
Succinct Non-Interactive Arguments

by

Alessandro Chiesa

S.B., Mathematics (2009)
S.B., Computer Science and Engineering (2009)

M.Eng., Electrical Engineering and Computer Science (2010)
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014

@ Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
Author..............

Departme f Elecft9__ngineering and Computer Science

August 27, 2014

Signature redacted

Certified by..................
Silvio Micali

Ford Professor of Engineering
Thesis Supervisor

Signature redacted
Accepted by

(Jd Leslie A. Kolodziejski
Chair of the Committee on Graduate Students

MASCUE I afto ".1

MASSACHUSETTS MITE.
OF TECHNOLOGY

SEP 2 5 2014

UIBRARIES

2

Succinct Non-Interactive Arguments

by

Alessandro Chiesa

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Succinct non-interactive arguments (SNARGs), also known as "CS proofs" [Micali, FOCS 1994],
enable verifying NP statements with much lower complexity than required for classical NP veri-
fication (in fact, with complexity that is independent of the NP language at hand). In particular,
SNARGs provide strong solutions to the problem of verifiably delegating computation. A common
relaxation is a preprocessing SNARG, which allows the verifier to conduct an expensive offline
phase, independent of the statement to be proven later.

In this thesis we present two main results:

(1) A general methodology for the construction of preprocessing SNARGs.

(2) A transformation, based on collision-resistant hashing, that takes any SNARG having a natural
proof of knowledge property (i.e., a SNARK) as input and "bootstrapps" it to obtain a complexity-
preserving SNARK, i.e., one without expensive preprocessing and where the prover's time and
space complexity is essentially the same as that required for classical NP verification.

These results provide the first publicly-verifiable complexity-preserving SNARK in the plain model.
At the heart of our transformations is recursive composition of SNARKs and, more generally, new
techniques for constructing and using proof-carrying data (PCD) systems, which extend the notion
of a SNARK to the distributed setting. Concretely, to bootstrap a given SNARK, we recursively
compose the SNARK to obtain a "weak" PCD system for shallow distributed computations, and
then use the PCD framework to attain stronger, complexity-preserving SNARKs and PCD systems.

Thesis Supervisor: Silvio Micali
Title: Ford Professor of Engineering

3

4

Acknowledgments

I am profoundly thankful to my mentors, colleagues, friends, and family for providing support,

advice, and help throughout my time as a graduate student at MIT. Without you, much would not

have been possible - and also not fun! Articulating all my feelings of gratitude would take long,

and also would fall short of their true importance. And this thesis is already long, so I limit myself

to a humble and concise list.

First of all, I am deeply grateful to my thesis advisor, Silvio Micali, for his incredible guidance

and support throughout graduate school. Silvio's incessant curiosity and contagious enthusiasm for

science have been a truly wonderful source of inspiration for me.

Shafi Goldwasser and Ron Rivest have greatly contributed to my interest in cryptography and

complexity theory. They have provided generous advice and tremendous ideas during numerous

discussions.

Eli Ben-Sasson, Ran Canetti, and Eran Tromer have been incredible mentors, colleagues, and

friends. I have had so much fun and leamed so much from all of them through many, many hours

of research discussions!

I am also deeply indebted to many fellow students: Zeyuan Allen-Zhu, Pablo Azar, Nir Bitansky,

Jing Chen, Michael Forbes, Daniel Genkin, Omer Paneth, Raluca Ada Popa, and Madars Virza. You

have filled the 5th and 6th floor of Building 32 with energy, you have been awesome classmates

when taking graduate courses together, and you have been valiant companions when venturing out

into uncharted territories in the scientific landscape.

5

6

Contents

A bstract .
Acknowledgments. .

1 Introduction
1.1 Introduction .
1.2 SNARGs from Linear Interactive Proofs

1.2.1 Our Results .
1.2.2 Structured PCPs In Other Works
1.2.3 Roadmap .

1.3 Bootstrapping SNARGs .
1.3.1 Our Results .
1.3.2 More on Proof-Carrying Data and Compliance Engineering
1.3.3 The Ideas In A Nutshell
1.3.4 Roadmap .

2 Succinct Non-Interactive Arguments from Linear Interactive Proofs
2.1 Definitions of LIPs and LPCPs

2.1.1 Polynomials, Degrees, and Schwartz-Zippel
2.1.2 Linear PCPs .
2.1.3 Linear Interactive Proofs

2.2 Constructions of LIPs .
2.2.1 LIPs From LPCPs .
2.2.2 LIPs From (Traditional) PCPs

2.3 Definitions of SNARKs and Preprocessing SNARKs
2.3.1 Preprocessing SNARKs for Boolean Circuit Satisfaction

2.4 Linear-Only Encryption and Encodings
2.4.1 Linear-Only Encryption
2.4.2 Linear-Only One-Way Encoding
2.4.3 Instantiations .

2.5 Preprocessing SNARKs from LIPs

Problems

2.5.1 Designated-Verifier Preprocessing SNARKs from Arbitrary LIPs
2.5.2 Publicly-Verifiable Preprocessing SNARKs from Algebraic LIPs
2.5.3 Resulting Preprocessing SNARKs .

3 Bootstrapping Succinct Non-Interactive Arguments
3.1 Overview of Results .

3.1.1 SNARKs and Proof-Carrying Data .
3.1.2 The SNARK Recursive Composition Theorem

7

71
73

75
75
75
77

3.1.3 The PCD Depth-Reduction Theorem 80
3.1.4 The Locally-Efficient RAM Compliance Theorem 82
3.1.5 Putting Things Together: A General Technique for Preserving Complexity . 83

3.2 The Universal Language on Random-Access Machines 88

3.3 SNARKs . 88
3.4 Proof-Carrying Data . 93

3.4.1 Distributed Computations And Their Compliance With Local Properties . . 94

3.4.2 Proof-Carrying Data Systems . 96
3.5 Proof Of The SNARK Recursive Composition Theorem 100

3.5.1 Recursive Composition For Publicly-Verifiable SNARKs 103
3.5.2 Recursive Composition For Designated-Verifier SNARKs 110

3.6 Proof Of The Locally-Efficient RAM Compliance Theorem 118
3.6.1 Machines With Untrusted Memory . 120
3.6.2 A Compliance Predicate for Checking RAM Computations 122

3.7 Proof of The PCD Depth-Reduction Theorem . 125
3.7.1 Warm-Up Special Case: Reducing The Depth Of RAM Checkers 127
3.7.2 General Case . 133

3.8 Putting Things Together . 139

8

Chapter 1

Introduction

1.1 Introduction

Succinct arguments. We study proof systems [GMR89] for the purpose of verifying NP state-

ments faster than by deterministically checking an NP witness in the traditional way. When re-

quiring statistical soundness, significant savings in communication (let alone verification time) are

unlikely [BHZ87, GH98, GVWO2, Wee05]. If we settle for proof systems with computational

soundness, known as argument systems [BCC88], then significant savings can be made. Using

collision-resistant hashing (CRHs) and probabilistically-checkable proofs (PCPs) [BFLS9 1], Kilian

[Kil92] showed a four-message interactive argument for N P where, to prove membership of an in-

stance x in a given N P language L with N P machine M, communication and the verifier's time are

bounded by poly(A+ Ml + lxi+ log t), while the prover's running time by poly(A+ MI + lxi +t).

Here, t is the classical NP verification time of M for the instance x, A is a security parameter, and

poly is a universal polynomial (i.e., independent of A, M, x, and t). We call such argument systems

succinct.

Proof of knowledge. A strengthening of computational soundness is (computational) proof of

knowledge: it guarantees that, whenever the verifier is convinced by an efficient prover, not only

a valid witness for the theorem exists, but also such a witness can be extracted efficiently from the

prover. This captures the intuition that convincing the verifier of a given statement can only be

achieved by (essentially) going through specific intermediate stages and thereby explicitly obtain-

ing a valid witness along the way, which can be efficiently recovered by a knowledge extractor.

Proof of knowledge is a natural property (satisfied by most proof system constructions, including

9

the aforementioned one of Kilian [BG08]) that is useful in many applications of succinct arguments.

It is also essential to the results of this paper.

Non-interactive succinct arguments. Kilian's protocol requires four messages. A challenge,

which is of both theoretical and practical interest, is removing interaction from succinct arguments.

As a first step in this direction, Micali [MicO] constructed one-message succinct non-interactive

arguments for NP, in the random oracle model, by applying the Fiat-Shamir paradigm [FS87] to

Kilian's protocol.

In the plain model, it is known that one-message solutions are impossible for hard-enough lan-

guages (against non-uniform provers), so one usually considers the weaker goal of two-message

succinct arguments where the verifier message is generated independently of the statement later

chosen by the prover. Such arguments are called SNARGs. More precisely, a SNARG for a lan-

guage L is a triple of algorithms (G, P, V) where: (i) the generator G, given the security parameter

A, samples a reference string a- and a corresponding verification state r (G can be thought to be run

during an offline phase, by the verifier, or by someone the verifier trusts); (ii) the prover P(o-, x, w)

produces a proof 7r for the statement "x E L" given a witness w; (iii) V(r, x, 7r) deterministically

verifies the validity of ir for that statement.

Extending earlier work [ABOROO, DLN+04, Mie08, DCL08], several recent works showed how

to remove interaction in Kilian's PCP-based protocol and obtain SNARGs of knowledge (SNARKs)

using extractable collision-resistant hashes [BCCT12, DFH12, GLR1 1], or construct MIP-based

SNARKs using fully-homomorphic encryption with an extractable homomorphism property [BC 12].

The use of non-standard assumptions in the aforementioned works may be partially justified

in light of the work of Gentry and Wichs [GWI 1], which shows that no SNARG can be proven

sound via a black-box reduction to a falsifiable assumption [Nao03]. (We remark that [GW11] rule

out SNARGs only for hard-enough NP languages. For the weaker goal of verifying deterministic

polynomial-time computations, there are constructions relying on standard assumptions in various

models.)

The preprocessing model. A notion that is weaker than a SNARK is that of a preprocessing

SNARK: here, the verifier is allowed to conduct an expensive offline phase. More precisely, the

generator G takes as an additional input a time bound B, may run in time poly(A + B) (rather than

poly(A + log B)), and generates a reference string a and a verification state -r that can be used,

respectively, to prove and verify correctness of computations of length at most B.

10

1.2 SNARGs from Linear Interactive Proofs

The typical approach to construct succinct arguments (or, more generally, other forms of proof sys-

tems with nontrivial efficiency properties) conforms with the following methodology: first, give an

information-theoretic construction, using some form of probabilistic checking to verify computa-

tions, in a model that enforces certain restrictions on provers (e.g., the PCP model [Kil92, MicOO,

BG08, DCL08, BCCT12, DFH12, GLR11] or other models of probabilistic checking [IK007,

KR08, SBW11, SMBW12, SVP+12, BC12, SBV+13]); next, use cryptographic tools to compile

the information-theoretic construction into an argument system (where there are no restrictions on

the prover other than it being an efficient algorithm).

Existing constructions of preprocessing SNARKs seem to diverge from this methodology, while

at the same time offering several attractive features: such as public verification, proofs consisting

of only 0(1) encrypted (or encoded) field elements, and verification via arithmetic circuits that are

linear in the statement.

Groth [Gro 10] and Lipmaa [Lip 11] (who builds on Groth's approach) introduced clever tech-

niques for constructing preprocessing SNARKs by leveraging knowledge-of-exponent assumptions

[Dam92, HT98, BPO4] in bilinear groups. At high level, Groth considered a simple reduction from

circuit satisfaction problems to an algebraic satisfaction problem of quadratic equations, and then

constructed a set of specific cryptographic tools to succinctly check satisfiability of this problem.

Gennaro et al. [GGPR13] made a first step to better separate the "information-theoretic ingredi-

ent" from the "cryptographic ingredient" in preprocessing SNARKs. They formulated a new type

of algebraic satisfaction problems, called Quadratic Span Programs (QSPs), which are expressive

enough to allow for much simpler, and more efficient, cryptographic checking, essentially under

the same assumptions used by Groth. In particular, they invested significant effort in obtaining an

efficient reduction from circuit satisfiability to QSPs.

Comparing the latter to the probabilistic-checking-based approach described above, we note

that a reduction to an algebraic satisfaction problem is a typical first step, because such satisfaction

problems tend to be more amenable to probabilistic checking. As explained above, cryptographic

tools are then usually invoked to enforce the relevant probabilistic-checking model (e.g., the PCP

one). The aforementioned works [GrolO, Lipl 1, GGPR13], on the other hand, seem to somehow

skip the probabilistic-checking step, and directly construct specific cryptographic tools for checking

satisfiability of the algebraic problem itself. While this discrepancy may not be a problem per

11

se, we believe that understanding it and formulating a clear methodology for the construction of

preprocessing SNARKs are problems of great interest. Furthermore, a clear methodology may

lead not only to a deeper conceptual understanding, but also to concrete improvements to different

features of SNARKs (e.g., communication complexity, verifier complexity, prover complexity, and

so on). Thus, we ask:

Is there a general methodology for the construction of preprocessing SNARKs?

Which improvements can it lead to?

1.2.1 Our Results

We present a general methodology for the construction of preprocessing SNARKs, as well as re-

sulting concrete improvements. Our contribution is three-fold:

o We introduce a natural extension of the interactive proof model that considers algebraically-

bounded provers. Concretely, we focus on linear interactive proofs (LIPs), where both honest

and malicious provers are restricted to computing linear (or affine) functions of messages they

receive over some finite field or ring. We then provide several (unconditional) constructions of

succinct two-message LIPs for N P, obtained by applying simple and general transformations

to two variants of PCPs.

o We give cryptographic transformations from (succinct two-message) LIPs to preprocessing

SNARKs, based on different forms of linear targeted malleability, which can be instantiated

based on existing knowledge assumptions. Our transformation is very intuitive: to force a

prover to "act linearly" on the verifier message, simply encrypt (or encode) each field or ring

element in the verifier message with an encryption scheme that only allows linear homomor-

phism.

o Following this methodology, we obtain several constructions that exhibit new efficiency fea-

tures. These include "single-ciphertext preprocessing SNARKs" and improved succinctness-

soundness tradeoffs. We also offer a new perspective on existing constructions of preprocess-

ing SNARKs: namely, although existing constructions do not explicitly invoke PCPs, they

can be reinterpreted as using linear PCPs, i.e., PCPs in which proof oracles (even malicious

ones) are restricted to be a linear functions.1

A stronger notion of linear PCP has been used in other works [IK007, SBW 11, SMBW12, SVP+ 12, SBV+ 13] to
obtain arguments for NP with nontrivial efficiency properties. See Section 1.2.2 for a comparison.

12

We now discuss our results further, starting in Section 1.2.1 with the information-theoretic con-

structions of LIPs, followed in Section 1.2.1 by the cryptographic transformations to preprocessing

SNARKs, and concluding in Section 1.2.1 with the new features we are able to obtain.

INFORMATION-THEORETIC CRYPTOGRAPHIC
COMPILERS COMPILERS

linear PCP , 1-round linear 1P1, publicly-verifiable
w/ algebraic veiirw/ algebraic verifier + preprocessing SNARK

linear-only
one-way encoding

linear PC P1 -round linear IP + _, designated-verifier

I + preprocessing SNARK
(traditional) PCP linear-only

1 encryption

Figure 1-1: High-level summary of our transformations.

Linear interactive proofs.

The LIP model modifies the traditional interactive proofs model in a way analogous to the way

the common study of algebraically-bounded "adversaries" modifies other settings, such as pseudo-

randomness [NN90, BV07] and randomness extraction [GR05, DGWO9]. In the LIP model both

honest and malicious provers are restricted to apply linear (or affine) functions over a finite field F

to messages they receive from the verifier. (The notion can be naturally generalized to apply over

rings.) The choice of these linear functions can depend on auxiliary input to the prover (e.g., a

witness), but not on the verifier's messages.

With the goal of non-interactive succinct verification in mind, we restrict our attention to (input-

oblivious) two-message LIPs for boolean circuit satisfiability problems with the following template.

To verify the relation Rc = {(x, w) : C(x, w) = 1} where C is a boolean circuit, the LIP verifier

Vip sends to the LIP prover Pp a message q that is a vector of field elements, depending on C but

not on x; Vip may also output a verification state u. The LIP prover PLlp(x, w) applies to q an affine

transformation II = (H', b), resulting in only a constant number of field elements. The prover's

message a = II' - q + b can then be quickly verified (e.g., with O(1xI) field operations) by VLlp, and

the soundness error is at most 0(1/ FI). From here on, we shall use the term LIP to refer to LIPs

that adhere to the above template.

LIP complexity measures. Our constructions provide different tradeoffs among several complexity

measures of an LIP, which ultimately affect the features of the resulting preprocessing SNARKs.

The two most basic complexity measures are the number of field elements sent by the verifier and

13

the number of those sent by the prover. An additional measure that we consider in this work is the

algebraic complexity of the verifier (when viewed as an F-arithmetic circuit). Specifically, splitting

the verifier into a query algorithm QUP and a decision algorithm DIP, we say that it has degree (dQ,

dD) if QLIP can be computed by a vector of multivariate polynomials of total degree dQ each in the

verifier's randomness, and DUp by a vector of multivariate polynomials of total degree dD each in

the LIP answers a and the verification state u. Finally, of course, the running times of the query

algorithm, decision algorithm, and prover algorithm are all complexity measures of interest. See

Section 2.1.3 for a definition of LIPs and their complexity measures.

As mentioned above, our LIP constructions are obtained by applying general transformations to two

types of PCPs. We now describe each of these transformations and the features they achieve. Some

of the parameters of the resulting constructions are summarized in Table 1.1.

LIPs from linear PCPs. A linear PCP (LPCP) of length m is an oracle computing a linear function

7r: F1 -+ F; namely, the answer to each oracle query qj E Fm is ai = (7r, qj). Note that, unlike in

an LIP where different affine functions, given by a matrix II and shift b, are applied to a message q,

in an LPCP there is one linear function 7r, which is applied to different queries. (An LPCP with a

single query can be viewed as a special case of an LIP.) This difference prevents a direct use of an

LPCP as an LIP.

Our first transformation converts any (multi-query) LPCP into an LIP with closely related pa-

rameters. Concretely, we transform any k-query LPCP of length m over F into an LIP with ver-

ifier message in F(k+1)m, prover message in Fk+l, and the same soundness error up to an ad-

ditive term of 1/IFI. The transformation preserves the key properties of the LPCP, including

the algebraic complexity of the verifier. Our transformation is quite natural: the verifier sends

q = (q 1, . . . , qk+1) where qi, . . ., qk are the LPCP queries and qk+1 = alq - - . akqk

is a random linear combination of these. The (honest) prover responds with ai = (7r, qj), for

i = 1, . . . , k + 1. To prevent a malicious prover from using inconsistent choices for 7r, the verifier

checks that ak+1 = alai + ... + akak.

By relying on two different LPCP instantiations, we obtain two corresponding LIP construc-

tions:

* A variant of the Hadamard-based PCP of Arora et al. [ALM+98a] (ALMSS), extended to

work over an arbitrary finite field F, yields a very simple LPCP with three queries. After

applying our transformation, for a circuit C of size s and input length n, the resulting LIP

14

for IRc has verifier message in FO(s 2), prover message in F4 , and soundness error 0(1/FI).

When viewed as F-arithmetic circuits, the prover PuP and query algorithm QUP are both of

size 0(s2), and the decision algorithm is of size 0(n). Furthermore, the degree of (QUP, DLIP)

is (2, 2).

e A (strong) quadratic span program (QSP), as defined by Gennaro et al. [GGPR13], directly

yields a corresponding LPCP with three queries. For a circuit C of size s and input length n,

the resulting LIP for RC has verifier message in Fo(s), prover message in IF4 , and soundness

error 0(s/IFI). When viewed as F-arithmetic circuits, the prover PP is of size 6(s), the

query algorithm QLIP is of size 0(s), and the decision algorithm is of size 0(n). The degree

of (QLIP, DLIp) is (0(s), 2).

A notable feature of the LIPs obtained above is the very low "online complexity" of verification:

in both cases, the decision algorithm is an arithmetic circuit of size 0(n). Moreover, all the effi-

ciency features mentioned above apply not only to satisfiability of boolean circuits C, but also to

satisfiability of F-arithmetic circuits.

In both the above constructions, the circuit to be verified is first represented as an appropriate

algebraic satisfaction problem, and then probabilistic checking machinery is invoked. In the first

case, the problem is a system of quadratic equations over F, and, in the second case, it is a (strong)

quadratic span program (QSP) over F. These algebraic problems are the very same problems un-

derlying [GrolO, Lip 1I] and [GGPR13].

As explained earlier, [GGPR13] invested much effort to show an efficient reduction from circuit

satisfiability problems to QSPs. Our work does not subsume nor simplify the reduction to QSPs of

[GGPR13], but instead reveals a simple LPCP to check a QSP, and this LPCP can be plugged into

our general transformations. Reducing circuit satisfiability to a system of quadratic equations over

F is much simpler, but generating proofs for the resulting problem is quadratically more expensive.

(Concretely, both [Gro 10] and [Lip 11] require 0(s2) computation already in the preprocessing

phase). See Section 2.2.1 for more details.

LIPs from traditional PCPs. Our second transformation relies on traditional "unstructured" PCPs.

These PCPs are typically more difficult to construct than LPCPs; however, our second transforma-

tion has the advantage of requiring the prover to send only a single field element. Concretely, our

transformation converts a traditional k-query PCP into a 1-query LPCP, over a sufficiently large

field. Here the PCP oracle is represented via its truth table, which is assumed to be a binary string

15

of polynomial size (unlike the LPCPs mentioned above, whose truth tables have size that is expo-

nential in the circuit size). The transformation converts any k-query PCP of proof length m and

soundness error e into an LIP, with soundness error 0(e) over a field of size 2 0(k)/1, in which the

verifier sends m field elements and receives only a single field element in return. The high-level

idea is to use a sparse linear combination of the PCP entries to pack the k answer bits into a single

field element. The choice of this linear combination uses additional random noise to ensure that the

prover's coefficients are restricted to binary values, and uses easy instances of subset-sum to enable

an efficient decoding of the k answer bits.

Taking time complexity to an extreme, we can apply this transformation to the PCPs of Ben-

Sasson et al. [BCGT13b] and get LIPs where the prover and verifier complexity are both optimal

up to polylog(s) factors, but where the prover sends a single element in a field of size 1Fl =

2 A'polylo"(8). Taking succinctness to an extreme, we can apply our transformation to PCPs with

soundness error 2-\ and O(A) queries, obtaining an LIP with similar soundness error in which the

prover sends a single element in a field of size 1F1 = 2A-0(1). For instance, using the query-efficient

PCPs of Hfstad and Khot [HK05], the field size is only IFl = 2A.(3+o(1)).2 (Jumping ahead, this

means that a field element can be encrypted using a single, normal-size ciphertext of homomorphic

encryption schemes such as Paillier or Elgamal even when A = 100.) On the down side, the degrees

of the LIP verifiers obtained via this transformation are high; we give evidence that this is inherent

when starting from "unstructured" PCPs. See Section 2.2.2 for more details.

Honest-verifier zero-knowledge LIPs. We also show how to make the above LIPs zero-knowledge

against honest verifiers (HVZK). Looking ahead, using HVZK LIPs in our cryptographic transfor-

mations results in preprocessing SNARKs that are zero-knowledge (against malicious verifiers in

the CRS model).

For the Hadamard-based LIP, an HVZK variant can be obtained directly with essentially no

additional cost. More generally, we show how to transform any LPCP where the decision algo-

rithm is of low degree to an HVZK LPCP with the same parameters up to constant factors; this

HVZK LPCP can then be plugged into our first transformation to obtain an HVZK LIP. Both of the

LPCP constructions mentioned earlier satisfy the requisite degree constraints.

For the second transformation, which applies to traditional PCPs (whose verifiers, as discussed

above, must have high degree and thus cannot benefit from our general HVZK transformation), we

2 1n the case of [HK05], we do not obtain an input-oblivious LIP, because the queries in their PCP depend on the input.
While it is plausible to conjecture that the queries can be made input-oblivious, we did not check that.

16

show that if the PCP is HVZK (see [DFK+92] for efficient constructions), then so is the resulting

LIP; in particular, the HVZK LIP answer still consists of a single field element.

Proof of knowledge. In each of the above transformations, we ensure not only soundness for the

LIP, but also a proof of knowledge property. Namely, it is possible to efficiently extract from a con-

vincing affine function II a witness for the underlying statement. The proof of knowledge property

is then preserved in the subsequent cryptographic compilations, ultimately allowing to establish the

proof of knowledge property for the preprocessing SNARK. As discussed in Section ('proof of sec:backgroun

knowledge is a very desirable property for preprocessing SNARKs; for instance, it enables to re-

move the preprocessing phase, as well as to improve the complexity of the prover and verifier, via

the result of [BCCT13].

Thm. starting point of # field elements in # field elements in algebraic properties field size for 2 --A

number LIP construction verifier message prover message of verifier knowledge error

2.2.3 Hadamard PCP O(s2) 4 (d, dD) = (2, 2) 2 A - 0(l)

2.2.4 QSPs of [GGPR13] O(s) 4 (dQ, dD) = (0(s), 2) 2A O(s)

2.2.9 PCPs of [BCGT13b] 6(s) 1 none 2 A polylog(s)

2.2.10 PCPs of [HK05] poly(s) 1 none 2A.(3+0(1))

Table 1.1: Summary of our LIP constructions. See each theorem for more de-

tails, including the running times of the prover, query, and decision algorithms.

Preprocessing SNARKs from LIPs.

We explain how to use cryptographic tools to transform an LIP into a corresponding preprocessing

SNARK. At high level, the challenge is to ensure that an arbitrary (yet computationally-bounded)

prover behaves as if it was a linear (or affine) function. The idea, which also implicitly appears

in previous constructions, is to use an encryption scheme with targeted malleability [BSW12] for

the class of affine functions: namely, an encryption scheme that "only allows affine homomorphic

operations" on an encrypted plaintext (and these operations are independent of the underlying plain-

texts). Intuitively, the verifier would simply encrypt each field element in the LIP message q, send

the resulting ciphertexts to the prover, and have the prover homomorphically evaluate the LIP affine

function on the ciphertexts; targeted malleability ensures that malicious provers can only invoke

(malicious) affine strategies.

We concretize the above approach in several ways, depending on the properties of the LIP and

17

the exact flavor of targeted malleability; different choices will induce different properties for the

resulting preprocessing SNARK. In particular, we identify natural sufficient properties that enable

an LIP to be compiled into a publicly-verifiable SNARK. We also discuss possible instantiations

of the cryptographic tools, based on existing knowledge assumptions. (Recall that, in light of the

negative result of [GW 11], the use of nonstandard cryptographic assumptions seems to be justified.)

Designated-verifier preprocessing SNARKs from arbitrary LIPs. First, we show that any LIP

can be compiled into a corresponding designated-verifer preprocessing SNARK with similar pa-

rameters. (Recall that "designated verifier" means that the verifier needs to maintain a secret ver-

ification state.) To do so, we rely on what we call linear-only encryption: an additively homo-

morphic encryption that is (a) semantically-secure, and (b) linear-only. The linear-only property

essentially says that, given a public key pk and ciphertexts Encp(al), . . . , Encpk (a,), it is infeasi-

ble to compute a new ciphertext c' in the image of Encpk, except by "knowing" 3, ai,. . . , am such

that c' E Encpk(3 + El aiai). Formally, the property is captured by guaranteeing that, whenever

A(pk, Encpk(al), . . . , Encpk(a,)) produces valid ciphertexts (ci, . . . , c'), an efficient extractor E

(non-uniformly depending on A) can extract a corresponding affine function H "explaining" the

ciphertexts. As a candidate for such an encryption scheme, we propose variants of Paillier encryp-

tion [Pai99] (as also considered in [GGPR13]) and of Elgamal encryption [EG85] (in those cases

where the plaintext is guaranteed to belong to a polynomial-size set, so that decryption can be done

efficiently). These variants are "sparsified" versions of their standard counterparts; concretely, a

ciphertext does not only include Encpk(a), but also Encpk(a - a), for a secret field element a. (This

"sparsification" follows a pattern found in many constructions conjectured to satisfy "knowledge-

of-exponent" assumptions.) As for Paillier encryption, we have to consider LIPs over the ring Zpq

(instead of a finite field F); essentially, the same results also hold in this setting (except that sound-

ness is 0(1/ min {p, q}) instead of 0(1/FI)).

