step to find fL(X) and fR(X) and thereby finds f(X) = fL(X) +
Xd′+1fR(X). Specifically, in each round the extractor has f ′(X) = αfL(X)+fR(X). Suppose
the extractor also possesses f ′′(X) = α′fL(X) + fR(X). From f ′(X), f ′′(X), α and α′ it
is easy to compute fL(X) and fR(X). The extractor then computes f(X) = fL(X) +
Xd′+1fR(X). A careful analysis shows that if the coefficients of f ′(X) are bounded by b then
fL(X) and fR(X) must have coefficients bounded by b · p in absolute value. Using a similar
analysis we can show that f(z) mod p = y for the extracted polynomial f(X).

This argument shows that there is an extractor algorithm X capable of extracting the
witness f(X) from a binary tree of accepting transcripts. Moreover, a tree-finding algorithm
T can output such a tree by repeatedly rewinding the prover, running it with fresh verifier
randomness each time, and recording the resulting transcripts. As a result, the Generalized
Forking Lemma (Lemma 1) applies and establishes that the protocol has witness-extended
emulation.
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The full proof takes into account the cryptographic compilation of the protocol using the
integer encoding and the commitment scheme based on groups of unknown order. Addition-
ally the full proof will need to support dyadic rationals because taking square roots is easy
in class groups.

Theorem 1. The polynomial commitment scheme for polynomials in Zp[X] of degree at
most d = poly(λ), instantiated using q > p2dlog2(d+1)e+1 and GGen, has witness extended
emulation (Definition 2) if the Adaptive Root Assumption and the Strong RSA Assumption
hold for GGen.

Theorem 2. Let GGen generate groups G of unknown order such that the order of G is
odd, and such there exists a PPT algorithm for taking square roots in G. The polynomial
commitment scheme for polynomials in Zp[X] of degree at most d = poly(λ), instantiated
using q > p3dlog2(d+1)e+1 and GGen, has witness extended emulation (Definition 2) if the
Adaptive Root Assumption and the 2-Strong RSA Assumption hold for GGen.

The proof of Theorem 2 is nearly identical to the proof of Theorem 1 but the extracted
polynomials are polynomials over the dyadic rationals and not over the integers. This requires
the bound on q to be larger by a factor of plog(d+1). Both proofs are presented in the
Appendix (A.3 and A.4).

4.5 Optimizations

We present several ideas for optimizing the performance of the Eval protocol.

Precomputation. The prover has to compute powers of g as large as qd. While this can
be done in linear time, this expense can be shifted to a preprocessing phase in which all
elements gq

i
, i ∈ {1, . . . , dmax} are computed. Since for coefficient |fi| ≤ −p−1

2
this allows the

computation of gf(q) in O(λd) group operations as opposed to O(λd log(d)). In addition to
reducing the prover’s workload, this optimization enables parallelizing it. The computation
of the PoE proofs can simiarly be parallelized. The prover can express each Q as a power
of g which enables pre-computation of powers of g and parallelism as described by Boneh et
al. [BBF19].

The pre-computation also enables the use of multi-exponentiation techniques [Pip80].
Boneh et al. [BBF19] and Wesolowski [Wes19] showed how to use these techniques to reduce

the complexity of the PoE prover. The largest PoE exponent q
d+1

2 has O(λd log(d)) bits.
Multi-exponentiation can therefore reduce the prover work to O(λd) instead of O(λd log(d)).

Two group elements per round. In each round the verifier has a value C and receives

CL and CR such that CLC
qd
′+1

R = C. This is redundant. It suffices that the verifier sends

CR. The verifier could now compute CL ← C · C−q
d′+1

R , but this is expensive as it involves

an exponentiation by qd. Instead, the verifier infers C
(qd
′+1)

R from the PoE: the prover’s

message is Q and the verifier can directly compute Cq
d′+1

R ← Q`CrR for a challenge ` and

r ← qd
′+1 mod `. From this the verifier infers CL ← C/Cq

d′+1

R . The security of PoE does not

require that Cq
d′+1

R be sent before the challenge ` as it is uniquely defined by CR and qd
′+1.

The same optimization can be applied to the non-interactive variant of the protocol.
Similarly the verifier can infer yL as yL ← y − zd′+1yR. This reduces the communication

to two group elements per round and 1 field element. Additionally the prover sends f which
has roughly the size of log(d+ 1) field elements, which increases the total communication to
roughly 2 log(d) elements in G and 2 log(d) elements in Zp.

Evaluation at multiple points The protocol and the security proof extend naturally
to the evaluation in a vector of points z resulting in a vector of values y, where both are
members of Zkp. The prover still sends CL ∈ G and CR ∈ G in each round and additionally
yL,yR ∈ Zkp. In the final round the prover only sends a single integer f such that gf = C
and f mod p = y.

This is significantly more efficient than independent executions of the protocol as the
encoding of group elements is usually much larger than the encoding of elements in Zp.
Using the optimization above, the marginal cost with respect to k of the protocol is a single
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element in Zp. If λ = dlog2(p)e is 120, then this means evaluating the polynomial at an
additional point increases the proof size by only 15 log(d+ 1) bytes.

Joining Evals. In many applications such as compiling polynomial IOPs to SNARKs (see
Section 5) multiple polynomial commitments need to be evaluated at the same point z.
This can be done efficiently by taking a random linear combination of the polynomials
and evaluating that combination at z. The prover simply sends the evaluations of the
individual polynomials and then a single evaluation proof for the combined polynomials.
The communication cost for evaluating m polynomials at 1 point is still linear in m but only
because the evaluation of each polynomial at the point is being sent. The size of the eval
proof, however, is independent of m. Taking a random linear combination does increase the
bound on q slightly, as shown in Theorem 3 which is presented below.

RJE(pp) =

〈(C1,C2, z, y1, y2, d), (f1(X), f2(X))〉 :

C1,C2 ∈ G
z, y1, y2 ∈ Zp
f1(X), f2(X) ∈ Z(b)
(C1, z, y1, d) ∈ REval(pp)
(C2, z, y2, d) ∈ REval(pp)


JoinedEval(pp,C1,C2, z, y1, y2, d; f1(X), f2(X)) : // f1(X), f2(X) ∈ Z( p−1

2
)[X]

Statement: (pp,C1,C2, z, y1, y2, b, d) ∈ RJE

1. V samples α
$← [−p−1

2
, p−1

2
] and sends it to P

2. P and V compute C′ ← Cα1C2 and y′ ← α · y1 + y2 mod p
3. P computes f ′(X)← αf1(X) + f2(X)

4. P and V run EvalBounded(pp,C′, z, y′, d, p
2−1
4

; f(X))

Theorem 3. The protocol JoinedEval is an interactive argument for the relation RJE and
has perfect completeness and witness extended emulation if the Strong RSA and Order
Assumption hold for GGen and if q > (p− 1)(p

2−1
2

)dlog2(d+1)e+1 (e.g., q > p2 log2(d+1)+3).

The proof is presented in Appendix A.5.
We can additionally combine this optimization with the previous optimization of evalu-

ating a single polynomial at different points. This allows us to evaluate m polynomials at
k points with very little overhead. The prover groups the polynomials by evaluation points
and first takes linear combinations of the polynomials with the same evaluation point and
computes y1 to yk using the same linear combinations. Then it takes another combination
of the joined polynomials. In each round of the Eval protocol the prover sends yL,1 through
yL,k, i.e. one field element per evaluation point and computes yR,1 through yR,k. In the final
step the prover sends f and the verifier can check whether the final y values are all equal
to f mod p. This enables an Eval proof of m, degree d polynomials at k points using only
2 log2(d+ 1) group elements and (1 + k) log2(d+ 1) field elements.

Evaluating the polynomial over multiple fields The polynomial commitment scheme
is highly flexible. For example it does not specify a prime field Zp or a degree d in the
setup. It instead commits to an integer polynomial with bounded coefficients. That integer
polynomial can be evaluated modulo arbitrary primes which are exponential in the security
parameter λ as the soundness error is proportional to its inverse. Note that q also needs
large enough such that the scheme is secure for the given prime p and degree d (see Theorem
1). The second condition, however, can be relaxed. A careful analysis shows that the
challenges α just need to be sampled from an exponential space, e.g., [−2λ, 2λ]. So as long as
q > p · 2λ·2dlog2(d+1)e for RSA groups or q > p · 2λ·3dlog2(d+1)e for class groups one can evaluate
degree d polynomial with coefficients bounded by 2λ over any prime field.

Additionally the proof elements CL, CR ∈ G are independent from the field over which the
polynomial is evaluated. This means that it is possible to evaluate a committed polynomial
f(X) ∈ Z(b) over two separate fields Zp and Zp′ in parallel using only 2 log(d + 1) group
elements.
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4.6 Multivariate Commitment Scheme

We can extend our polynomial commitment scheme to multivariate polynomials. The idea is
simply to use higher degrees of q to encode the next indeterminate. The protocol is linear in
the number of variables and logarithmic in the total degree of the polynomial. For simplicity
we only present a protocol for µ-variate polynomials where the degree in each variable is d.
The protocol extends naturally to different degrees per variable.

Encoding Let qi = q(d+1)i then f̂(q1, . . . , qµ) ∈ Z is an encoding of the multivariate poly-
nomial f(X1, . . . , Xµ) with maximum degree d. We use DecMulti(f(q), µ, d) to denote the
decoding of an µ-variate polynomial with degree exactly d in each variable. The decoding
algorithm simply uses the univariate decoding algorithm described in Section 4.2 to decode
a univariate polynomial ĥ(X) of degree (d+1)µ−1. Then it associates each monomial of the
univariate polynomial with a degree vector (d1, . . . , dµ) of the multivariate polynomial. The
coefficient of the ith monomial becomes the coefficient of the (d1, . . . , dµ)-monomial, where
(d1, . . . , dµ) is the base-(d+ 1) decomposition of i.

Protocols Using this encoding we can naturally derive the multivariate commitment scheme
and Eval protocol. The Eval protocol computes the univariate polynomials f(q1, . . . , qµ−1, Xµ)
and then uses the univariate eval protocol to reduce the claim from a claim about an µ-variate
polynomial to one about an (µ− 1)-variate one. At the final step the prover opens the now
constant polynomial and the verifier can check the claim. For example, the protocol would
reduce a bivariate (say X and Y ) cubic polynomial to a univariate one (in Y ) in two rounds
of interaction and then reduce the degree of Y using another two rounds.

MultiSetup(1λ) :

1. G $← GGen(λ)

2. g
$← G

3. return pp = (λ,G, g)
MultiCommit(pp; f(X1, . . . , Xµ) ∈ Z(p−1

2
)[X1, . . . , Xµ] ⊂ Z[X1, . . . , Xµ]) :

1. d← deg(f)// For simplicity assume f(X1, . . . , Xn) has degree d in each variable

2. qi ← q(d+1)i−1
for each i ∈ [µ]

3. C← gf(q1,...,qµ)

4. return (C; f(X1, . . . , Xµ))

MultiEval(pp,C ∈ G, z ∈ Zµp , y ∈ Zp, d, µ, b ∈ N; f(X1, . . . , Xµ) ∈ Z(b)[X1, . . . , Xµ]) :
1. if µ = 1
2. P and V run EvalBounded(pp,C, z1, y, d, b, x; f(X1))
3. else
4. Let f̂(Xµ)← f(q1, . . . , qµ−1, Xµ)
5. Let ppµ ← {λ,G, g, p, qµ}
6. P and V run the univariate EvalBounded(ppµ,C, zµ, y, d, qµ; f̂(X))
7. except: when d = 0, f is not sent; instead the protocol returns its input

at this point, i.e., (C′, y′, b′) along with the prover’s witness f ′(X1, . . . , Xµ−1) =
DecMulti(f, µ− 1, d) (Lines 2-6 of EvalBounded).

8. z′ ← (z1, . . . , zµ−1) ∈ Zµ−1
p

9. P and V run MultiEval(pp, C ′, z′, y′, d, µ− 1, b′; f ′)

We only prove security under the strong RSA assumption. The security proof, however,
directly extends to groups where taking square roots is easy under the 2-Strong-RSA As-
sumption. In that case q > p3µ log2(d+1)+1 suffices.

Theorem 4 (Multivariate Eval). The polynomial commitment scheme for multi-variate
polynomials consisting of protocols (MultiSetup,MultiCommit,MultiEval) has perfect correct-
ness and witness extended emulation if the Adaptive Root Assumption and the Strong RSA
Assumption hold for GGen for µ-variate polynomials of degree d and if dµ = poly (λ) if
q > p2µ log2(d+1)+1.
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Proof. Perfect correctness follows from the correctness of the univariate commitment scheme
and the fact that the coefficients of the witness polynomial in the honest execution are less
than p−1

2
pµdlog(d+1)e < q/2.

To show witness extended emulation we use the forking lemma (Lemma 1) and build
a polynomial time extractor algorithm XMultiEval that given a binary tree of transcripts of
depth µ · dlog(d+ 1)e, extracts a witness. Each node corresponds to a different challenge α
as described in the forking lemma. The tree consists of at most (d+1)µ = poly(λ) transcripts.
Lemma 2 states that the probability that an adversary can create any accepting transcript
for which the PoE can’t be replaced by a direct check is negligible under the Adaptive Root
Assumption. We can therefore invoke the lemma to replace all PoE executions with direct

verification checks that CLC
qd
′+1

R = C.
In constructing XMultiEval we use the extractor XEval’ described in the proof of Theorem 1.