We also consider a notion of targeted malleability, weaker than linear-only encryption, that

is closer to the definition template of Boneh et al. [BSW12]. In such a notion, the extractor is

replaced by a simulator. Relying on this weaker variant, we are only able to prove the security of

our preprocessing SNARKs against non-adaptive choices of statements (and still prove soundness,

though not proof of knowledge, if the simulator is allowed to be inefficient). Nonetheless, for

natural instantiations, even adaptive security seems likely to hold for our construction, but we do

not know how to prove it. One advantage of working with this weaker variant is that it seems to

allow for more efficient candidates constructions. Concretely, the linear-only property rules out

18

any encryption scheme where ciphertexts can be sampled obliviously; instead, the weaker notion

does not, and thus allows for shorter ciphertexts. For example, we can consider a standard ("non-

sparsified") version of Paillier encryption. We will get back to this point in Section 1.2.1.

For further details on the above transformations, see Section 2.5.1.

Publicly-verifiable preprocessing SNARKs from LIPs with low-degree verifiers. Next, we iden-

tify properties of LIPs that are sufficient for a transformation to publicly-verifiable preprocessing

SNARKs. Note that, if we aim for public verifiability, we cannot use semantically-secure encryp-

tion to encode the message of the LIP verifier, because we need to "publicly test" (without de-

cryption) certain properties of the plaintext underlying the prover's response. The idea, implicit in

previous publicly-verifiable preprocessing SNARK constructions, is to use linear-only encodings

(rather than encryption) that do allow such public tests, while still providing certain one-wayness

properties. When using such encodings with an LIP, however, it must be the case that the public

tests support evaluating the decision algorithm of the LIP and, moreover, the LIP remains secure

despite some "leakage" on the queries. We show that LIPs with low-degree verifiers (which we call

algebraic LIPs), combined with appropriate one-way encodings, suffice for this purpose.

More concretely, like [GrolO, Lipl 1, GGPR13], we consider candidate encodings in bilinear

groups under similar knowledge-of-exponent and computational Diffie-Hellman assumptions; for

such encoding instantiations, we must start with an LIP where the degree dD of the decision algo-

rithm De is at most quadratic. (If we had multilinear maps supporting higher-degree polynomials,

we could support higher values of dD.) In addition to dD < 2, to ensure security even in the

presence of certain one-way leakage, we need the query algorithm QLIP to be of polynomial degree.

Both of the LIP constructions from LPCPs described in Section 1.2.1 satisfy these requirements.

When combined with the above transformation, these LIP constructions imply new constructions of

publicly-verifiable preprocessing SNARKs, one of which can be seen as a simplification of the con-

struction of [Gro 10] and the other as a reinterpretation (and slight simplification) of the construction

of [GGPR13].

For more details, see Section 2.5.2.

Zero-knowledge. In all aforementioned transformations to preprocessing SNARKs, if we start with

an HVZK LIP (such as those mentioned in Section 1.2.1) and additionally require a rerandomization

property for the linear-only encryption/encoding (which is available in all of the candidate instan-

tiations we consider), we obtain preprocessing SNARKs that are (perfect) zero-knowledge in the

19

CRS model. In addition, for the case of publicly-verifiable (perfect) zero-knowledge preprocessing

SNARKs, the CRS can be tested, so that (similarly to previous works [Grol0, Lip 11, GGPR13]) we

also obtain succinct ZAPs. See Section 2.5.3.

New efficiency features for SNARKs.

We obtain the following concrete improvements in communication complexity for preprocessing

SNARKs.

"Single-ciphertext preprocessing SNARKs". If we combine the LIPs that we obtained from tra-

ditional PCPs (where the prover returns only a single field element) with "non-sparsified" Paillier

encryption, we obtain (non-adaptive) preprocessing SNARKs that consist of a single Paillier ci-

pherext. Moreover, when using the query-efficient PCP from [HK05] as the underlying PCP, even

a standard-size Paillier ciphertext (with plaintext group Zpq where p, q are 512-bit primes) suffices

for achieving soundness error 2 -A with A = 100. (For the case of [HK05], due to the queries' de-

pendence on the input, the reference string of the SNARK also depends on the input.) Alternatively,

using the sparsified version of Paillier encryption, we can also get security against adaptively-chosen

statements with only two Paillier ciphertexts.

Towards optimal succinctness. A fundamental question about succinct arguments is how low

can we push communication complexity. More accurately: what is the optimal tradeoff between

communication complexity and soundness? Ideally, we would want succinct arguments that are

optimally succinct: to achieve 2 -n(A) soundness against 20(A)-bounded provers, the proof length is

O(A) bits long.

In existing constructions of succinct arguments, interactive or not, to provide 2 -O(A) soundness

against 20(A)-bounded provers, the prover has to communicate w(A) bits to the verifier. Concretely,

PCP-based (and MIP-based) solutions require Q(A 3) bits of communication. This also holds for

known preprocessing SNARKs, because previous work and the constructions discussed above are

based on bilinear groups or Paillier encryption, both of which suffer from subexponential-time at-

tacks.

If we had a candidate for (linear-only) homomorphic encryption that did not suffer from subexponential-

time attacks, our approach could perhaps yield preprocessing SNARKs that are optimally succinct.

The only known such candidate is Elgamal encryption (say, in appropriate elliptic curve groups)

[PQ 12]. However, the problem with using Elgamal decryption in our approach is that it requires, in

20

general, to compute discrete logarithms.

One way to overcome this problem is to ensure that honest proofs are always decrypted to

a known polynomial-size set. This can be done by taking the LIP to be over a field Fp of only

polynomial size, and ensuring that any honest proof 7r has small Li-norm 17r I11, so that in particular,

the prover's answer is taken from a set of size at most 117rI1 1- p. For example, in the two LPCP-based

constructions described in Section 1.2.1, this norm is 0(s2) and 0(s) respectively for a circuit of

size s. This approach, however, has two caveats: the soundness of the underlying LIP is only

1/poly(A) and moreover, the verifier's running time is proportional to s, and not independent of it,

as we usually require.

A very interesting related question that may lead to a solution circumventing the aforementioned

caveats is whether there exist LIPs where the decision algorithm has linear degree. With such an

LIP, we would be able to directly use Elgamal encryption because linear tests on the plaintexts can

be carried out "in the exponent", without having to take discrete logarithms.

Finally, a rather generic approach for obtaining "almost-optimal succintness" is to use (linear-

only) Elgamal encryption in conjunction with any linear homomorphic encryption scheme (perhaps

not having the linear-only property) that is sufficiently secure. Concretely, the verifier sends his LIP

message encrypted under both encryption schemes, and then the prover homomorphically evaluates

the affine function on both. The additional ciphertext can be efficiently decrypted, and can assist

in the decryption of the Elgamal ciphertext. For example, there are encryption schemes based on

Ring-LWE [LPR10] that are conjectured to have quasiexponential security; by using these in the

approach we just discussed, we can obtain 2 -NA) soundness against 20(A)-bounded provers with

O(A) bits of communication.

Strong knowledge and reusability. Designated-verifier SNARKs typically suffer from a problem

known as the verifer rejection problem: security is compromised if the prover can learn the veri-

fier's responses to multiple adaptively-chosen statements and proofs. For example, the PCP-based

(or MIP-based) SNARKs of [BCCT12, GLR1 1, DFH12, BC12] suffer from the verifier rejection

problem because a prover can adaptively learn the encrypted PCP (or MIP) queries, by feeding dif-

ferent statements and proofs to the verifier and learning his responses, and since the secrecy of these

queries is crucial, security is lost.

Of course, one way to avoid the verifier rejection problem is to generate a new reference

string for each statement and proof. Indeed, this is an attractive solution for the aforementioned

SNARKs because generating a new reference string is very cheap: it costs poly(A). However, for

21

a designated-verifier preprocessing SNARK, generating a new reference string is not cheap at all,

and being able to reuse the same reference string across an unbounded number of adaptively-chosen

statements and proofs is a very desirable property.

A property that is satisfied by all algebraic LIPs (including the LPCP-based LIPs discussed in

Section 1.2.1), which we call strong knowledge, is that such attacks are impossible. Specifically, for

such LIPs, every prover either makes the verifier accept with probability 1 or with probability less

than O(poly(A)/IF). Given LIPs with strong knowledge, it seems that designated-verifier SNARKs

that have a reusable reference string can be constructed. Formalizing the connection between strong

knowledge and reusable reference string actually requires notions of linear-only encryption that are

somewhat more delicate than those we have considered so far.

1.2.2 Structured PCPs In Other Works

Ishai et al. [IK007] proposed the idea of constructing argument systems with nontrivial efficiency

properties by using "structured" PCPs and cryptographic primitives with homomorphic properties,

rather than (as in previous approaches) "unstructured" polynomial-size PCPs and collision-resistant

hashing. We have shown how to apply this basic approach in order to obtain succinct non-interactive

arguments with preprocessing. We now compare our work to other works that have also followed

the basic approach of [IK007].

Strong vs. weak linear PCPs. Both in our work and in [IK007], the notion of a "structured" PCP

is taken to be a linear PCP. However, the notion of a linear PCP used in our work does not coincide

with the one used in [IK007]. Indeed there are two ways in which one can formalize the intuitive

notion of a linear PCP. Specifically:

" A strong linear PCP is a PCP in which the honest proof oracle is guaranteed to be a linear

function, and soundness is required to hold for all (including non-linear) proof oracles.

" A weak linear PCP is a PCP in which the honest proof oracle is guaranteed to be a linear

function, and soundness is required to hold only for linear proof oracles.

In particular, a weak linear PCP assumes an algebraically-bounded prover, while a strong linear PCP

does not. While Ishai et al. [IK007] considered strong linear PCPs, in our work we are interested

in studying algebraically-bounded provers, and thus consider weak linear PCPs.

Arguments from strong linear PCPs. Ishai et al. [IK007] constructed a four-message argument

system for NP in which the prover-to-verifier communication is short (i.e., an argument with a

22

laconic prover [GVWO2]) by combining a strong linear PCP and (standard) linear homomorphic

encryption; they also showed how to extend their approach to "balance" the communication be-

tween the prover and verifier and obtain a O(1/e)-message argument system for NP with O(ne)

communication complexity. Let us briefly compare their work with ours.

First, in this paper we focus on the non-interactive setting, while Ishai et al. focused on the inter-

active setting. In particular, in light of the negative result of Gentry and Wichs [GW 1], this means

that the use of non-standard assumptions in our setting (such as linear targeted malleability) may be

justified; in contrast, Ishai et al. only relied on the standard semantic security of linear homomorphic

encryption (and did not rely on linear targeted malleability properties). Second, we focus on con-

structing (non-interactive) succinct arguments, while Ishai et al. focus on constructing arguments

with a laconic prover. Third, by relying on weak linear PCPs (instead of strong linear PCPs) we do

not need to perform (explicitly or implicitly) linearity testing, while Ishai et al. do. Intuitively, this

is because we rely on the assumption of linear targeted malleability, which ensures that a prover is

algebraically bounded (in fact, in our case, linear); not having to perform proximity testing is cru-

cial for preserving the algebraic properties of a linear PCP (and thus, e.g., obtain public verifiability)

and obtaining O(poly(A)/IFI) soundness with only a constant number of encrypted/encoded group

elements. (Recall that linearity testing only guarantees constant soundness with a constant number

of queries.)

Turning to computational efficiency, while their basic protocol does not provide the verifier

with any saving in computation, Ishai et al. noted that their protocol actually yields a batching

argument: namely, an argument in which, in order to simultaneously verify the correct evaluation

of circuits of size S, the verifier may run in time S (i.e., in time S/e per circuit evaluation). In

fact, a set of works [SBW 11, SMBW 12, SVP+ 12, SBV+ 13] has improved upon, optimized, and

implemented the batching argument of Ishai et al. [IK007] for the purpose of verifiable delegation

of computation.

Finally, [SBV+ 13] have also observed that QSPs can be used to construct weak linear PCPs;

while we compile weak linear PCPs into LIPs, [SBV+ 13] (as in previous work) compile weak

linear PCPs into strong ones. Indeed, note that a weak linear PCP can always be compiled into

a corresponding strong one, by letting the verifier additionally perform linearity testing and self-

correction; this compilation does not affect proof length, increases query complexity by only a

constant multiplicative factor, and guarantees constant soundness.

Remark 1.2.1. The notions of (strong or linear) PCP discussed above should not be confused with

23

the (unrelated) notion of a linear PCP of Proximity (linear PCPP) [BHLMO9, Meil2], which we

now recall for the purpose of comparison.

Given a field F, an F-linear circuit [Val77] is an F-arithmetic circuit C: Fh -+ F in which

every gate computes an F-linear combination of its inputs; its kernel, denoted ker(C), is the set of

all w E Fh for which C(w) = 0e. A linear PCPP for a field F is an oracle machine V with the

following properties: (1) V takes as input an F-linear circuit C and has oracle access to a vector

w E Fh and an auxiliary vector 7r of elements in F, (2) if w C ker(C) then there exists 7r so that

Vw,'(C) accepts with probability 1, and (3) if w is far from ker(C) then Vw,'(C) rejects with high

probability for every ir.

Thus, a linear PCPP is a proximity tester for the kernels of linear circuits (which are not univer-

sal), while a (strong or weak) linear PCP is a PCP in which the proof oracle is a linear function.

1.2.3 Roadmap

In Section 2, we provide more details. In Section 2.1, we introduce the notions of LPCPs and LIPs.

In Section 2.2, we present our transformations for constructing LIPs from several notions of PCPs.

In Section 2.3, we give the basic definitions for preprocessing SNARKs. In Section 2.4, we define

the relevant notions of linear targeted malleability, as well as candidate constructions for these. In

Section 2.5, we present our transformations from LIPs to preprocessing SNARKs.

1.3 Bootstrapping SNARGs

In this work, we study three open questions regarding SNARGs and SNARKs:

Public verifiability. A basic question regarding SNARKs is whether the verification state -r needs

to be kept secret. In a designated-verifier SNARK, -r must be kept secret; in particular, r must be

protected from leakage, including the verifier's responses when checking proofs. (Of course, a new

pair (o-, r) can always be generated afresh to regain security.) In contrast, in a publicly-verifiable

SNARK, the verification state r associated with the reference string o- can be published. Thus

leakage is not a concern, -r and o- can be used repeatedly, anyone who trusts the generation of r can

verify proofs, and proofs can be publicly archived for future use.

The SNARKs in [DCL08, Mie08, BCCT12, DFH12, GLRl I, BC12] are of the designated-

verifier kind (and there, indeed, an adversary learning the verifier's responses on, say, A proofs can

break soundness). In contrast, Micali's protocol is publicly verifiable, but is in the random-oracle

24

model. The protocols based on linear PCPs [GrolO, Lipl 1, GGPR13, BCI+13] are also publicly

verifiable, but only yield the weaker notion of preprocessing SNARKs. We thus ask:

Question 1: Can we construct publicly-verifiable SNARKs without preprocessing in the plain

model?

Of course, we could always assume that Micali's protocol, when the random oracle is instan-

tiated with a sufficiently-complicated hash function, is sound. However, this assumption does not

seem to be satisfying, because it strongly depends on the specific construction, and does not shed

light on the required properties from such a hash function. Instead, we would like to have a solution

whose soundness is based on a concise and general assumption that is "construction-independent"

and can be studied separately.

Complexity-preserving SNARKs. While typically the focus in SNARKs is on minimizing the

resources required by the verifier, minimizing those required by the prover is another critical goal:

e.g., the verifier may be paying to use the prover's resources by renting servers from the cloud, and

the more resources are used the greater the cost to the verifier. These resources include, not only

time complexity, but also space complexity, which tends to be a severe problem in practice (often

more so than time complexity).

When instantiating the PCP-based SNARK constructions of [MicOO, DCL08, Mie08, BCCT12,

DFH 12, GLR1 1] with known time-efficient PCPs [BCGT13b], the SNARK prover runs in time

t - poly(A) and the SNARK verifier in time lxi - poly(A). However, the quasilinear running time

of the prover is achieved via the use of FFT-like methods, which unfortunately demand Q(t) space

even when the computation of the N P verification machine M requires space s with s < t.

The situation is even worse in the preprocessing SNARKs of [Grol0, Lipi 1, GGPR13, BCI+13],

where the generator runs in time Q(t) - poly(A) to produce a reference string o of length Q(t) -

poly(A). This string must then be stored somewhere and accessed by the prover every time it

proves a new statement; thus, once again, Q(t) space is needed (in contrast to a SNARK without

preprocessing where the generator runs in time poly(A) and the reference string is short).

Ideally, we want SNARKs that simultaneously enable the verifier to run fast and enable the

prover to use an amount of resources that is as close as possible to those required by the original

computation. We thus define a complexity-preserving SNARK to be a SNARK where the prover runs

in time t -poly(A) and space s -poly(A), and the verifier runs in time lxI- poly(A), when proving and

verifying that a t-time s-space random-access machine M non-deterministically accepts an input x.

25

We ask:

Question 2: Can we construct complexity-preserving SNARKs?

The SNARKs constructed by [BC12] are, in fact, complexity-preserving. However, that con-

struction is for designated verifiers and also relies on a rather specific knowledge assumption. The

case of public verifiability remains open, as well as whether there are more generic approaches to

construct complexity-preserving SNARKs.

SNARK composition and proof-carrying data. It is tempting to use a SNARK to produce proofs

that, in addition to attesting to the correctness of a given computation, also attest that a previous

SNARK proof for another (related) computation has been verified (and so on recursively). An

intriguing question is thus whether one can achieve stronger cryptographic primitives via such re-

cursive composition of SNARKs, and under what conditions.

Several works have in fact studied this question. Valiant [Val08] studied the problem of incrementally-

verifiable computation (IVC), where a deterministic computation is compiled into a new compu-

tation (with polynomially-related time and space) that after each step outputs, in addition to the

current state, a short proof attesting to the correctness of the entire computation so far. Valiant

showed (when phrased in our terminology) that IVC can be obtained by recursively composing

publicly-verifiable SNARKs that have very efficient knowledge extractors, and conjectured that

such SNARKs exist. In another work along these lines, Boneh, Segev, and Waters [BSW12] studied

targeted malleability (TM), and showed how to obtain certain forms of TM by recursively compos-

ing publicly-verifiable preprocessing SNARKs that may have an expensive online verification.

Chiesa and Tromer [CT10] formulated and studied the security goal of enforcing local prop-

erties in dynamic distributed computations; this goal, in particular, captures many scenarios which

seem to require SNARK recursive composition, such as the goals in [Val08] and [BSW12] (by

choosing appropriate local properties to enforce). To achieve this security goal, [CT10] introduced

a cryptographic primitive called proof-carrying data (PCD), which allows to dynamically compile

a distributed computation into one where messages are augmented by short proofs attesting to the

fact that the local property holds; this, without incurring significant overhead in communication or

computation. They showed how to use recursive proof composition to obtain PCD, but only in a

model where parties can access a signature oracle. We ask:

Question 3: Under what conditions can SNARKs be recursively composed?

More generally, what forms of PCD can be achieved in the plain model?

26

We further discuss and motivate the notions of verifying local properties of distributed compu-

tations and the framework of proof-carrying data in Section 1.3.2.

1.3.1 Our Results

In this work, we positively answer all three questions. To do so, we develop techniques demonstrat-

ing that the three questions are, in fact, tightly related to one another.

A bootstrapping theorem for SNARKs and PCD. Our main technical result consists of two

generic transformations. The first transformation takes any SNARK (possibly having poor effi-

ciency, e.g., having expensive preprocessing, a prover running in quadratic time, a prover requiring

large space, and so on) and outputs a PCD system, with analogous efficiency properties, for a large

class of distributed computations. The second transformation takes any PCD system (such as the

one output by the first transformation) and outputs a complexity-preserving SNARK or PCD system.

These transformations work in both publicly-verifiable or designated-verifier cases (where SNARKs

can be proved secure based on potentially weaker knowledge assumptions).

Theorem (informal). Assume existence of collision-resistant hash functions. Then:

(i) Any publicly-verifiable SNARK can be efficiently transformed into a publicly-verifiable PCD

system for distributed computations of constant depth or over paths of polynomial depth.

(ii) Any publicly-verifiable PCD system (for distributed computations of constant depth or over

paths of polynomial depth) can be efficiently transformed into a complexity-preserving publicly-

verifiable SNARK or PCD system.

(Where the depth of a distributed computation is, roughly, the length of the longest path in the graph

representing the distributed computation over time.)

Assuming existence offully-homomorphic encryption, an analogous statement holds for the designated-

verifier case.

While this theorem implies a significant efficiency improvement for preprocessing SNARKs (as

it removes the expensive preprocessing), it is also useful for improving the efficiency of SNARKs

that do not have expensive preprocessing, yet are still not complexity preserving, such as PCP-based

constructions in the plain model.

Applying our theorem to any of the preprocessing SNARKs of [Gro 10, Lip 11, GGPR13, BCI- 13],

we obtain positive answers to the three aforementioned open questions:

27

Corollary (informal). There exist publicly-verifiable SNARKs and PCD systems (for a large class of

distributed computations), in the plain model, under "knowledge-of-exponent" assumptions. More-

over there exist such SNARKs and PCD systems that are complexity-preserving.

To prove our main theorem, we develop three generic tools:

1. SNARK Recursive Composition: "A (publicly- or privately-verifiable) SNARK can be com-

posed a constant number of times to obtain a PCD system for constant-depth distributed compu-

tations (without making special restrictions on the efficiency of the knowledge extractor)."

2. PCD Depth Reduction: "Distributed computations of constant depth can express distributed

computations over paths of polynomial depth."

3. Locally-Efficient RAM Compliance: "The problem of checking whether a random-access ma-

chine non-deterministically accepts an input within t steps can be reduced to checking that a

certain local property holds throughout a distributed computation along a path of t - poly(A)

nodes and every node's local computation is only poly(A), independently of t, where A is the

security parameter."

Succinct arguments without the PCP Theorem. When combined with the protocols of [Gro10,

Lip 11, GGPR13, BCI+ 13], our transformations yield SNARK and PCD constructions that, unlike

all previous constructions (even interactive ones), do not invoke the PCP Theorem but only elemen-

tary probabilistic-checking techniques [BCI+ 13]. (Note that the "PCP-necessity" result of [RVO9]

does not apply here.) This provides an essentially different path to the construction of succinct ar-

guments, which deviates from all previous approaches (such as applying the Fiat-Shamir paradigm

[FS87] to Micali's "CS proofs" [MicOO]). We find this interesting both on a theoretical level (as

it gives us the only known complexity-preserving publicly-verifiable SNARKs) and on a heuristic

level (as the construction seems quite simple and efficient).

technique main generator prover prover verifier verification complexity
assumption time time space time preserving?

PCP extractable CRH poly(A) t poly(A) t - poly(A) poly(A) designated no
linear PCP linear-only hom. t - poly(A) t poly(A) t - poly(A) poly(A) public no

MIP hom. extraction poly(A) t poly(A) s poly(A) poly(A) designated yes
this work any SNARK poly(A) t poly(A) s poly(A) poly(A) public yes

Table 1.2: Features of known SNARK constructions vs. those obtained using

our transformations.

28

1.3.2 More on Proof-Carrying Data and Compliance Engineering

Succinct arguments focus on the case of a single prover and a single verifier. This suffices for

capturing, say, a client interacting with a single worker performing some self-contained computation

for the client. However, reality is often more complex: computations may be performed by multiple

parties, each party with its own role, capabilities, and trust relations with others.

In general, there are multiple (even apriori unboundedly many) parties, where each party i, given

inputs from some other parties, and having its own local input Iin p;, executes a program, and sends

his output message zi to other parties, each of which will in turn act likewise (i.e., perform a local

computation and send the output message to other parties), and so on in a dynamical fashion. In

other words, reality often involves possibly complex distributed computations.

There are many security goals, both about integrity and privacy, that one may wish to achieve in

distributed computations. The study of multi-party computation (MPC) in the past three decades has

focused on formulating definitions and providing solutions that are as comprehensive as possible for

secure distributed computations. This ambitious goal was met by powerful generic constructions,

working for any polynomial-time functionality and in the presence of arbitrary malicious behavior,

e.g., [GMW87, BOGW88]. A major caveat of generic MPC protocols, however, is that they often

require the parties participating in the computation to interact heavily with all other parties and

perform much more expensive computations than their "fair share". In fact, such overheads are

inherent for some security goals, e.g., broadcast [FLP85, KY86].

Chiesa and Tromer [CTlO, CT12] introduced and studied a specific security goal, enforcing

compliance with a given local property; as we shall see, for this goal, it is possible to avoid the

aforementioned caveats. More concretely, the goal is to ensure that any given message z output by

any party during the distributed computation is the result of some previous distributed computation

in which every party's local computation (including the party's input messages, local inputs, and

output message) satisfies a prescribed local property C; i.e., the goal is to ensure that there is some

"explanation" for the generation of the message z as the aggregate of many local computations, each

satisfying C. For example, the local property C might be "the local input Iinpi is a program progi

bearing a valid signature of the system administrator and, moreover; the output message zi is the

correct output of running progi on the input messages". Such a local property would ensure that

a message z resulting from a distributed computation satisfying C is in fact the result of correctly

executing only programs vetted by the system administrator.

29

Here, the focus is not on the behavior of specific parties with respect to specific inputs but, rather,

whether the generation of a given message can be properly explained by some "compliant" behavior.

As we shall see shortly, the advantage of studying this security goal is that it will ultimately allow

for solutions that do not introduce additional interaction between parties and do not need to rely on

a fixed set of parties who are all familiar with each other and jointly come together to compute some

functionality. We also note that, in its most basic form, the security goal only talks about integrity

and not about privacy.

Proof-carrying data. To fulfill the above goal, Chiesa and Tromer [CT10] proposed the Proof-

Carrying Data (PCD) solution approach: each party i behaves exactly as in the original distributed

computation (where there is no integrity guarantee), except that i also appends to his message zi a

succinct proof iri asserting that zi is consistent with some distributed computation in which every

local computation satisfies C. Party i generates the proof 7ri based on zi, linp;, previous messages,

and their proofs. Crucially, generating 7ri does not require party i to perform much more work than

generating zi in the first place. Furthermore, the "natural" evolution of the distributed computation,

including its communication pattern, is unaffected. This solution approach extends Valiant's notion

of incrementally-verifiable computation [Va108], which can be cast as verifying a "path" distributed

computation where the local property to be enforced is the transition function of a fixed deterministic

machine, and the set of parties is fixed according to the number of steps made by the machine. See

Figure 1-2 on page 31 for a diagram of this idea.

An abstraction for SNARK recursive composition, and compliance engineering. As already

mentioned, in this work we use recursive composition of SNARKs to obtain PCD systems for a

large class of distributed computations. While describing the proof to parts of our main theorem

could be done without using PCD systems, PCD systems enable us to state, once and for all, ex-

actly what we can "squeeze" out of recursive composition of (even the most basic and inefficient)

SNARKs. From thereon, we can forget about the many technical details required to make recursive

composition work, and only focus on the corresponding guarantees, rather than implementation

details. Specifically, armed with PCD systems, we can concentrate on the simpler and cleaner task

of compliance engineering: how to express a given security goal as a local property. We can then

achieve the security goal by enforcing the local property by using a PCD system.

For example, already in this work, after constructing a "weak" PCD system, we solve all other

technical challenges (including obtaining stronger PCD systems) via compliance engineering. As

30

another example, targeted malleability [BSW12] can be obtained via a suitable choice of local

property and then enforcing the local property by using a PCD system over any homomorphic

encryption scheme. 3 The class of distributed computations supported by the resulting construction

is the same as that of the PCD system used.

More generally, we believe that investigating the power (and limits) of compliance engineering

is a very interesting question: what security goals can be efficiently achieved by enforcing local

properties?

C C
r j rg 3 progZ36 g zi pg r prog6 Z6prog p 3 O9 2Zpo 1 2I po 3 2

Z. prog8 PC33 progprog, Or39 Z3 Z8 prog Z35

Z 2 progs pZ2 12 P r4

prO2 Z2 prog 4 7 prg2 72prog4

Figure 1-2: Proof-carrying data enables each party in a distributed computation
to augment his message zi with a short easy-to-verify proof 7ri that is computed
"on-the-fly", based on previous messages and proofs. At any point during the
computation, anyone may inspect a message to decide if it is compliant with the
given local property C. Distributed computations are represented as directed
acyclic graphs "unfolding over time".

1.3.3 The Ideas In A Nutshell

We now give the basic intuition, stripping away all abstraction layers, behind one part of our main

theorem. Specifically, we explain how to transform any (possibly very inefficient) SNARK (G,

P, V) into a complexity-preserving SNARK (G*, P*, V*) (that, in particular, has no expensive

preprocessing), assuming collision-resistant hashing. Consider first the case where (G, P, V) is

publicly verifiable.

Suppose that (G, P, V) is a preprocessing SNARK (this only makes the transformation harder

because we must get rid of preprocessing). Recall that, in such a SNARK, the online verification

phase is succinct, but the offline phase is allowed to be expensive, in the following sense. The

generator G takes as an additional input a time bound B, may run in time poly(A+ B), and generates

a (potentially long) reference string o and a (short) verification state r that can be used, respectively,

to prove and verify correctness of computations of length at most B. The (online) verifier V still

runs in time poly(A), independently of B. (Additionally, no guarantees are made about the time

and space complexity of the honest prover, except that they both are poly(A + B).) We would like

3More precisely, the PCD system must have a zero-knowledge property. Zero-knowledge PCD systems are easily
defined and, as expected, follow from recursive composition of zero-knowledge SNARKs.

31

to construct (G*, P*, V*) so that G* runs in time poly(A) (which in particular bounds the size of

the reference string a-) and P* runs in time t - poly(A) and space s - poly(A).

At high-level, the idea is to first represent the long t-step computation of the random-access

machine M to be verified as a collection of 0(t) small poly(A)-step computations, and then use

recursive composition to aggregate many SNARK proofs for the correctness of each of these small

computations into a single SNARK proof. Indeed, by repeatedly invoking the prover P of the "in-

efficient" preprocessing SNARK (G, P, V) only to prove the correctness of small computations, we

would "localize" the effect of the SNARK's inefficiency. Specifically, when running the generator

G in the offline phase in order to produce (o-, r), we would only have to budget for a time bound

B = poly(A), thereby making running G cheap. Furthermore, if the collection of small compu-

tations can be computed in time t and space s (up to poly(A) factors), then running P on each of

these small computations in order to produce the final proof would only take time t - poly(A) and

space s - poly(A). Overall, we would achieve complexity preservation. Let us make this intuition

somewhat more concrete.

Starting point: incrementally-verifiable computation. A natural starting point towards fulfilling

the above plan is trying to use of the idea of incrementally-verifiable computation (IVC) [Va108].

Recall that the goal in IVC is to transform a given computation into a new computation that after

every step outputs its entire state and a proof of its correctness so far, while preserving the time and

space efficiency of the original computation (up to poly(A) factors).

Specifically, to be convinced that there exists a witness w for which the random-access ma-

chine M accepts w within t steps, it suffices to be convinced that there is a sequence of t' states

So, S1, . . . , Sti of M (with t' < t) that (a) starts from an initial state, (b) ends in an accepting state,

and (c) every state correctly follows the previous one according to the transition function of M.

Equivalently, from the perspective of proof-carrying data, we can think of a distributed computation

of at most t parties, where the i-th party P receives the state Sj_1 of M at step i - 1, evaluates

one step of M, and sends the state Si of M at step i to the next party; the last party checks that the

received state is an accepting one.

This suggests the following solution, which we can think of as happening "in the mind" of the

new SNARK prover P*. Using the SNARK prover P, the first party P proves to the second party

P2 that the state S1 was generated by running the first step of M correctly. Then, again using P,

P2 proves to the third party P3 that, not only did he evaluate the second step of M correctly and

obtained the state S2 , but he also received state Si carrying a valid proof (i.e., accepted by the

32

SNARK verifier V) claiming that S1 was generated correctly. Then, P3 uses P to prove to the

fourth party P4 that, not only did he evaluate the third step of M correctly and obtained the state

S3, but he also received state S2 carrying a valid proof claiming that S2 was generated correctly,

and so on until the last party who, upon receiving a state carrying a proof of validity, proves that

the last state is accepting. A verifier at the end of the chain gets a single, easy-to-verify, proof

aggregating the correctness of all the steps in M's computation. Hopefully, by relying on the proof

of knowledge property of the SNARK, it is possible to recursively extract from any convincing

prover a full transcript of the computation attesting to its correctness.

From the above IVC-based approach to our eventual goal of complexity-preserving SNARKs with-

out preprocessing there is still a significant gap; we now describe the difficulties and how we over-

come them.

Challenge 1: IVC with preprocessing SNARKs, and the size of local computations. In his

construction of IVC, Valiant relies on the existence of publicly-verifiable SNARKs that do not have

expensive preprocessing. In our setting, we have only a preprocessing SNARK at hand, so we

have to ensure that each of the computations whose correctness we are proving is shorter than the

time bound B associated with the preprocessing. Specifically, B must be larger than the running

time of the SNARK verifier V plus a single computation step of M. This is reminiscent of the

bootstrapping paradigm in fully-homomorphic encryption [GenO9], where, in order to bootstrap a

somewhat homomorphic scheme, homomorphic evaluation should support the decryption operation

plus a single computation step. Whereas in bootstrapping of homomorphic encryption the challenge

is to get the decryption circuit to be small enough, in our setting the running time of V (even for

a preprocessing SNARK) is already poly(A)-small, and the challenge is to get the computation

required to perform one step of M to be small enough. Indeed, running step i in the "middle" of the

computation requires computation proportional to the corresponding state Si. Such a computations

may thus be as large as the space s used by M, which in turn could be as large as Q(t). If, instead,

we could ensure that each local computation being proven is of size poly(A), then we could set

B = poly(A) and thereby avoid expensive preprocessing.

To achieve this goal, we invoke a "computational" reduction [BEG+91, BCGT13a] that trans-

forms M into machine M' that requires only poly(A) space and preserves the proof of knowledge

property (i.e., any computationally-bounded adversary producing a witness that M' accepts can be

efficiently used to find a witness that M accepts). The idea is that M' emulates M but does not

33

bother to explicitly store its random-acess memory; instead, reads from memory are satisfied by

"guessing" the resulting value, and verifying its correctness via dynamic Merkle hashing. These

guesses, and corresponding Merkle verification paths, are appended to the witness, whose length,

crucially, does not affect the time to run a step of the machine. (To ensure that the new computation

steps are small enough, we ensure that each step only looks at a small chunk of the witness, which

is now at least as large as the original space s of M.)

This strategy also ensures that the resulting SNARK is complexity-preserving. Indeed, reducing

M to the "small-space" M' and its representation as a 0(t)-step distributed computation can be

done "on the fly", using the same time t and space s as the original computation, up to poly(A)

factors.

Challenge 2: extractor efficiency and the depth of the computation. As mentioned, to prove

that the above approach is secure, we need to rely on proof of knowledge, in order to perform

recursive extraction. This means that a proof of security based on recursive knowledge extraction

will work for only a constant number of recursive compositions (due to the polynomial blowup in

extractor size for each such composition). However, the distributed computation we described has

polynomial depth. Valiant showed that, if the knowledge extractor is extremely efficient (linear in

the prover's size), then the problem can be avoided by aggregating proofs along a tree rather than

along a path. We avoid Valiant's assumption by extending his idea into aggregating proofs along

"wide proof trees" of constant depth (similarly to the construction of SNARKs from extractable

collision-resistant hash functions [BCCT12, GLR1 1].)

Another challenge: the case of designated-verifier SNARKs. So far we have assumed that the

SNARK (G, P, V) is publicly verifiable. What happens in the designated-verifier case? In this case,

it is not clear how a party can prove that he verified a received proof without actually knowing the

corresponding private verification state (which we cannot allow because doing so would void the

security guarantee of the SNARK). We solve this problem by showing how to carefully use fully-

homomorphic encryption to recursively compose proofs without relying on intermediate parties

knowing the verification state.

From intuition to proof through PCD. We have now presented all the high-level ideas that go into

proving one part of our main theorem: how to transform any SNARK into a complexity-preserving

one. Let us briefly outline how these ideas are formalized via results about the constructibility of

PCD systems. Our first step is to transform any SNARK into a PCD system for constant-depth

34

distributed computations; this step generalizes the notion of IVC to a richer class of distributed

computations (not only paths) and to arbitrary local security properties (not only the transition func-

tion of a fixed machine). We then forget about the details of recursively composing SNARKs,

and express the security goals we are interested in via the compliance of distributed computations

with carefully-chosen local properties. In this spirit, we show how PCD systems for constant-depth

distributed computations give rise to PCD systems for a class of polynomial-depth distributed com-

putations (including polynomial-length paths). Finally, we show how these can in turn be used to

obtain complexity-preserving SNARKs (that, in particular, have no preprocessing), by suitably rep-

resenting a computation to be verified as a sequence of "small" computations in a distributed path

computation.

Proving the above claims about PCD systems will enable us to construct complexity-preserving

PCD systems as well. Next, we provide a more detailed discussion of these claims.

1.3.4 Roadmap

In Section 3, we provide more details. In Section 3.1, we discuss our results in somewhat more

detail, describing each of the three tools we develop, and then how these come together for our

main result. We then proceed to the technical sections of the paper, beginning with definitions of the

universal relation and RAMs in Section 3.2, of SNARKs in Section 3.3, and of PCD in Section 3.4.

After that, we give technical details for our three tools, in Section 3.5, Section 3.6, and Section 3.7

respectively. In Section 3.8, we finally give the technical details for how our tools come together to

yield the transformations claimed by our main theorem.

35

36

Chapter 2

Succinct Non-Interactive Arguments

from Linear Interactive Proofs

2.1 Definitions of LIPs and LPCPs

We begin with the information-theoretic part of the paper, by introducing the basic definitions of

LPCPs, LIPs, and relevant conventions.

2.1.1 Polynomials, Degrees, and Schwartz-Zippel

Vectors are denoted in bold, while their coordinates are not; for example, we may write a to denote

the ordered tuple (ai, . . . , a,,) for some n. A field is denoted F; we always work with fields that

are finite. We say that a multivariate polynomial f : F"' - F has degree d if the total degree of

f is at most d. A multivalued multivariate polynomial f : F' -+ F" is a vector of polynomials

(fi, . . . , f,) where each fi: F" -+ F is a (single-valued) multivariate polynomial.

A very useful fact about polynomials is the following:

Lemma 2.1.1 (Schwartz-Zippel). Let F be any field. For any nonzero polynomial f : F"' -+ F of

total degree d and any finite subset S of F,

Pr [f(s) = 0 d <

In particular; any two distinct polynomials f, g: F' -+ F of total degree d can agree on at most a

d/ISIfraction of the points in S".

37

2.1.2 Linear PCPs

A linear probabilistically-checkable proof (LPCP) system for a relation R over a field F is one

where the PCP oracle is restricted to compute a linear function 7r: F' -+ F of the verifier's queries.

Viewed as a traditional PCP, 7r has length IFI1 (and alphabet F). For simplicity, we ignore the

computational complexity issues in the following definition, and refer to them later when they are

needed.

Definition 2.1.2 (Linear PCP (LPCP)). Let R be a binary relation, F a finite field, PLPcP a deter-

ministic prover algorithm, and VPcp a probabilistic oracle verifier algorithm. We say that the pair

(PPCP, V1pcp) is a (input-oblivious) k-query linear PCP for R over F with knowledge error e and

query length m if it satisfies the following requirements:

" Syntax. On any input x and oracle 7r, the verifier Vjpcp(x) makes k input-oblivious queries

to 7r and then decides whether to accept or reject. More precisely, VpcP consists of a proba-

bilistic query algorithm QLPcP and a deterministic decision algorithm DLPCP working as fol-

lows. Based on its internal randomness, and independently of x, QLPCP generates k queries

q1 , . .. , qk E F' to 7r and state information u; then, given x, u, and the k oracle answers

al = (r, q1) , ... , ak = (7r, qk), DLPcP accepts or rejects.

" Completeness. For every (x, w) E R, the output of Pepcp (x, w) is a description of a linear

function 7r: F' -+ F such that VLcp (x) accepts with probability 1.

" Knowledge. There exists a knowledge extractor ELpcp such that for every linear function

7r*: F' -+ F if the probability that Vjpc*(x) accepts is greater than e then E'*c(x) outputs w such that (x, w) c

Furthermore, we say that (PLPCP , Vpcp) has degree (dQ, dD) if, additionally,

1. the query algorithm QLPCP is computed by a degree dQ arithmetic circuit (i.e., there are k

polynomials P1, ... Pk: FA -+ F' and state polynomial p: FA -+ F"', all of degree dQ,

such that the LPCP queries are q1 = pi(r),. . ., qk = Pk (r) and the state is u = p(r) for a

random r E FA), and

2. the decision algorithm DLPCP is computed by a degree dD arithmetic circuit (i.e., for every input

x there is a test polynomial t.: Fm'+k -+ P of degree dD such that t. (u, a1, ... , ak) = 07 if

and only if DLPCP(x, u, a, ... , ak) accepts);

'In particular, (PLPCP VLPCP) has soundness error e: for every x such that (x, w) 0 R for all w, and for every linear
function 7r*: F' -+ F, the probability that V1 CP(x) accepts is at most e.

38

Finally, for a security parameter A, we say that (PLPCP, VLPCP) is an algebraic LPCP (for A) if it has

degree (poly(A), poly(A)).

Remark 2.1.3 (infinite relations R). When R is an infinite relation UjEN 7Zf, both VLPCP = (QLPCP,

DLPCP) and PLPCP also get as input 1i. In this case, all parameters k, m, p, m', rJ may also be a

function of f.

Some of the aforementioned properties only relate to the LPCP verifier VLPCP, so we will also

say things like "VLPCP has degree...", i.e., using the verifier as the subject (rather than the LPCP).

Honest-verifier zero-knowledge LPCPs. We also consider honest-verifier zero-knowledge (HVZK)

LPCPs. In an HVZK LPCP, soundness or knowledge is defined as in a usual LPCP, and HVZK is

defined as in a usual HVZK PCP. For convenience, let us recall the definition of a HVZK PCP:

Definition 2.1.4 (honest-verifier zero-knowledge PCP (HVZK PCP)). A PCP system (PPCP, PCP

for a relation R, where Ppcp is also probabilistic, is 6-statistical HVZK if there exists a simulator

Spcp, running in expected polynomial time, for which the following two ensembles are 6-close (6

can be a function of the field, input length, and so on):

f SPcP (x)}I(x,)E and { View (Vpcxw(x)) 1,rx +- PPcP x)(XW)E

where View represents the view of the verifier; including its coins and the induced answers accord-

ing to 7r.

If the above two distributions are identically distributed then we say that (Vpcp) is perfect

HVZK.

PLPCP VLPCP 7r: Fm -+ F P 1P VIP fl: Fm kF

qi,..., qk r qi E qi1, a -, r qi E F
ai =(ir, qi) E F ak qEF

aai,...,1 ,-- ,ak 0/1
IDLPCPr DLIP

X X

Figure 2-1: Diagram of an LPCP and an input-oblivious two-message LIP.

2.1.3 Linear Interactive Proofs

A linear interactive proof (LIP) is defined similarly to a standard interactive proof [GMR89], except

that each message sent by a prover (either an honest or a malicious one) must be a linear function

39

of the previous messages sent by the verifier. In fact, it will be convenient for our purposes to

consider a slightly weaker notion that allows a malicious prover to compute an affine function of

the messages. While we will only make use of two-message LIPs in which the verifier's message is

independent of its input, below we define the more general notion.

Definition 2.1.5 (Linear Interactive Proof (LIP)). A linear interactive proof over a finite field F is

defined similarly to a standard interactive proof [GMR89], with the following differences.

* Each message exchanged between the prover P1 p and the verifier VLup is a vector qi E F'

over F.

" The honest prover's strategy is linear in the sense that each of the prover's messages is com-

puted by applying some linear function Ili: F' - Fk to the verifier's previous messages

(q1 , ... , qi). This function is determined only by the input x, the witness w, and the round

number i.

" Knowledge should only hold with respect to affine prover strategies 1* = (II, b), where II is

a linear function, and b is some affine shift.

Analogously to the case of LPCPs (Definition 2.1.2), we say that a two-message LIP is input-

oblivious if the verifier's messages do not depend on the input x. In such a case the verifier can be

split into a query algorithm QLIP that outputs the query q and possibly a verification state u, and a

decision algorithm DUP that takes as input u, x, and the LIP answer II -q. We also consider notions

of degree and algebraic LIPs, also defined analogously to the LPCP case.

Remark 2.1.6 (LPCPs and LIPs over rings). The notions of LPCP and an LIP can be easily extended

to be over a ring rather than over a field. One case of particular interest is LIPs over ZN, where N is

the product of two primes p and q. (LIPs over ZN are needed, e.g., when used in conjunction with

Paillier encryption; see Section 2.4.3.) All of our results generalize, rather directly, to the case of

ZN, where instead of achieving soundness-error 0(1/IF), we achieve soundness 0(1/ min {p, q}).

For simplicity, when presenting most results, we shall restrict attention to fields.

Remark 2.1.7 (honest-verifier zero knowledge). We also consider an honest-verifier zero-knowledge

variant of LIPs (HVZK LIPs), which is defined analogously to Definition 2.1.4. In this case, the

honest prover is probabilistic.

40

Remark 2.1.8 (LIP vs. LPCP). Note that a one-query LPCP is an LIP where the prover returns

a single field element; however, when the prover returns more than one field element, an LIP is

not a one-query LPCP. In this paper we construct both LIPs where the prover returns more than a

single field element (see Section 2.2.1) and LIPs where the prover returns a single field element (see

Section 2.2.2).

2.2 Constructions of LIPs

We present two transformations for constructing LIPs, in Section 2.2.1, Section 2.2.2 respectively.

2.2.1 LIPs From LPCPs

We show how to transform any LPCP into a two-message LIP with similar parameters. Crucially,

our transformation does not significantly affect strong knowledge or algebraic properties of the

LPCP verifier. Note that a non-trivial transformation is indeed required in general because the LIP

verifier cannot simply send to the LIP prover the queries qi, . . . , qk generated by the LPCP verifier.

Unlike in the LPCP model, there is no guarantee that the LIP prover will apply the same linear

function to each of these queries; instead, we only know that the LIP prover will apply some affine

function I1 to the concatenation of qi, . .. , qk. Thus, we show how to transform any LPCP (PLPCP,

VLPcP) with knowledge error E into a two-message LIP (PLIp, Vp) with knowledge error at most

E + . If the LPCP has k queries of length m and is over a field F, then the LIP verifier VLIP will

send (k + 1)m field elements and receive (k + 1) field elements from the LIP prover PLP. The idea

of the transformation is for Vp to run VLPCP and then also perform a consistency test (consisting of

also sending to PLIp a random linear combination of the k queries of VLPCP and then verifying the

obvious condition on the received answers).

More precisely, we construct a two-message LIP (PLIP, Vip) from an LPCP (PLPCP, VLPCP) as

follows:

Construction 2.2.1. Let (PLPCP, VLPCp) be a k-query LPCP over F with query length m. Define a

two-message LIP (PLIP, Vup) as follows.

o The LIP verifier VLup runs the LPCP verifier VLCp to obtain k queries q 1 ,... , qk E F', draws

a1 , ... , ak in F uniformly at random, and sends to the LIP prover PLIp the (k+1)mfield elements

obtained by concatenating the k queries q1 ,. . ., qk together with the additional query qk+1 := i .

41

" The LIP prover PLp runs the LPCP prover PLPcP to obtain a linear function 7r: F' -+ F,

parses the (k + 1)m received field elements as k + 1 queries of m field elements each, ap-

plies 7r to each of these queries to obtain k + 1 corresponding field elements a1 ,... , ak+1, and

sends these answers to the LIP verifier VLup.

* The LIP verifier VLup checks that ak+1 = E=1 aiai (if this is not the case, it rejects) and decides

whether to accept or reject by feeding the LPCP verifier VLcP with the answers a1, ... ,ak.

Lemma 2.2.2 (from LPCP to LIP). Suppose (PLPCP, VLPCP) is a k-query LPCP for a relation R

over F with query length m and knowledge error e. Then, (PLIP, VLp) from Construction 2.2.1

is a two-message LIP for R over F with verifier message in F(k+l)m, prover message in Fk+1,

and knowledge error e + . Moreover,

* if (PLPCP, VLPCP) has strong knowledge, then (PLP, VL'P) also does, and

" if (PLpcp, VLpcp) has an algebraic verifier of degree (dQ, dD), then (PL1 p, V 1p) has one with degree (dQ, max{2, dDl

Proof Syntactic properties and completeness are easy to verify. Furthermore, since the construction

of VLup from VLPcP only involves an additional quadratic test, the degree of VLup is (dQ, max{2, dD}).

We are left to argue knowledge (and strong knowledge).

Let II: F(k+l)m _+ Fk+ 1 be an affine strategy of a potentially malicious LIP prover P*,. We

specify II by (k + 1)2 linear functions 7rij: Fm -+ F for i, j C {1, . . . , k + 1} and a constant vector

7 = (-1, ... ,'yk+1) E Fk+ 1 such that the i-th answer of P*, is given by a := _+ (7rij, q)+'Yi.

It suffices to show that, for any choice of queries q 1,... ,qk, exactly one of the following conditions

holds:

* ai = (7rk+l,k+l, qi) for all i E [k], or

* with probability greater than 1- over a, ... , P* does not pass the consistency check.

Indeed, the above tells us that if H makes VP accept with probability greater than e + , then

7rk+1,k+1 makes VpcP accept with probability greater than E. Knowledge (and strong knowledge)

thus follow as claimed.

To show the above, fix a tuple of queries, and assume that, for some i* E [k], ai. ? (7rk+1,k+1, qi-)-

For the consistency check to pass, it should hold that:

k k+1 k+1

E aiE -ij, gj) + -yi E rk+l,j, qj) + -yk+1
i=1 (j=1 j=1

42

Equivalently,
k+1 k k k+1

E 1ai (7rij, ,j) + E iyi = Y (lrk+1,j, qj) + -k+-
j=1 i=1 i=1 j=1

Breaking the first summation using the equality qk+1 = Zk 1 ajqj, we get:

/i (k 5(lrk 1, / k \ 'i -Y
k kik 5 (k \E+1Iirkn+,k c v

j=1 i=1 i=1 +j=1))i=1 j=1 j=1

Rearranging, we see that the consistency check reduces to verifying the following equation:

k k k _ k

I iaj (7ri,k+1, qj) +E ai 1 (rij, qj) - (lrk+1,k+1, qi) + 74 -- (rk+l,i,qi)+7k+1 0

i,j=1 i=1 j=1 i=1

Because E +1 (7r ,j 9) + 7m* = a $* 7 (lrk+1,k+1, qj.), the coefficient of ai. in the above

polynomial is non-zero. Hence, by the Schwartz-Zippel Lemma (see Lemma 2.1.1), the identity

holds with probability at most 1. 1

We deduce the following two theorems.

Theorem 2.2.3. Let F be afinite field and C: {0, 1}" x {0, 1}h + {0, 1} a boolean circuit of size

s. There is an input-oblivious two-message LIP for RC with knowledge error 0(1/ Fl), verifier

message in Fo(s2), prover message in F, and degree (2, 2). Furthermore:

" the LIP prover PIp is an arithmetic circuit of size 0(s2);

" the LIP query algorithm QLIP is an arithmetic circuit of size O(s2

" the LIP decision algorithm DUP is an arithmetic circuit of size 0(n).

Theorem 2.2.4. Let F be a finite field and C: {0, 1}" x {0, 1}h -+ {0, 1} a boolean circuit of size

s. There is an input-oblivious two-message LIP for lZc with knowledge error 0(sIFI), verifier

message in FOW(), prover message in F4 , and degree (O(s), 2). Furthermore:

* the LIP prover PI is an arithmetic circuit of size 0(s);

* the LIP query algorithm QLIP is an arithmetic circuit of size O(s);

" the LIP decision algorithm DLIp is an arithmetic circuit of size O(n).

43

Zero-knowledge.

The LIPs we obtain by via above transformation can all be made honest-verifier zero-knowledge

(HVZK) by starting with an HVZK LPCP. For this purpose, we show a general transformation

from any LPCP with dD = 0(1) to a corresponding HVZK LPCP, with only small overhead in

parameters.

2.2.2 LIPs From (Traditional) PCPs

We present a second general construction of LIPs. Instead of LPCPs, this time we rely on a tradi-

tional k-query PCP in which the proof 7r is a binary string of length m = poly(Ix1). While any PCP

can be viewed as an LPCP (by mapping each query location q E [m] to the unit vector eq equal to

1 at the q-th position and 0 everywhere else), applying the transformation from Section 2.2.1 yields

an LIP in which the prover's message consists of k + 1 field elements. Here we rely on the sparse-

ness of the queries of an LPCP that is obtained from a PCP in order to reduce the number of field

elements returned by the prover to 1. The construction relies on the easiness of solving instances of

subset sum in which each integer is bigger than the sum of the previous integers (see [MH78]).

Fact 2.2.5. There is a quasilinear-time algorithm for the following problem:

" input: Non-negative integers W1, ... ,wk, a such that each wi is bigger than the sum of the

previous w j.

* output: A binary vector (a1, ... , ak) E {0, 1}k such that a = Ek1 aiwi (if one exists).

(All integers are given in binary representation.)

The following construction uses a parameter t that will affect the soundness error. We assume

that the field F is of a prime order p where p > 2ki and identify its elements with the integers

0, . .. ,1P - 1.

Construction 2.2.6. Let (PpcpVpcp) be a k-query PCP with proof length m. Define an LIP (PLp,

VLp) over F as follows.

e The LIP verifier VLup runs the PCP verifier Vpcp to obtain k distinct query locations q1, ... ,qk E

[m], picks a sequence of k random field elements

W1 +- [0, f - 1] , W2 4- [i, 2f - 1] , W3 - [3, 4 - 1], ... , Wk +- [(2k1 - 1), 2k-e 1],

and sends to the LIP prover PLIp the vector q = =1 wieqj, where ej is the j-th unit vector in F'.

44

" The LIP prover PLIp responds by applying to q the linear function r: F' -+ F whose coefficients

are specified by the m bits of the PCP generated by the PCP prover Ppep. Let a denote the field

element returned by PLIP.

" The LIP verifier VI applies the subset sum algorithm of Fact 2.2.5 to find (al, ... , ak) G {0, I}k

such that a = Ek aiwi (if none exists it rejects) and decides whether to accept by feeding the

PCP verifier Vpcp with a1 ,... , ak.

Lemma 2.2.7 (from PCP to LIP). Suppose (Ppcp, VPCP) is a k-query PCP for a relation 7Z with

proof length m and knowledge error e, and F is a field of prime order p with p > 2ki. Then

(PLIP, Vip) from Construction 2.2.6 is a two-message LIP for R over F with verifier message in F',

prover message in F, and knowledge error E + k.

Proof Because the prover message is in F (i.e., the prover returns a single field element) the prover

strategy is an affine function H*: Fm -+ F (i.e., as in an LPCP, see Remark (2.1.8)). Let 7r*: Fm -+

F be a linear function and -y* E F be a constant such that rI*(q) = (7r*, q) + y* for all q E Fm .

We say that query positions qi, ... , qk E [m] are invalid with respect to H* if y* # 0 or there

is i E {1, . . . , k} such that ll*(eqj) V {0, 1}. It suffices to show that, for any strategy 11* as

above, conditioned on any choice of invalid query positions q1, . . . , qk by VLup, the probability of

VLp accepting is bounded by 2k/t. Indeed, for queries for which H* is valid, it holds that H* (qi) =

(7r*, qi) E {0, 1} corresponding a traditional PCP oracle lr*, so that the knowledge guarantees of

(PPCP, PCP) would kick in.

The above follows from the sparseness of the answers a that correspond to valid strategies and

the high entropy of the answer resulting from any invalid strategy. Concretely, fix any candidate

solution (ai, . . . , ak) E {0, I}k and pick Wi, ... , Wk as in Construction 2.2.6. Since each wi is

picked uniformly from an interval of size f,

k T k k k

Pr [1* - wie' asiw = Pr r*, wieqi + * aiwi
W1 .Wk I.. / 1W~['4 y a w

k~

= Pr (7r* - ai)wi +y* = 0
W1,...,Wk qi

1

Indeed, noting that 1 (irs* - ai)w~ + y* is a degree-i polynomial in the variables Wi, . .. , wk,

45

* if there is i E {1, . .. , k} such that I*(eqJ) {0, 1} then the coefficient of wi is non-

zero (since ai E {0, 1}) and thus, by the Schwartz-Zippel Lemma (see Lemma 2.1.1), the

probability that the polynomial vanishes is at most 1/f; and

" if instead for all i E {1, ... , k} it holds that H*(eqJ) E {0, 1} then it must be that -y* $ 0; if

there is i c {1, ... , k} such that 7r*$ = ai then the same argument as in the previous bullet

holds; otherwise, y* = 0 with probability 0 since we know that y* 5 0.