XEval’ computes, given a tree of transcripts for Eval’ a valid witness of Eval’ or a fractional root
of g or an element of known order in G. We construct XMultiEval recursively invoking XEval’

once per degree µ. The probability that a polynomial time adversary and a polynomial
time extractor XEval’ can produce a fractional root or an element of known order in G is
negligible under the strong-RSA and the the adaptive root assumptions. From hence on we
will consider the case where neither of these events happen.

We use the superscript (i) to denote the inputs to MultiEval where µ = i. If µ = 1 then
the extractor XEval’ directly extracts f (1)(X) ∈ Z(b), a univariate degree d polynomial with
coefficients bounded by b = p−1

2
p2dlog2(d+1)e and such that f(z) = y mod p. Note that q/2 > b

so the extraction succeeds.
For µ > 1, let’s assume that f (µ−1)(X1, . . . , Xµ−1) ∈ Z(b) is an extracted µ − 1 variate

polynomial with degree d in each variable such that f (µ−1)(z1, . . . , zµ−1) mod p = y′. Let f ′ ←
EncMulti(f

(µ−1)(X1, . . . , Xµ−1) ∈ Z be the encoding of f (µ−1)(X1, . . . , Xn), such that C(µ−1) ←
gf
′
. Note that f ′ is equivalent to an encoding of a univariate degree (d+1)µ−1 polynomial with

the same coefficients as the multivariate polynomial. Let g(µ−1)(X) = Dec(f ′) ∈ Z(b)[X] be
that polynomial. Using g(µ−1)(X) as the witness the extractor XEval’ extracts a univariate de-
gree (d+1)µ polynomial g(µ)(X) with coefficients in Z(b ·pdlog(d+1)e). Let f ′′ ← g(µ)(q) be the
encoding of g(µ) such that C(µ) = gf

′′
. Note that using the multivariate decoding algorithm

f ′′ also encodes a µ-variate degree d polynomial, i.e. f (µ)(X1, . . . , Xµ) ← DecMulti(f
′′, µ, d).

The coefficient on Xi in g(µ)(X) is the coefficient of the monomial in f (µ) with degree vec-

tor defined by the base-(d + 1) decomposition of i, i.e.
∏µ

j=1 X
bi/(d+1)j−1c mod d+1
j . Note

that the extraction additionally guarantees that the polynomial evaluation is correct, i.e.
f(z1, . . . , zµ) mod p = y.

The final extracted polynomial has coefficients in Z(p−1
2
p2µdlog2(d+1)e). Since q > p2µdlog2(d+1)e+1

both the univariate and the multivariate decoding succeed and the extractor extracts a valid
µ-variate degree d witness polynomial.

4.7 Hiding Commitments and Zero-Knowledge Evaluation

Many applications, such as the construction of ZK-SNARKs, require a polynomial commit-
ment scheme where an evaluation leaks no information about the committed polynomial
beyond its value at the queried point. To provide this we show how to build a hiding
polynomial commitment along with a zero-knowledge evaluation protocol.

We start by defining what it means for a polynomial commitment scheme to be hiding :

Definition 6. A commitment scheme Γ = (Setup,Commit,Open) is hiding if for all proba-
bilistic polynomial time adversaries A = (A0,A1), the probability of distinguishing between
commitments of different messages is negligible:∣∣∣∣∣∣∣∣∣∣∣

1− 2 · Pr

b̂ = b

∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ)
m0,m1, st← A0(pp)

b
$← {0, 1}

(c; r)← Commit(pp,mb)

b̂← A1(st, c)



∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ) .

If the property holds for all algorithms then we say that the commitment is statistically
hiding.

19



Hiding Polynomial Commitment We make the polynomial commitment described in
Section 4 hiding by adding a degree d+ 1 term with a large random coefficient. Let B ≥ |G|
be a publicly known upper bound on the order of G. We will choose the blinding coefficient
between 0 and B · 2λ. Formally, the hiding commitment algorithm is described as follows:

• CommitH(f(X) ∈ Zp[X]) → (C; f̂(X), d, r). Lift f(X) ∈ Zp[X] to f̂(X) ∈ Z(p−1
2

)[X]

and select random integer r
$← [0, B·2λ). Compute d← deg(f(X)) and C← gf̂(q)+qd+1·r

and return commitment C with secret opening information f̂(X), d, r.

Let h ← gq
d+1

. To argue that C is hiding, it suffices to show that C is computationally
indistinguishable from a random element of 〈g〉, the cyclic group generated by g. In a setting
with trusted-setup, in which the trusted party has a trapdoor to compute the order of g (e.g.
RSA groups), the trusted party can select q such that g and h generate the same subgroup.

In this case, hr for r
$← [0, B · 2λ) has statistical distance at most 2−λ from uniform in 〈g〉,

so long as B ≥ |〈g〉|.
Unfortunately, in a setting without a trusted setup, h might only generate a subgroup

of 〈g〉. The commitment then becomes computationally hiding under a Subgroup Indistin-
guishability Assumption7 [BG10]: our precise assumption is that no efficient adversary can
distinguish a random element of 〈h〉 from 〈g〉 for any non-trivial h ∈ 〈g〉. For simplicity,
Theorem 5 assumes that g and h generate the same group.

If the condition 〈g〉 = 〈gqd+1〉 cannot be guaranteed then the security proof must be
modified to show that an adversary that can efficiently distinguish commitments with non-
negligible probability must be able to distinguish between random elements sampled from
〈g〉 and random elements sampled from 〈gqd+1〉. The informal proof sketch is as follows.
Suppose there exists a non-uniform distinguisher Df,g that can distinguish freshly generated
commitments to f and g with non-negligible probability, then the non-uniform adversary
Af,g may be constructed as follows: upon receipt of g′ sampled either from 〈g〉 or from

〈gqd+1〉, it sends gf(q)g′ and gg(q)g′ to the distinguisher Df,g. In the case that g′ was sampled

from 〈gqd+1〉 this is a statistical simulation of a pair of commitments to f and g respectively,
hence the distinguisher should succeed with non-negligible probability. In the case that
g was sampled from 〈g〉, the pair is actually statistically indistinguishable, and thus the
distinguisher must fail. Thus, Af,g is able to distinguish from which group g′ was sampled
with non-negligible probability, contradicting the subgroup indistinguishability assumption.

Theorem 5. The commitment scheme Γ = (Setup,CommitH,Open) is statistically hiding if
B � |G| and if 〈g〉 = 〈gqd+1〉; and it is binding if the commitment described in Section 4.3
is binding.

Proof. The hiding commitment is a commitment to a degree d+ 1 polynomial. It therefore
directly inherits the binding property from the non-hiding scheme.

To show hiding, we use the fact that the uniform distributions [0, b] and [a, a + b] have
statistical distance a

b
, i.e., the probability that any algorithm can distinguish the distributions

from a single sample is less than a
b
. Similarly C← gf(q)+rqd+1

for r
$← [0, B ·2λ) has statistical

distance at most 2−λ from a uniform element generated by g if B ≥ |〈g〉|. This means that
two polynomial commitments can be distinguished by any algorithm with probability at
most 2−λ+1.

Zero-Knowledge Evaluation Protocol We now build a zero-knowledge evaluation pro-
tocol, which is an Eval protocol for a hiding polynomial commitment. The zero-knowledge
protocol shows that the prover must know a degree d polynomial f(X) with bounded coeffi-
cients such that f(z) mod p = y but does not leak any other information about f . Formally,
we will show that the interactive ZK-Eval argument is honest verifier zero-knowledge accord-
ing to Definition 3 by constructing an efficient simulator S that can generate a distribution
of transcripts that is indistinguishable from honestly generated transcripts.

The idea for the ZK-Eval protocol is a simple blinding of the polynomial borrowed from
Zero-Knowledge Sumcheck [CFS17] and Bulletproofs [BCC+16b, BBB+18]. Let f(X) be the
committed polynomial, using the hiding commitment scheme. The prover wants to convince
the verifier that f(z) mod p = y. To do this the prover commits to a degree d polynomial

7Brakersi and Goldwasser define subgroup indistinguishability assumptions in a related but slightly dif-
ferent way.
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r(X) with random coefficients. The prover also reveals y′ ← r(z) mod p. The verifier
then sends a random challenge c and the prover and verifier can compute a commitment to
s(X) ← r(X) + c · f(X). The random polynomial r(X) ensures that s(X) is distributed
statistically close to a random polynomial. The prover could just reveal s(X) and the verifier
can check that s(z) mod p = y′+c ·y mod p. Instead of sending s(X) in the clear, the prover
can additionally just send the commitment randomness to provide the verifier with a non-
hiding commitment to s(X). The prover and verifier can then use the standard Eval protocol
to efficiently evaluate s at z.

ZK-Eval(pp,C ∈ G, z ∈ Zp, y ∈ Zp, d ∈ N; f(X) ∈ Z(b)[X], r ∈ Z) :

1. P samples a random degree d k(X)
$← Z(p

2

4
· 2λ)[X] and rk

$← [0, B · 2λ) and

computes R← gk(q)+rk·qd+1
and yk ← k(z) mod p

2. P sends R and yk to V
3. V samples random c

$← [−p−1
2
, p−1

2
] and sends it to P

4. P computes s(X)← k(X) + c · f(X), as well as rs ← rk + c · r.
5. P sends rs to V
6. P and V compute Cs ← R · Cc · g−qd+1·rs and ys ← yk + c · y mod p // Cs = gs(q)

7. P and V run EvalBounded(pp,Cs, z, ys, d,
p2

4
· 2λ+1; s(X)) // s(z) mod p = ys

Theorem 6. Let Eval have perfect completeness and witness extended emulation for q >
b · ςp,d. Assuming that commitH is statistically hiding and both the order assumption and
the strong RSA assumption hold for GGen the protocol EvalZK has perfect completeness,
witness extended emulation and δ-statistical honest-verifier zero-knowledge for q > 2λ · (p−
1)(p

2−1
2

)dlog2(d+1)e+1 < p2 log2(d+1)+4 and δ ≤ d · 2−λ.

Proof. A simple application of Theorem 7 and Lemma 8 shows that the protocol maintains
witness extended emulation. The extractor extracts s(X) and s′(X) from the Eval protocol
for challenges c and c′. We can directly use Lemma 8 to extract the witness f(X) or a break
of an assumption from these two transcripts. The bound on q grows by a factor of less than
p2 (or p3 under the 2-Strong RSA assumption).

To show zero-knowledge, we build the simulator S as follows. Start with a polynomial

s(X)
$← Z(p

2−1
4

)[X] with uniform random coefficients, and a blinding factor rs
$← [0, B ·

22·λ+1). The simulator S then chooses a random challenge c
$← (−p/2, p/2) and computes

R = gs(q)+rs·q
d+1 · C−c. The simulator then performs the rest of the Eval protocol honestly

using s(X) as the witness.
The randomizer rs is distributed identically to the honest rs. Given the hiding property

of the commitment scheme, R is statistically indistinguishable from any other commitment.
Finally the simulated and the honest s(X) have statistical distance at most 2−λ from a

random polynomial. The coefficients of c · f(x) are in Z(p
2

4
). The coefficients of the blinding

polynomial s(X) are sampled from a range that is larger by a factor 2λ. So the distribution
of coefficients of s(X) = k(X)+c ·f(X) is at a statistical distance at most 2−λ away from the

uniform distribution over Z(p
2

4
). Since the distributions of simulated and real coefficients are

both uniform but merely over different sets, the statistical distance between the simulated
s(X) and the real s(X) is at most d ·2−λ. The evaluation with EvalBounded cannot leak more
than s(X) itself. The views of the simulated and real transcripts are, therefore, δ-close with
δ ≤ d ·2−λ. Consequently, the protocol has δ-statistically honest verifier zero-knowledge.

4.8 Performance

The polynomial commitment scheme has logarithmic proof size and verifier time in the
degree d of the committed polynomial. It has highly batchable proofs and it is possible to
evaluate n degree d polynomials at k points using only 2 log2(d + 1) group elements and
(k + 1) log2(d + 1) field elements (see Section 4.5). Note that this means the proof size is
independent of n and linear in k but with a small constant (15 log(d) bytes). We describe
the performance of our scheme for different settings in Table 1.

21



Operation |pp| Prover Verifier Communication

Commit(f(X)) 1 G O(λd log(d))G - 1G
Commit(f(X)) d G O( λd

log(d))G - 1G
f(z) = y ∈ Zp 1 G O(λ log(d)d)G O(λ log(d))G 2 log(d)G +2 log(d)Zp
f(z) = y ∈ Zp d G O(λd)G O(λ log(d))G 2 log(d)G +2 log(d)Zp
f(z) = y ∈ Zkp d G O(λd)G O(λ log(d))G 2 log(d)G +(k + 1) log(d)Zp
f(z) = y, g(z) = y′ ∈ Zp d G O(λd)G O(λ log(d))G 2 log(d)G +2 log(d)Zp

Table 1: G denotes the size of a group element for communication and a single group
operation for computation. Zp denotes the size of a field element, i.e., λ bits. |pp| is the size
of the public parameters (which is greater than one G when preprocessing is used), and d
the degree of the polynomial. Rows 3-6 are for Eval proofs of different statements.

4.9 Comparison to Other Polynomial Commitment Schemes

4.9.1 Based on Pairings

The polynomial commitment by Kate et al. [KZG10] has evaluation proofs that consist of
only a single element in a bilinear group and verifying an evaluation requires only a single
pairing computation. However, this asymptotically optimal performance comes at the cost
of a trusted setup procedure that outputs a structured reference string whose size is linear
in the degree of the polynomial. Our DARK polynomial commitment scheme requires no
trusted setup but pays for this reduced trust requirement with a proof size and verification
work that scale logarithmically in the degree of the polynomial.