By a union bound, the probability that there exists solution (ai, . . . , ak) E {0, 1}k such that

ll(Zk 1 wieqi) = _ 1 aiwi is at most 2 k/f. Hence, the subset sum algorithm will fail to find

a solution and V1p will reject except with at most 2k/e probability.

By setting f := 2 k/e, we obtain the following corollary:

Corollary 2.2.8. Suppose (PpcpVpcp) is a k-query PCP for a relation R with proof length m

and knowledge error e, and F is afield of prime order p with p > 22k /e. Then (PP, VIP) from

Construction 2.2.6 is a two-message LIP for R over F with verifier message in F', prover message

in F, and knowledge error 2e.

There are many PCPs in the literature (e.g., [BFLS91, FGL+96, AS98, ALM+98b, PS94, RS97,

HSOO, BSVWO3, BGH+04, BGH+05, GSO6, Din07, BSO8, MR08, Meil2]), optimizing various

parameters.

Focusing on asysmptotic time complexity, perhaps the most relevant PCPs for our purposes here

are those of Ben-Sasson et al. [BCGT13b]. They constructed PCPs where, to prove and verify that

a random-access machine M accepts (x, w) within t steps for some w with WI < t, the prover runs

in time (IMI + lxi + t) - polylog(t) and the verifier runs in time (IMI + lxi) - polylog(t) (while

asking polylog(t) queries, for constant soundness). Invoking Corollary 2.2.8 with these PCPs, one

can deduce the following theorem.

Theorem 2.2.9. Let F be afinite field and C: {0, 1}, x {0, 1 }h -+ {0, 1} a boolean circuit of size

s. There is an input-oblivious two-message LIP for RC with knowledge error 2-A, verifier message

in FO(s), prover message in F, and |F > 2 -Polylog(s). Furthermore:

" the LIP prover PL1p runs in time 6(s);
* the LIP query algorithm QLIP runs in time 6(s) + A - n - polylog(s);

* the LIP decision algorithm DUP runs in time A - n - polylog(s).

(All the above running times are up to polylog(IF| factors.)

46

Focusing on communication complexity instead, we can invoke Corollary 2.2.8 with the query-

efficient PCPs of Hastad and Khot [HK05], which have A + o(A) queries for soundness 2 -A. (Be-

cause their PCPs have a query algorithm that depends on the input, we only obtain an LIP where

the verifier's message depends on the input; it is plausible that [HK05] can be modified to be input

oblivious, but we did not check this.)

Theorem 2.2.10. Let F be a finite field and C: {0, 1}" x {0, 1}h -+ {0, 1} a boolean circuit of

size s. There is a two-message LIP for Rc with knowledge error 2 -A, verifier message in FPolY(),

prover message in F, and |F| > 2-(3+o(1)). Furthermore:

" the LIP prover PP runs in time poly(s);

" the LIP query algorithm QLIP runs in time poly(s) + A - n - polylog(s);

" the LIP decision algorithm DUp runs in time A - n - polylog(s).

(All the above running times are up to polylog(I F)factors.)

The verifiers of the PCPs of Ben-Sasson et al. [BCGT13b] (used to derive Theorem 2.2.9) and

of Hastad and Khot [HK05] (used to derive Theorem 2.2.10) do not have low degree, and thus the

LIPs they induce via our transformation are not algebraic.

Zero-knowledge.

In Section 2.2.1 we discussed a generic transformation from any LPCP with dD = 0(1) to a

corresponding HVZK LPCP. A (traditional) PCP does not typically induce an LPCP with dD =

0(1). Thus, if we want to obtain an HVZK LIP through Construction 2.2.6, we need a different

approach.

We observe that if we plug into Construction 2.2.6 a PCP that is HVZK (see Definition 2.1.4),

then the corresponding LIP is also HVZK.

Lemma 2.2.11. In Lemma 2.2.7, if (Ppcp, Vc) is a HVZK PCP then (PLIp, VLp) is a HVZK LIP.

2.3 Definitions of SNARKs and Preprocessing SNARKs

We now turn to the cryptographic part of this work. We start by recalling the notions of a SNARK

and a preprocessing SNARK.

In fact, before we do so, we first recall the universal relation [BG08], which provides us with a

canonical form to represent verification-of-computation problems. Because such problems typically

47

arise in the form of algorithms (e.g., "is there w that makes program P accept (x, w)?"), we adopt

the universal relation relative to random-access machines [CR72, AV77].

Definition 2.3.1. The universal relation is the set Ru of instance-witness pairs (y, w) = ((M, x, t), w),

where lyl, |wI t and M is a random-access machine, such that M accepts (x, w) after at most t

steps.2 We denote by Lu the universal language corresponding to lZu.

We now proceed to define SNARGs and preprocessing SNARGs. A succinct non-interactive

argument (SNARG) is a triple of algorithms (G, P, V) that works as follows. The (probabilistic)

generator G, on input the security parameter A (presented in unary) and a time bound T, outputs a

reference string o- and a corresponding verification state r. The honest prover P(-, y, w) produces

a proof gr for the instance y = (M, x, t) given a witness w, provided that t < T; then V(r, y, 7r)

verifies the validity of 7r.

The SNARG is adaptive if the prover may choose the statement after seeing o-, otherwise, it is

non-adaptive; the SNARG is fully-succinct if G runs "fast", otherwise, it is of the preprocessing

kind.

Definition 2.3.2. A triple of algorithms (G, P, V) is a SNARG for the relation 1? C RU if the

following conditions are satisfied:

1. Completeness

For every large enough security parameter A E N, every time bound T E N, and every

instance-witness pair (y, w) = ((M, x, t), w) E 7Z with t < T,

Pr V(r, y,7r) = 1 (o, T) +-G(1A,T)

7r +-- P(0-, y, W)

2. Soundness (depending on which notion is considered)

e non-adaptive: For every polynomial-size prover P*, every large enough security param-

eter A E N, every time bound T E N, and every instance y = (M, x, t) for which

2 While the witness w for an instance y = (M, x, t) has size at most t, there is no a-priori polynomial bounding t in
terms of Ixl. Also, the restriction that yjIw I <; t simplifies notation but comes with essentially no loss of generality:
see [BCGT13a] for a discussion of how to deal with "large inputs" (i.e., x or w much larger than t, in the model where
M has random access to them).

48

$w s.t. (y, w) E ,

Pr V(r, y, 7r))1 (-,)+-G(1A, T) 1 negl(A)
Wr+ P* (0-, Y)

* adaptive: For every polynomial-size prover P*, every large enough security parameter

A E N, and every time bound T E N,

SV(T, y, r) = 1 (a-, r) +- G(1A, T)
Pr negl(A).

$ s.t. (y, W) E R (y, 7r) <-- P*(a-)

3. Efficiency

There exists a universal polynomial p (independent of R) such that, for every large enough

security parameter A E N, every time bound T C N, and every instance y = (M, x, t) with

t < T,

" the generator G runs in time p(A + log T) for a fully-succinct SNARG

p(A + T) for a preprocessing SNARG

" the prover P runs in time p(A + Ml + lxi + t + log T) for afully-succinct SNARG

p(A + |Ml + |xl + T) for a preprocessing SNARG

" the verifier V runs in time p(A + |MI + |xI + log T);

" an honestly generated proof has size p(A + log T).

Proof of knowledge. A SNARG of knowledge (SNARK) is a SNARG where soundness is strength-

ened as follows:

Definition 2.3.3. A triple of algorithms (G, P, V) is a SNARK for the relation Z if it is a SNARG

for R where adaptive soundness is replaced by the following stronger requirement:

o Adaptive proof of knowledge3

For every polynomial-size prover P* there exists a polynomial-size extractor E such that for

every large enough security parameter A E N, every auxiliary input z C {0, 1}PolY(A), and

3 One can also formulate weaker proof of knowledge notions. In this work we focus on the above strong notion.

49

every time bound T E N,

[(o,r) <- G(1A, T)1
V(-r, y, 7r) =T)

Pr (y, r) +P*(z, o-) I negl(A)I(y, w) (7?
Sw +-- E(z, o)j

One may want to distinguish between the case where the verification state r is allowed to be

public or needs to remain private: a publicly-verifiable SNARK (pvSNARK) is one where security

holds even if r is public; in contrast, a designated-verifier SNARK (dvSNARK) is one where r needs

to remain secret.

Zero-knowledge. A zero-knowledge SNARK (or "succinct NIZK of knowledge") is a SNARK

satisfying a zero-knowledge property. Namely, zero knowledge ensures that the honest prover can

generate valid proofs for true theorems without leaking any information about the theorem beyond

the fact that the theorem is true (in particular, without leaking any information about the witness

that he used to generate the proof for the theorem). Of course, when considering zero-knowledge

SNARKs, the reference string o- must be a common reference string that is trusted, not only by the

verifier, but also by the prover.

Definition 2.3.4. A triple of algorithms (G, P, V) is a (perfect) zero-knowledge SNARK for the

relation R if it is a SNARKfor R and, moreover; satisfies the following property:

e Zero Knowledge

There exists a stateful interactive polynomial-size simulator S such that for all stateful in-

teractive polynomial-size distinguishers D, large enough security parameter A E N, every

auxiliary input z E {0, 1}P Y(A), and every time bound T E N,

t < T (a-r) +- G(1A, T) t < T (o, r, trap) +- S(1, T)

Pr (y, w) E 7lu (y, w) +- D(z, o) =Pr (y, w) E RU (y, w) +- D(z, o-)

[D(7r) = 1 7r +- P(, y,w) J D (7r) = 1 7r +- S(z, o-, y, trap)

As usual, Definition 2.3.4 can be relaxed to consider the case in which the distributions are only

statistically or computationally close.

As observed in [BCCT 12], dvSNARKs (resp., pvSNARKs) can be combined with zero-knowledge

(not-necessarily-succinct) non-interactive arguments (NIZKs) of knowledge to obtain zero-knowledge

50

dvSNARKs (resp., pvSNARKs). This observation immediately extends to preprocessing SNARKs,

thereby providing a generic method to construct zero-knowledge preprocessing SNARKs from pre-

processing SNARKs.

In this work, we also consider more "direct", and potentially more efficient, ways to construct

zero-knowledge preprocessing SNARKs by relying on various constructions of HVZK LIPs (and

without relying on generic NIZKs). See Section 2.5.3.

(We note that when applying the transformations of [BCCT13], e.g. to remove preprocessing,

zero knowledge is preserved. 4)

Multiple theorems. A desirable property (especially so when preprocessing is expensive) is the

ability to generate o, once and for all and then reuse it in polynomially-many proofs (potentially

by different provers). Doing so requires security also against provers that have access to a proof-

verification oracle. While for pvSNARKs this multi-theorem proof of knowledge property is auto-

matically guaranteed, this is not the case for dvSNARKs.

OUR FOCUS. In this work we study preprocessing SNARKs, where (as stated in Definition 3.3.1)

the generator G may run in time polynomial in the security parameter A and time bound T.

2.3.1 Preprocessing SNARKs for Boolean Circuit Satisfaction Problems

In Section 2.3, we have defined SNARKs for the universal relation. In this work, at times it will be

more convenient to discuss preprocessing SNARKs for boolean circuit satisfaction problems rather

than for the universal relation.5 We thus briefly sketch the relevant definitions, and also explain how

preprocessing SNARKs for boolean circuit satisfaction problems suffice for obtaining preprocessing

SNARKs, with similar efficiency, for the universal relation. (Indeed, because we are often interested

in the correctness of algorithms, and not boolean circuits, it is important that this transformation be

efficient!)

We begin by introducing boolean circuit satisfaction problems:

Definition 2.3.5. The boolean circuit satisfaction problem of a boolean circuit C: {0, 1}" x

4 The definition of proof of knowledge of a SNARK (Definition 3.3.3) says that the extractor is given the same inputs
that are given to the prover, but nothing else; in particular, the extractor does not receive any trapdoor. The transformation
of Bitansky et al. [BCCT13] crucially relies on this fact. Thus, if one is interested in constructing a zero-knowledge
SNARK via the result of [BCCT12] and then invoke the result of [BCCT13], one must be mindful to rely on (not-
necessarily-succinct) non-interactive arguments of knowledge where the extractor does not require a trapdoor. (E.g., the
extractor in [AF07] does not require a trapdoor.)

5This is because our information-theoretic constructions (see Section 2.2), which we use towards the construction of
preprocessing SNARKs, are more conveniently stated for boolean circuit satisfaction problems.

51

{0, 1} -+ {0, 1} is the relation 1Zc = {(x, w) E {0, 1} x {0, 1}h : C(X, w) = 1}; its language

is denoted 1 c. For afamily of boolean circuits C = {Ce: {0, 1}n() x {, 1}h(e) _ {0, 1}}N we

denote the corresponding infinite relation and language by lZc = UEeN RCe and LC = UiEN LCe-

A preprocessing SNARK for a uniform family of boolean circuits C is defined analogously

to a preprocessing SNARK for the universal relation, with only small syntactic modifications.

The (probabilistic) generator G, on input the security parameter A and an index f for the circuit

Ce: {0, i}n(V) x {, 1}h() -+ {0, 1}, outputs a reference string a- and a corresponding verification

state r. (Both r and o- can be thought to include A and f.) Given w, the honest prover P(O-, x, w)

produces a proof 7r attesting that x E Lc,; then, V(r, x, 7r) verifies the validity of 7r. As for effi-

ciency, we require that there exists a universal polynomial p (independent of the family C) such that

for every large enough security parameter A E N, index f E N, and input x E {0, 1}n():

" the generator G runs in time p(A + Gel)

" the prover P runs in time p(A + Qel);

" the verifier V runs in time p(A + |Ix+ log Ael);

" an honestly generated proof has size p(A + log ICe).

We can also consider the case where C is a non-uniform family, in which case G and P will get as

additional input the circuit C.

Let us now explain how to obtain a preprocessing SNARK for Ru from preprocessing SNARKs

for uniform families of boolean circuits. To do so, we need to introduce the notion of a universal

RAM simulator:

Definition 2.3.6. Let n E N. We say that a boolean circuitfamily Cn = {CT: {0, 1} x {, 1 }h(T) -

{0, 1}}T is a universal RAM simulatorfor n-bit instances if, for every y = (M, x, t) with lI = n,

CT(y, -) is satisfiable if and only if y E Lu and t < T. A witness map of Cn, denoted w, is

a function such that, for every y = (M, x, t) with I | = n and t < T, if (y, w) E lZu then

CT(y, w(T, y, w)) = 1. An inverse witness map of Cn, denoted w- 1, is a function* such that, for

every y = (M, x, t) with ly = n and t < T, if CT(y, w') = 1 then (y, w-1(T yw')) E 1ZU.

For every n E N, given a preprocessing SNARK (G, P, V) for a universal RAM simulator Cn

(for n-bit instances) with (efficient) witness map w and inverse witness map wit~1, we can construct

a preprocessing SNARK (G' , Pn, V') for those pairs (y, w) in the universal relation with ly = n

as follows:

52

* GI(1A, T):= G(1A, T);

" Pn(o-, y, w) P(o, y, w(T, y, w));

" V(r, y, wr) V(r, y, 7r).

Note that wit- 1 does not take part in the construction of (G', Pn, Vn), but its existence ensures that

proof of knowledge is preserved. (Concretely, a knowledge extractor En for a prover convincing

Vn would first run a knowledge extractor for the same prover convincing V and then run wit- to

obtain a suitable witness.)

The efficiency of C, w, and w- 1 has direct implications to the efficiency of (G', Pn, Vn). Con-

cretely:

* Let f(T) : CT 1. The growth rate of f(T) affects the efficiency of G' and Pn, because the

efficiency of G and P depends on CTI . So, for instance, if G and P run in time ICT12 .poly(A)

and f (T) = Q (T2), then G' and Pn run in time Q (T4) . poly(A).

" The running time of w affects the running time of P. Indeed, Pn must first transform the

witness w for y into a witness w' for CT(y, .), and only then he can invoke P. So, for instance,

even if f (T) = 0(T) but w runs in time Q(T 3), then Pn will run in time Q(T 3).

* The running time of w- 1 sometimes affects the running time of G', Pn, and V . Indeed, if the

proof of knowledge property of (G', Pn, Vn) is used in a security reduction (e.g., verifying

the correctness of cryptographic computations) then the slower w- 1 is the more expensive is

the security reduction, and thus the larger the security parameter has to be chosen for (G, P,

V). A larger security parameter affects the efficiency of all three algorithms.

We thus wish the growth rate of f(T) to be as small as possible, and that w and w- 1 be as fast

as possible. The reduction from RAM computations to circuits of Ben-Sasson et al. [BCGT13a]

implies that there is a universal RAM simulator where f(T) = 6(T) and both w and w- run in

sequential time 0(T) (or in parallel time O((log T)2)).

Next, we explain how to remove the restriction on the instance size, by using collision-resistant

hashing. (Indeed, (G', Pn, Vn) only handles instances y with IyI n.) Let W = { }AEN be

a collision-resistant hash-function family such that functions in WA map {0, 1}* to {0, 1}. For

any h E WX and instance y, define Yh to be the instance (Uh, h(x), poly(A) + 0(t)), where Uh is

a universal random-access machine that, on input (z, zD), parses iv- as ((M, x, t), w), verifies that

53

i = h(M, x, t), and then runs M(x, w) for at most t steps. Because we can assume a uniform super-

polynomial upper bound on t, say t < A'* A, there is a constant c > 0 for which we can assume that

I YhI = AC. Then, we can construct a preprocessing SNARK (G", P", V") for the universal relation

as follows:

* G"(1A, T) outputs (&, f) := ((o, h), (-r, h)) where (o-, r) +- G'c (1A, T) and h +- i\;

* P"(&, y, w) :=P (, yh, (y, w));

* V"(-T,y,7r) :=Vc(-,yh,7r).

The proof of knowledge property and the collision-resistant property ensure that the construction

above is a preprocessing SNARK for the universal relation.

In sum, asymptotically, we incur in essentially no overhead if we focus on constructing prepro-

cessing SNARKs for uniform families of boolean circuits.

2.4 Linear-Only Encryption and Encodings

We introduce and discuss the two cryptographic tools used in this paper. First, in Section 2.4.1,

we present linear-only encryption and then, in Section 2.4.2, linear-only one-way encodings. In

Section 2.4.3, we discuss candidate instantiations for both. Later, in Section 2.5, we describe how

to use these tools in our transformations from LIPs to SNARKs (or SNARGs).

2.4.1 Linear-Only Encryption

At high-level, a linear-only encryption scheme is a semantically-secure encryption scheme that

supports linear homomorphic operations, but does not allow any other form of homomorphism.

We first introduce the syntax and correctness properties of linear-only encryption; then its (stan-

dard) semantic-security property; and finally its linear-only property. In fact, we consider two

formalizations of the linear-only property (a stronger one and a weaker one).

Syntax and correctness. A linear-only encryption scheme is a tuple of algorithms (Gen, Enc, Dec,

Add, ImVer) with the following syntax and correctness properties:

e Given a security parameter A (presented in unary), Gen generates a secret key sk and a public

key pk. The public key pk also includes a description of a field F representing the plaintext

space.

54

" Enc and Dec are (randomized) encryption and (deterministic) decryption algorithms working

in the usual way.

" Add (pk, cl, . . . , cm,,, a.. . , am) is a homomorphic evaluation algorithm for linear combina-

tions. Namely, given a public key pk, ciphertexts {ci E Encpk(aj)}ie ml, and field elements

{ai}iE[m], Add computes an evaluated ciphertext a E EnCpk(ZiE[m] aai).

" ImVerSk(c') tests, using the secret key sk, whether a given candidate ciphertext c' is in the

image of Encpk.

Remark 2.4.1. Because in most of this paper we restrict attention to LPCPs and LIPs over fields, we

present linear-only encryption schemes for the case where plaintexts belong to a field. The definition

naturally extends to the case where plaintexts belong to a ring. Typically, we are interested in the

ring ZN for either the case where N is a prime p (in which case the ring Zp is isomorphic to the

field Fp) or where N is the product of two primes. (See corresponding Remark (2.1.6) in the LIP

definition.)

Remark 2.4.2. A symmetric-key variant of linear-only encryption can be easily defined. While

ultimately a private-key linear homomorphic encryption implies a public-key one [Rotl 1], using a

private-key encryption could, in principle, have efficiency benefits.

Remark 2.4.3. The linear homomorphism property can be relaxed to allow for cases where the

evaluated ciphertext 6 is not necessarily in the image of Encpk, but only decrypts to the correct

plaintext; in particular, it may not be possible to perform further homomorphic operations on such

a cipher.

Semantic security. Semantic security of linear-only encryption is defined as usual. Namely, for

any polynomial-size adversary A and large enough security parameter A E N:

(sk, pk) +- Gen(1A)

Pr '=b(ao, ai)+- A(pk) 1
Pr b' = b < + negl(A)

b -{0, 1} 2

b' - A(pk, Encpk(ab))

Linear-only homomorphism. The linear-only (homomorphism) property essentially says that,

given a public key pk and ciphertexts (Cl,... , cm), it is infeasible to compute a new ciphertext

55

c' in the image of Encpk, except by evaluating an affine combination of the ciphertexts (Cl,...,

Cm). (Affinity accounts for adversaries encrypting plaintexts from scratch and then adding them to

linear combinations of the ci.) Formally, the property is captured by guaranteeing that, whenever

the adversary produces a valid ciphertext, it is possible to efficiently extract a corresponding affine

function "explaining" the ciphertext.

Definition 2.4.4. An encryption scheme has the linear-only (homomorphism) property iffor any

polynomial-size adversary A there is a polynomial-size extractor E such that, for any sufficiently

large A E N, any auxiliary input z E {, 1}P 1oly(A), and any plaintext generator M,

(sk, pk) +- Gen(1A)

3 i E [k] sat. (a, ,..., am) +- M(pk)

Pr ImVerk(c') = 1 (ci,. .. , cm) +- (Encpk(a),... , Encpk(am)) < negl(A)
and (cl,..., cI)+- A(pk, ci, . .. , cm; z)

Decsk(c'.) # a', (II, b) <- E(pk, cl,... ,cm; z)

(al,... , a) + (ai,..., am)T + b

where H1 E Fkxm and b E F

Remark 2.4.5 (on the auxiliary input z). In Definition 2.4.4, the polynomial-size extractor is re-

quired to succeed for any (adversarial) auxiliary input z E {0, 1}POlY(A). This requirement seems

rather strong considering the fact that z could potentially encode arbitrary circuits. For example,

z could encode a circuit that, given as input public key pk, outputs Encpk(x) where x = f,(pk)
and f, is some hardwired pseudorandom function. In this case, the extractor would be required to

(efficiently) reverse engineer the circuit, which seems to be a rather strong requirement (or even an

impossible one, under certain obfuscation assumptions).

While for presentational purposes Definition 2.4.4 is simple and convenient, it can be relaxed to

only consider specific "benign" auxiliary-input distributions. Indeed, in our application, it will be

sufficient to only consider a truly-random auxiliary input z. (Requiring less than that seems to be

not expressive enough, because we would at least like to allow the adversary to toss random coins.)

An analogous remark holds for both Definitions 2.4.8 and 2.4.17.

Remark 2.4.6 (oblivious ciphertext sampling). Definition 2.4.4 has a similar flavor to plaintext

awareness. In-fact, an encryption scheme cannot satisfy the definition if it allows for "oblivious

sampling" of ciphertexts. (For instance, both standard Elgamal and Paillier encryption do.) Thus,

56

the set of strings c that are valid (i.e., for which ImVersk(c) = 1) must be "sparse". Later on, we

define a weaker notion of linear-only encryption that does not have this restriction.

Remark 2.4.7. In order for Definition 2.4.4 to be non-trivial, the extractor E has to be efficient

(for otherwise it could run the adversary A, obtain A's outputs, decrypt them, and then output a

zero linear function and hard-code the correct values in the constant term). As for the equivalent

formulation in Remark (2.4.11), for similar reasons the simulator S has to be efficient; addition-

ally, requiring statistical indistinguishability instead of computational indistinguishability does not

strengthen the assumption.

Linear targeted malleability. We also consider a weaker variant of the linear-only property, which

we call linear targeted malleability. (Indeed, the definition follows the lines of the notion of targeted

malleability proposed by Boneh et al. [BSW12], when restricted to the class of linear, or affine,

functions.)

Definition 2.4.8. An encryption scheme has the linear targeted malleability property if for any

polynomial-size adversary A and plaintext generator M there is a polynomial-size simulator S

such that, for any sufficiently large A E N, and any auxiliary input z E {0, 1}Poly(A), the following

two distributions are computationally indistinguishable:

(sk, pk) +- Gen(1A)

pk, (s, ai, ... , am) +- M(pk)

ai, ... , am, (cl,.. ,cm) +- (Encpk(al),.. , Encpk(am))

s, (c -I,...,ck)+ A(pk, ci,.., cm; z)

Deck(c),... , Deck (ck) where

ImVersk(ci) = 1,... , ImVersk(c) = 1

and

pk, (sk, pk) <- Gen(1A)

aw, ... I, am, (ss aim.m.a.r, am) <- M(pk)

s, (II, b) S(pk; z)

al ,... ,a/ (7 ... , a')T+- II -(ai,...,am) + b

where 11 E F " b E Fk, and s is some arbitrary string (possibly correlated with the plaintexts).

57

Remark 2.4.9. Definition 2.4.8 can be further relaxed to allow the simulator to be inefficient. Doing

so does not let us prove knowledge but still enables us to prove soundness (i.e., obtain a SNARG

instead of a SNARK). See Remark (2.5.4) in Section 2.5.1.

As mentioned above, Definition 2.4.8 is weaker than Definition 2.4.4, as shown by the following

lemma.

Lemma 2.4.10. If a semantically-secure encryption scheme has the linear-only property (Defini-

tion 2.4.4), then it has the linear targeted malleability property (Definition 2.4.8).

Proof sketch. Let E be the (polynomial-size) extractor of a given polynomial-size adversary A. We

use E to construct a (polynomial-size) simulator S for A. The simulator S simply runs E on fake

ciphertexts:

S(pk; z)

1. (ci, . . . , c,,) +- (Encpk (0), . ,EnCpk (0));

2. (y, c'1, .7. c') +- A(pk, c,.. ., cm; z);

3. (I, b) <- E(pk, ci, ... , cm; z);

4. output (y, II, b).

By invoking semantic security and the extraction guarantee of E, we can show that S works. The

proof follows by a standard hybrid argument. First we consider an experiment where S gives A and

E an encryption of a +- M (pk), rather than an encryption of zeros, and argue computational indis-

tinguishability by semantic security. Then we can show that the output in this hybrid experiment is

statistically close to that in the real experiment by invoking the extraction guarantee. E

A converse to Lemma 2.4.10 appears unlikely, because Definition 2.4.8 seems to allow for

encryption schemes where ciphertexts can be obliviously sampled while Definition 2.4.4 does not.

Remark 2.4.11 (alternative formulation). To better compare Definition 2.4.8 with Definition 2.4.4,

we now give an equivalent formulation of Definition 2.4.4. For any polynomial-size adversary A

there is a polynomial-size simulator S such that, for any sufficiently large A E N, any auxiliary

input z E {0, 1 }PO1Y(A), and any plaintext generator M, the following two distributions are compu-

58

tationally indistinguishable:

pk,

al, ... , am,

C, .. ., Cm,

outsk(ci), ... , oUtsk (Ck),

z

(sk, pk) +- Gen(1A)

(a,, . . . , am) - M(pk)

(C1,... cm) <-(Encpk(ai), ... , EnCpk(am))

(c1, . ' . ') <- A(pk, ci, . . . , cm; z)

where OUtsk(c')
Deck(c')

pk,

al,. . .am,

C, ... ,Cm,

at,. .. ,

z

if ImVersk(c') = 1

if ImVersk(c') = 0
, and

(sk, pk) +- Gen(1A)

(a,, . . . , am) <- Mz(pk)

(ci, .. . ,cm) <- (EnCpk(ai),. ... , Encpk(am))

(II, b) +-S(pk, ci,. , cm; z)

(al, . . . , a')' (ai,,..-., am)T + b

where H C

a' =I

Fkxm and b E Fk, with the convention that if the i-th row of H is left empty then

2.4.2 Linear-Only One-Way Encoding

Unlike linear-only encryption schemes, linear-only encoding schemes allow to publicly test for

certain properties of the underlying plaintexts without decryption (which is now allowed to be in-

efficient). In particular, linear-only encoding schemes cannot satisfy semantic security. Instead, we

require that they only satisfy a certain one-wayness property.