In the multivariate setting, our scheme is logarithmic in the total number of coefficients:
µ log(d) for a µ-variate polynomial of degree d in each variable. The multivariate extension
of Kate et al.’s commitment scheme [ZGK+17] evaluation proofs consist of µ group elements.

4.9.2 Based on Discrete Logarithms

Bulletproofs [BCC+16b, BBB+18] is a proof system based on prime order groups in which the
discrete logarithm is hard. As a core component it relies on an inner product argument which
can be used as a polynomial commitment (see [WTs+18]). The polynomial commitment has
logarithmic evaluation proofs with great constants. Unfortunately, the verifier time is linear
in the size of the polynomial, i.e. (d + 1)µ for a µ- variate degree d polynomial. The more
general version of the commitment [BCC+16b] can also give evaluation proofs with square
root verifier time and square root proof size.

4.9.3 Based on Merkle Trees of Reed-Solomon Codewords

The FRI protocol [BBHR18] is an efficient interactive oracle proof (IOP) that a committed
oracle is close to a Reed-Solomon codeword, meaning that the prover commits to large
sequences of field elements and the verifier queries only a few specific elements rather than
reading the entire sequence. The abstract functionality is cryptographically compiled with
a Merkle tree, which results in constant-size commitments and element queries that are
logarithmic in the length of the codeword, i.e., the size of the oracle. FRI has been used in
multiple recent zero-knowledge proof systems such as STARK [BBHR19], Aurora [BCR+19],
and Fractal [COS19].

Since this oracle is a Reed-Solomon codeword, it represents the evaluations of a low-degree
polynomial f on an evaluation set S ⊂ F. In order to be used as a polynomial commitment
scheme, the protocol needs to permit querying the polynomial outside of the evaluation set.
DEEP-FRI [BGKS19] shows that this is possible and two recent works [ZXZS19, KPV19]
makes the connection explicit by building a polynomial commitment scheme from FRI. This
FRI-based polynomial commitment scheme have evaluation proofs of size and verifier time
O(λ log2(d)) where λ is the security parameter and d = deg(f). To date, no extension to mul-
tivariate polynomials exists for FRI. The commitment relies only on symmetric cryptography
and is plausibly quantum resistant.

4.9.4 Comparison

In Table 2 we give a comparison between different polynomial commitment schemes in the
literature. In particular, we evaluate the size of the reference string (|pp|), the prover and
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verifier time, as well as the size of the evaluation proof (|π|). Column 2 indicates whether
the setup is transparent, i.e., whether the reference string is structured. The symbol GU

denotes a group of unknown order, GB a group with a bilinear map (pairing), and GP a
group with prime (and known) order. Furthermore, EXP refers to exponentiation of a λ bit
number in these groups, and H is either the size of a hash output, or the time it takes to
compute a hash, depending on context.

Note that even when precise factors are given, the numbers should be interpreted as
estimates. For example we chose to not display smaller order terms. Note also that the
prover time for the group based schemes could be brought down by a log factor when using
multi-exponentiation techniques.

Scheme Transp. |pp| Prover Verifier |π|
DARK (this work) yes O(1) O(dµµ log(d)) EXP 3µ log(d) EXP 2µ log(d) GU

Based on Pairings no dµ GB O(dµ) EXP µ Pairing µ GB

[BCC+16b,
√
·] yes

√
dµGP O(dµ) EXP O(

√
dµ)EXP O(

√
dµ) GP

Bulletproofs yes 2dµGP O(dµ) EXP O(dµ)EXP 2µ log(d) GP

FRI-based (µ = 1) yes O(1) O(λd) H O(λ log2(d)) H O(λ log2(d)) H

Table 2: Comparison table between different polynomial commitment schemes for an µ-
variate polynomial of degree d.

5 Transparent SNARKs via Polynomial IOPs

5.1 Algebraic Linear IOPs

An interactive oracle proof (IOP) [BCS16, RRR16] is a multi-round interactive PCP: in each
round of an IOP the verifier sends a message to the prover and the prover responds with a
polynomial length proof, which the verifier can query via random access. A t-round `-query
IOP has t rounds of interaction in which the verifier makes exactly ` queries in each round.
Linear IOPs [BBC+19] are defined analogously except that in each round the prover sends a
linear PCP [IKO07], in which the prover sends a single proof vector π ∈ Fm and the verifier
makes linear queries to π. Specifically, the PCP gives the verifier access to an oracle that
receives queries of the form q ∈ Fm and returns the inner product 〈π,q〉.

Bitansky et al. [BCI+13] defined a linear PCP to be of degree (dQ, dV ) if there is an
explicit circuit of degree dQ that derives the query vector from the verifier’s random coins,
and an explicit circuit of degree dV that computes the verifier’s decision from the query
responses. In a multi-query PCP, dQ refers to the maximum degree over all the independent
circuits computing each query. Bitansky et al. called the linear PCP algebraic for a security
parameter λ if it has degree (poly(λ) , poly(λ)). The popular linear PCP based on Quadratic
Arithmetic Programs (QAPs) implicit in the GGPR protocol [GGPR13] and follow-up works
is an algebraic linear PCP with dQ ∈ O(m) and dV = 2, where m is the size of the witness.

For the purposes of the present work, we are only interested in the algebraic nature of the
query circuit and not the verifier’s decision circuit. Of particular interest are linear PCPs
where each query-and-response interaction corresponds to the evaluation of a fixed µ-variate
degree d polynomial at a query point in Fµ. This description is equivalent to saying that
the PCP is a vector of length m =

(
d+µ
µ

)
and the query circuit is the vector of all µ-variate

monomials of degree at most d (in some canonical order) evaluated at a point in Fµ. We call
this a (µ, d) Polynomial PCP and define Polynomial IOPs analogously. As we will explain,
we are interested in Polynomial PCPs where µ � m because we can cryptographically
compile them into succinct arguments using polynomial commitments, in the same way that
Merkle trees are used to compile classical (point) IOPs.

In general, evaluating the query circuit for a linear PCP requires Ω(m) work. However, a
general “bootstrapping” technique can reduce the work for the verifier: the prover expands
the verifier’s random coins into a full query vector, and then provides the verifier with a
second PCP demonstrating that this expansion was computed correctly. It may also help to
allow the verifier to perform O(m) work in a one-time preprocessing stage (for instance, to
check the correctness of a PCP oracle), enabling it to perform sublinear “online” work when
verifying arbitrary PCPs later. We call this a preprocessing IOP. In fact, we will see that
any t-round (µ, d) algebraic linear IOP can be transformed into a (t+ 1)-round Polynomial
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IOP in which the verifier preprocesses (µ, d) Polynomial PCPs, at most one for each distinct
query.

We recall the formal definition of public-coin linear IOPs as well an algebraic linear
IOPs. Since we are not interested in the algebraic nature of the decision algorithm, we
omit specifying the decision polynomial. From here onwards we use algebraic linear IOP as
shorthand for algebraic query linear IOP.

Definition 7 (Public-coin linear IOP). Let R be a binary relation and F a finite field. A
t-round `-query public-coin linear IOP for R over F with soundness error ε and knowledge
error δ and query length m = (m1, ...,mt) consists of two stateful PPT algorithms, the prover
P , and the verifier V = (Q,D), where the verifier consists in turn of a public deterministic
query generator Q and a decision algorithm D, that satisfy the following requirements:

Protocol syntax. For each ith round there is a prover state stPi and a verifier state stVi . For any

common input x and R witness w, at round 0 the states are stP0 = (x,w) and stV0 = x. In the
ith round (starting at i = 1) the prover outputs a single8 proof oracle P(stPi−1)→ πi ∈ Fmi .
The verifier samples public random coins coins i

$← {0, 1}∗ and the query generator computes
a query matrix from the verifier state and these coins: Q(stVi−1, coins i) → Qi ∈ Fmi×`. The
verifier obtains the linear oracle response vector π>i Qi = ai ∈ F1×`. The updated prover
state is stPi ← (stPi−1,Qi) and verifier state is stVi ← (stVi−1, coins i, ai) Finally, D(stVt ) returns
1 or 0.

(Querying prior round oracles : The syntax can be naturally extended so that in the ith
round the verifier may query any oracle, whether sent in the ith round or earlier.)

Argument of Knowledge. As a proof system, (P ,V) satisfies perfect completeness, soundness
with respect to the relation R and with soundness error ε, and witness-extended emulation
with respect R with knowledge error δ.

Furthermore, a linear IOP is stateless if for each i ∈ [t], Q(stVi−1, coins i) = Q(i, coins i).

It has algebraic queries if, additionally, for each i ∈ [t], the map coins i
Q(i,·)7−−−→ Qi ∈ Fmi×`

decomposes into two maps, coins i
Q0(i,·)7−−−→ Σi

Q1(i,·)7−−−→ Qi, where Σi ∈ Fµi×` is a matrix of
µi < mi rows and ` and Q1(i, ·) is described by ` µi-variate polynomial functions of degree
at most d = poly(λ): ~p1, . . . , ~p` : Fµi → Fmi such that for all k ∈ [`], ~pk(σi,k) = qi,k, where
σi,k and qi,k denote the kth column of Σi and Qi, respectively.

Definition 8 (HVZK for public-coin linear IOPs). Let View〈P(x,w),V(x)〉(V) denote the view
of the verifier in the t-round `-query interactive protocol described in Definition 7 on in-
puts (x,w) with prover algorithm P and verifier V , consisting of all public-coin challenges
and oracle outputs (this view is equivalent to the final state stVt ). The interactive protocol
has δ-statistical honest-verifier zero-knowledge if there exists a probabilistic polyno-
mial time algorithm S such that for every (x,w) ∈ R, the distribution S(x) is δ-close to
View〈P(x,w),V(x)〉(V) (as distributions over the randomness of P and random public-coin chal-
lenges).

We note that the separation into two maps coins i
Q0(i,·)7−−−→ Σi

Q1(i,·)7−−−→ Qi subtly relaxes
the definition of Bitansky et al., which instead requires that Qi be determined via ~p1, . . . , ~p`

evaluated at a random r
$← Fµi . The Bitansky et al. definition corresponds to the special

case that Q0(i, ·) samples a random element of Fµi based on coinsi. The point is that Q0

can also do other computations that do not necessarily sample r uniformly, or even output
a matrix rather than a vector. The separation into two steps is only meaningful when
µi is smaller than mi. The significance to SNARK constructions is that the query can be
represented compactly as Σi, and the prover will take advantage of the algebraic map Q1(i, ·)
to demonstrate that Σi was expanded correctly into Qi and applied to the proof oracle πi.
We first present a standalone definition of Polynomial IOPs, and then explain how it is a
special case of Algebraic Linear IOPs.

Definition 9 (Public coin Polynomial IOP). Let R be a binary relation and F a finite field.
Let X = (X1, . . . , Xµ) be a vector of µ indeterminates. A (µ, d) Polynomial IOP for R over

8The prover may also output more than one proof oracle per round, however this doesn’t add any power
since two proof oracles of the same size may be viewed as a single (concatenated) oracle of twice the length.
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F with soundness error ε and knowledge error δ consists of two stateful PPT algorithms, the
prover P , and the verifier V , that satisfy the following requirements:

Protocol syntax. For each ith round there is a prover state stPi and a verifier state stVi . For

any common input x and R witness w, at round 0 the states are stP0 = (x,w) and stV0 = x.
In the ith round (starting at i = 1) the prover outputs a single proof oracle P(stPi−1) → πi,
which is a polynomial πi(X) ∈ F[X]. The verifier deterministically computes the query

matrix Σi ∈ Fµ×` from its state and a string of public random bits coins i
$← {0, 1}∗, i.e,

V(stVi−1, coins i) → Σi. This query matrix is interpreted as a list of ` points in Fµ denoted
(σi,1, . . . ,σi,`). The oracle πi is queried on all points in this list, producing the response
vector (πi(σi,1), . . . , π`(σi,`)) = ai ∈ F1×`. The updated prover state is stPi ← (stPi−1,Σi) and
verifier state is stVi ← (stVi−1,Σi, ai). Finally, V(stVt ) returns 1 or 0.

(Extensions: multiple and prior round oracles; various arity. The syntax can be natu-
rally extended such that multiple oracles are sent in the ith round; that the verifier may
query oracles sent in the ith round or earlier; or that some of the oracles are polynomials in
fewer variables than µ.)

Argument of Knowledge. As a proof system, (P ,V) satisfies perfect completeness, soundness
with respect to the relation R and with soundness error ε, and witness-extended emulation
with respect R with knowledge error δ.

Furthermore, a Polynomial IOP is stateless if for each i ∈ [t], V(stVi−1, coins i) = V(i, coins i).

Polynomial IOPs as a subclass of Algebraic Linear IOPs In a Polynomial IOP, the

two-step map coins i
V(i,·)7−−−→ (σi,1, . . . ,σi,`)

M7−→ (qi,1, . . . ,qi,`) is a special case of the two-step

map coins i
Q0(i,·)7−−−→ Σi

Q1(i,·)7−−−→ Qi in an algebraic linear IOP. Here M : Fµ → Fm represents the
vector of monomials of degree at most d (in some canonical order) and the map associated
with M is evaluation. Note that there are m =

(
µ+d
d

)
such monomials. Furthermore, for

any qi,k, the inner product πT
i qi,k corresponds to the evaluation at σi,k of the polynomial

πi(X) ∈ F[X], whose coefficient vector (in the same canonical monomial order) is equal to
πi.

5.2 Polynomial IOP reductions

In this section we show that one can construct any algebraic linear IOP from a (multivariate)
Polynomial IOP. This construction rests on two tools for univariate Polynomial IOPs that
we cover first:

• Coefficient queries. The verifier verifies that an indicated coefficient of a polynomial
oracle has a given value.

• Inner products. The verifier verifies that the inner product of the coefficient vectors of
two polynomial oracles equals a given value.

5.2.1 Coefficient queries

The following is a (1, d)-Polynomial IOP for the statement fi = a with respect to a polyno-
mial f(X) =

∑d
j=0 fjX

j.

• Prover : Split f(X) about the term X i into fL(X) (of degree at most i− 1) and fR(X)
(of degree at most d − i − 1) such that f(X) = fL(X) + aX i + X i+1fR(X). Send
polynomials fL(X) and fR(X).

• Verifier : Sample uniform random β
$← Fp and query for yL ← fL(β), yR ← fR(β),

and y ← f(β). Check that y = yL + aβi + βi+1yR mod p and return 0 (abort) if not.
Otherwise output 1 (accept).

The verifier only accepts given proof oracles for polynomials f , fL, and fR in Fp[X] of
degree at most d, i− 1 and d− i− 1 such that f(β) = fL(β) + aβi + βi+1fR(β) for random

β
$← F. Via the Schwartz-Zippel lemma, if f(X) 6= fL(X) + aX i + X i+1fR(X) then the

25



verifier would accept with probability at most d/|F|, because the highest degree term in this
equation is X i+1fR(X) and its degree is at most d. This implies that a is the ith coefficient
of f .

Note that this description assumes that the verifier is assured that the proof oracles for
fL and fR have degrees i − 1 and d − i − 1, respectively. If no such assurance is given,
then fL(X) should be shifted by d − i + 1 digits. In particular, the proof oracle should
f ?L(X) = Xd−i+1fL(X), in which case the verifier obtains the evaluation y?L = yLβ

d−i+1

along with an assurance that f ?L(X) has degree at most d. The verifier then tests y =
(βd−i+1)−1y?L+aβi+βi+1yR. This test admits false positives with probability at most 2d/|F|.

5.2.2 Inner product

The following is an IOP where the prover first sends two degree d univariate polynomial
oracles f, g and proves to the verifier that 〈f ,gr〉 = a where f ,g denote the coefficient
vectors of f, g respectively and gr is the reverse of g. This argument is sufficient for our
application to transforming algebraic linear IOPs into Polynomial IOPs. It is also possible to
prove the inner product 〈f ,g〉 by combining this IOP together with another one that probes

the relation g(X) = Xdgr(X−1) in a random point z
$← F\{0}, and thereby shows that g

and gr have the same coefficients only reversed. We omit this more elaborate construction
as it is not needed for any of our applications.

• Prover : Sends proof oracles for f(X), g(X), and the degree 2d polynomial product
h(X) = f(X) · g(X) to the verifier.

• Verifier : Chooses β
$← F and queries for y1 ← f(β), y2 ← g(β), and y3 ← h(β). Check

that y1y2 = y3 and return 0 (abort) if not.

• Prover and verifier engage in the 1 round IOP (Section 5.2.1) for proving that the dth
coefficient (i.e., on term Xd) of h(X) is equal to a. (Note that the proof oracles for
this subprotocol can all be sent in the first round, so this does not add an additional
round).

Via Schwartz-Zippel, if h(X) 6= f(X) · g(X) then the verifier’s check y1y2 = y3 at the
random point β fails with probability at least (|F| − 2d)/|F|. Observe that the middle
coefficient of h(X) is equal to

∑d
i=0 figd−i =

∑d
i=0 fig

r
i = 〈f ,gr〉 = a.

Reducing algebraic linear IOPs to Polynomial IOPs

Theorem 7. Any public-coin t-round stateless algebraic linear IOP can be implemented
with a t + 1-round Polynomial IOP with preprocessing. Suppose the original `-query IOP
is (µ, d) algebraic with query length (m1, ...,mt) then the resulting Polynomial IOP has for
each i ∈ [t]: 2` degree mi univariate polynomial oracles, ` pre-processed multivariate oracles
of degree d and µ + 1 variables, ` degree 2mi univariate polynomial oracles and 2` degree
2mi univariate polynomial oracles. There is exactly one query to each oracle on a random
point in F. The soundness loss of the transformation is negl(λ) for a sufficiently large field
(i.e., whose cardinality is exponential in λ).

Proof. By definition of a (µ, d) algebraic linear IOP, in each ith round of the IOP there are
` query generation functions ~pi,1, . . . , ~pi,` : Fµ → Fmi , where each ~pi,k is a vector whose jth
component is a µ-variate degree-d polynomial pi,k,j. These polynomials are applied to a seed
matrix σi,k ∈ Fµ (which is identifiable with or derived from the verifier’s ith round public-
coin randomness coins i); this evaluation produces ~pi,k(σi,k) = qi,k ∈ Fmi for all k ∈ [`]. The
vectors qi,k are the columns of the query matrix Qi ∈ Fmi×`.

Preprocessed oracles For each round i of the original algebraic linear IOP, the prover
and verifier preprocess (µ + 1)-variate degree-d polynomial oracles. For each k ∈ [`], the
vector of polynomials ~pi,k = (pi,k,1, . . . , pi,k,mi) ∈ (F[X])mi with X = (X1, . . . , Xµ) is encoded
as a single polynomial in µ + 1 variables as follows. Introduce a new indeterminate Z, and
then define P̃i,k(X, Z) :=

∑mi
j=1 pi,k,j(X)Zj ∈ F[X, Z]. The prover and verifier establish the

oracle P̃i,k, meaning that the verifier queries this oracle on enough points to be reassured
that it is correct everywhere.
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The transformed IOP The original algebraic linear IOP is modified as follows.

• Wherever the original IOP prover sends an oracle πi of length mi, the new prover
sends a degree mi − 1 univariate polynomial oracle fπi whose coefficient vector is the
reverse of πi.

• Wherever the original IOP verifier makes ` queries within a round to a particular
proof oracle πi, where queries are defined by query matrix Qi ∈ Fmi×`, consisting of
column query vectors (qi,1, ...,qi,`), the new prover and verifier engage in the following
interactive subprotocol for each k ∈ [`] in order to replace the kth linear query 〈πi,qi,k〉:

– Verifier: Run the original IOP verifier to get the public coin seed matrix Σi and
send it to the prover.

– Prover: Derive the query matrix Qi from Σi using the polynomials ~pi,1, . . . , ~pi,`.
Send an oracle for the polynomial Fi,k whose coefficient vector is qi,k.

– Verifier: Sample uniform random β
$← F and query both Fi,k and P̃i,k (the kth

preprocessed oracle for round i) at β in order to check that Fi,k(β) = P̃i,k(σi,k, β).
If the check fails, abort and output 0.

– Prover: Compute ai,k = 〈π,qi,k〉 and send ai,k to the verifier.
– The prover and verifier run the inner product Polynomial IOP from Section 5.2.2

on the oracles Fi,k and fπi to convince the verifier that ai,k = 〈qi,k,πi〉. If the
inner product subprotocol fails the verifier aborts and outputs 0.

If all substeps succeed, then the verifier obtains correct output of each oracle query; in
other words, the responses are identical in the new and original IOP. These outputs are
passed to the original verifier decision algorithm, which outputs 0 or 1.

Soundness and completeness If the prover is honest then the verifier receives the same
exact query-response pairs (qi,k, ai,k) as the original IOP verifier and runs the same decision
algorithm, and therefore the protocol inherits the completeness of the original IOP. As for
soundness, an adversary who sends a polynomial oracle F ∗i,k whose coefficient vector is not
qi,k, fails with overwhelming likelihood. To see this, note that since qi,k = ~pi,k(σk), the
check that Fi,k(β) = P̃i,k(σi,k, β) at a random β fails with overwhelming probability by the
Schwartz-Zippel lemma. Similarly, an adversary who provides an incorrect a∗i,k 6= 〈πi,qi,k〉
fails the inner-product IOP with overwhelming probability. Therefore, if the original IOP
soundness error is ε then by a union bound the new soundness error is ε+negl(λ). A similar
composition argument follows for knowledge extraction.

Round complexity The prover and verifier can first simulate the t-round original IOP
on the verifier’s public-coin challenges, proceeding as if all queries were answered honestly.
Wherever the original IOP prover would send an oracle for the vector πi the prover sends
fπi . Then, after the verifier has sent its final public coin challenge from the original IOP,
there is one more round in which the prover sends all Fi,k for the kth query vector in the
ith round and all the purported answers ai,k to the kth query in the ith round. The prover
and verifier engage in the protocol above to prove that these answers are correct. The
inner product subprotocol for each Fi,k with fπi can be done in parallel with the check that
Fi,k(β) = P̃i,k(σi,k, β). Therefore, there is only one extra round.

5.3 Compiling Polynomial IOPs

Let Γ = (Setup,Commit,Open,Eval) be a multivariate polynomial commitment scheme.
Given any t-round Polynomial IOP for R over F, we construct an interactive protocol
Π = (Setup,P ,V) as follows. For clarity in our explanation, Π consists of t outer rounds cor-
responding to the original IOP rounds and subrounds where subprotocols may add additional
rounds of interaction between outer rounds.

• Setup: Run pp← Setup(1λ)

• In any round where the IOP prover sends a (µ, d) polynomial proof oracle π : Fµ → F,
in the corresponding outer round of Π, P sends the commitment cπ ← Commit(pp;π)
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• In any round where the IOP verifier makes an evaluation query z to a (µ, d) polynomial
proof oracle π, in the corresponding outer round of Π, insert an interactive execution
of Eval(pp, cπ, z, y, µ, d;π) between P and V , where π(z) = y.

If V does not abort in any of these subprotocols, then it receives a simulated IOP tran-
script of oracle queries and responses. It runs the IOP verifier decision algorithm on this
transcript and outputs the result.

Optimization: delayed evaluation As an optimization to reduce round-complexity and
enable batching techniques, all invocations of Eval can be delayed until the final round, and
heuristically could be run in parallel. Delaying the evaluations until the final round does
not affect our analysis. However, our analysis does not consider parallel execution of the
Eval subprotocols. We assume the protocol transcript contains an isolated copy of each Eval
instance and does not interleave messages or re-use randomness.

Theorem 8. If the polynomial commitment scheme Γ has witness-extended emulation, and
if the t-round Polynomial IOP for R has negligible knowledge error, then Π is a public-
coin interactive argument for R that has witness-extended emulation. The compilation also
preserves HVZK if Γ is hiding and Eval is HVZK.

The full proof is provided in Appendix B. HVZK is shown by a straightforward compo-
sition of the simulators for Eval and the original IOP simulator. The emulator E works as
follows. Given the IP adversary P ′, E simulates an IOP adversary P ′O by using the Eval em-
ulator EEval to extract proof oracles (i.e., polynomials) from any commitment that P ′ sends
and subsequently opens at an evaluation point. We argue that P ′O is successful whenever P ′

is successful, with negligible loss. (The only events that cause P ′O to fail when P ′ succeeds
is if EEval fails to extract from a successful Eval or P ′ succesfully opens a commitment incon-
sistently with an extracted polynomial). E then runs the IOP knowledge extractor with P ′O
to extract a witness for the input.

5.4 Concrete Instantiations

We consider examples of Polynomial IOPs to which this compiler can be applied: STARK [BBHR19];
Sonic [MBKM19] and its improvements PLONK [GWC19] and Marlin [CHM+19]; Spar-
tan [Set19], and the popular QAP of Gennaro et al. [GGPR13]. For the purpose of the
following discussion, we refer to the complexity of an NP relation R in various forms:

• R has arithmetic complexity n if the function computing R(x,w) can be expressed as
2-fan-in arithmetic circuit with a total of n gates.

• R has multiplicative complexity n if the function computing R(x,w) can be expressed
an arithmetic circuit with a total of n multiplication gates, where each multiplication
gate has 2 inputs.

• R has R1CS complexity9 n if the function computing R(x,w) can be expressed as
an R1CS instance (A,B,C, v, w) where A,B,C ∈ Fm×(`+1), (v, w) ∈ F`, and n is the
maximum number of non-zero entries in either A, B, or C.

Theorem 13 provides the main theoretical result of this work, tying together the new
DARK polynomial commitment scheme (Theorem 1), the compilation of HVZK Polynomial
IOPs into zk-SNARKs with preprocessing using polynomial commitments (Theorem 8), and
a concrete univariate Polynomial IOP introduced in Sonic [MBKM19] (Theorem 10) or follow-
up works.

5.4.1 Sonic

Sonic is a zk-SNARK system that has a universal trusted setup, which produces a Struc-
tured Reference String (SRS) of n group elements that can be used to prove any statement
represented as an arithmetic circuit with at most n gates. The SRS can also be updated

9The arithmetic complexity and R1CS complexity are similar, but vary because the R1CS constraints
correspond to the wiring of an arithmetic circuit with unrestricted fan-in.
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without re-doing the initial setup, for instance, to enable proving larger circuits, or to in-
crease the distribution of trust. The result in Sonic was not presented using the language of
IOPs. Furthermore, the result also relied on a special construction of polynomial commit-
ments (a modification of Kate et al. [KZG10]) that forces the prover to commit to a Laurent
polynomial with no constant term. Given our generic reduction from coefficient queries to
evaluation queries (Section 5.2.1), we re-characterize the main theorem of Sonic as follows:

Theorem 9 (Sonic Bivariate, [MBKM19]). There exists a 2-round HVZK Polynomial IOP
with preprocessing for any NP relation R (with multiplicative complexity n) that makes 1
query to a bivariate polynomial oracle of degree n on each variable, and 6 queries to degree n
univariate polynomial oracles. The preprocessing verifier does O(n) work to check the single
bivariate oracle.