We now define the syntax and correctness properties of linear-only encoding schemes, their

one-wayness property, and their linear-only property.

Syntax and correctness. A linear-only encoding scheme is a tuple of algorithms (Gen, Enc, SEnc,

Test, Add, I mVer) with the following syntax and correctness properties:

" Given a security parameter A (presented in unary), Gen generates a public key pk. The public

key pk also includes a description of a field F representing the plaintext space.

* Encoding can be performed in two modes: Encpk is an encoding algorithm that works in

59

linear-only mode, and SEncpk is a deterministic encoding algorithm that works in standard

mode.

* As in linear-only encryption, Add(pk, cl, . .. ,cm, I, ... , am) is a homomorphic evaluation

algorithm for linear combinations. Namely, given a public key pk, encodings {ci E Encpk(ai)}ie[m],

and field elements {ai}iE[m], Add computes an evaluated encoding a E EnCpk(ZiE[m] ajai).

Also, Add works in the same way for any vector of standard-mode encodings {cj E SEncpk(ai)}iE[m]-

* ImVerpk(c') tests whether'a given candidate encoding c' is in the image of Encpk (i.e., in the

image of the encoding in linear-only mode).

" Test(pk, t, Encp (al),.. . , Encpk(am), SEncpk(a1),. . . , SEncpk(&)) is a public test for ze-

ros of t. Namely, given a public key pk, a test polynomial t: Fm -+ F", encodings Encpk(a2),

and standard-mode encodings SEncpk(di), Test tests whether t(ai,... , am, &1,,)=

Remark 2.4.12 (degrees supported by Test). In this work, we restrict our attention to the case in

which Test only takes as input test polynomials t of at most quadratic degree. This restriction

comes from the fact that, at present, the only candidates for linear-only one-way encoding schemes

that we know of are based on bilinear maps, which only let us support testing of quadratic degrees.

(See Section 2.4.3.) This restriction propagates to the transformation from algebraic LIPs discussed

in Section 2.5.2, where we must require that the degree of the LIP query algorithm is at most

quadratic. Nonetheless our transformation holds more generally (for query algorithms of poly(A)

degree), when given linear-only one-way encoding schemes that support tests of the appropriate

degree.

A-power one-wayness. In our main application of transforming algebraic LIPs into public-verifiable

preprocessing SNARKs (see Section 2.5.2), linear-only encoding schemes are used to (linearly) ma-

nipulate polynomial evaluations over F. The notion of one-wayness that we require is that, given

polynomially-many encodings of low-degree polynomials evaluated at a random point s, it is hard

to find s.

Definition 2.4.13. A linear-only encoding scheme satisfies A-power one-wayness if for every

60

polynomial-size A and all large enough security parameter A E N,

pk +- Gen(1A)

s <-- F

Pr s* = s (ci, ... ,cA) <- (Encpk(s), ... , Encpk(sA)) negl(A)

(1, ... ,A) <- (SEncpk(s),..., SEncpk(sA))

s* +-A(pk, C1, . . . ,A c a , ---, aA)_

Our constructions of preprocessing SNARKs from LIPs also involve manipulations of multivari-

ate polynomials. Thus, we are in fact interested in requiring a more general property of multivariate

A-power one-wayness.

Definition 2.4.14. A linear-only encoding scheme satisfies multivariate A-power one-wayness if

for every polynomial-size A, large enough security parameter A E N, and p-variate polynomials

(p1,... , pt) of total degree at most A:

pk <- Gen(1A)

p* o 0 S +- F"

Pr and (cl,.. ,ce) <- (Encpk(p1(8)),... ,Encpk(pN(s))) negl(A)

p*(s) = 0 (a1 ,... , a) <- (SEncpk(P1(8)), . . , SEncpk(pk(a)))

p* +- A(pk, ci, ... c, , - - - ,e)

where A f, p are all poly(A), and p* is a p-variate polynomial.

For the case of univariate polynomials (i.e., M = 1), it is immediate to see that Definition 2.4.14

is equivalent to Definition 2.4.13; this follows directly from the fact that univariate polynomials over

finite fields can be efficiently factored into their roots [Ber7O, Ben81, CZ81, VZGP01]. We show

that the two definitions are equivalent also for any p = poly(A), provided that the encoding scheme

is rerandomizable; indeed, in the instantiation discussed in this paper the encoding is deterministic

and, in particular rerandomizable.

Proposition 2.4.15. If E nc, S E nc are rerandomizable (in particular if deterministic), then (univari-

ate) A-power one-wayness implies (multivariate) A-power one-wayness for any p = poly(A).

Proof Assume that A violates the p-variate A-power one-wayness with probability e for a vector

of polynomials (p, ... , p). We use A to construct a new adversary A' that breaks (univariate)

A-power one-wayness with probability at least e/pA.

61

Given input (pk, Encp(s), ... , EnCpi (Sa'), SEnCpk(S), .. . , SEncpj (s')), A' first samples i E

[p] and si, . . . , si_, sj+, ... , sA E F at random. Then, thinking of s as si and s as (si, . . . , si,), A'

uses the linear homomorphism and rerandomization to sample (Encpk(p1(s)),.. ., Encpk(pR(s)),

SEncpk (P1(8)), ... , SEncpk(pe(s))) and feeds these to A, who in turn outputs a polynomial p*.

Next, A' does the following:

1. Let p* = p*, and set j =1.

2. While j < i and Pj (Xj, Xj+, I .. ,/1) 0 0:

(a) Decompose pj according to the xj-monomials: p(Xj, ... , X,) = EZ-O XjP+1,k (Xj+1,---, xv)

(b) Set pj+ to be the non-zero polynomial pj*+1,k with minimal k.

(c) Set j := j + 1.

3. After computing p , restrict the IL - i last variables to s, i.e. compute the xi-univariate

polynomial p ' (xi, si+1, -- , s,), and factor it to find at most A roots; finally, output one of

the roots at random as a guess for s = si.

To analyze the success probability of A', we rely on the following claim:

Claim 2.4.16. If p* # 0 and p* (s1, . .. , sy) = 0, then there exists i E [ip] such that:

K (X, si+ 1, --- sA) 0

K (si, si+1, --- ,SO) 0.

Proof of Claim 2.4.16 The proof is by induction on i. The base case is when i = 1, for which it

holds that:

For any i with 2 < i < p, suppose that:

K (Xi, . . z) 0# 0

62

then, by the construction of p*+1 from p ,

s,)= 0
Pi+1(Si+1, . .. , z) tO

If this inductive process reaches p*, then it holds that:

p,(s) = 0

P* (XU) 0-0 ,

which already satisfies the claim.

Note that A' guesses the i guaranteed by Claim 2.4.16 with probability 1/p, and hence, with

the same probability, finds a non-trivial polynomial that vanishes at the challenge point s = si;

in such a case, A' thus guesses s correctly, from among at most A roots, with probability at least

1/A. The overall probability of success of A' is at lest E/pA, and this concludes the proof of

Proposition 2.4.15. El

Linear-only homomorphism. The linear-only property of linear-only one-way encoding schemes

is defined analogously to the case of linear-only encryption. Essentially, it says that, given the public

key pk, encodings in linear-only mode (Encpk (al), . . . , Encpk (am)), and possibly additional encod-

ings in standard mode (SEncpk(i), . . . , S Encp (&)), it is infeasible to compute a new encoding c'

in the image of Encpk, except by evaluating an affine combination of the encodings (Encpk (ai), . . . ,

Encpk(am)); in particular, "standard mode" encodings in the image of SEncpk cannot be "moved

into" the image of Encpk. Formally, the property is captured by guaranteeing that, whenever the

prover produces a valid new encoding, it is possible to efficiently extract the corresponding affine

combination.

Definition 2.4.17. A linear encoding scheme has the linear-only (homomorphism) property iffor

any polynomial-size adversary A there is a polynomial-size extractor E such that for any sufficiently

63

large A E N, any auxiliary input z E {0, 1} POLY(A), and any plaintext generator M:

pk +- Gen(1A)

a')'= H- (,,.., a)T+ b(ai,. , am, 1, . . . , din) +- M (pk)

Pr (al k and (ci,..., CM) <-(EnCpk(ai), ..., EnCpk(am,)) < elAPr and < elA

3 i e [k] : ImVerik(c'.) = 1 but c' Encpk(a') (Ei, - , - (SEnCpk(i),. . .
(cl, ...,I cl) +-A(pk, ci, ... , cm, al, ... , Ea; Z)

L(II, b) +-E(pk, ci, ... , ICm, a1, ... -s Z) _

where II E Fk xm and b G F

2.4.3 Instantiations

We discuss candidates for our notions of linear-only encryption and one-way encoding schemes.

Linear-only property (and linear targeted malleability) from Paillier encryption. Paillier en-

cryption [Pai99] has plaintext group (ZN, +), where N is a product of two A-bit primes p and q.

(See Remark (2.1.6) and Remark (2.4.1).) We consider two variants of Paillier encryption:

" A "single-ciphertext" variant with linear targeted malleability. We assume that standard

Paillier encryption satisfies Definition 2.4.8. Note that this variant cannot satisfy Defini-

tion 2.4.4 (which is stronger, as shown in Lemma 2.4.10), because it is easy to "obliviously

sample" valid Paillier ciphertexts without "knowing" the corresponding plaintext. (See Re-

mark (2.4.6).)

" A "two-ciphertext" variant with linear-only property. In order to (heuristically) prevent

oblivious sampling, we can "sparsify" the ciphertext space of Paillier encryption by following

the template of knowledge-of-exponent assumptions. Concretely, an encryption of a plain-

text a consists of Encpk(a) and Encpk(a - a) for a secret random a E ZN; additionally,

an image verification algorithm ImVersk checks this linear relation. (This candidate is also

considered in [GGPR13].) We then assume that this variant of Paillier encryption satisfies

Definition 2.4.4.

Because Paillier encryption is based on the decisional composite residuosity assumption, it suffers

from factoring attacks, and thus security for succinct arguments based on the above instantiations

can only be assumed to hold against subexponential-time provers (specifically, running in time

20W /3).

64

Linear-only property (and linear targeted malleability) from Elgamal encryption. Elgamal

encryption [EG85] has plaintext group (Zp, x) for a large prime p, and is conjectured to resist

subexponential-time attacks when implemented over elliptic curves [PQ12].

We are interested in additive, rather than multiplicative, homomorphism for plaintexts that be-

long to the field Fp (whose elements coincide with those of Z). Thus, we would like the plaintext

group to be (Zp, +) instead. The two groups (Z, x) and (Z, +) are in fact isomorphic via the

function that maps a plaintext a to a new plaintext ga(mod p), where g is a primitive element of

Fp. Unfortunately, inverting this mapping is computationally inefficient: in order to recover the

plaintext a from ga(mod p), the decryption algorithm has to compute a discrete logarithm base g;

doing so is inefficient when a can be any value. Thus, a naive use Elgamal encryption in our context

presents a problem.

Nonetheless, as explained in Section 1.2.1, we can still use Elgamal encryption in our context

by ensuring that the distribution of the honest LIP prover's answers, conditioned on any choice of

verifier randomness, has a polynomial-size support. Doing so comes with two caveats: it results

in succinct arguments with only 1/poly(A) security and (possibly) a slow online verification time

(but, of course, with proofs that are still succinct).

Here too, to prove security, we can consider single-ciphertext and two-ciphertext variants of

Elgamal encryption that we assume satisfy Definition 2.4.8 and Definition 2.4.4 respectively.

Linear-only property (and linear targeted malleability) from Benaloh encryption. Benaloh

encryption [Ben94] generalizes the quadratic-residuosity-based encryption scheme of Goldwasser

and Micali [GM84] to higher residue classes; it can support any plaintext group (Zp, +) where

p is polynomial in the security parameter. Unlike Elgamal encryption (implemented over elliptic

curves) and similarly to Paillier encryption, Benaloh encryption is susceptible to subexponential-

time attacks.

As before, we can consider single-ciphertext and two-ciphertext variants of Benaloh encryption

that we assume satisfy Definition 2.4.8 and Definition 2.4.4 respectively. Because we are restricted

to P = poly(A), succinct arguments based on Benaloh encryption can only yield 1/poly(A) security.

Linear-only one-way encodings from KEA in bilinear groups. In order to obtain publicly-

verifiable preprocessing SNARKs (see Section 2.5.2), we seek linear-only encodings that have

poly(A)-power one-wayness and allow to publicly test for zeroes of poly(A)-degree polynomi-

als. For this, we use the same candidate encoding over bilinear groups, and essentially the same

65

assumptions, as in [Grol0, Lip 11, GGPR13]; because of the use of bilinear maps, we will in fact

only be able to publicly test for zeros of quadratic polynomials.

For the sake of completeness, and since the construction does not correspond directly to a known

encryption scheme as in the examples above, we give the basic construction and relevant assump-

tions.

The encoding is defined over a bilinear group ensemble {gA}AEN where each (G, GT) c G is a

pair of groups of prime order p E (2 A-1, 2 A) with an efficiently-computatable pairing e: G x G -+

GT. A public key pk includes the description of the groups and g, g' E G, where g E G* is a

generator and a +- F, is random. The encoding is detenninistic: the linear-only mode encoding

is Encpk(a) := (ga, goa), and the standard-mode encoding is SEncpk(a) := ga. Public image

verification is as follows: ImVerpk(f, f') outputs 1 if and only if e(f, g') = e(g, f'). Public testing

of quadratic polynomials can also be done using the pairing: for {(gi, gi)}iE[m] = {Encpk(ai)}iE1m]

and {#}E[fi = {SEncpk(ai)}iE[fi, Test uses gj,...,gm and n1,...,m and the pairing to test

zeros for a quadratic polynomial t. The required cryptographic assumptions are:

Assumption 2.4.18 (KEA and poly-power DL in bilinear groups). There exists an efficiently-

samplable group ensemble {gA}AEN, where each (G, GT) E G, are groups of prime order p E

(2 ,A-1, 2 A) having a corresponding efficiently-computable pairing e: G x G -+ GT, such that the

following properties hold.

1. Knowledge of exponent: For any polynomial-size adversary A there exists a polynomial-size

extractor E such that for all large enough A E N, any auxiliary input z E {o, 1 }poly(A),6 and

any group element sampler S,

(G, GT) <- G\

(gi, . ,g t) +- S(G, GT)

Pr fa <- F, < negl(A)

(f, f') +- A(G, GT, g, ... ,7 gt, gtc; Z)

(7ri, . .. ,7rt) <- E(G, G-r,g9i,I,...,g t, 9t ; Z)_

2. Hardness of poly-power discrete logarithms: For any polynomial-size adversary A, polyno-

6 ft is possible to restrict the definition to specific auxiliary input distributions. See Remark (2.4.5).

66

mial t = poly(A), all large enough A E N, and generator sampler S:

(G, GT) +- A

Pr s' = s s +Fp negl(A)
g +- S(G) where (g) = G

sI+~A(,G~g~g~g 2
*,St)s' <A(G, GT, 9, 9', 9'2 s.

Remark 2.4.19 (lattice-based candidates). In principle, we may also consider as candidates lattice-

based encryption schemes (e.g., [Reg05]). However, our confidence that these schemes satisfy

linear-only properties may be more limited, as they can be tweaked to yield fully-homomorphic

encryption schemes [BV 1].

2.5 Preprocessing SNARKs from LIPs

We describe how to combine LIPs and linear-only encryption and encodings in order to construct

preprocessing SNARKs. Before describing our transformations, we make two technical remarks.

SNARKs and LIPs for boolean circuit families. Since the LIPs that we have presented so far

are for boolean circuit satisfaction problems, it will be convenient to construct here preprocessing

SNARKs for boolean circuit satisfaction problems. As explained in Section 2.3.1, such preprocess-

ing SNARKs imply preprocessing SNARKs for the universal relation JZU with similar efficiency.

Also, for the sake of simplicity, the LIP constructions that we have presented so far are for

satisfiability of specific boolean circuits. However, all of these constructions directly extend to

work for any family of boolean circuits C = {C}eeN, in which case all the LIP algorithms (e.g.,

VIP = (QUP , DLIP) and PLIp) will also get as input 1 (as foreshadowed in Remark (2.1.3)). If the

circuit family C is uniform, all the LIP algorithms are uniform as well. If the circuit family C is

non-uniform, then QUp and PLIp will also get a circuit Cj as auxiliary input (in addition to 1).

Field size depending on A. Definition 2.1.5 (and Definition 2.1.2) are with respect to a fixed field

F. However, since the knowledge error of a LIP (or LPCP) typically decreases with the field size, it

is often convenient to let the size of F scale with a security parameter A. In fact, when combining

a LIP with some of our linear-only encryption and encoding candidates, letting F scale with A is

essential, because security will only hold for a large enough plaintext space. (For example, this

is the case for the Elgamal-like linear-only encoding described in Section 2.4.3). All of the LIP

67

constructions described in Sections 2.2.1 and 2.2.2 do work for arbitrarily large fields, and we can

assume that (P1 P, Vip) simply get as additional input the description of the field; abusing notation,

we will just denote this description by F\.

2.5.1 Designated-Verifier Preprocessing SNARKs from Arbitrary LIPs

We describe how to combine a LIP and linear-only encryption to obtain a designated-verifier pre-

processing SNARK.

Construction 2.5.1. Let {F,}AN be a field ensemble (with efficient description and operations).

Let C = {CertE N be a family of circuits. Let (PLIp, VLup) be an input-oblivious two-message LIP for

the relation Rlc, where for the field F\, the verifer message is in F', the prover message is in F,

and the knowledge error is E(A). Let E = (Gen, Enc, Dec, Add, I mVer) be a linear-only encryption

scheme whose plaintext field, for security parameter A, is FA. We define a preprocessing SNARK

(G, P, V) for lZc as follows.

" G(1P, le) invokes the LIP query algorithm QUp(FA, 1i) to generate an LIP message q E F'

along with a secret state u E F', generates (sk, pk) +- Gen(1A), computes ci +- Encp (q)

for i E [m], defines a := (pk, c, ... , cm) and -r := (sk, u), and outputs (u, -r). (Assume that

both (-,-r) contain f and the description of the field FA\).

" P(-, x, w) invokes the LIP prover algorithm PLIp(F, 1,x, w) to get a matrix II E F X

representing its message function, invokes the homomorphic Add to generate k ciphertexts

c,... , ck encrypting II -q, defines 7r (ci, ... ,c'), and outputs 7r.

* V(r, x, 7r), verifies, for i E [k], that ImVersk(c') = 1, lets ai := Decsk(c') and outputs the

decision of DUp(FA, le, x,u, (ai, . .. , ak)).

Lemma 2.5.2. Suppose that the LIP (PL1p, VLp) has knowledge error e(A) and S is a linear-only

encryption scheme. Then, (G, P, V) from Construction 2.5.1 is a designated-verifier preprocessing

SNARK with knowledge error e(A) + negl(A). Furthermore:

" time(G) = time(QUI) + poly(A) - M,

" time(P) = time(PIp) + poly(A) - k2. M,

e time(V) = time(DLIP) + poly(A) -k,

e Jo- = poly(A) - m, Jrl = poly(A) + m', and 7rl = poly(A) - k.

68

Proof sketch. Completeness easily follows from the completeness of (PLP, Vp) and the correctness

of S. Efficiency as claimed above is easy to see. We thus focus on establishing the knowledge

property.

Let P* be a malicious polynomial-size prover. We construct a knowledge extractor E for P*

in two steps: first invoke the linear-only extractor E' for P* (on the same input as P*) to obtain

an LIP affine transformation H* "explaining" the encryptions output by P*, and then invoke the

LIP extractor ELIP (with oracle access to H* and on input the statement chosen by P*) to obtain an

assignment for the circuit. We now argue that E works correctly.

First, we claim that, except with negligible probability, whenever P* (o) produces a statement x

and proof c' = (c'i, . . . , c') accepted by the verifier, the extracted H* is such that DULP(FA, 1 , x, u, a*)

1, where u is the private state of the verifier and a* = H* (q). Indeed, by the linear-only property

of E (see Definition 2.4.4), except with negligible probability, whenever the verifier is convinced,

a* = 11* (q) is equal to a = DecSk(c'), which is accepted by the LIP decision algorithm.

Second, we claim that, due to semantic security of 9, the extracted proof 1* is not only "locally

satisfying" (i.e., such that DLIP(FA, 1 t, x, u, H*(q)) = 1 where q is the message encrypted in a),

but it is in fact satisfying for all but a negligible fraction of queries q; otherwise, E could be used

to break semantic security.

We can then conclude that H* convinces the LIP verifier for most messages, and thus can be

used to extract a valid witness.

(The above proof is similar to proofs establishing security in other works where semantic secu-

rity and extraction are used in conjunction. For a detailed such proof see, for example, [BCCT12].)

Designated-verifier non-adaptive preprocessing SNARKs from linear targeted malleability.

We also consider a notion that is weaker than linear-only encryption: encryption with linear targeted

malleability (see Definition 2.4.8). For this notion, we are still able to obtain, via the same Con-

struction 2.5.1, designated-verifier preprocessing SNARKs, but this time only against statements

that are non-adaptively chosen.

Lemma 2.5.3. Suppose that the LIP (PLIPVip) has knowledge error e(A) and S is an encryption

scheme with linear targeted malleability. Then, (G, P, V) from Construction 2.5.1 is a designated-

verifier non-adaptive preprocessing SNARK with knowledge error 6 (A) + negl(A).

69

Proof sketch. Let P* be a malicious polynomial-size prover, which convinces the verifier for in-

finitely many false statements x E X. By the targeted malleability property (see Definition 2.4.8),

there exists a polynomial-size simulator S (depending on P*) such that such that:

(sk, pk) +- Gen(1A)

pk, (q, u) +_ QLIP pk, (sk, pk) +- Gen(1A)
c +- Encpk(q)

, c +- P*(pk,c;x) %x

where
aa a<- H -q+ b

ImVersk(c') = 1

a +- DecSk(c')

where q is the LIP query and u is the LIP verification state.

If P* convinces the verifier to accept with probability at least e(A), then, with at least the same

probability, the distribution on the left satisfies that DLIP(x, u, a) = 1. Because this condition is ef-

ficiently testable, the simulated distribution on the right satisfies the same condition with probability

at least e(A) - negl(A). However, in this distribution the generation of q and u is independent of

the generation of the simulated affine function H' = (H, b). Therefore, by averaging, there is some

(in fact, roughly an e(A)/2-fraction) H' such that, with probability at least e(A)/2 over the choice

of q and u, it holds that DL1P(x, u, Hq + b) = 1. We can use the LIP extractor EL1 p to extract a valid

witness from any such H'.

Remark 2.5.4 (inefficient simulator). As mentioned in Remark (2.4.9), Definition 2.4.8 can be

weakened by allowing the simulator to be inefficient. In such a case, we are able to obtain designated-

verifier non-adaptive preprocessing SNARGs (note the lack of the knowledge property), via essen-

tially the same proof as the one we gave above for Lemma 2.5.3.

Remark 2.5.5 (a word on adaptivity). One can strengthen Definition 2.4.8 by allowing the adver-

sary to output an additional (arbitrary) string y, which the simulator must be able to simulate as

well. Interpreting this additional output as the adversary's choice of statement, a natural question is

whether the strengthened definition suffices to prove security against adaptively-chosen statements

as well.

Unfortunately, to answer this question in the positive, it seems that a polynomial-size distin-

guisher should be able to test whether a statement y output by the adversary is a true or false

70

statement. This may not be possible if y encodes an arbitrary N P statement (and for the restricted

case of deterministic polynomial-time computations, the approach we just described does in fact

work.)

We stress that, while we do not know how to prove security against adaptively-chosen state-

ments, we also do not know of any attack on the construction in the adaptive case.

2.5.2 Publicly-Verifiable Preprocessing SNARKs from Algebraic LIPs

We show how to transform any LIP with degree (dQ, dD) = (poly(A), 2) to a publicly-verifiable

preprocessing SNARK using linear-only one-way encodings with quadratic tests. The restriction

to quadratic tests (i.e., dD < 2) is made for simplicity, because we only have one-way encoding

candidates based on bilinear maps. As noted in Remark (2.4.12), the transformation can in fact

support any dD = poly(A), given one-way encodings with corresponding dD-degree tests.

Construction 2.5.6. Let {F, }xN be afield ensemble (with efficient description and operations).

Let C = {Ce}eN be a family of circuits. Let (PLIp, VLp) be an input-oblivious two-message LIP

for the relation Rc, where for field FA, the verifier message is in F', the prover message is in

Fk, and the knowledge error is E(A); assume that the verifier degree is (dQ, dD) = (poly(A), 2).

Let S = (Gen, Enc, SEnc, Test, Add, ImVer) be a linear-only one-way encoding scheme whose

plaintext field, for security parameter A, is EN. We define a preprocessing SNARK (G, P, V) for Rc

as follows.

" G(1\, 1i) invokes the LIP query algorithm QLIP(FA\, 1i) to generate an LIP message q E FX

along with a secret state u E lF', generates pk <- Gen(1A), lets ci - Encpk(qi)for i E [in],

6i +- SEncpk(ui)for i E [m'], defines o- := (pk, ci, . . . , cm) and r (pk, 1,... ,m), and

outputs (a-, -r). (Assume that both (a-, r) contain f and the description of the field F).

" P(a-, x, w) invokes the LIP prover algorithm Pp(FA, it,1 x, w) to get a matrix II E Fkm

representing its message function, invokes the homomorphic Add to generate k encodings

c, .. .,cfor II -q, defines 7r :=c', . . . , c'), and outputs ir.

" V (T, x, 7r) verifies that I mVerpk(c's) = lfor i E [k], lets tx : k+m' P' be the quadratic

polynomial given by DUP (FA, 1t,x,.--), and accepts ifand only if Test (pk, tX, cI,... , c', 51,... ,am') =

1.

71

Lemma 2.5.7. Suppose that the LIP (PLIp, VL1p) has knowledge error E(A) and S is a linear-only

one-way encoding scheme. Then (G, P, V) from Construction 2.5.6 is a publicly-verifiable prepro-

cessing SNARK with knowledge error e(A) + negl(A). Furthermore:

" time(G) = time(QUp) + poly(A) m,

" time(P) = time(Pp) + poly(A) k' - m,

* time(V) = poly(A) - time(DLIP),

" jo- = poly(A) - m, r = poly(A) im', and 17r = poly(A) - k.

Proof sketch. Completeness easily follows from the completeness of (PuIP, VLp) and the correctness

of S. Efficiency as claimed above is easy to see. We thus focus on establishing the knowledge

property.

Let P* be a malicious polynomial-size prover. As in the designated-verifier case, we construct

its knowledge extractor E in two steps: first invoke the linear-only extractor E' for P* (on the same

input as P*) to obtain an LIP affine transformation H* "explaining" the encryptions output by P*,

and then the LIP extractor EL, (with oracle access to H* and on input the statement chosen by P*)

to obtain an assignment for the circuit. We now argue that E works correctly. Note that this part

must be different than the designated-verifier case (see proof of Lemma 2.5.2) because it relies on

poly(A)-power one-wayness (see Definition 2.4.13) of the linear-only encoding scheme instead of

semantic security.

First, we claim that, except with negligible probability, whenever P* (o, r) produces a statement

x and proof c' = (c',... , c') accepted by the verifier, the extracted 11* is such that tx(H*(q), u) =

0. Indeed, by the linear-only property of E (see Definition 2.4.17), except with negligible probabil-

ity, whenever the verifier is convinced, it holds that c' E Encpk (H* (q)) (i.e., c' encodes the plaintext

H*(q)); moreover, since the verifier only accepts if Test (pk, tx, c', Z) = 1, where Z = (E 1, . . . ,

is the (standard-mode) encoding of u, it indeed holds that tx(J* (q), u) = 0.

Second, we claim that, thinking about t (I* (q(r)), u(r)) as a (dQdD)-degree polynomial in the

randomness r of the query algorithm QLIP, it holds that tx(ll*(q(r)), u(r)) = 0, i.e. it is vanishes

everywhere; in particular, 11* is a (perfectly) convincing LIP affine function. Indeed, if that is not the

case, then, since t is of degree dQ -dD = poly(A), we can use the extractor E to break the poly(A)-

power one-wayness of the linear only scheme (see Definition 2.4.13 and Definition 2.4.14). 0

72

LIP starting point of # ciphertexts # ciphertexts verification adaptive or public or assumption

Thm. LIP construction (or encodings) (or encodings) time nonadaptive designated

in reference string in proof

2.2.3 Hadamard PCP O(s 2) 4 n poly(A) nonadaptive designated Paillier TM
" " " 8 " adaptive designated Paillier LOEC
i " 8 " adaptive public Bilinear LOED

2.2.4 QSPs of [GGPR13] O(s) 4 n poly(A) nonadaptive designated Paillier TM
" " " 8 " adaptive designated Paillier LOEC
" " " 8 " adaptive public Bilinear LOED

2.2.9 PCPs of [BCGT13b] 0(s) 1 n poly(A) nonadaptive designated Paillier TM
" 2 "f adaptive designated Paillier LOEC

Table 2.1: Summary of most of our preprocessing SNARK constructions.