The number of univariate queries increased from the original 3 in Sonic (with special
commitments) to 6 with our generic coefficient query technique. If we were to compile
the bivariate query directly using our multivariate commitment scheme this would result in
O(n2) prover time (a bivariate polynomial with degree n on each variable is converted to a
univariate polynomial of degree roughly n2). However, Sonic also provides a way to replace
the bivariate polynomial with several degree n univariate polynomials and more rounds of
communication.

Theorem 10 (Sonic Univariate, [MBKM19]). There is a 5-round HVZK Polynomial IOP
with preprocessing for any NP relation R (with multiplicative complexity n) that makes 39
queries overall to 27 univariate degree 2n polynomial oracles. The total number of distinct
query points is 12. The preprocessing verifier does O(n) work to check 12 of the univariate
degree 2n polynomials.

The recent proof systems PLONK and Marlin improve on Sonic by constructing a different
Polynomial IOP. They achieve the following:

Theorem 11 (PLONK, [GWC19]). There is a 3-round HVZK Polynomial IOP with prepro-
cessing for any NP relation R (with arithmetic complexity n) that makes 12 queries overall
to 12 univariate degree n polynomial oracles. The total number of distinct query points is 2.
The preprocessing verifier does O(n) work to check 7 of the univariate degree n polynomials.

Theorem 12 (Marlin, [CHM+19]). There exists a 4-round HVZK Polynomial IOP with
preprocessing for any NP relation R (with R1CS complexity n) that makes 20 queries at
3 distinct query points to 19 univariate degree polynomial oracles of maximum degree 6n.
The preprocessing verifier does O(n) work to check 9 univariate degree n polynomials.

Combining the Sonic Polynomial IOP with the new transparent polynomial compiler of
Section 4 gives the following result. Similar results are obtained by using PLONK or Marlin
instead.

Theorem 13 (New Transparent zk-SNARK). There exists an O(log n)-round public-
coin interactive argument of knowledge for any NP relation of arithmetic complexity n that
has O(log n) communication, O(log n) “online” verification, quasilinear prover time, and a
preprocessing step that is verifiable in quasilinear time. The argument of knowledge has
witness-extended emulation assuming it is instantiated with a group G for which the Strong
RSA Assumption, and the Adaptive Root Assumption hold.

Proof. We apply the univariate polynomial commitment scheme from Section 4 to the 5-
round Polynomial IOP from Theorem 10. Denote this commitment scheme by Γ = (Setup,
Commit,Open,Eval)

The preprocessing requires running Commit on 12 univariate degree n polynomials, which
involves a quasilinear number of group operations in the group of unknown order G deter-
mined by Setup. The prover sends a constant number of proof oracles of degree 2n to the
verifier, which also takes a quasilinear number of group operations. Finally, the 39 queries are
replaced with at most 39 invocations of Eval, which adds O(log n) rounds and has O(log n)
communication. By Theorem 1 (Γ has witness extended emulation) and Theorem 8, the
compiled interactive argument has witness-extended emulation.
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5.4.2 STARK

The STARK proof system [BBHR19] builds an IOP for uniform computations, specified by
a program P and timebound T on the running time of P . The IOP itself is then compiled
into a concrete proof system using FRI [BBHR18] and Merkle trees. The STARK IOP can
be cast as a univariate Polynomial IOP.

The IOP construction begins with an algebraic intermediate representation (AIR) of the
program P . We present a simplified version of the original STARK AIR language for the
purpose of illustrating how to recast the STARK IOP as a Polynomial IOP. The original AIR
is more complex for efficiency reasons.

The AIR represents a computation as an algebraic execution trace of the program P
for T timesteps. The AIR views the program as a system of n registers and a transition
function. At every timestep each register holds an element of the finite field F. Given a
vector wi ∈ Fn representing the states of the registers at timestep i, the transition function
determines the vector wi+1 ∈ Fn representing the state of the registers at timestep i+1. The
AIR represents the transition function as a system of constraints given by a vector of 2n-
variate polynomials P , and furthermore specifies a vector B of tuples ([T ], [n],F) representing
“boundary conditions” of the form wi[j] = α for the value of the jth register at timestep i.

Definition 10. The relation RAIR is the set of all instance-witness pairs ((F, T, n,P ,B),W )
satisfying the following description:
Instance. An instance is a tuple (F, T, n,P ,B) where

• F is a finite field.

• T ∈ N is the number of time steps.

• n is the number of registers.

• P : F2n → Fk is a polynomial vector function whose k components (P1, ...,Pk) are each
2n-variate polynomials of degree at most d called the “state transition constraints”.
On input z ∈ F2n: P(z) = (P1(z), ...,Pk(z)) ∈ Fk.
• B ∈ ([T ]× [n]× F)` are ` tuples, called the “boundary conditions”.

Witness. A witness is a table W ∈ FT×n where each row i ∈ [T ] represents the full state of
the system at time i, and each column j ∈ [n] tracks the value of register j across time. A
witness W is a valid witness for the instance x = (F, T, n,P ,B) if and only if the following
conditions are satisfied:

• State transition consistency: P(W [i, 1], . . . ,W [i, n],W [i+1, 1], . . . ,W [i+1, n]) = 0
for all i ∈ [T − 1].

• Boundary condition satisfaction: W [i, j] = α for every tuple (i, j, α) ∈ B.

The language LAIR is defined as LAIR = {x = (F, T, n,P ,B) | ∃W (x,W ) ∈ RAIR}.

Theorem 14. There is a 2-round univariate Polynomial IOP for RAIR with preprocessing
that makes k + n + 2 queries to n + 2 polynomials of degree at most T . The prover has
complexity Õ(nT ) and the verifier has complexity O(n log T ). The preprocessing verifier
does O(T ) work.

STARK Polynomial IOP We sketch how this Polynomial IOP is constructed, omitting
many details (see the STARK paper [BBHR19] for further details).

Let g be a generator of F×. The preprocessing consists of computing the nonzero poly-
nomial z(X) =

∏T−1
i=1 (X − gi) which satisfies z(g1) = z(g2) = · · · = z(gT−1) = 0. The online

interaction is as follows:

1. The prover computing the n polynomials wj(X) of degree at most T − 1 such that
wj(g

i) = w[i, j], and sends n polynomial oracles to the verifier, one for each wj(X).

2. The verifier sends a random weight vector β
$← Fk.

3. The prover computes f(X) = βTP(w1(X), . . . , wn(X), w1(g ·X), . . . , wn(g ·X)). The
prover sends q(X) = f(X)/z(X) to the verifier.
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Note that for a valid witness, f(g1) = f(g2) = · · · = f(gT−1) = 0, so z(X) divides f(X).
Note further that q(X) has degree at most d. The verifier’s queries to the proof oracles it
received from the prover are as follows:

• For all boundary constraints of the form (i, j, α) the verifies queries for wj(g
i), and if

wj(g
i) 6= α then the verifier aborts and rejects.

• For a random point h
$← F, the verifier queries for uj ← wj(h) and vj ← wj(gh) for all

j ∈ [n], as well as for q(h) and z(h). Finally it checks that βTP(u1, . . . , un, v1, . . . , vn) =
q(h) · z(h), and if not it aborts and rejects.

If g instead can be chosen as an element of order T − 1 in F, then the preprocessing phase
can be omitted. In this case z(X) = XT−1− 1 and it can be evaluated by the verifier locally
in O(log T ) time.

5.4.3 Spartan

Spartan [Set19] transforms an arbitrary circuit satisfaction problem into a Polynomial IOP
based on an arithmetization technique developed by Blumberg et al. [BTVW14], which
improved on the classical techniques of Babai, Fortnow, and Lund [BFL91]. Specifically,
satisfiability of a 2-fan-in arithmetic circuit on n gates can be transformed into the expression:∑

x,y,z∈{0,1}logn

G(x, y, z) = 0 (1)

for a multilinear polynomial G on 3 log n variables over F. Furthermore, G decomposes into
the form:

G(x, y, z) = A(x, y, z)F (x) +B(x, y, z)F (y) + C(x, y, z)F (y)F (z)

where A,B,C, and F are all multilinear polynomials. The polynomials A,B,C are derived
from the arithmetic circuit defining the relation R and are input-independent. F is degree 1
with log n variables and is derived from a particular (x,w) ∈ R. The classical LFKN sum-
check protocol is applied in order to prove Expression 1 in a 3 log n round Polynomial IOP,
where the prover’s oracle consist of Z and the low-degree polynomials sent in the sumcheck.
Since the extra low-degree polynomials are constant size they can be read entirely by the
verifier in constant time rather than via oracle access, and hence we ignore them in the total
oracle count. The verifier must also evaluate A,B,C locally, which come from the multi-
linear extension of the circuit. This can be done in O(log n) time for certain circuits with a
succinct representation. The main result in Spartan can be summarized in our framework
as follows:

Theorem 15 ([Set19]). There exists a 3 log n round Polynomial IOP for any NP relation
R computed by any circuit with arithmetic complexity n, which makes three queries to a
log n-variate degree 1 polynomial oracle.

Applying our multivariate compiler to the Spartan Polynomial IOP we obtain an O(log n)-
round public-coin interactive argument of knowledge for circuits size n, where the verifier’s
work is dependent on the succinctness of the circuit representation (i.e., the complexity of
evaluating the multilinear extension of the circuit). In our multivariate scheme (Section 4.6),
the log n-variate degree 1 polynomial is tranformed into a univariate polynomial of degree n.
With only three queries overall, the communication is just 6 log n group elements and 6 log n
field elements.

5.4.4 Quadratic Arithmetic Programs

Quadratic Arithmetic Programs (QAPs) can be expressed as linear PCPs [BCI+13, BCG+13].
We review here how to express QAPs as a one round public-coin (1, n) algebraic IOP. (This
captures the satisfiability of any circuit with multiplicative complexity n, which is first
translated to a system of quadratic equations over degree n polynomials.) Each linear query
is computed by a vector of degree n univariate polynomials evaluated at a random point
chosen by the public-coin verifier.
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For illustration, we will use the description of the QAP language due to Ben-Sasson et
al. [BCG+13, §E.1]. This language is defined by lengthm+1 polynomial vectors A(X), B(X),
C(X) ∈ (F[X])m+1 such that the ith components Ai(X), Bi(X), Ci(X) are all degree-(n−1)
polynomials over Fp[X] for i ∈ [0,m − 1], and Am = Bm = Cm is the degree-n polynomial
Z(X) that vanishes on a specified set of n distinct points in Fp. There is a length-(m − 1)
witness vector w whose first ` components are equal to the instance x ∈ F`, and a degree-n
“quotient” polynomial H(X), such that the following constraint equation is satisfied:

[(1,w>, δ1)A(X)] · [(1,w>, δ2)B(X)]− (1,w>, δ3)C(X) = H(X) · Z(X)

and (1,w>)(1, X, ..., X`,0m−`−1) = (1,x>)(1, X, ..., X`)
(2)

The deltas δ1, δ2, δ3 ∈ F are used as randomizers for zero-knowledge.

QAP algebraic linear PCP Equation 2 is turned into a set of linear queries by eval-
uating the polynomials at a random point in F. Satisfaction in this random point implies
satisfaction of the polynomial equation with error at most 2n/|F| by the Schwartz-Zippel
lemma. Translated to an algebraic IOP, the prover sends a proof oracle πw containing the
vector (1,w, δ1, δ2, δ3) as well as a proof oracle πh containing the coefficient vector of H(X).
A common proof oracle πz is jointly established containing the coefficient vector of Z(X).

Let α ∈ F be a random point. The verifier makes four queries to πw, computed by
the polynomial vectors A(X), B(X), C(X) and D(X) = (1, X, ..., X`,0m−`−1)>, evaluated in
α. The verifier makes one query each to πh and πz, which is the evaluation of H(α) and
Z(α) respectively. The verifier obtains query responses ya, yb, yc, yd, yh, yz and checks that
ya · yb − yc = yhyz and yd = 〈(1,w>), D(α)〉.

QAP Polynomial IOP Following the compilation in Theorem 7 (Section 5.2.2), the QAP
algebraic linear PCP can be transformed into a 2-round Polynomial IOP. For simplicity,
assume m + 3 < n, where m − 1 is the length of the witness and n is the multiplicative
complexity of the circuit. The preprocessing establishes three bivariate degree-n polynomials
(i.e., encoding A(X), B(X), C(X)) and two univariate degree-n polynomials (i.e., encoding
Z(X) and D(X)). In the 2-round online phase the prover sends a degree-n univariate oracle
for the witness vector (1,w, δ1, δ2, δ3), a degree-n univariate oracle for H(X), four degree-n
univariate oracles encoding linear PCP queries, four degree-2n univariate oracles encoding
polynomial products, and eight degree-2n univariate oracles for opening inner products. The
total number of polynomial oracle evaluation queries is 3 bivariate degree-n, 8 univariate
degree-2n, and 7 univariate degree-n.

Theorem 16 (QAP Polynomial IOP). There exists a 2-round Polynomial IOP with pre-
processing for any NP relation R (with multiplicative complexity n) that makes 7 queries
to univariate degree-n oracles, 8 queries to univariate degree-2n oracles, and 3 queries to
bivariate degree-n oracles.

While theoretically intriguing, compiling the QAP-based IOP with our polynomial com-
mitments of Section 4 is less practical than compiling the Sonic IOP. While the QAP Poly-
nomial IOP has only 15 univariate queries (compared to Sonic’s 39 queries to polynomials of
twice the degree), the 3 bivariate polynomial oracles take quadratic time to preprocess and
open. Unfortunately, our polynomial commitment scheme does not take advantage of the
sparsity of these bivariate polynomials. Furthermore, ignoring prover time complexity, the
size of the bivariate Eval proofs are twice as large as univariate Eval proofs.

6 Evaluation

We now evaluate Supersonic, the trustless-setup SNARK built on the Polynomial IOPs un-
derlying Sonic [MBKM19], PLONK [GWC19], and Marlin [CHM+19], and compiled using
our DARK polynomial commitment scheme. As explained in Section 4.5, the commitment
scheme has several batching properties that can be put to good use here. It is possible to
evaluate k polynomials of degree at most d using only 2 group elements and (k + 1) field
elements. To take advantage of this we delay the evaluation until the last step of the protocol
(see Section 5.3). We present the proof size for both the compilation of Sonic, PLONK and
Marlin in Table 3. We use 1600 bits as the size of class group elements and λ = 120. The

32



security of 1600 bit class groups is believed to be equivalent to 3048bit RSA groups and have
120 bits of security [BH01, BJS10]. This leads to proof sizes of 16.5KB for Sonic, 10.1KB
using PLONK and 12.3KB using Marlin for circuits with n = 220 (one million) gates. Using
3048-bit RSA groups the proof sizes becomes 18.4KB for the compilation of PLONK. If 100
bits of security suffice then a 1200 bit class group can be used and the compiled PLONK
proofs are 7.8KB for the same setting. In a 2048-bit RSA group this becomes 12.7KB.

The comparison between the Polynomial IOPs is slightly misleading because for Sonic
n is the number of multiplication gates whereas for PLONK it is the sum of multiplication
and addition gates. For Marlin it is the number of non-zero entries in the R1CS description
of the circuit. A more careful analysis is therefore necessary, but this shows that there are
Polynomial IOPs that can be compiled using the DARK polynomial commitment scheme to
SNARKs of roughly 10 kilobytes in size. These numbers stand in contrast to STARKs which
achieve proofs of 600KB for computation of similar complexity [BBHR19]. We compare
Supersonic to different other proof systems in Table 4. Supersonic is the only proof system
with efficient verifier time, small proof sizes that does not require a trusted setup.

Polynomial IOP Polynomials Eval points |SNARK| concrete size

Sonic [MBKM19] 12 in pp + 15 12
(15 + 2 log2(n))G

15.3 KB
+(12 + 13 log2(n))Zp

PLONK [GWC19] 7 in pp + 7 2
(7 + 2 log2(n))G

10.1 KB
+ (2 + 3 log2(n))Zp

Marlin [CHM+19] 9 in pp + 10 3
(10 + 2 log2(6n))G

12.3 KB
+ (3 + 4 log2(6n))Zp

Table 3: Proof size for Supersonic. Column 2 says how many polynomials are committed to
in the SRS (offline oracles) and how many are sent by the prover (online oracles). Column
3 states the number of distinct evaluation points. The proof size calculation uses |Zp| = 120
and |G| = 1600 for n = 220 gates.

Prover and Verifier cost We use the notation Oλ(·) to denote asymptotic complexity
for a fixed security parameter λ, i.e. how the prover and verifier costs scale as a function
of variables other than λ. The main cost for the Supersonic prover consist of computing the
commitments to the polynomial oracles and producing the single combined Eval proof. This
proof requires calculating the commitments to the polynomials fL(q) and fR(q) in each round
and performing the PoE(CR,C/CL, q

d′+1). Using precomputation, i.e., computing gq
i

for all
i and using multi-exponentiation, the commitments can be computed in Oλ(

d
log(d)

) group
operations. The same techniques can be used to reduce the number of group operations for
the PoEs to Oλ(d). The total number of group operations is therefore linear in the maximum
degree of the polynomial oracles and the number of online oracles. Interestingly, the number
of offline oracles hardly impacts the prover time and proof size.

The verifier time is dominated by the group operations for exponentiation in various
places in the single combined Eval protocol. It consists of 3 λ-bit exponentiations in each
round: 1 for combining CL and CR and two for verifying the PoE. In the final round the
verifier does another λ log2(d+1)-bit exponentiation to open the commitment but this could
also be outsourced to the prover using yet another PoE. The total verifier time therefore
consists of roughly an exponentiation of 3λ log2(d + 1) group operations. Using 10µs per
group operation10, this gives us for λ = 120 and n = 220 a verification time of around 72ms.

10The estimate comes from the recent Chia Inc. class group implementation competition. The com-
petition used a larger 2048bit discriminant but only performed repeated squaring. https://github.com/

Chia-Network/vdfcontest2results
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Scheme Transp. |pp| Prover Verifier |π| n = 220

Supersonic yes O(1) O(n log(n)) EXP 3 log(n) EXP 2 log(n) GU 10.1KB
PLONK [GWC19] no 2n GB O(n) EXP 1 Pairing O(1) GB 720b
Groth16 [Gro16] no 2n GB O(n) EXP 1 Pairing O(1) GB 192b
BP [BBB+18] yes 2n GP O(n) EXP O(n) EXP 2 log(n) GP 1.7KB
STARK yes O(1) O(λT ) H O(λ log2(T )) H O(λ log2(T )) H 600 KB
Virgo[ZXZS19] yes O(1) O(λn) H O(λ log2(n)) H O(λ log2(n)) H 271 KB

Table 4: Comparison table between different succinct arguments. In column order we com-
pare on transparent setup, CRS size, prover and verifier time, asymptotic proof size and
concrete proof for an NP relation with arithmetic complexity 220. Even when precise factors
are given the numbers should be seen as estimates. For example, we chose to not display
smaller order terms. The symbol GU denotes an element in group of unknown order, GB one
in a group with a bilinear map (pairing), GP one in a prime order group with known order.
Furthermore, EXP refers to exponentiation of λ-bit numbers in these groups, and H is either
the size of a hash output or the time it takes to compute a hash. The prover time for the
group based schemes can be brought down by a log factor when using multi-exponentiation
techniques.

7 Conclusion

In this work we presented the DARK compiler: a polynomial commitment scheme from fal-
sifiable assumptions in groups of unknown order with evaluation proofs that can be verified
in logarithmic time. We also presented Polynomial IOPs, a unifying information-theoretical
framework underlying the information theoretic foundation of several recent SNARK con-
structions. Polynomial IOPs can be compiled into a concrete SNARK using a polynomial
commitment scheme and the Fiat-Shamir transform. We showed that applying the DARK
compiler to recent Polynomial IOPs yields the first trustless SNARKs (i.e., with a
transparent untrusted setup) that have practical proof sizes and verification
times. In particular, this is the first trustless/transparent SNARK construction that has
asymptotically logarithmic verification time (ignoring the λ-dependent factors, which are
comparable to λ-dependent factors in prior works). Finally, unlike all known SNARKs in bi-
linear groups, the construction does not require knowledge of exponent assumptions. Several
important open questions remain:

• Our polynomial commitment scheme has prover time linear in the total number of co-
efficients, even for zero coefficients. Consequently for a sparse bivariate polynomial of
degree d in each variable the prover time is quadratic in d. A sparse polynomial com-
mitment scheme would directly enable an efficient compilation of simple information
theoretic protocols such as QAPs.

• Assymptotically, Supersonic’s prover time is on par with pairing-based SNARK con-
structions, however, a concrete implementation and performance comparison remains
open.

• This work further motivates the study of class groups and groups of unknown order.
In particular we rely on a recently introduced Adaptive Root Assumption.

• Our polynomial commitment scheme uses a simple underlying information theoretic
protocol that could be compiled using a (partially) homomorphic commitment scheme
over polynomials, or even another type of integer homomorphic commitment scheme.
This leaves open whether there are different ways of instantiating our DARK compiler
under different cryptographic assumptions.
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Appendix

A Security Proofs

In the preliminaries we already stated the two main hardness assumptions, the r-Strong RSA
Assumption and the Adaptive Root Assumption. We additionally use two more assumptions,
the Order Assumption, and the r-Fractional Root Assumption. However, both of them reduce
to the Strong RSA and the Adaptive Root Assumptions.

The first assumption states that computing the order for any element is hard. It reduces
to the Adaptive Root Assumption. Interestingly, it doesn’t necessarily hold for all candidate
groups of unknown order as we explain below. In particular it is important to exclude
elements of known order such as −1 from the candidate unknown order group Zn.

Assumption 3 (Order Assumption). The Order Assumption holds for GGen if for any
efficient adversary A:

Pr

w 6= 1 ∧ wα = 1 :

G $← GGen(λ)

(w, α)
$← A(G)

where |α| < 2poly(λ) ∈ Z
and w ∈ G

 ≤ negl(λ) .

Lemma 5. The Adaptive Root Assumption implies the Order Assumption.

Proof. We show that given an adversary AOrd that breaks the Order Assumption we can
construct with overwhelming probability AAR that breaks the Adaptive Root Assumption.
We run AOrd to get a w 6= 1 ∈ G and α ∈ Z such that wα = 1. To construct AAR, AAR,0

outputs (w, α). The challenger generates a random challenge `. If gcd(`, α) = 1 then AAR,1

can compute β ← `−1 mod α and output u← wβ. By construction u` = w. The probability
that gcd(`, α) = 1 is overwhelming because gcd(`, α) 6= 1 =⇒ `|α. This happens with
negligible probability as ` is picked from a set of 2λ primes and at most poly(λ) distinct
primes can divide α.

We also define the Fractional Root Assumption, which states that for random group
elements g it is hard to find a tuple (u ∈ G, α ∈ Z, β ∈ Z) such that uβ = gα. We say that
(u, α, β) is a fractional root of g. Shoup[CS99] showed that for the unknown order group of
quadratic residues in Zn, where n is the composite of two strong primes, that the Fractional
Root Assumption reduces to just the Strong RSA Assumption.

Assumption 4 (r-Fractional Root Assumption). The r-Fractional Root Assumption
holds for GGen for any efficient adversary A:

Pr


uβ = gα ∧ β

gcd(α, β)
6= rk, k ∈ N :

G $← GGen(λ)

g
$← G

(α, β, u)
$← A(G, g)

where |α| < 2poly(λ),
|β| < 2poly(λ) ∈ Z,
and u ∈ G


≤ negl(λ) .

We say (α, β, u) is a non power of r fractional root of g.
The Fractional Root Assumption reduces to the Order Assumption (and therefore to the

Adaptive Root Assumption) and the Strong RSA Assumption.

Lemma 6. The Adaptive Root Assumption and the r-Strong RSA Assumption imply the
r-Fractional Root Assumption

Proof. Given an adversary AFR that succeeds in breaking the Fractional Root Assumption
for GGen we can construct either an adversary ARSA for the Strong RSA Assumption or
an adversary AOrd that breaks the Order Assumption for GGen. As shown in Lemma 5 the
Order Assumption reduces to the Adaptive Root Assumption with overwhelming probability.

We first generate a group of unknown order G $← GGen(λ). Then we sample g
$← G as done

in the strong RSA security definition.
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We now run the AFR on input G and g to generate a tuple (α, β, u) such that uβ = gα.
Let γ = gcd(α, β) and α′ = α

γ
∈ Z and β′ = β

γ
∈ Z. Now either gα

′
= uβ

′
or gα

′
/uβ

′
is a non

trivial element of order γ which would directly break the Order Assumption. In that case
we constructed AOrd that outputs (gα

′
/uβ

′
, γ).

Now assume otherwise, i.e. gα
′

= uβ
′
. By construction gcd(α′, β′) = 1 and we can

efficiently compute integers a, b such that aα′ + bβ′ = 1. By assumption on AFR β′ is not
rk. Now let w ← uagb. Note that wα

′β′ = gα
′
. So either wβ

′
= g or wβ

′
/g is a non-trivial

element of order α′. The first case breaks the Strong RSA Assumption, as we can construct
ARSA that outputs (w, β′), and the second breaks the Order Assumption.

A.1 Binding

Lemma 3. The polynomial commitment scheme is binding for polynomials in Z(b)[X] for
b < q/2 if either the Adaptive Root Assumption or the Strong RSA Assumption hold.

Proof. Assume that there is an adversary that breaks the binding property of the scheme.
Specifically, assume that some probabilistic polynomial time algorithm A takes as input
pp and outputs C ∈ G, f(X) ∈ Z(b)[X], f ′(X) ∈ Z(b)[X] such that with non-negligble
probability Open(pp,C, f̃(X), f(X)) = Open(pp,C, f̃ ′(X), f ′(X)) = 1 and f̃(X) 6= f̃ ′(X).
We proceed to show that this implies a violation of the Order Assumption (Assumption 3)
and the Strong RSA Assumption (Assumption 1). The assumptions are incomparable so we
show that either suffices to achieve the binding property of the commitment scheme.

If f(X) 6= f ′(X) and q/2 > b then f(q) 6= f ′(q) ∈ Z. Since gf(q) = gf
′(q) = C we have

that gf(q)−f ′(q) = 1. This directly breaks the Order Assumption and we can also create an
adversary ARSA that breaks the Strong RSA Assumption. To do so the ARSA picks an odd
prime ` that is co-prime with f(q) − f ′(q) and computes u ← g`

−1 mod (f(q)−f ′(q)) as the `th
root of g.

A.2 Correctness

Lemma 4. The polynomial commitment scheme is correct for polynomials in Zp[X] of degree
at most d if q > pdlog2(d+1)e+1.

Proof. In order to ensure correctness we must ensure that b < q/2 and that |f | ≤ b. To
show this we show that in each recursion step the honest prover’s witness polynomial has
coefficients bounded by b and has degree d. We argue inductively that for each recursive
call of EvalBounded the following constraints on the inputs are satisfied: The degree of
f(X) is bounded by d. C encodes the polynomial, i.e., C = gf(q) and f(X) ∈ Z(b). Also
f(z) = y mod p.