The gray-row constructions achieve new features compared to previous work.

Above, Paillier TM stands for Paillier encryption assumed to satisfy Defini-

tion 2.4.8, Paillier LOEC stands for a variant of Paillier encryption assumed to

satisfy Definition 2.4.4, and Bilinear LOED stands for one-way encodings in

bilinear groups that we assume satisfy Definition 2.4.17. See Section 2.4.3 for

a discussion about instantiations. Recall that adaptivity is a crucial property in

order to benefit from the recursive composition techniques of Bitansky et al.

[BCCT13].

2.5.3 Resulting Preprocessing SNARKs

We now state what preprocessing SNARKs we get by applying our different transformations. Let

C = {Ct} be a circuit family where C is of size s = s(f) and input size n = n(f). Table 2.1 sum-

marizes (most) of the preprocessing SNARKs obtained from our LIP constructions (from Sections

2.2.1 and 2.2.2) and computational transformations (from Sections 2.5.1 and 2.5.2).

Zero-knowledge and ZAPs. As mentioned before, if the LIP is HVZK then the corresponding

preprocessing SNARK is zero-knowledge (against malicious verifiers in the CRS model), provided

that linear only-encryption (or one-way encoding) are rerandomizable; all of our candidates con-

structions are rerandomizable.

As mentioned in Section 2.2.1, both of our LIP constructions based on LPCPs can be made

HVZK. As for the LIP constructions based on traditional PCPs, we need to start with an HVZK PCP.

For efficient such constructions, see [DFK-92].

The zero-knowledge preprocessing SNARKs we obtain are arguments of knowledge where the

witness can be extracted without a trapdoor on the CRS; this is unlike what happens in typical

NIZKs (based on standard assumptions). This property is crucial when recursively composing

73

SNARKs as in [BCCT13].

Finally, the zero-knowledge SNARKs we obtain are, in fact, perfect zero-knowledge. Moreover,

for the case of publicly-verifiable (perfect) zero-knowledge preprocessing SNARKs, the CRS can

be tested, so that (similarly to previous works [Grol0, Lip 1I, GGPR13]) we also obtain succinct

ZAPs.

74

Chapter 3

Bootstrapping Succinct Non-Interactive

Arguments

3.1 Overview of Results

We discuss our results in more detail.

3.1.1 SNARKs and Proof-Carrying Data

To describe our results, we first recall in more detail what are SNARKs and Proof-Carrying Data.

The formal definitions can be found in Section 3.3 and Section 3.4 respectively.

When discussing verification-of-computation problems, it is convenient to consider a canonical

representation given by the universal language Lu [BG08]. This language consists of all y =

(M, x, t), where M is a random-access machine, x is an input for M, and t is a time bound, such

that there is a witness w for which M(x, w) accepts within t time steps (see Section 3.2). When

considering an N P language L C Lu, the machine M is the N P verification machine and t = t(xI)

is the polynomial bound on its running time.

SNARKs. A SNARK (G, P, V) for an NP language L c LU works as follows. The generator

G(ik), where k is the security parameter, samples a reference string o- and verification state r in

time poly(k). The prover P(o, y, w), where y = (M, x, t) E L and w is a witness for y, produces a

proof 7r in time poly(k +y I + t). The verifier V(r, y, 7r) deterministically decides whether to accept

7r as a proof for y, in time poly(k + lyl). The polynomial poly is universal (and thus independent

of the NP language L, and its associated running time t). In terms of security, the SNARK proof

75

of knowledge property states that: when a malicious efficient prover P* (a) produces a statement y

(possibly depending on a) and proof 7r that is accepted by V, then, with all but negligible probability,

a corresponding efficient extractor Ep. (a) outputs a witness w for y.

PCD. We define PCD systems as in [CT10], except for minor modifications to suit our setting and

the plain model. A PCD system is associated with a compliance predicate C representing a local

security property to be enforced throughout a distributed computation. It is a triple (G, PC, VC),

where G is the generator, PC the prover, and VC the verifier; it induces a dynamic compiler to be

used in a distributed computation as follows. The generator G, on input the security parameter

k, samples a reference string a and a corresponding verification state r. Then, any party in the

distributed computation, having received proof-carrying input messages zi and produced an output

message z. to be sent to a next party, invokes the PCD prover Pc(a, z., linp, zi, ri), where zi are the

input messages, iri their proofs, and linp is any additional local input used (e.g., code or random-

ness), to produce a proof 7r. for the claim that z, is consistent with some C-compliant distributed

computation leading up to z.. The verifier VC(-r, z., ir.) can be invoked by any party knowing the

verification state 7- in order to verify the compliance of a message z.. (If the PCD system is publicly

verifiable, anyone can be assumed to know r; in the designated-verifier case, typically, only some

parties, or even just one, will know -r.)

From a technical perspective, we can think of a PCD system as a distributed SNARK: the proving

algorithm is "distributed" among the parties taking part in the computation, each using a local prover

algorithm (with local inputs) to prove compliance of the distributed computation carried out so far,

based on previous proofs of compliance.

Succinctness. Analogously to a SNARK, the generator G(1k) is required to run in time

poly(k), the (honest) prover Pc(a, z., linp, zi, iri) in time poly(k + 1C + Izol + tc(zol)), and

the verifier VC(r, zo, 7r.) in time poly(k + CI + Izo l), where tc (Izol) is the time to evaluate C(zo;

z;, inp) and poly is a universal polynomial. In other words, proof-generation by the prover PC is

(relatively) efficient in the local computation (and independent of the computation performed by

past or future nodes), and proof verification by the verifier Vc is independent of the computation

that produced the message (no matter how long and expensive is the history that led to the message

being verified).

Security. Again analogously to a SNARK, a PCD system also has a proof of knowledge prop-

erty: when a malicious prover P* (a) produces a message zo and proof 7r. such that Vc(-r, z., -r.) =

1 then, with all but negligible probability, the extractor Ep. (a) outputs a full transcript of a dis-

76

tributed computation that is C-compliant and leads to the message z,. In other words, VC can only

be convinced to accept a given message whenever the prover P* actually "knows" a C-compliant

computation leading up to that message.

A useful notion: the distributed computation graph. It will be convenient to think of a dis-

tributed computation "unfolding over time" as a (labeled) directed acyclic graph (generated dynam-

ically as the computation evolves) where computations occur at nodes, and directed edges denote

messages exchanged between parties. (When the same party computes twice, it will be a separate

node "further down" the graph; hence the graph is acyclic.) See Figure 1-2 for a graphical depiction.

Preprocessing SNARKs and PCD systems. We also consider the weaker notion of an (expensive)

preprocessing SNARK, in which the generator takes as additional input a time bound B, may run

in time poly(k + B), and the reference string it outputs only works for computations of length at

most B. Similarly, we also consider preprocessing PCD systems, where the reference string works

for distributed computations in which every node's computation is at most B (and not the entire

distributed computation).

We now move to describe in more detail, each of the three main tools developed to obtain our

transformation.

3.1.2 The SNARK Recursive Composition Theorem

Our first step is to show that the existence of a SNARK implies the existence of a PCD system,

with analogous verifiability and efficiency properties, for the class of constant-depth compliance

predicates. Here, the depth d(C) of a compliance predicate C is the length of the longest path in

(the graph corresponding to) any distributed computation compliant with C. (Note that a distributed

computation of depth d(C), even a constant, may have many more "nodes" than d(C); e.g., it could

be a wide tree of depth d(C).)

Theorem 1 (SNARK Recursive Composition- informal).

(i) Any publicly-verifiable SNARK can be efficiently transformed into a corresponding publicly-

verifiable PCD system for constant-depth compliance predicates.

(ii) Assuming the existence of FHE, any designated-verifier SNARK can be efficiently transformed

into a corresponding designated-verifier PCD system for constant-depth compliance predi-

cates.

77

Moreover; if the SNARK is of the preprocessing kind, then so is the corresponding PCD system; in

such a case, our transformation further relies on collision-resistant hashing.

The purpose of the theorem is to cleanly encapsulate the idea of "recursive proof composition"

of SNARKs within a PCD construction. After proving this theorem, every time we need to leverage

the benefits of recursive proof composition, we can conveniently work "in the abstract" by engineer-

ing a (constant-depth) compliance predicate encoding the desired local property, and then invoke a

PCD system to enforce this property across a distributed computation. We now outline the ideas

behind the proof of the theorem; see Section 3.5 for details.

Part (i): the case of public verifiability. At high level, the PCD system (G, PC, VC) is constructed

by using the SNARK (G, P, V) as follows. The PCD generator G invokes the SNARK generator

G. The PCD prover PC uses the SNARK prover P to perform recursive proof composition relative

to the given compliance predicate C. Roughly, when a party A wishes to begin a computation with

message ZA, A uses P to generate a SNARK proof 7rA for the claim "C(zA; _, _) = 1"; 7r attests

to the fact that ZA is a compliant "input" to the distributed computation. When a party B receives

ZA, after performing some computation by using some local input linPB (which may include a

program) and then producing a message ZB, B uses P to generate a SNARK proof irB for the claim

"3 (linp', ', r/') s.t. C(zB; linp' , z'A) = 1 and 7r' is a valid SNARK proof for the C-compliance

of z'". And so on: in general, a party receiving input messages zi with corresponding proofs 7ri,

having local input Iin p, and producing message z., runs the PCD prover PC (o-, z., Iin p, zi, 7ri), which

uses P to generate a SNARK proof 7r, for the claim

"B (linp', Z, rf) s.t. C(z.; linp', zf) = 1 and each 7ri is a valid SNARK proof for the C-compliance

of z'";

the proof 7r. attests to the fact that z. can be "explained" with some C-compliant distributed com-

putation. The PCD verifier Vr uses the SNARK verifier V to verify the proofs.

The proof of knowledge property of the SNARK is crucial for the above to work. Indeed, there

likely exists a proof, say, 7ri for the C-compliance of zi, even if compliance does not hold, because

the SNARK is only computationally sound. While such "bad" proofs may indeed exist, they are hard

to find. Proving the statement above with a proof of knowledge, however, ensures that whoever is

able to prove that statement also knows a proof 7ri, and this proof can be found efficiently (and thus

is not "bad").

A key technical point is how to formalize the statement that "7r is a valid proof for the C-

78

compliance of z". Naively, such a statement would directly ask about the existence of a C-compliant

distributed computation transcript T leading to z. However, this would mean that each prover along

the way would have to know the entire distributed computation so far. Instead, by carefully using re-

cursion, we can ensure that the statement made by each prover only involves its own proof-carrying

input messages, local inputs, and outputs. Following [CT10], this is formally captured by prov-

ing SNARK statements regarding the computation of a special recursive "PCD machine" Mc. The

machine Mc, given an alleged output message together with a witness consisting of proof-carrying

inputs, verifies: (a) that the inputs and outputs are C-compliant as well as (b) verifying that each

input carries a valid proof that Mc itself accepts z after a given number of steps. (Of course, to

formalize this recursion, one has to use an efficient version of the Recursion Theorem.) See Sec-

tion 3.5.1 for details.

While the core idea behind our construction is similar to the ideas used in [Val08] and in [CT 10],

the details and the proof are quite different: [Val08] focuses on a special case of PCD, while [CT10]

work in a model where parties can access a signature oracle rather than in the plain model.

Part (ii): the case of designated verifiers. The more surprising part of the theorem, in our mind,

is the fact that designated-verifier SNARKs can also be composed. Here, the difficulty is that the

verification state -r (and hence the verification code) is not public. Hence, we cannot apply the

same strategy as above and prove statements like "the SNARK verifier accepts". Intuitively, fully-

homomorphic encryption (FHE) may help in resolving this problem, but it is not so clear how to

use it. Indeed, if we homomorphically evaluate the verifier, we only obtain its answer encrypted,

whereas we intuitively would like to know right away whether the proof we received is good or not,

because we need to generate a new proof depending on it.

We solve this issue by directly proving that we homomorphically evaluated the verifier, and that

a certain encrypted bit is indeed the result of this (deterministic) evaluation procedure. Then, with

every proof we carry an encrypted bit denoting whether the data so far is C-compliantor not;when

we need to "compose" we ensure that the encrypted answer of the current verification is correctly

multiplied with the previous bit, thereby aggregating the compliance up to this point. For further

details see Section 3.5.2.

The case of preprocessing SNARKs. Our theorem also works with preprocessing SNARKs.

Specifically, when plugging a preprocessing SNARK into the SNARK Recursive Composition The-

orem, we obtain a corresponding preprocessing PCD system, where (as in a preprocessing SNARK)

79

the PCD generator G also takes as input a time bound B, and produces a reference string and veri-

fication state that work as long as the amount of local computation performed by a node (or, more

precisely, the time to compute C at a node) in the distributed computation is bounded by B. More

concretely, if G invokes the SNARK generator G with time bound B', the computation allowed at

each node i is allowed to be, roughly, as large as B' - deg(i) - tv, where tv is the running time

of SNARK verifier V and deg(i) is the number of incoming inputs (which is also the number of

proofs to be verified); thus we can simply set B' = B + maxi deg(i) - tv. (The degree will always

be bounded by a fixed polynomial in the security parameter in our applications.) Unlike complete-

ness, the security properties are not affected by preprocessing; the proof of the SNARK Recursive

Composition Theorem in the case with no preprocessing carries over to the preprocessing case.

Yet, while we do not need a different security proof for the preprocessing case, setting up a PCD

construction that works properly in this setting should be done with care. For example, in their con-

struction of encryption with targeted malleability, Boneh, Segev, and Waters [BSW12] recursively

composed preprocessing SNARKs without leveraging the fast running time of the SNARK verifier,

and hence they needed a preprocessing step that budgets for an entire distributed computation and

not just a single node's computation (as in our case). This difference is crucial; for instance, it is

essential to our result that allows to remove preprocessing from a SNARK or PCD system.

Why only constant depth? The restriction to constant-depth compliance predicates arises be-

cause of technical reasons during the proof of security. Specifically, we must recursively invoke

the SNARK knowledge property in order to "dig into the past", starting from a given message and

proof. The recursion works for at most a constant number of times, because each extraction poten-

tially blows up the size of the extractor by a polynomial, and that is why we need d (C) = 0(1). (See

Remark (3.5.3) for more details.) Still, we next show that constant-depth compliance predicates can

already be quite expressive.

3.1.3 The PCD Depth-Reduction Theorem

PCD systems for constant-depth compliance predicates are significantly more powerful than SNARKs;

yet, they may seem at first sight to not be as expressive as we would like. In general, we may be

interested in compliance predicates of polynomial depth, i.e., that allow for compliant distributed

computations that are polynomially deep. To alleviate this restriction, we prove that PCD sys-

tems for constant-depth compliance predicates can "bootstrap themselves" to yield PCD systems

for polynomial-depth compliance predicates, at least for distributed computations that evolve over a

80

path. Specifically, in a path PCD system, completeness does not necessarily hold for any compliant

distributed computation, but only for those where the associated graph is a path, i.e., each node has

only a single input message. We show:

Theorem 2 (PCD Depth Reduction- informal). Assume there exist collision-resistant hash func-

tions. Any PCD system for constant-depth compliance predicates can be efficiently transformed

into a corresponding path PCD system for polynomial-depth compliance predicates. The verifiabil-

ity properties carry ove; as do efficiency properties. (The result also holds for additional classes of

graphs; see Remark (3.7.8).)

At high-level, the proof consists of two main steps:

" Step 1. Say that C has polynomial depth d(C) = k'. We design a new compliance predicate

TREEC of constant depth c that is a "tree version" of C. Essentially, TREEC forces any dis-

tributed computation that is compliant with it to be structured in the form of a k-ary tree whose

leaves are C-compliant nodes of a computation along a path, and whose internal nodes aggregate

information about the computation. A message at the root of the tree is TREEC-compliant only

if the leaves of the tree have been "filled in" with a C-compliant distributed computation along a

path.

* Step 2. We then design a new PCD system (G', P' , V') based on (G, PTREEC, TREEC

intuitively, dynamically builds a (shallow k-ary) Merkle tree of proofs "on top" of an original

distributed computation. Thus, the new prover P'C at a given "real" node along the path will run

PTREEC for each "virtual" node in a slice of the tree constructed so far; roughly, PTREEC will be

responsible for computing the proof of the current virtual leaf, as well as merging any internal

virtual node proofs that can be bundled together into new proofs, and forwarding all these proofs

to the next real node. The number of proofs sent between real nodes is small: at most ck. The

new verifier V'C will run VTREEC for each subproof in a given proof of the new PCD system.

Essentially, the above technique combines the wide Merkle tree idea used in the construction of

SNARKs in [BCCT12, GLR1 1] and (once properly abstracted to the language of PCD) the idea of

Valiant [Va108] for building proofs "on top" of a computation in the special case of IVC. For the

above high-level intuition to go through, there are still several technical challenges to deal with; we

account for these in the full construction and the proof of the theorem in Section 3.7.

Effect of preprocessing. When the starting PCD system is a preprocessing one, there is a bound

B on the computation allowed at any node. Using a preprocessing PCD system in the PCD Depth-

81

Reduction Theorem yields a preprocessing path PCD system where the bound on the computation

allowed at each node along the path is equal to the one of the starting PCD system, up to polynomial

factors in k.

3.1.4 The Locally-Efficient RAM Compliance Theorem

So far we have shown how, given any SNARK, we can obtain a PCD system for constant-depth com-

pliance predicates, and then obtain a path PCD system for polynomial-depth compliance predicates;

both PCD systems inherit the efficiency and verifiability features of the given SNARK.

We now discuss the last ingredient required for our main technical result. Looking ahead, our

proof strategy to achieve complexity preservation, say, in a SNARK will be to reduce the task of

verifying an NP statement "3 w s.t. M(x, w) = 1 in time t" to the task of verifying that a path dis-

tributed computation is compliant with a corresponding (polynomial-depth) compliance predicate

C(M,x,t). We can then verify compliance with C(M,x,t) of such a distributed computation by using

the path PCD system we constructed from the SNARK. Moreover, if we can ensure that each node

along the path of the distributed computation only performs a small amount of computation, then

we can "localize" the impact of any inefficiency of the path PCD system. Concretely, preprocessing

becomes inexpensive (because it only needs to budget for small local computations), and computing

a proof of compliance for the entire distributed computation can be done in roughly the same time

and space as those required to compute M(x, w).

At high-level, to achieve the above, we engineer the compliance predicate C(M,x,t) so to force

any distributed computation compliant with C(M,,,t) to verify the computation of the random-access

machine M on x (and some witness w), one step at a time for at most t steps. While verifying a

single step of M seems like a "small and local" computation, such verification takes time at least

linear in the size of M's state, which can be as large as M's space complexity s. Because s could be

on the order of t, naively breaking the computation of M into many single-step computations does

not yield small-enough local computations.

To overcome this problem, we proceed in two steps. First, we invoke a reduction by Ben-Sasson

et al. [BCGTI3a]: given collision-resistant hashing, the problem of verifying an N P statement "3 w

s.t. M(x, w) = 1 in time t" can be reduced to the simpler task of verifying a new NP statement "3

W s.t. M'(x, w) = 1 in time t", where M' is a poly(k)-space machine and t' = t - poly(k). The

reduction follows from techniques for online memory checking of Blum et al. [BEG+91], which

use Merkle hashing to outsource the machine's memory and dynamically verify its consistency

82

using only a small poly(k)-size "trusted" memory. Second, we engineer a compliance predicate for

ensuring correct computation of M', one state transition at a time. Crucially, the overall reduction

allows to compute a compliant distributed computation using the same time and space as those

originally required by M (up to poly(k) factors).

We now state informally the result; for details, see Section 3.6.

Theorem 3 (Locally-Efficient RAM Compliance - informal). Let Ji be a family of collision-

resistant hash functions. There is a linear-time transformation from any instance (M, x, t) and

function h E t to a compliance predicate C(M,,,t) h with depth t -poly(k) satisfying the following

properties.

1. Completeness: Given w such that M(x, w) accepts in time t and space s, one can generate, in

time (IMI + lxi + t) - poly(k) and space (IMI + |xI + s) - poly(k), a distributed computation

on a path that is compliant with C(M,x,t),h. Each node in the distributed computation performs

poly(k + MI + lxi) work.

2. Proof of knowledge: From any efficient adversary that, given a random h, outputs a distributed

computation compliant with C(M,x,t),h, we can efficiently extract w such that M(x, w) accepts

in time t.

3.1.5 Putting Things Together: A General Technique for Preserving Complexity

Equipped with the SNARK Recursive Composition, PCD Depth-Reduction, and Locally-Efficient

RAM Compliance Theorems, we restate our main theorem and sketch its proof.

Theorem 4 (Main Theorem, restated). Let N- be a collision-resistant hash-function family.

1. Complexity-Preserving SNARK from any SNARK. There is an efficient transformation TR

such that for any publicly-verifiable SNARK (G, P, V) there is a polynomial p for which (G*,

P*, V*) : = TR(G, P, V) is a publicly-verifiable SNARK that is complexity-preserving with a

polynomial p, i.e.,

" the generator G* runs in time p(k) (in particular there is no expensive preprocessing);

" the prover P* runs in time t -p(k) and space s -p(k) when proving that a t-time s-space N P

random-access machine M non-deterministically accepts an input x;

9 the verifier V* runs in time lxi -p(k).

2. Complexity-Preserving PCD from any SNARK. There is an efficient transformation T' such

that for any publicly-verifiable SNARK (G, P, V) there is a polynomial p for which (G*, P*,

83

V*) := T'H(G, P, V) is a publicly-verifiable PCD for constant-depth compliance predicates

that is complexity-preserving with polynomial p, i.e.,

* the generator G* runs in time p(k);

" the prover P* runs in time t - p(k) and space s -p(k) when proving that a message z. is C-

compliant, using local input Iin p and received inputs zi, and evaluating C(z.;Iin p, zi) takes

time t and space s;

" the verifier V* runs in time Izo| p(k).

Assuming fully-homomorphic encryption, similar statements hold for the designated-verifier cases.

Proof sketch. We first sketch the proof to the first item; we follow the plan outlined in Section 1.3.3.

Let (G, P, V) be any SNARK, and assume (for the worst) that it has expensive preprocessing. We

invoke the SNARK Recursive Composition Theorem to obtain a corresponding PCD system (G, P,

V) for constant-depth compliance predicates, and then the PCD Depth-Reduction Theorem to obtain

a corresponding path PCD system (G', P', V') for polynomial-depth compliance predicates. Both

transformations preserve the verifiability and efficiency of the SNARK (including preprocessing).

We now use (G', P', V') to construct a complexity-preserving SNARK (G*, P*, V*) as fol-

lows. The new generator G*, given input 1 k, outputs (o-', T') := ((h, o-), (h, r)), where h +- ',

(o-, r) +- G'(1k, kc), and c is a constant that only depends on (G, P, V). The new prover P*,

given a reference string or', instance (M, x, t), and a witness w, invokes the Locally-Efficient RAM

Compliance Theorem in order to compute the polynomial-depth compliance predicate C(Mxt),h

and, using the prover P', computes a proof for each message in the path distributed computation

obtained from (M, x, t) and w (each time using the previous proof); it outputs the final such proof

as the SNARK proof. (We assume, without loss of generality, that IMI and lxI are bounded by a

fixed poly(k); if that is not the case (e.g., M encodes a large non-uniform circuit), P* can work

with a new instance (Uh, i, poly(k) + t), where Uh is a universal random-access machine that, on

input (., ii)), parses 'i1 as (M, x, t, w), verifies that z = h(M, x, t), and then runs M(x, w) for at

most t steps.) The new verifier V* similarly deduces C(M,x,t),h and uses V' to verify a proof.

Overall, we "localized" the use of the (inefficient) PCD system (G', P', V') (obtained from the

inefficient SNARK (G, P, V)), so the SNARK (G*, P*, V*) is complexity preserving.

To obtain the second item of the theorem, we invoke again the SNARK Recursive Composition

Theorem and the PCD Depth-Reduction Theorem, but this time with the complexity-preserving

SNARK (G*, P*, V*); the resulting PCD systems are complexity preserving. E

84

See Figure 3-1 for a summary of how our theorems come together and Section 3.8 for more de-

tails.

Instantiations. Our theorem provides a technique to improve the algorithmic properties of any

SNARK. For concreteness, let us discuss what we obtain via our theorem from known SNARK

constructions.

From preprocessing SNARKs. When plugging into our theorem any of the publicly-verifiable

preprocessing SNARKs in [GrolO, Lipi1, GGPR13, BCI+13] (each of which can, roughly, be

based on "knowledge-of-exponent" [Dam92, BPO4] and variants of computational Diffie-Hellman

assumptions in bilinear groups), we obtain the first constructions, in the plain model, of publicly-

verifiable SNARKs and PCD systems that are complexity-preserving (and, in particular, have no

expensive preprocessing).

The aforementioned preprocessing SNARKs do not invoke the PCP Theorem but instead rely

on simpler probabilistic-checking techniques (which can be cast as linear PCPs [BCI+ 13]). While

at first sight, these techniques seem to inherently require an expensive preprocessing, our transfor-

mation shows that, in fact, they can be used to obtain stronger solutions with no preprocessing (in

fact, that are complexity-preserving), still without invoking the PCP Theorem.

From PCP-based SNARKs. When plugging into our theorem any of the PCP-based SNARKs in

[MicQO, BCCT12, DFH12, GLR1 1], we obtain complexity-preserving SNARKs based on the PCP

Theorem; this, regardless of how poor is the time or space complexity of the PCP in the SNARK

we start with. In particular, our theorem circumvents the seemingly-inherent suboptimal time-space

tradeoffs of PCP-based SNARKs.

Technical comparison. Our main theorem says that PCD systems for a large class of distributed

computations can be obtained from collision-resistant hashing and any SNARK (that may have

expensive preprocessing). Our theorem does not rely on the SNARK knowledge extractor being

very fast; we only assume that the extractor is of polynomial size.

For convenience, we conclude by spelling out what our PCD constructions imply, via compli-

ance engineering (see Section 1.3.2), for the special cases of incrementally-verifiable computation

(IVC) and targeted malleability (TM) and how it compares to the relevant previous work. Valiant

[Val08] obtained IVC for every poly(k)-space machine from publicly-verifiable SNARKs having

very efficient knowledge extractors; we obtain IVC for any machine, under the same assumptions

as our theorem. Boneh, Segev, and Waters [BSW12] obtained TM for constant-depth distributed

85

computations and a reference string as long as the entire computation, from publicly-verifiable

preprocessing SNARKs; we obtain TM, with poly(k)-size reference string, for distributed compu-

tations that are of constant depth or polynomially-long paths, under the same assumptions as our

theorem.

86

any (including preprocessing) SNARK

SNARK Recursive Composition Theorem

PCD for 0(1)-d pth compliance

PCD Depth-Reduction Theorem

path PCD for poly-depth compliance

Locally-Efficient RAM Compliance Theorem

complexity-preserving SNARK

SNARK Recursive Composition Theorem

complexity-preserving PCD for 0(1)-depth compliance

PCD Depth-Reduction Theorem

complexity-preserving path PCD for poly-depth compliance

Figure 3-1: Summary of how our three main results come together; see Sec-

tion 3.1.5 for a high-level discussion. Starting from any SNARK, our main re-

sult produces a corresponding complexity-preserving SNARK and PCD system

(for a large class of distributed computations and compliance predicates).

87

3.2 The Universal Language on Random-Access Machines

We define the universal relation [BG08] (along with related notions), which provides us with a

canonical form to represent verification-of-computation problems. Because, the notion of preserv-

ing complexity (of SNARKs and PCD schemes) is defined relative to random-access machines

[CR72, AV77], we make them our choice of abstract machine for the universal relation.1 Doing

so is also convenient because verification-of-computation problems typically arise in the form of

algorithms (e.g., "is there w that makes algorithm A accept (x, w)?").

Definition 3.2.1. The universal relation is the set lZu of instance-witness pairs (y, w) = ((M, x, t), w),

where Iy|, wI t and M is a random-access machine, such that M accepts (x, w) after at most t

steps.2 We denote by Lu the universal language corresponding to lZu.