Initially, during the execution of Eval, the prover maps the coefficients of a polynomial
f̃(X) ∈ Zp to an integer polynomial f(X) with coefficients in Z(p−1

2
) and degree at most d

such that C = gf(q). Additionally f(z) mod p = f̃(z) = y.
In a recursion steps where d+ 1 is odd, f ′(X) = X · f(X) is a polynomial of degree d+ 1

such that C′ = Cq = gq·f(q) = gf
′(X) and the bound b is unchanged as are the coefficients.

Also, f ′(z) mod p = z · f(z) mod p = z · y mod p = y′ mod p. If d + 1 is odd, then in the
next step d+ 1 must be even.

If d+1 is even then, P computes fL(X) and fR(X) such that fL(X)+X
d+1

2 fR(X) = f(X).

Consequently f(z) mod p = fL(z) + z
d+1

2 fR(z) mod p = yL + z
d+1

2 yR mod p = y. The PoE

protocol has perfect correctness so gfL(q)+q
d+1

2 fR(X) = C. Finally f ′(X) = αfL(X) + fR(X) ∈
Z(p+1

2
· b) is a degree d polynomial with coefficients bounded in absolute value by (p+1

2
) · b.

This is precisely the value of b′ the input to the next call of EvalBounded. The value y′ is
also correct: f ′(z) mod p = αfL(z) + fR(z) mod p = αyL + yR mod p = y′

There are exactly dlog2(d + 1)e recursion steps with even d + 1. In the final recur-
sion step we therefore have b = p−1

2
(p+1

2
)dlog2(d+1)e and as such the requirement that q/2 >

p−1
2

(p+1
2

)dlog2(d+1)e. So if q > pdlog2(d+1)e+1 ≥ (p−1)(p+1
2

)dlog2(d+1)e then all verifier checks pass
and the verifier outputs 1.

A.3 Proof of Theorem 1

Security of PoE substitutions We first begin by showing that we can safely replace all
of the PoE evaluations with direct verification checks. Concretely, under the Adaptive Root
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Assumption, the Eval protocol is as secure as the protocol Eval′ in which all PoEs are replaced
by direct checks. We show that the witness-extended emulation for Eval′ implies the same
property for Eval. This is useful because we will later show how to can build an extractor for
Eval′, thereby showing that the same witness-extended emulation property extends to Eval.

Lemma 7. Let Eval′ be the protocol that is identical to Eval but in line 18 of EvalBounded V
directly checks CLC

qd
′+1

R = C instead of using a PoE. If the Adaptive Root Assumption holds
for GGen, and Eval′ has witness-extended emulation for polynomials of degree d = poly(λ),
then so does Eval.

Proof. We show that if an extractor E ′, as defined in Definition 2, exists for the protocol Eval′

then we can construct an extractor E for the protocol Eval. Specifically, E simulates E ′ and
presents it with a Record′(· · · ) oracle, while extracting the witness from its own Record(· · · )
oracle.

Whenever E ′ queries the Record′ oracle, E queries its Record oracle and relays the response
after dropping those portions of the transcript that correspond to the PoE proofs. Whenever
E ′ rewinds its prover, so does E rewind its prover. When E ′ terminates by outputting a
transcript-and-witness pair (tr′, f(X)), E adds PoEs into this transcript to obtain tr and
outputs (tr, f(X)).

For each PPT adversary (A, P ∗), E will receive a polynomial number of transcripts from
its Record oracle. Any transcript tr of Eval such that A(tr) = 1 and tr is accepting contains
exactly dlog(d + 1)e PoEs transcripts. So in total E sees only a polynomial number of PoE
transcripts generated by a probabilistic polynomial-time prover and verifier. By Lemma 2
under the Adaptive Root Assumption, the probability that a polynomial time adversary can
break the soundness of PoE, i.e., convince a verifier on an instance (CR,C/CL, q

d′+1) 6∈ RPoE,
is negligible. Consequently, the probability that the adversary can break PoE on any of the
polynomial number of executions of PoE is still negligible.

This means that with overwhelming probability all transcripts are equivalent to having
the verifier directly check (CR,C/CL, q

d′+1) ∈ RPoE. By assumption, the witness-candidate
f(X) that E ′ outputs is a valid witness if the transcript tr′ that E ′ also outputs is accepting.
The addition of honest PoE transcripts to tr′ preserves the transcript’s validity. So tr is an
accepting transcript for Eval if and only if tr′ is an accepting transcript for Eval′. Therefore,
E ′ outputs a valid witness f(X) whenever E outputs a valid witness. This suffices to show
that Eval has witness-extended emulation if Eval′ has, and if the Adaptive Root Assumption
holds for GGen.

Combining statements. The Eval protocol combines two statements into one by using
a random linear combination of group elements, i.e., C′ ← CαLCR. We now show that this
step is sound and that given the discrete logarithm for C′ the extractor can extract the
discrete logarithm for CL and CR we also show that the we can bound the size of the discrete
logarithm. We show that this statement holds in two settings. First we consider a group
G were the standard Strong RSA Assumption holds and group elements are encodings of
integers. Then we will show that in groups in which taking square roots is easy we can
extract dyadic rationals using the 2-Strong RSA Assumption.

Lemma 8 (Combining for integer witnesses). For G ← GGen(λ), and g
$← G. Let

(z,CL,CR, yL, yR, α, f, y) and (z,CL,CR, yL, yR, α
′, f ′, y′) be two transcripts such that gf =

CαLCR and gf
′

= Cα
′
L CR for group elements CL,CR ∈ G, and integers α, α′ ∈ [−p−1

2
, p−1

2
],

α 6= α′. Further let f, f ′ ∈ Z be such that f(X)← Dec(f) and f ′(X)← Dec(f ′) are degree
d bounded polynomials with coefficients bounded by b, i.e., f(X), f ′(X) ∈ Z(b)[X] ⊂ Z[X].
And finally let y = f(z) mod p and y′ = f ′(z) mod p. Then there exists a PPT algorithm X
that given these transcripts computes either (1) yL, yR ∈ Zp, fL(X), fR(X) ∈ Z((p−1) ·b)[X]
such that fL(z) = yL mod p and fR(z) = yR mod p or (2) an element in G of known order
or (3) a fractional root of g.

Proof. Using the transcripts X computes ∆α ← α−α′ and ∆f ← f−f ′ such that C∆α
L = g∆f .

If
∆f

∆α
is not an integer then X outputs a fractional root of g, that is the tuple (∆f ,∆α,CL).

If
∆f

∆α
on the other hand is an integer then X can compute D ← g

∆f
∆α . Either D = CL or

(D/CL)∆α = 1. In the second case, D/CL is an element of known order.
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Otherwise D = CL and we have CL = gfL where fL =
∆f

∆α
is an integer. Additionally

CR = gfR for fR ← f − α · fL.
X now computes the corresponding polynomials fL(X)← Dec(fL) and fR(X)← Dec(fR).

Now if for all i, the coefficients fi and f ′i ∈ [−b, b] and α, α′ ∈ [−p−1
2
, p−1

2
] then by the triangle

inequality we have that for the ith coefficient of fL(X), fL,i ∈ [−2b, 2b]. Additionally we have

fR,i =
f ′iα−fiα′

∆α
. Using the triangle inequality again we have that fR,i ∈ [−(p−1) ·b, (p−1) ·b].

For an odd prime p, (p− 1) · p ≥ 2. The bound on fR,i is, therefore, greater than the bound
on fL,i. This gives us fL(X), fR(X) ∈ Z((p− 1) · b)[X]

Let yL = y−y′
∆α

mod p = f(z)−f ′(z)
∆α

mod p and yR = y − α y−y
′

∆α
mod p. Since fL(X) =

f(X)−f ′(X)
∆α

this shows that yL = fL(z) mod p and yR = fR(z) mod p.

Theorem 1. The polynomial commitment scheme for polynomials in Zp[X] of degree at
most d = poly(λ), instantiated using q > p2dlog2(d+1)e+1 and GGen, has witness extended
emulation (Definition 2) if the Adaptive Root Assumption and the Strong RSA Assumption
hold for GGen.

Proof. We will prove security by showing that given a polynomial time adversary AEval that
succeeds in convincing an honest verifier in the Eval protocol on any public input with non-
negligible probability we can either (1) construct an adaptive root adversary AAR, (2) extract
an element of known order, and hence break the Order Assumption, (3) extract a fractional
root of g ∈ G or (4) extract the polynomial f(X) ∈ Z[X] such that f(X) has degree at
most d and the coefficients of f(X) are integers bounded by q/2, such that f(q) is a unique
encoding of f(X), gf(q) = C, and f(z) mod p = y. The proof will use the general forking
lemma (Lemma 1) to show that the polynomial commitment scheme has witness-extended
emulation.

In particular we construct an extractor X that given transcripts with 2 distinct challenges
per round, i.e., 2dlog2(d+1)e < 2(d + 1) transcripts in total, can compute either an opening
to the commitment scheme, an element of known order, or a fractional root of g ∈ G as
encoded in the public parameters pp.

Using Lemma 7 and under the Adaptive Root Assumption, it suffices to consider an
extractor X that works on transcripts of Eval′ were all PoEs prove true statements. That is

CLC
qd
′+1

R = C on all transcripts.
Given a tree of Eval′ transcripts, the extractor X recursively either extracts the encoding

of an integer polynomial f(X) ∈ Z(b)[X] ⊂ Z[X] with bounded coefficients or a break of
the Order Assumption or the Fractional Root Assumption. In order to break the Order
Assumption we instantiate the adversary AOrd with the description of the group G. We also
instantiate the fractional root adversary AFR with G and g as encoded in pp.

Given the tree of transcripts as specified in the general forking lemma (Lemma 1) with
branching factor 2 at each level, i.e., 2 different challenges, we will extract a witness at
each node of the tree given witnesses for both nodes’ children. Each level corresponds to
a separate invocation to EvalBounded′. We denote the input to Eval′ without subscripts,
i.e., C, z, y, d; f(X), and the input to EvalBounded′ with a subscript indicating the round,
e.g., d0 = d, C0 = C and ddlog2(d)e = 0,Cdlog2(d+1)e = gf , etc. For the witness polynomials
we use superscripts and parentheses, i.e., f (i)(X) to avoid confusion with the notation for
coefficients.

In each round the extracted witness is an integer polynomial f (i)(X) ∈ Z[X] such that

gf
(i)(q) = Ci and such that the coefficients are bounded, i.e., all f (i)(X) are in Z(bi)[X]. The

degree of f (i)(X) is at most di and f(z) ≡ y mod p. Note that for odd primes p and integer
z, f(z) mod p is always defined.

We extract starting from the leafs of the tree, i.e., ddlog2(d)e = 0. From the transcript
we can directly extract the constant integer polynomial f(X) = f ∈ Z such that |f | ≤
(p− 1)(p+1

2
)dlog2(d+1)e, y = f mod p, f(X) = y ∈ Zp[X] and gf = C as the witness.

We now show how to compute the witness for i−1 given a witnesses for i. If di+1 is odd
then we have Cqi−1 = Ci. Since Ci−1 = gf

(i−1)(q) we either have that q divides f (i−1)(q) or since
q is odd we have a fractional root of g. If this is not the case then f (i−1)(q) = f (i)(q) · q−1

and f (i)(X) = Dec(f (i)(q)) has a zero constant term. Additionally since yi = yi−1 · z and
f (i)(z) ≡ yi mod p we have f (i−1)(z) ≡ yi−1 mod p, i.e., f (i−1)(q) is a valid witness and the
degree of f (i−1)(X) = Dec(f (i−1)(q)) is at most di−1 = di − 1.

Now if di + 1 is even then we can use Lemma 8 to either extract a fractional root of g,
an element of known order in G or the two bounded polynomials f

(i)
L (X), f

(i)
R (X) of degree
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di+1
2
− 1 and yL = f

(i)
L (z) mod p as well as yR = f

(i)
R (z) mod p. This yields f (i)(X) =

f
(i)
L (X) + X

di+1

2 f
(i)
R (X) a polynomial of degree at most di such that Ci = gf

(i)(q) and such

that f (i)(z) mod p = yL + yR · z
di+1

2 mod p = yi.
Note that the application of Lemma 8 requires that q/2 is greater than the magnitude of

each of f (i)’s coefficient. We will show now that this is the case.
The check on f ensures that |f | ≤ b = (p−1)

2
(p+1

2
)dlog2(d+1)e.

Lemma 8 in each invocation guarantees that the extracted parent polynomial has coeffi-
cients at most (p− 1) times larger than the coefficients of the children’s polynomials. Given
that the transcript tree has depth dlog2(d + 1)e we get that the final extracted polynomial

f0(X) ∈ Z(b)[X] has coefficients bounded by b = p−1
2

(p
2−1
2

)dlog2(d+1)e.
Therefore, q needs to be large enough such that f0(X) is uniquely decodable, i.e., q >

2 · b = (p− 1)(p
2−1
2

)dlog2(d+1)e. This shows that q > p2dlog2(d+1)e+1 > 2b suffices.
We can successfully extract either a witness or a fractional root or an element of known

order from any tree of valid transcripts of Eval′. Under the Fractional Root Assumption
and the Order Assumption, the probability that a polynomial time adversary along with
a polynomial time extractor X can produce such a fractional root or an element of known
order is negligible. Eval′, therefore, has witness extended emulation and under the Adaptive
Root Assumption by Lemma 7 so does Eval. Lemma 5 and Lemma 6 show that we can
reduce the hardness assumptions to just the Adaptive Root Assumption and the Strong
RSA Assumption.

A.4 Proof of Theorem 2

We begin by stating and proving the combining lemma, (Lemma 8) for dyadic rational
witnesses.