For any c E N, we denote by 1Z, the subset of lZU consisting of those pairs (y, w) = ((M, x, t), w)

for which t < Ix C; in other words, &Z is a "generalized" NP relation, where we do not insist on

the same machine accepting different instances, but only insist on a fixed polynomial bounding the

running time in terms of the instance size. We denote by L, the language corresponding to Rc.

3.3 SNARKs

A succinct non-interactive argument (SNARG) is a triple of algorithms (G, P, V) that works as

follows. The generator G, on input the security parameter k and a time bound B, samples a ref-

erence string a and a corresponding verification state r. The honest prover P(o-, y, w) produces

a proof 7r for the statement y = (M, x, t) given a valid w, provided that t < B; then V(r, y, 7r)

deterministically verifies ir.

The SNARG is adaptive if the prover may choose the statement after seeing o-, otherwise, it is

non-adaptive. The SNARG is fully-succinct if G runs "fast", otherwise, it is of the preprocessing

kind.

'While random-access machines can be (nondeterministically) simulated by multitape Turing machines with only
polylogarithmic overhead in running time [Sch78, GS89], the space complexity of the random-access machine is not
preserved by this simulation. It is not known how to avoid the large space usage of this simulation. Thus, it is indeed
important that we define the universal relation with respect to random-access machines and not Turing machines.

2While the witness w for an instance y = (M, x, t) has size at most t, there is no a-priori polynomial bounding t in
terms of lxi. Also, the restriction that IyI, 1w I < t simplifies notation but comes with essentially no loss of generality:
see [BCGT13a] for a discussion of how to deal with "large inputs" (i.e., x or w much larger than t, in the model where
M has random access to them).

88

Definition 3.3.1. A triple of algorithms (G, P, V), where G is probabilistic and V is deterministic,

is a SNARG for the relation RU if the following conditions are satisfied:

1. Completeness

For every large enough security parameter k E N, every time bound B E N, and every instance-

witness pair (y, w) = ((M, x, t), w) E Ru with t < B,

Pr V(r, y, 7r) = 1 (oT) +-G(1kB)
[r +- P(-, y, w)J

2. Soundness (depending on which notion is considered)

" non-adaptive: For every polynomial-size prover P*, every large enough security parameter

k E N, every time bound B E N, and every instance y = (M, x, t) Lu,

Pr V(r, y, 7r) 1 (o, r) < G(lk, B) < negl(k)
7r +-P*(a-, y)

* adaptive: For every polynomial-size prover P*, every large enough security parameter k E N,

and every time bound B E N,

Pr [V(r, y, 7r) = 1 (o-, r) +- G(1k, B) 1 negl(k)
y V Lu (y, 7r) +- P*(a-)

3. Efficiency

There exists a universal polynomial p such that, for every large enough security parameter k E

N, every time bound B E N, and every instance y = (M, x, t) with t < B,

" the generator G(k, B) runs in time p(k + log B) for a fully-succinct SNARG

p(k + B) for a preprocessing SNARG

" the prover P(o-, y, w) runs in time p + M + xi + t + log B) for a fully-succinct SNARG

p(k + |MI + lxi + B) for a preprocessing SNARG

" the ver-fier V(T, y, 7r) runs in time p(k + |MI + |xI + log B);

" an honestly generated proof has size p(k + log B).

89

A complexity-preserving SNARG is a SNARG where the generator, prover, and verifier complexities

are essentially optimal:

Definition 3.3.2. A triple of algorithms (G, P, V) is a complexity-preserving SNARG if it is a

SNARG where efficiency is replaced by the following stronger requirement:

Complexity-preserving efficiency

There exists a universal polynomial p such that, for every large enough security parameter k E

N, every time bound B E N, and every instance y = (M, x, t) with t < B,

* the generator G(lk, B) runs in time p(k + log B);

" the prover P(o,y,w) runs in time (IMI + lxI +t) -p(k + logB);

" the prover P(a, y, w) runs in space (IMI + lxi + s) -p(k + log B);

" the verifier V(r, y, ,r) runs in time (IMI + lxi + log t) -p(k + log B);

" an honestly generated proof has size p(k + log B).

A SNARG of knowledge, or SNARK for short, is a SNARG where soundness is strengthened as

follows:

Definition 3.3.3. A triple of algorithms (G, P, V) is a SNARK if it is a SNARG where adaptive

soundness is replaced by the following stronger requirement:

Adaptive proof of knowledge3

For every polynomial-size prover P* there exists a polynomial-size extractor Ep. such that for

every large enough security parameter k E N, every auxiliary input z E {o, 1 }poly(k), and every

time bound B C N

V (7, yr)(U, r) <-G(1k , B)

Pr [W) (y, 7r) +P*(z, o-) 5 negl(k)

[w +- Ep. (z, o)

One may want to distinguish between the case where the verification state -r is allowed to be

public or needs to remain private. Specifically, a publicly-verifiable SNARK (pvSNARK) is one

3One can also formulate weaker proof of knowledge notions; in this work we focus on the above strong notion.

90

where security holds even if r is public; in contrast, a designated-verifier SNARK (dvSNARK) is

one where r needs to remain secret.

The SNARKs given in Definition 3.3.3 are for the universal relation IZu and are called universal

SNARKs.4 In this work, we neither rely on nor achieve universal SNARKs. Instead, we rely on and

achieve SNARKs for NP: these are SNARKs in which, when the verifier V is given as additional

input a constant c > 0, proof of knowledge only holds with respect to the N P relation R, C RU

(see Section 3.2). (Even in a SNARK for NP, though, the polynomial p governing the efficiency

of the SNARK is still required to be universal, that is, independent of c.) Thus, everywhere in this

paper when we say "SNARK", we mean "SNARK for N P ". (And this is indeed the definition of

SNARK studied, and achieved, by previous work.)

The technical difference between a universal SNARK and a SNARK for NP will not matter

much for most of the paper, except for when proving the SNARK Recursive Composition Theorem

in Section 3.5 (and this is why we first give the more natural definition of a universal SNARK). For

completeness, we now also define a SNARK for NP.

Definition 3.3.4. A SNARK for N P is defined as in Definition 3.3.3, except that proof of knowledge

is replaced by the following weaker requirement:

Adaptive proof of knowledge for N P

For every polynomial-size prover P* there exists a polynomial-size extractor Ep. such that for

every large enough security parameter k E N, every auxiliary input z E {0, 1 }poly(k), every

time bound B E N, and every constant c > 0,

V(-r, y, 7r) =(lk7B

Pr (y,) V 1 (y, 7r) *- G(z, o) < negl(k)

L w +- Ep*(z, o) J

Remark 3.3.5 (fully-succinct SNARKs for NP). In a fully-succinct SNARK for NP, there is no

need to provide a time bound B to G, because we can set B := klog k. We can then write G(lk)

to mean G(1k, klog k); then, because log B = poly(k), G will run in time poly(k), P in time

poly(k + IMI + lxi + t), and so on.

4Barak and Goldreich [BG08] define universal arguments for Ru with a black-box "weak proof-of-knowledge" prop-
erty. In contrast, our proof of knowledge property is not restricted to black-box extractors, and does not allow the extractor
to be an implicit representation of a witness.

91

Remark 3.3.6 (multi-instance extraction). In this work we perform recursive extraction along tree

structures. In particular, we will be interested in provers producing a vector of instances y together

with a vector of corresponding proofs 7r. In such cases, it is convenient to use an extractor that can

extract a vector of witnesses w containing a valid witness for each proof accepted by the SNARK

verifier. This notion of extraction can be shown to follow from the "single-instance" extraction

notion of Definition 3.3.3.

Lemma 3.3.7 (adaptive proof of knowledge for instance vectors). Let (G, P, V) be a SNARK (as

in Definition 3.3.3). Then for any polynomial-size prover P* there exists a polynomial-size ex-

tractor Ep. such that for every large enough security parameter k E N, every auxiliary input

z E {0, 1}poly(k), and every time bound B E N,

V(r, y, ri) = 1 (B)
Pr 3 i s.t. (y, 7r) +- P*(z, o) < negl(k)

w +- Ep.(z, o-)

Remark 3.3.8 (security in the presence of a verification oracle). A desirable property (especially

so when preprocessing is expensive) is the ability to generate o- once and for all and then reuse it in

polynomially-many proofs (potentially by different provers). Doing so requires security also against

provers that have access to a proof-verification oracle, namely, have oracle access to V(r, -, -). For

pvSNARKs, this multi-theorem proof of knowledge5 is automatically guaranteed. For dvSNARKs,

however, multi-theorem proof of knowledge needs to be required explicitly as an additional property.

Usually, this is achieved by ensuring that the verifier's response "leaks" only a negligible amount

of information about 7%.6 The transformations presented in this paper will preserve multi-theorem

proof of knowledge; see [BCI+ 13] for a formal definition of the property.

Remark 3.3.9 (generation assumptions). Depending on the model and required properties, there

may be different trust assumptions about who runs G(1k) to obtain (-, ir), publish a-, and make

sure the verifier has access to r. For example, in a dvSNARK, the verifier may run G himself and

then publish o- (or send it to the appropriate prover when needed) and keep r secret for later; in

5Security against such provers can be formulated for soundness or proof of knowledge, both in the non-adaptive and
adaptive regimes. Because in this paper we are most interested in adaptive proof of knowledge, we shall refer to this
setting.

6Note that O(log k)-theorem soundness always holds; the "non-trivial" case is whenever w(log k). Weaker solutions
to support more theorems include simply assuming that the verifier's responses remain secret (so that there is no leakage
on r), or re-generating o- every logarithmically-many rejections, e.g., as in [KR06, GKR08, KRO9, GGP1O, CKV10].

92

such a case, we may think of o as a verifier-generated reference string. As another example, in a

pvSNARK, the verifier may run G and then publish o; other verifiers, if they do not trust him, may

have to run their own G to obtain outputs that they trust; alternatively, we could assume that o is a

global reference string that everyone trusts. For both dvSNARKs and pvSNARKs, when requiring

a zero-knowledge property, we must assume that o- is a common reference string (i.e., a trusted

party ran G). The transformations presented in this paper will preserve zero-knowledge, whenever

available; in this paper, though, we do not study zero knowledge.

Remark 3.3.10 (the SNARK extractor E). In Definition 3.3.3, we require that any polynomial-size

family of circuits P* has a specific polynomial-size family of extractors Ep.. In particular, we allow

the extractor to be of arbitrary polynomial-size and to be "more non-uniform" than P*. In addition,

we require that, for any prover auxiliary input z E {0, 1}Po1y(k), the polynomial-size extractor

manages to perform its witness-extraction task given the same auxiliary input z. The definition

can be naturally relaxed to consider only specific distributions of auxiliary inputs according to the

required application.

One could consider stronger notions in which the extractor is a uniform machine that gets P*

as input, or even only gets black-box access to P*. (For the case of adaptive SNARGs, this notion

cannot be achieved based on black-box reductions to falsifiable assumptions [GW11].) In com-

mon security reductions, however, where the primitives (to be broken) are secure against arbitrary

polynomial-size non-uniform adversaries, the non-uniform notion seems to suffice (and is indeed

the one we adopt in Definition 3.3.3). The transformations presented in this paper preserve the no-

tion of extraction; e.g., if you start with a SNARK with uniform extraction, then you will obtain a

complexity-preserving SNARK with uniform extraction too.

3.4 Proof-Carrying Data

In Section 3.4.1, we begin by specifying the (syntactic) notion of a distributed computation that is

considered in proof-carrying data, the notion of compliance, and other auxiliary notions. Then, in

Section 3.4.2, we define proof-carrying data (PCD) systems, which are the cryptographic primitive

that formally captures the framework for proof-carrying data.

93

3.4.1 Distributed Computations And Their Compliance With Local Properties

We view a distributed computation as a directed acyclic 7 graph G = (V, E) with node labels

linp: V -+ {0, 1}* and edge labels data: E -+ {0, 1}*. The node label linp(v) of a node v rep-

resents the local input (which may include a local program) used by v in his local computation.

(Whenever v is a source or a sink, we require that linp(v) = I.) The edge label data(u, v) of a

directed edged (u, v) represents the message sent from node u to node v. Typically, a party at node

v uses the local input linp(v) and input messages (data(ui, v), ... , data(us, v)), where u1, ... , Uc

are the parents of v in lexicographic order, to compute an output message data (v, w) for a child

node w; the party also similarly computes a message for every other child node. We can think of the

messages on edges going out from sources as the "inputs" to the distributed computation, and the

messages on edges going into sinks as the "outputs" of the distributed computation; for convenience

we will want to identify a single distinguished output.

Definition 3.4.1. A (distributed computation) transcript is a triple T = (G, linp, data), where

G = (V, E) is a directed acyclic graph G, linp: V -+ {, 1}* are node labels, and data: E -+

{0, 1}* are edge labels; we require that Iinp(v) = I whenever v is a source or a sink. The output of

T, denoted out(T), is equal to data(i2, i) where (ii, i) is the lexicographically first edge such that

,b is a sink.

A proof-carrying transcript is a transcript where messages are augmented by proof strings, i.e.,

a function proof : E -+ {0, 1}* provides for each edge (u, v) an additional label proof (u, v), to be

interpreted as a proof string for the message data (u, v). (This is a syntactic definition; the semantics

are discussed in Section 3.4.2.)

Definition 3.4.2. A proof-carrying (distributed computation) transcript PCT is a pair (T, proof)

where T is a transcript and proof: E -+ {0, 11* is an edge label.

Next, we define what it means for a distributed computation to be compliant, which is the notion

of "correctness with respect to a given local property". Compliance is captured via an efficiently-

computable compliance predicate C, which must be locally satisfied at each vertex; here, "locally"

means with respect to a node's local input, incoming data, and outgoing data. For convenience, for

any vertex v, we let children (v) and parents(v) be the vector of v's children and parents respectively,

listed in lexicographic order.

71f the same party takes part in the computation at different times, we represent the party as multiple nodes.

94

Definition 3.4.3. Given a polynomial-time predicate C, we say that a distributed computation

transcript T = (G, inp, data) is C-compliant (denoted by C(T) 1) if for every v C V and

w E children(v), it holds that

C(data(v, w); Iinp(v), inputs(v)) = 1

where inputs(v) := (data(ul, v), ... , data (u., v)) and (ui, .. ., u) := parents(v). Furthermore,

we say that a message z is C-compliant if there is T such that C(T) = 1 and out(T) = z.

Remark 3.4.4. We emphasize that in Definition 3.4.3 we consider one output message data (v, w)

of v at a time. The reason is that if we were to simultaneously give as input to C all the output

messages of v, then C may verify non-local properties (e.g., the messages sent to two different

parties are the same). Such non-local properties are beyond the scope of the PCD framework; in

particular, to enforce such non-local properties, additional communication among the parties may

be required.

Remark 3.4.5 (polynomially-balanced compliance predicates). We restrict our attention to polynomial-

time compliance predicates that are also polynomially balanced with respect to the outgoing mes-

sage. Namely, the running time of C(z,; zi, Iinp) is bounded by tc(IzoI) = Izolec, for a constant

exponent ec that depends only on C. This, in particular, implies that inputs for which I Iin p + ziI is

greater than tc (1z0) are rejected. This restriction will simplify presentation, and the relevant class

of compliance predicates is expressive enough for most applications that come to mind. We also

assume that the constant ec is hardcoded in the description of C.

A notion that will be very useful to us is that of distributed computation transcripts that are

B-bounded:

Definition 3.4.6. Given a distributed computation transcript T = (G,Iin p,d ata) and any edge

(v, w) E E,we denote by tT,c(v, w) the time required to evaluate C(data(v, w); Iinp(v), inputs(v)).

We say that T is B-bounded if tT,C(V, w) B for every edge (v, w).

Remark 3.4.7. Note that B is a bound on the time to evaluate C at any node, and not a bound on the

sum of all such times. Furthermore, because we only consider polynomial-time computation, we

always have a concrete super-polynomial bound, e.g. tT,C(V, w) 1 g k, where k is the security

parameter.

95

A property of a compliance predicate that plays an important role in many of our results is that

of depth:

Definition 3.4.8. The depth of a transcript T, denoted d(T), is the largest number of nodes on a

source-to-sink path in T minus 2 (to exclude the source and the sink). The depth of a a compliance

predicate C, denoted d (C), is defined to be the maximum depth of any transcript T compliant with

C. If d(C) := oo (i.e., paths in C-compliant transcripts can be arbitrarily long) we say that C has

unbounded depth.

3.4.2 Proof-Carrying Data Systems

A proof-carrying data (PCD) system for a class of compliance predicates C is a triple of algorithms

(G, P, V) that works as follows:

" The (probabilistic) generator G, on input the security parameter k, outputs a reference string

o- and a corresponding verification state r.

" For any C E C, the (honest) prover Pr := P(C,-) is given a reference string o, inputs zi

with corresponding proofs iri, a local input Iin p, and an output z., and then produces a proof

ir. attesting to the fact that z. is consistent with some C-compliant transcript.

* For any C E C, the verifier Vc := V(C, - --) is given the verification state r, an output zo,

and a proof string 7ro, and accept if it is convinced that zo is consistent with some C-compliant

transcript.

After the generator G has been run to obtain o- and r, the prover P'C is used (along with 0-) at

each node of a distributed computation transcript to dynamically compile it into a proof-carrying

transcript by generating and adding a proof to each edge. Each of these proofs can be checked using

the verifier VC (along with r).

As in SNARKs, we say that a PCD system is fully-succinct if the generator G runs "fast",

otherwise, it is of the preprocessing kind.

The formal definition. We now formally define the notion of PCD systems.8 We begin by intro-

ducing the dynamic proof-generation process, which we call ProofGen. We define ProofGen as an
8At a technical level, our definition differs slightly than that given in [CT1O]. First, we work in the plain model,

while [CT1O] worked in a model where parties had access to a signature oracle. Second, we limit ourselves to the case
where a compliance predicate has a known polynomial running time, while [CT10] uniformly handled all polynomial-
time compliance predicates; this difference is analogous to the difference between a universal SNARK and a SNARK for
N P (see discussion in Section 3.3), and is not an important restriction for our purposes.

96

interactive protocol between a (not necessarily efficient) distributed-computation generator S and

the PCD prover P, in which both are given a compliance predicate C E C and a reference string -.

Essentially, at every time step, S chooses to do one of the following actions: add a new unlabeled

vertex to the computation transcript so far (this corresponds to adding a new computing node to the

computation), label an unlabeled vertex (this corresponds to a choice of local input by a computing

node), or add a new labeled edge (this corresponds to a new message from one node to another). In

case S chooses the third action, the PCD prover PC produces a proof for the C-compliance of the

new message, and adds this new proof as an additional label to the new edge. When S halts, the

interactive protocol outputs the distributed computation transcript T, as well as T's output and cor-

responding proof. Intuitively, the completeness property requires that if T is compliant with C, then

the proof attached to the output (which is the result of dynamically invoking PC for each message

in T, as T was being constructed by S) is accepted by the verifier. Formally the interactive protocol

ProofGen (C, o-, S, P) is defined as follows:

ProofGen (C, -, S, P) --

1. Set T and PCT to be "empty transcripts".

(That is, T = (G, linp, data) and PCT = (T, proof) with G = (V, E) = (0, 0).)

2. Until S halts and outputs a message-proof pair (z0, 7r.), do the following:

(a) Give (C, o-, PCT) as input to S and obtain as output (b, x, y).

(b) If b = "add unlabeled vertex" and x V V, then set V := V U {x} and linp(x)

I .

(c) If b = "label vertex", x E V, x is nor a source or sink, and linp(x) = _, then

linp(x) := y.

(d) If b = "add labeled edge" and x V E:

i. Parse x as (v, w) with v, w E V.

ii. Set E := E U {(v,w)}.

iii. Set data(v, w) :=y.

iv. If v is a source, set 7r := I.

v. If v is not a source, set 7r := Pc(o-, data(v, w), linp(v), inputs(v), inproofs(v)),

where inputs(v) := (data(ui, v), ... , data(uc, v)), inproofs(v) := (proof(ui, v),... , proof(uc, v)),

and (ui, . . . , u,) := parents(v).

97

vi. Set proof (v, w) := r.

3. Output (zo, 7r., T).

Having defined ProofGen, we are now ready for the definition:

Definition 3.4.9. A proof-carrying data systemfor a class of compliance predicates C is a triple

of algorithms (G, P, V), where G is probabilistic and V is deterministic, such that:

1. Completeness

T is B-bounded

C(T) = 1

VC(-r, zO,rO) # 1

C E C and (possibly unbounded) distributed computation gen-

(o, r) +- G(1k, B) 1 negl(k)

(zo, 7ro, T) <- ProofGen(C, a-, S, P)

2. Proof of Knowledge

For every polynomial-size prover P* there exists a polynomial-size extractor Ep* such that for

every compliance predicate C E C, every large enough security parameter k E N, every auxil-

iary input z E {0, 1}Poly(k), and every time bound B E N

Pr VC(r, z, 7r)=1

[(out(T) A z V C(T) = 1)

(O-, r) <- G(lk, B)

(z, 7r) +- P*(o-, z) 5 negl(k)

T +- Ep.(a, z) j

3. Efficiency

There exists a universal polynomial p such that, for every compliance predicate C E C, every

large enough security parameter k E N, every time bound B E N, and every B-bounded

distributed computation transcript T,

rp(k + B) for a fully-succinct PCD
* the generator G(ik, B) runs in time ;

Ip(k + log B) for a preprocessing PCD

98

For every compliance predicate

erator S,

Pr

9 the prover Pc(o-, data(v, w), linp(v), inputs(v), -ri) runs in time

p(k + CI+ tT,C(v,w) + log B) for a fully-succinct PCD

p(k +ICI + B) for a preprocessing PCD

where tT,C(V, w) denotes the time to evaluate C(data(v, w); linp(v), inputs(v)) at an edge

(v, w);

* the verifier Vc(r,z,7r) runs in time p(k + IC+z|+ilg B);

" an honestly generated proof has size p(k + log B).

We shall also consider a restricted notion of PCD system: a path PCD system is a PCD system

where completeness is guaranteed to hold only for distributed computations transcripts T whose

graph is a line.

As with SNARKs (see Section 3.3), we distinguish between the case where the verification

state r may be public or needs to remain private. Specifically, a publicly-verifiable PCD system

is one where security holds even if r is public. In contrast, a designated-verifier PCD system is

one where -r needs to remain secret. Similarly to SNARKs, this affects whether security holds in

the presence of a proof-verification oracle (see Remark (3.3.8)): in the publicly-verifiable case this

property is automatically guaranteed, while in the designated-verifier case this it does not follow

directly (besides as usual the trivial guarantees for O(log k) verifications).

Remark 3.4.10. In a fully-succinct PCD system, there is no need to provide a time bound B to G,

because we can set B := klo k. In such cases, we write G(1k) to mean G(1k, klo k); then, because

log B = poly(k), G will run in time poly(k), P in time p(k + CI + tT,C (V, w)), and so on.

Remark 3.4.11 (adversarial compliance predicates). We could strengthen Definition 3.4.9 by al-

lowing the adversary to choose the (polynomially-balanced) compliance predicate C for which he

produces a message and proof. All of the theorems we discuss in this paper hold with respect to

this stronger definition (though one has to be careful about how to formally state the results). For

convenience of presentation and also because almost always C is "under our control", we choose to

not explicitly consider this strengthening.

A complexity-preserving PCD system is a PCD system where the generator, prover, and verifier

complexities are essentially optimal:

99

Definition 3.4.12. A triple of algorithms (G, P, V) is a complexity-preserving PCD system if it is

a PCD system where efficiency is replaced by the following stronger requirement:

Complexity-preserving efficiency

There exists a universal polynomial p such that, for every compliance predicate C E C, every

large enough security parameter k E N, every time bound B E N, and every B-bounded

distributed computation transcript T,

" the generator G(lk, B) runs in time p(k + log B);

" the prover Pr(o-, data (v, w), linp(v), inputs(v), iri) runs in time (IC + tT,C(V, w)) -p(k +

log B), where tT,C(V, w) denotes the time to evaluate C(data(v, w); linp(v), inputs(v)) at

an edge (v, w);

" the prover Pc(o-, data(v, w), lin p(v), inputs(v), wri) runs in space (1C +sT,c(V, w)) -p(k+

log B), where ST,C(V, w) denotes the space to evaluate C(data(v, w); linp(v), inputs(v))

at an edge (v, w);

" the verifier Vc (r, z, 7r) runs in time (|C|1 + I-z p(k + log B);

" an honestly generated proof has size p(k + log B).

3.5 Proof Of The SNARK Recursive Composition Theorem

We provide here the technical details for the high-level discussion in Section 3.1.2. Concretely,

we prove the SNARK Recursive Composition Theorem, which is one of the three tools we use in

the proof of our main result (discussed in Section 3.8). Throughout this section, it will be useful

to keep in mind the definitions from Section 3.2 (where the universal language 2 u is introduced),

Section 3.3 (where SNARKs are introduced), Section 3.4.1 (where the notions of distributed com-

putation transcripts, compliance predicates, and depth are introduced), and Section 3.4.2 (where

PCD systems are introduced).

We prove a composition theorem for "all kinds" of SNARKs: we show how to use a SNARK

to obtain a PCD system for constant-depth compliance predicates. More precisely, we present two

constructions for this task, depending on whether the given SNARK is of the designated-verifier

kind or the publicly-verifiable kind. (In particular, we learn that even designated-verifier SNARKs

can be recursively composed, which may come as a surprise.) In sum, we learn that the existence

of a SNARK implies the existence of a corresponding PCD system, with analogous verifiability and

100

efficiency properties, for every compliance predicate whose depth is constant. (In particular, if the

SNARK is of the preprocessing kind, so will the PCD system constructed from it.)

Formally:

Theorem 3.5.1 (SNARK Recursive Composition Theorem).

1. There exists an efficient transformation RECCOMP such that, for every publicly-verifiable

SNARK (G, P, V), (G, P, V) = RECCOMP(G, P, V) is a publicly-verifiable PCD system for

every constant-depth compliance predicate.

(If (G, P, V) is a preprocessing SNARK, we further assume the existence of a collision-

resistant hash-function family W, and RECCOMP also depends on W.)

2. Suppose that S is a fully-homomorphic encryption scheme. There exists an efficient trans-

formation RECCOMPE such that, for every designated-verifier SNARK (G, P, V), (G, P,

V) = RECCOMPc (G, P, V) is a designated-verifier PCD system for every constant-depth

compliance predicate.9

In Section 3.5.1 we prove the first part of the theorem (which deals with the publicly-verifiable

case), and then in Section 3.5.2 we prove the second part of the theorem (which deals with the

designated-verifier case).

Remark 3.5.2 (depth-reduction for PCD systems). Constant-depth compliance predicates are not all

that weak. Indeed, as discussed informally in Section 3.1.3 (and in detail in Section 3.7), the depth

of a compliance predicate can always be improved exponentially, via the PCD Depth-Reduction

Theorem, at least for all distributed computations evolving over paths.

Remark 3.5.3 (beyond constant depth). In the SNARK Recursive Composition Theorem we have

to restrict the depth of compliance predicates to constant because our security reduction is based on

a recursive composition of SNARK extractors, where the extractor at a given level of the recursion

may incur an arbitrary polynomial blowup in the size of the previous extractor; in particular, if we

want the "final" extractors at the leaves of the tree to each have polynomial size, we must make the

aforementioned restriction in the depth.

If one is willing to make stronger assumptions regarding the size of the extractor Ep. of a

prover P* then the conclusion of the SNARK Recursive Composition Theorem will be stronger.

9 We do not require the verification state to be "reusable"; that is, we do not require the SNARK to be secure against
provers having access to a proof-verification oracle (see Remark (3.3.8)). If this happens to be the case, then this "multi-
theorem" proof-of-knowledge property is preserved by the transformation.

101

(Whether such stronger extractability assumptions are plausible or not should be judged on a case-

by-case basis. Here we do not condemn or condone their use, but we simply state what are their

implications to our theorem.)

Specifically, let us define the size of a compliance predicate C, denoted s(C), to be the largest

number of nodes in any transcript compliant with C. Then, for example:

" By assuming that IEp.I < CIP* I for some constant C (possibly depending on P*), that

is assuming only a linear blowup, our result can be strengthened to yield PCD systems for

logarithmic-depth polynomial-size compliance predicates.

For instance, if a compliance predicate has O(log(k)) depth and only allows 0(1) inputs

per node, then it has polynomial size; more generally, if a compliance predicate has depth

log,(poly(k)) and only allows w inputs per node, then it has polynomial size.

An extractability assumption of this kind is implicitly used in Valiant's construction of incrementally-

verifiable computation [Val08].