Lemma 9 (Combining for Dyadic Rational Witnesses). Let tr and tr′ be two transcripts
as specified in Lemma 8 with the difference that f, f ′ ∈ D are dyadic rationals such that
f(X)← Dec(f) and f ′(X)← Dec(f ′) are degree d bounded dyadic rational polynomials with
coefficients’ numerators bounded by N and denominators bounded by D, i.e. f(X), f ′(X) ∈
D(N,D). Assume that there exists a PPT algorithm for taking square roots of any element
in G and that the order of G is odd, then there exists a PPT algorithm X that given these
transcripts computes either (1) yL, yR ∈ Zp, fL(X), fR(X) ∈ D(N · (p − 1), D · (p − 1))[X]
such that fL(z) = yL mod p and fR(z) = yR mod p or (2) an element in G of known order
or (3) a non-power of 2 fractional root of g.

Proof. The proof follows a similar structure to the proof of Lemma 8.
Using the transcripts we get ∆α ← α − α′ and ∆f ← f − f ′ such that C∆α

L = g∆f . If
∆f

∆α
is not a dyadic rational then this gives us a non-power of 2 fractional root of g root of

g, that is the tuple (∆f ,∆α,CL). If
∆f

∆α
on the other hand is a dyadic rational then we can

compute D ← g
∆f
∆α . This may requires taking a power of 2 root. By assumption the group

order is odd, so every element has a square root and there exists an efficient algorithm for
taking square roots. This implies that taking higher power of 2 roots is also efficient.

Now either D = CL = gfL or we can extract an element of known order. Additionally
CR = gfR for fR ← f − α · fL.

We now compute the corresponding polynomials fL(X)← Dec(fL) and fR(X)← Dec(fR).
Now if the coefficients fi and f ′i ∈ D(N,D) and α, α′ ∈ [−p−1

2
, p−1

2
] then by the triangle in-

equality we have that for the numerator of the ith coefficient of fL(X) is between [−2N, 2N ].
The denominator grows by at most p − 1. The bound on the denominators is therefore

D · (p− 1). Additionally we have fR,i =
f ′iα−fiα′

∆α
. Using the triangle inequality again we have

that the numerator of fR,i ∈ [−(p − 1) · N, (p − 1) · N ]. The denominator is bounded by
D · (p− 1). This gives us fL(X), fR(X) ∈ D((p− 1) ·N,D · (p− 1))[X]

Finally yL = fL(z) and yR = fR(z) as in Lemma 8. It is important that 2 is co-prime
with the odd prime p such that each dyadic rational can be mapped to a field element.

We now restate the theorem for the security of the protocol with dyadic rational witnesses
in groups where taking square roots is easy.
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Theorem 2. Let GGen generate groups G of unknown order such that the order of G is
odd, and such there exists a PPT algorithm for taking square roots in G. The polynomial
commitment scheme for polynomials in Zp[X] of degree at most d = poly(λ), instantiated
using q > p3dlog2(d+1)e+1 and GGen, has witness extended emulation (Definition 2) if the
Adaptive Root Assumption and the 2-Strong RSA Assumption hold for GGen.

Proof. The proof largely follows the same structure of the proof of Theorem 1.
We will prove security by showing that we can extract a dyadic rational polynomial

f(X) ∈ Z[X] such that f(X) has degree at most d and the coefficients of f(X) are dyadic
rationals such that the product of the numerator and denominator is bounded by q/2. This
ensures that f(q) is a unique encoding of f(X). Additionally gf(q) = C and f(z) mod p = y.
The proof will use the general forking lemma (Lemma 1) to show that the polynomial
commitment scheme has witness-extended emulation.

We use the same extractor X as in Theorem 1 with one key distinction. For d+1 odd we
invoke the extractor described by Lemma 9 instead of Lemma 8. This means that at every
tree level either bounded dyadic rational witness polynomials are extracted or an element of
known order or a non-power of 2 fractional root of g. By assumption the ladder two cases
happen only with negligible probability.

We, therefore, now need to compute a bound on the size of the extracted polynomial.
The check on f ensures that f ∈ Z and that |f | ≤ b = p−1

2
(p+1

2
)dlog2(d+1)e. We can write

f ∈ D(p−1
2

(p+1
2

)dlog2(d+1)e, 1). By 8 both the numerator and the denominator grow by at most
a factor p− 1 in every round. Given that the transcript tree has depth dlog2(d+ 1)e we get
that the final extracted polynomial f0(X) ∈ D(N,D)[X] has coefficients with numerators

bounded by N = p−1
2

(p
2−1
2

)dlog2(d+1)e and denominators bounded by D = (p− 1)dlog2(d+1)e

q needs to be large enough such that f0(X) is uniquely decodable, i.e., q > 2 · N · b =

(p− 1)dlog2(d+1)e+1(p
2−1
2

)dlog2(d+1)e. In a simpler form q > p3dlog2(d+1)e+1 suffices.
This shows that we can successfully extract either a witness or a non-power of 2 fractional

root or an element of known order from any tree of valid transcripts. Under the 2-Fractional
Root Assumption and the Order Assumption, the probability that a polynomial time adver-
sary along with a polynomial time extractor X can produce such a a non-power of 2 fractional
root or an element of known order is negligible. Eval′, therefore, has witness extended emu-
lation and under the Adaptive Root Assumption by Lemma 7 so does Eval. Lemma 5 and
Lemma 6 show that we can reduce the hardness assumptions to just the Adaptive Root
Assumption and the 2-Strong RSA Assumption.

A.5 Proof of Theorem 3

Theorem 3. The protocol JoinedEval is an interactive argument for the relation RJE and
has perfect completeness and witness extended emulation if the Strong RSA and Order
Assumption hold for GGen and if q > (p− 1)(p

2−1
2

)dlog2(d+1)e+1 (e.g., q > p2 log2(d+1)+3).

Proof. Correctness is immediate and witness extended emulation requires a single application
of Lemma 8 which leads to an updated bound on q. In general q needs to be p2−1

2
larger

for any random linear combination that is taken with α ∈ [−p−1
2
, p−1

2
]. For class groups,

Lemma 9 is used and the lower bound on q grows by a factor of (p− 1)2 p+1
2
≤ p3.

B Proof of Theorem 8 (Polynomial IOP Compilation)

Theorem 8. If the polynomial commitment scheme Γ has witness-extended emulation, and
if the t-round Polynomial IOP for R has negligible knowledge error, then Π is a public-
coin interactive argument for R that has witness-extended emulation. The compilation also
preserves HVZK if Γ is hiding and Eval is HVZK.

The fact that the compilation preserves HVZK is straightforward. We prove this part
first and then move on to proving witness-extended emulation.

HVZK

Proof. Let SEval denote the HVZK simulator for Eval and SIOP denote the HVZK simulator for
the original polynomial IOP. We construct an HVZK simulator S for the compiled interactive
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argument as follows. S begins by running SIOP on the input x, which produces a series of
query/response pairs to arbitrarily labeled oracles that are “sent” from the IOP prover to
the verifier. S simulates the view of the honest verifier in the compiled interactive proof
by replacing each distinctly labeled oracle with a fresh Γ commitment to 0, i.e., the zero
polynomial over Fp. By the hiding property of Γ this has negligible distance δ0 from the
commitment sent in the real protocol. (It places this commitment at the location in the
transcript where the commitment to this oracle would be sent in the compiled protocol).
For each query/response pair (z, y) to an oracle, S runs SEval to simulate the view of an
honest-verifier in the Eval protocol opening a hiding polynomial commitment to the value y
at the point z. Let P denote an upper bound on the total number of oracles sent and Q
denote an upper bound on the total number of queries to IOP oracles. If the simulation of
SIOP has statistical distance δ1 from the real IOP verifier’s view, and each simulated Eval
subprotocol has statistical distance δ2 to the real Eval verifier’s view, then the output of S
has statistical distance at most Pδ0 + δ1 + Qδ2 from View〈P (x,w),V (x)〉. For P,Q < poly(λ)
and δ0, δ1, δ2 < negl(λ) this statistical distance is negligible in λ.

Witness-extended emulation (knowledge)

Proof. Without loss of generality, assume the original IOP makes at least one query to each
oracle sent. An oracle which is never queried can be omitted from the IOP.

We denote by V the IP verifier for the compiled IP, and VO the verifier for the original
IOP. Given a record oracle Record(P ∗, pp, x, st) for an IP prover P ∗ that produces accepting
transcripts with non-negligible probability, we build an emulator E for the compiled IP.
E begins by constructing an IOP adversary P ′O, which succeeds also with non-negligible
probability on input x. Every successful interaction of P ′O with VO on input x corresponds
to a successful transcript of P ∗ with V on x. In showing how E builds P ′O we also show how
E can obtain this corresponding transcript. E will make use of the emulator EEval for the
commitment scheme Γ.

Finally, E can use the IOP knowledge extractor E
P ′O
IOP(x) in order to output a witness for

x along with the corresponding transcript.

Constructing P ′O (IOP adversary) P ′O runs as follows on initial state st0 and input x. It
internally simulates the interaction of P ∗ and V , using the record oracle Record(P ∗, pp, x, st).
It begins by running this for the first round on state st0. For every message that P ∗ sends in
this first round, P ′O continues simulation until there is an Eval on this commitment. (There
is guaranteed to be at least one Eval on each commitment, independent of the randomness).
Therefore, denoting by EEval the extractor for the Eval subprotocol between P ∗ and V on a
given commitment and evaluation point, the record oracle can be used to simulate EEval’s
record oracle.

For each message m that P ∗ sends to V at the beginning of the first round, P ′O interprets
m as a commitment, and attempts to extract from it a polynomial by running the PPT
emulator EEval, simulating its record oracle as just described. If it fails in any extraction
attempt it aborts.

If P ′O succeeds in all these extractions, then it uses these extracted polynomials as its
first round proof oracles that it gives to VO. Upon receiving the first public-coin challenge
from the IOP verifier, P ′ uses the query function to derive the corresponding queries to each
of these proof oracles. Before answering, it rewinds P ∗ and V back to the point immediately
after P sent its first messages, and now substitutes random challenge from VO in order to
simulate P ∗ and V on these same queries. It checks that P ∗’s answers are consistent with
the answers it can compute on its own from the extracted polynomials. If any answers
are inconsistent, P ′O aborts. Otherwise, it sends the answers to VO.

At the end of this first round (assuming P ′ has not yet aborted), P ′O has stored an updated
state st′ for P ∗ based on this simulation. It proceeds to the next round and repeats the same
process, using the record oracle Record(P ∗, pp, x, st′). Finally, if P ′ makes it through all
rounds without aborting, then it has a final state stV for VO based on its internal simulation
of P ∗ and V up through the end of the last round. Finally, VO(stV ) outputs Accept or Reject.

Analysis of P ′O success probability We claim that if Record(P ∗, pp, x, st0) outputs an
accepting transcript tr with non-negligible probability, then P ′O succeeds with non-negligible
probability.
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Observe that for any accepting tr between P ∗ and V , if P ′O happens to follow the same
exact sequence of query/responses without ever aborting then it succeeds because VO and V
run the same decision algorithm on the final state of query/response pairs. Thus, it remains
only to take a closer look at what events cause P ′O to abort, and bound the fraction of
accepting tr for which this occurs.

As indicated in bold above, there are two kinds of events that cause P ′O to abort:

• It fails to extract from a “commitment” message m sent by P ∗

• After successfully extracting a polynomial f from a commitment, P ∗ answer queries
to f in a way that is inconsistent with f .

The second type of event contradicts the evaluation binding property of Γ, therefore it
occurs with negligible probability.

To analyze the first type of event, let us define “bad commitments” for a parameter D.
We define this as a property of a message m (purportedly a commitment) sent in a transcript
state st.

Bounding probability of commitment extraction failure The pair (m, st) is a “bad
commitment” if there is less than a 1/D probability that extending the transcript between
P ∗ and V , starting from state st, will contain a successful execution of Eval on m. This
probability is over the randomness of the public-coins of V in the extended transcript.

Let A(tr) denote the event that a transcript tr sampled from Record(P ∗, pp, x, st0) is
accepting. Let B(tr) denote the event that tr contains a “bad commitment” (i.e. some
message m sent in state st such that Bad(m, st) = 1). The conditional probability of event
A(tr) conditioned on event B(tr) is less than 1/D. To see this, fix (m, st) with Bad(m, st) = 1
and consider “sampling” a random tr that contains m at state st. This is done by first
choosing randomly from all partial transcripts that result in (m, st) via brute force, and then
running the transcript normally from state st on random public-coins. No matter how (m, st)
is chosen, the probability that this process produces an accepting transcript is by definition
less than 1/D. (The second part of the transcript following (m, st) contains at least one
execution of Eval on m by hypothesis, and by the definition of B(m, st) = 1 this execution
is accepting with probability less than 1/D).

Assume that P (A(tr)) ≥ 1/poly(λ). Applying Bayes’ law,

P [B(tr)|A(tr)) ≤ P [A(tr)|B(tr)]

P (A(tr))
≤ poly(λ) /D .

In other words, at least a 1 − poly(λ) /D fraction of accepting transcripts do not contain
“bad commitments”. Furthermore, so long as a commitment m is not “bad”, we can invoke
the witness-emulation property of Eval to say that the PPT EΓ emulator extracts a witness
polynomial from each m with overwhelming probability.

Setting D = 2poly(λ) we get that on at least a 1/2 fraction of accepting transcripts, P ′Os
simulation also succeeds (i.e. successfully extracts from each prover commitment message)
with probability at least 1/2. This means that P ′O has a non-negligible success probability
conditioned on the event that tr is an accepting transcript.

In conclusion, if tr is accepting with non-negligible probability, then there is a non-
negligible probability that P ′O succeeds.
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