" By assuming that IEp. jP*I + p(k) for some polynomial p (possibly depending on P*),

that is assuming only an additive blowup, our result can be strengthened to yield PCD systems

for polynomial-size compliance predicates (which, in particular, have polynomial depth).

For instance, if a compliance predicate has polynomial depth and only allows one input per

node, then it has polynomial size.

(An alternative way to obtain PCD systems for polynomial-size compliance predicates is

to strengthen the extractability assumption to an "interactive online extraction"; see, e.g.,

[BPO4, DFH12] for examples of such assumptions. For example, the kind of extraction that

Damgfird et al. [DFH 12] assume for a collision-resistant hash is enough to construct a SNARK

with the interactive online extraction that will in turn be sufficient for obtaining PCD systems

for polynomial-size compliance predicates.)

More generally, it is always important that during extraction: (a) we only encounter distributed

computation transcripts that are not too deep relative to the blowup of the extractor size, and (b) we

only encounter distributed computation transcripts of polynomial size.

When we must limit the depth of a compliance predicate to constant (which we must when the

blowup of the extractor may be an arbitrary polynomial), there is no need to limit its size, because

any compliance predicate of constant depth must have polynomial size. However, when we limit

102

the depth to a super constant value (which we can afford when making stronger assumptions on the

blowup of the extractor), we must also limit the size of the compliance predicate to polynomial. 10

3.5.1 Recursive Composition For Publicly-Verifiable SNARKs

We begin by giving the construction and proof, respectively in Section 3.5.1 and in Section 3.5.1,

for the publicly-verifiable case with no preprocessing of the SNARK Recursive Composition The-

orem (i.e., Item 1 of Theorem 3.5.1 with no preprocessing); it will be useful to keep in mind Re-

mark (3.3.5). After that, in Section 3.5.1, we extend the discussion to the case with preprocessing.

(And after that, in Section 3.5.2, we proceed to the designated-verifier case of the theorem.)

The Construction

We are given a publicly-verifiable (fully-succinct) SNARK (G, P, V) for N P (see Definition 3.3.4).

To construct a publicly-verifiable (fully-succinct) PCD system (G, P, V) for constant-depth com-

pliance predicates, we follow the PCD construction of Chiesa and Tromer [CT10]. At high-level,

given a (constant-depth) compliance predicate C, at each node in the distributed computation, the

PCD prover P invokes the SNARK prover P to generate a SNARK proof attesting to the fact that

the node knows (i) input messages (and a local input) that are C-compliant with the claimed output

message, and also (ii) corresponding proofs attesting that these input messages themselves come

from a C-compliant distributed computation. The PCD verifier V then invokes the SNARK verifier

V on an appropriate statement. More precisely, the construction of the PCD system (G, wPPCD,

V) is as follows:

* The PCD generator. On input the security parameter 1 k, the PCD generator G runs the SNARK

generator g(lk) in order to obtain a reference string a and verification state r, and then outputs

(a, r). Without loss of generality, we assume that both a and r include the security parameter

1 k in the clear; furthermore, because we are focusing on the publicly-verifiable case, we may

also assume that a includes T in the clear.

loInterestingly, it seems that even if the size of a compliance predicate is not polynomial, a polynomial-size prover
should not give rise to distributed computations of super-polynomial-size during extraction, but we do not see how
to prove that this is the case. This technical issue is somewhat similar to the difficulty that Bitansky et al. found in
constructing universal SNARKs in [BCCT12] and not just SNARKs for specific languages. Chiesa and Tromer [CT10]
were able to construct PCD systems for emphany compliance predicate, with no restrictions on depth or size, but this was
not in the plain model. We believe it to be an interesting open question to make progress on the technical difficulties we
find in the plain model with the ultimate goal of understanding what it takes to construct PCD systems for any compliance
predicate in the plain model.

103

Recall that we are temporarily focusing on the case where the publicly-verifiable SNARK (G, P,

V) is fully-succinct, so that o, and - have size that is a fixed polynomial in the security parameter

k; in particular, a and r could be merged into one public parameter, but we choose to keep them

separate for the sake of clarity and exposition of the other cases.

" The PCD prover. For any compliance predicate C, on input (0, zo In p, zi, 7ri), the PCD prover

PC := P(C, - - -) constructs a "SNARK theorem and witness" (y, w) = ((M, x, t), w) and then

runs the SNARK prover P(a, y, w) to produce the outgoing proof iro to attach to the outgoing

message z.. More precisely (and recalling that r is part of a, i.e., it is public), PC chooses y and

w as follows:

y := vc, (zo, r), tv,c(IzoI + Ir)) and w := (Iinp, zi, 7ri)

where MVr is a machine called the PCD machine and tvc(n) = nevc is a polynomial time

bound; both Mv,c and the exponent ev,c only depend on (and are efficiently computable from)

the SNARK verifier V and the compliance predicate C. We define Mv,c and ev,c below.

" The PCD verifier. For any compliance predicate C, on input (T, zo, 7r), the PCD verifier VC

V(C,---) checks that

Vev,c (r, (MV,c, (zo, r), tv,c(IzoI + r)),ro) = 1

(Recall that, in a SNARK for N P, V, denotes the fact that the verifier is given as additional input

a constant c > 0 and is only required to work for the relation 'IZ; see Definition 3.3.4.)

Both the PCD prover PC and PCD verifier Vr need to be able to efficiently generate the SNARK

statement (Mv,c, (zo, r), tv,c(Izo I +I T)) starting from (zo, T); in particular, both need to efficiently

generate Mv,c and tv,c(IzoI + TI). We now define both Mv,c and tv,, and explain how these can

be efficiently constructed.

The PCD machine Mv,c. The PCD machine Mvc takes input x and witness w where x = (zO, r)

and w = (Iinp, zi,ri). Then, MVC verifies that: (a) the message z. is C-compliant with the local

input linp and input messages zi, and (b) each 7r in the vector iri is a valid SNARK proof attesting

to the C-compliance of the corresponding message z in zi. The formal description of the machine

MVC is given in Figure 3-2; it is clear from its description that one can efficiently deduce MV,c

from V, C, and ev,c.

104

Mvc(x, W) --

1. Parsing input and witness. Parse x as (zO, -) and w as (linp, zi, 7ri). Intuitively, zi are the input
messages, 7ri corresponding proofs of C-compliance, Iin p a local input, zo an output message, and T

the SNARK verification state.

2. Base case. If (linp, z;, iri) = 1, verify that C(z.; I, _) = 1. (This corresponds to checking that z,
is a C-compliant source for the distributed computation.)

3. General case. Verify:

" Compliance of the current node: C(z,; Iin p, zi) = 1.

" Compliance of the past: For each input z in z; and corresponding proof 7r in 7ri verify that

Vevc (r, (Mv,c, (z, T), tv,c(IzI + IT)), 7r) = 1 .

(We now think of each z as an output of a previous distributed computation that carries a proof ir
attesting to the C-compliance of z.)

Furthermore, if Mv,c reaches the time bound tv,c(zoIl + Irl), it halts and rejects. The function tvc(-)
is such that tv,c(zoI + Ir-) = (k + Izol)ev,c where evc is an exponent depending on (and efficiently
computable from) V and C. We explain how to choose ev,c in the paragraph below.

(Above, the description of Mv,c appears in its own code. This is only syntactic sugar, and, to give a
completely formal definition of Mvc, one needs to invoke an efficient version of the Recursion Theo-
rem.)

Figure 3-2: The PCD machine MVC for the publicly-verifiable case.

The time bound tvc. We want tv,c (zo I- I 1) to bound the computation time of M Vr ((z., r), (In p, zi, ri)),

for any witness (linp, zi, 7ri). We now explain how to choose the exponent ev,c of the time bound

function tv,0 (n) = nev c. Note that:

" The first part of the computation of the PCD machine Mv,C is verifying C-compliance at

the local node, namely, verifying that C(z.; linp, zi) = 1; since C is polynomially balanced

(see Remark (3.4.5)), the time to perform this check is tc(Izol), where tc is a polynomial

depending on C.

" The second part of MVC's computation is verifying that the inputs are C-compliant, by relying

on the proofs that they carry; the time required to do so depends on the running time of the

SNARK verifier V and how many such inputs there are.

105

Thus, letting tv be the polynomial bounding the running time of the SNARK verifier V, the total

computation time of M VC ((zo, r), (1inp, z;, 7ri)) is:

tc(Izo1) + Ztv (k + lyz1)
zEzi

= tc(lzol) + Ztv(k + Mvc| + I(z, r)+ log (tvc(jzj + Inr)))
zEzi

= tc(zol) + E tv (k + CI + iv; + IzI + r + log (tv,c(IzI + r)))

= tc(zol) + Z tv (k + IC + IzI + Ir + log (tv,c(IzI + Inr)))
zEzi

tc(Izo1) + Ztv (k + CI + IzI + I r+ (log k) 2)
zEz;

5 tc(lzol) + tc(zol) -tv(k +1C+ tc(zol) + Ir|+ (log k) 2)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

where (3.2) follows from (3.1) by expanding Iyz1; (3.3) follows from (3.2) by expanding IMv,cI and

(z, 7-)I; (3.4) follows from (3.3) by assuming without loss of generality that lVi 5 tv(k+ Iyl) for all

k and y; (3.5) follows from (3.4) because all computations are bounded by some super-polynomial

function in the security parameter, say klog k, and hence can bound tv,c(IzI + 'ri) by klog k and

thus log tv,c(IzI + I-Ij) 5 (log k) 2 (see Remark (3.4.7)); (3.6) follows from (3.5) because C is

polynomially-balanced and thus Iz I 5 tc (I z. 1).

Overall, from (3.6), we conclude that the total computation time of M ,C ((zo,), (Iin p, zi, 7ri))

can be bounded by tv'C (1Zo I +) = (Izo I + -r 1)evc where ev,c is an exponent that can be efficiently

computed from V (and tv) and C (and tc). (Note that the running time of Vev,c is tv, which is is

independent of ev,c; thus, there is no issue of circularity here; see Definition 3.3.4.)

Proof Of Security

We now show that (G, P, V) is a (publicly-verifiable) PCD system for constant-depth compliance

predicates. The completeness and efficiency properties of the PCD system immediately follow from

those of the SNARK (G, P, V). We thus concentrate on proving the adaptive proof of knowledge

property. Let us fix a compliance predicate C with constant depth d(C).

Our goal is the following: for any (possibly malicious) polynomial-size prover P*, we need to

construct a corresponding polynomial-size extractor Ep such that, when P* convinces VC that a

message z. is C-compliant, the extractor can find a C-compliant transcript T with output z. (which

106

"explains" why VC accepted). To achieve this goal, we employ a natural recursive extraction strat-

egy, which we now describe.

Given the prover IP*, we construct d(C) (families of) polynomial-size extractors i,... , d(,

one for each potential depth of the distributed computation. To make notation lighter, we do not

explicitly write the auxiliary input z that may be given to P* and its extractor Ep. (e.g., any random

coins used by P*); similarly for the SNARK provers and their extractors discussed below. This is

not a problem because what we are going to prove holds also with respect to any auxiliary input

distribution Z, provided the underlying SNARK is secure with respect to the same auxiliary input

distribution Z.

Specifically, the extractors are constructed in the following way:

* Use the PCD prover P* to construct the SNARK prover P* that works as follows: on input a,

P* computes (zi, 7ri) <- P*(o), constructs the instance yi := (Mv,c, (zi, r), tvc(Izi I+Irl)),
and outputs (yi, 7ri). Then define E6 := Lp* to be the SNARK extractor for the SNARK

prover P*. Like P*, Li also expects input a; Li returns a string (z 2 , wr 2 , linpi) that is (with

all but negligible probability) a valid witness for the SNARK statement yi, assuming that VC

(and thus also Vev,c) accepts ri.

" Use Li to construct the new SNARK prover P2 that works as follows: on input a, P2 com-

putes (Z2, r2, Iin p1) <-- Ei(a) and then outputs (y2, 7r2), where the vector of SNARK state-

ments Y2 contains an entry yz := (Mv,c, (z, r), tvc(z + Ir)) for each entry z in Z2. Then

define E2 := .p* to be the SNARK extractor for the SNARK prover P2*. Given a, with all but

negligible probability, 92 outputs a witness for each statement and convincing proof (y, 7r) in

(y2, Ir2). (See Remark (3.3.6).)

" In general, for each 1 < j <; d(C), we similarly define Pj and Lj := Ep*.

We can now define the extractor Ep.. On input a, Ep* constructs a distributed computation transcript

T whose graph is a directed tree, by running Ei, ... , Ed(c) in order; each such extractor produces

a corresponding level in the distributed computation tree. Specifically, each witness (z, I, linp)

extracted by Ej corresponds to a node v on the j-th level of the tree, with local input linp(v) := linp

and incoming messages inputs(v) := z. The tree has a single sink s with only one edge (s', s) going

into it; the message on that edge is data(s, s') := zi. (Recall that zi is the message output by P*.)

The leaves of the tree are the vertices for which the extracted witnesses are (Iin p, z, 7r) = 1.11

"During extraction we may find the same message twice; if so, we could avoid extracting from this same message

107

Note that each Ej is of polynomial size, because each EL is constructed via a constant number

of recursive invocations of the SNARK proof of knowledge, and each such invocation incurs an

arbitrary polynomial blowup in the size of the extractor relative to its prover. Thus, we deduce that

Ep. is also of polynomial size.

We are left to argue that the transcript T extracted by Ep. is C-compliant and has output zi:

Proposition 3.5.4. Let P* be a polynomial-size PCD prover; and let Ep. be its corresponding

polynomial-size extractor as defined above. Then:

V(C(7-, Z1)7+- G(1k)
Pr (izi V ()=1 (zi, ri) +-P*(a) ; negl(k).

(out(T) $ z1 V C(T) # T1)E. o
L T <- Ep. (o-)j

Proof By construction, out(T) = zi always. We are left to prove that (with all but negligible

probability whenever VC accepts) it holds that C(T) = 1. The proof is by induction on the level of

the extracted tree (going from root to leaves). Recall that there are at most d(C) = 0(1) levels all

together.

For the base case, we show that for all large enough k E N, except with negligible probability,

whenever the prover P* convinces the verifier VC to accept (zi, 7ri), the extractor Ei outputs (z2 ,

r2 , linpl) such that:

1. C(zi; z2, linpl) = 1, and

2. for each (z, ir) in (z 2 , 7r2), letting yz : (MV,c, (z, r), tvc (IzI + Ir)), it holds that Vev,c (, yz,

r)= 1.

Indeed, VC(r, zl, 7ri) = 1 implies Vev,c(r,Yzi,7r1) = 1, where yzi = (MV,c, (zi, r), tv,c(0ziI +

Ir)). By the SNARK proof of knowledge property, whenever VC accepts, with all but negligi-

ble probability, the extractor Li outputs a valid witness (z 2 , 7r2, Iinp2) for the statement yzi. By

construction of the PCD machine Mv,c, the extracted witness (z 2 ,7r 2 , linp 2) satisfies both of the

claimed properties.

For the inductive step, we can prove in a similar manner the compliance of a level in the extracted

distributed computation tree, assuming compliance of the previous level. Specifically, assume that

twice by simply putting a "pointer" from where we encounter it the second time to the first time we encountered it.
We do not perform this "representation optimization" as it is inconsequential in this proof. (Though this optimization
is important when carrying out the proof for super-constant d(C) starting from stronger extractability assumptions; see
Remark (3.5.3).)

108

for each node v in level 1 < j < d(C) the following holds: for each (z, 7r) in (zv, 7r,), it holds

that Vevyc (T, Yz, I7r) = 1, where (zV, ir.) are v's incoming messages and proofs (extracted by .6) and

Yz := (Mv,c, (z, r), tv,c(IzI + Ir1)). Then, with all but negligible probability, for any node u with

(u, v) E E, the extractor j+ 1 outputs a valid witness (zu, 7ru, Iinpu) for the statement yz., where

zu is the message in zv corresponding to the edge (u, v). We conclude that:

1. C(z,; zu, Iinp) = 1, and

2. for each (z, 7r) in (zu, 7ra), letting yz : (Mvrc, (z, r), tv,c(IzI + r)), it holds that Vev,c (T, Yz,

7r) = 1.

This completes the inductive step, and we can indeed conclude that T is compliant with C.

The Preprocessing Case

We now describe how to modify the aforementioned discussion for the case where (G, P, V) is

a preprocessing SNARK. In such a case, the generator G takes as additional input a time bound

B = B(k), and generates a reference string o- and corresponding verification state r that only allow

proving and verifying statements y of the form (M, x, t) where MI xl +t < B; statements that do

not meet this criteria are automatically rejected by the verifier. (Note that this differs from a SNARK

for a relation R, which allows t to grow as fast as, but not faster than, Ix IC.) Of course, the running

time of the SNARK verifier V is still required to be poly(k + IyI) and is, in particular, independent

of B. (The fact that the running time of V, and not just the length of an honestly-generated proof,

is short is crucial in our context.)

When using a preprocessing SNARK in the construction from Section 3.5.1, we obtain a prepro-

cessing PCD system. (See Item 3 of Definition 3.4.9.) That is, the construction yields PCD systems

where the generator G takes as additional input a time bound B, and the PCD system works only

for B-bounded distributed computations (see Definition 3.4.6): namely, distributed computations

where computing C at any node takes time at most B. (We stress once more that the bound B is for

a single node's computation time, and not for the sum of all such times!)

More precisely, the construction of the generator G in Section 3.5.1 has to be slightly modified:

the generator G, on input (1k, B), invokes G(1k, B') where B' := polyvh(k + B) for some

polyyn that only depends on V and the collision-resistant hash-function family R-. Essentially, we

need to ensure that, whenever checking compliance of a message z takes time at most B, it holds

that tvc(IzI + I-r) < B'. We now explain why the above choice of B' suffices.

109

Whenever computing C on a message z takes time at most B (as is the case in a B-bounded

distributed computation), one can verify that tv,c(IzI + |r) polyv (k + B + ICI). Furthermore,

we can assume without loss of generality that |CI = polyh(k). Indeed, if that is not the case, we

can consider C' that has hardcoded a hash p of C, always expects a local input linp' = (C, linp),

and first checks that p = h(C) and then checks that the output is C-compliant relative to linp and

the input messages. Thus, overall, polyc(IzI) B implies that tv,c(IzI) polyv,- (k + B), and

thus our choice of B' suffices.

The aforementioned modification to the construction of G is the only one needed to make the

construction from Section 3.5.1 work in the preprocessing setting.

We conclude by remarking that, when choosing B = poly(k), running G requires only poly(k)

time; in other words, preprocessing becomes "inexpensive". One of the results of this paper is that,

ultimately, we can always get rid of expensive preprocessing, and being able to choose B = poly(k)

(and make do with enforcing C-compliance in only poly(k)-bounded distributed computations) is

an important step when proving this fact. See Section 3.1.5 and Section 3.8 for more details.

3.5.2 Recursive Composition For Designated-Verifier SNARKs

In Section 3.5.1 we have proved the publicly-verifiable case of the SNARK Recursive Composition

Theorem (i.e., Item 1 of Theorem 3.5.1). We now prove the designated-verifier case of the SNARK

Recursive Composition Theorem (i.e., Item 2 of Theorem 3.5.1). In other words, we show that

we can also recursively compose designated-verifier SNARKs to obtain designated-verifier PCD

systems for constant-depth compliance predicates. 12

As before, we first give the construction and proof, respectively in Section 3.5.2 and in Sec-

tion 3.5.2, for the (designated-verifier) case with no preprocessing. Extending the discussion to

the preprocessing case is completely analogous to the extension in the publicly-verifiable case, ex-

plained in Section 3.5.1.13

The Construction

We are given a designated-verifier (fully-succinct) SNARK (G, P, V) for N P (see Definition 3.3.4).

We need to construct a designated-verifier (fully-succinct) PCD system (G, P, V) for constant-depth
12We recall that "designated-verifier" means (just like in the SNARK case) that verifying a proof requires a secret

verification state, and not that the messages in the distributed computation are encrypted; see Section 3.4.
1
3 In particular, this extension also relies on collision-resistant hashing; however, this assumption does not have to be

explicitly required in the theorem statement, because it is implied by homomorphic encryption [IK005].

110

compliance predicates.

When we try to adapt the PCD construction for the publicly-verifiable case (see Section 3.5.1)

to the designated-verifier case, we encounter the following difficulty: how does an arbitrary node in

the computation prove that it obtained a convincing proof of compliance for its own input, when it

cannot even verify the proof on its own? More concretely: the node does not know the verification

state r (because it is secret) and, therefore, cannot provide a witness for such a theorem.

We show how to circumvent this difficulty, using fully-homomorphic encryption (FHE). The

idea goes as follows. We encrypt the private verification state r and attach its encryption c' to

the public reference string a. Then, when a node is required to verify the proof it obtained, it

homomorphically evaluates the SNARK verifier V on the encrypted verification state c' and the

statement and proof at hand. In order to achieve compliance of the past, each node provides, as

part of his proof, the result of the homomorphic evaluation E, and a proof that it "knows" a previous

proof, such that E is indeed the result of evaluating V on cT on this proof (and some corresponding

statement). At each point the PCD verifier VC, can apply the SNARK verifier V to check that: (a)

the SNARK proof is valid, (b) the decryption of e is indeed "1". (More precisely, we need to do an

extra step in order to avoid the size of the proofs from blowing up due to appending e at each node.)

We now convert the above intuitive explanation into a precise discussion. The construction of

the PCD system (G, P, V) is as follows:

" The PCD generator. On input the security parameter 1 k, the PCD generator G runs the SNARK

generator g(1k) in order to obtain a reference string a and verification state r, samples a secret

key sk and an evaluation key ek for the FHE scheme S, computes an encryption cT of the secret

verification state, and then outputs (&, i) := ((a, C T), (T, sk)). Without loss of generality, we

assume that both a and r include the security parameter lk in the clear; furthermore, we may

also assume that C includes the evaluation key ek. Recall that we are temporarily focusing on

the case where the designated-verifier SNARK (G, P, V) is fully-succinct, so that a and r have

size that is a fixed polynomial in the security parameter.

* The PCD prover and the PCD machine. For any compliance predicate C, given input (&, z0 , linp, zi, wr),

the PCD prover PC = P(C, -- -) works as follows:

1. Parse each 7r' in irf as a pair (7ri, E); construct corresponding vectors iri and Bi.

2. First, PC computes a new evaluated verification bit io that "aggregates" the evaluations ev of

111

the SNARK verifier together with the previous verification bits Zi. Concretely, PC computes:

E, =Evalek (11il Me)

where each ciphertext ev in eV corresponds to a triple (z, 7r, ^) in (zi, iri, ti) and is the result

of homomorphically evaluating the SNARK verifier as follows:

Ev = Evalek Vevc (., (Mv,c,(z,,c'),ctv,c(z + I + IcT)'),r), c

where M Vr is a machine called the PCD machine and tv~c(n) = neVc is a polynomial time

bound; both MVr and the exponent ev,c only depend on (and are efficiently computable

from) the SNARK verifier V and the compliance predicate C. We define Mv,r and ev,c

below.

3. Having computed e., P'C constructs a "SNARK theorem and witness" (y, w) = ((M, x, t), w)

and then runs the SNARK prover P(-, y, w) to produce the proof lr., in order to then attach

the proof r := (7r., e.) to the outgoing message z.. More precisely, PC chooses y and w as

follows:

y := (Mv,c, (zo, Colc7), tv,c(zoI + o| + Ic)) and w := (Iinp, zi,)ri, ti)

* The PCD verifier. For any compliance predicate C, on input (f, zo, 7r), the PCD verifier V:

V(C,-) checks that Dec~k(eo) = 1 and

VeVC ((M, C (zO, o, c'), tv,c(Izo + IeOI + c'1)), 7ro) = 1

(Recall that, in a SNARK for N P, V denotes the fact that the verifier is given as additional input

a constant c > 0 and is only required to work for the relation lZ,; see Definition 3.3.4.)

Similarly to the publicly-verifiable case, both the PCD prover PC and PCD verifier VC need to be

able to efficiently generate the SNARK statement (MV~C, (zO, o, cT), tvc (|zo I + I 0 I + Icr 1)) starting

from (zo, ero, cT); in particular, both need to efficiently generate M Vr and tv,c(IzoI + IeoI + Ic').

We now define both MVr and tv,, and explain how these can be efficiently constructed.

The PCD machine Mv,c. Similarly to the publicly-verifiable case, the heart of the construction

is the design of the PCD machine MVC. The formal description of the machine Mv,C is given in

112

Figure 3-3; it is clear from its description that one can efficiently deduce Mv,C from V, C, and ev,c.

Mv,c(x, W) =

1. Parsing input and witness. Parse x as (z., E., c') and w as (Iinp, zi, wi, i). Intuitively, zi are
the input messages, -ir corresponding (encrypted) proofs of C-compliance and ei corresponding
evaluated verification bits, Iin p a local input, zo an output message, o an output evaluated verification
bit, and c' the encrypted SNARK verification state.

2. Base case. If (linp, zi, Wi,Zi) = 1, verify that C(z.; 1, _) = 1. (This corresponds to checking that
z. is a C-compliant source for the distributed computation.)

3. General case: Verify:

* Compliance of the current node: C(z.; Inp, zi) = 1.

" Compliance of the past: Verify that the ciphertext E. correctly aggregates the C-compliance of
the input messages: namely, verify that

E. = Evalk (M, (Ji, v))

where each ciphertext dv in Ev corresponds to a triple (z, 7r, d) in (zi, wi, Ei) and is the result of
homomorphically evaluating the SNARK verifier as follows:

Ev = Evalek (Vev c (, (Mv,c, (z, 6, cT), tvc(zl + |j + lc'l)), 7r), c .

Furthermore, if Mvc reaches the time bound tv,c(Izo I + IoI + IcT I), it halts and rejects. The function
tvr(-) is such that tvc(zol + I lc7l) = (1zo + lIo + lcr)ev.c where evc is an exponent depending
on (and efficiently computable from) V and C. We explain how to choose evc in the paragraph below.

(Above, the description of Mvc appears in its own code. This is only syntactic sugar, and, to give a
completely formal definition of Mvc, one needs to invoke an efficient version of the Recursion Theo-
rem.)

Figure 3-3: The PCD machine Mv,c for the designated-verifier case.

The time bound tv,C. Similarly to the publicly-verifiable case, we want tv,c(zoI + Iol + Icr) to

bound the computation time of M ,c ((zo, d, CT), (Iin p, zi, ri-, -i)), for any witness (Iin p, zi, iri, ^i).

We now explain how to choose the exponent ev,c of the time bound function tv,'C (n) = n'ev. Note

that:

" The first part of the computation of the PCD machine Mvr is (as before) verifying C-

compliance at the local node, namely, verifying that C(zo; Ii np, zi) = 1; since C is poly-

nomially balanced (see Remark (3.4.5)), the time to perform this check is tc (I zo1), where tC

is a polynomial depending on C.

" The second part of Mv'c's computation is homomorphically evaluating the SNARK verifier

for each input message and homomorphically aggregating the various encrypted bits; the time

113

required to do so depends on the running time of the SNARK verifier V and how many such

inputs there are.

Thus, letting tv be the polynomial bounding the running time of the SNARK verifier V, and letting

tEvalek be a polynomial such that tEvalek (k + T) bounds the time needed by Eva 'ek to homomorphi-

cally evaluate a T-time algorithm, the total computation time of M ,C ((zo, o, c'), (Iin p, zi, 7ri, ti))

is:

tc(lzol) + tEvalek (k + tv Iy(z,e) + tEvalek (k + 2zi) (3.7)
zEzi zEz;

tc(zol) + 2 ZtEvalk (k + tV (k + IMv,cI + I(z, ^, c') I+ log (tv c(zI + e+ c 1)))
zEzi

= tc(lzol) + 2.

= tc(Izo) + 2.

tc(lzol) + 2.

tc(zol) + 2.

(3.8)

tEvalek ty + ICI + lvi + Izi + 1^1 + IcTI + log (tvc(jzj + 1el + cr))
zEzi

(3.9)

tEvalek ty + Cl + Izi + ti + ICI + log (tvC(IzI + 1^1 + c)) (3.10)

E tEvalk (tV(k+ CI + IzI + je + IcI + (log k)2) (3.11)
zEz)

t(lOzoI) t~valk (tv (k + ICI + t(IzoI) + JEJ IC7
T + (log k)2)) (3.12)

(3.8) follows from (3.7) by expanding Iy(z,e) 1; (3.9) follows from (3.8) by expanding IM.v,c l and

I(z, e, c)1; (3.10) follows from (3.9) by assuming without loss of generality that IV| 5 tv(k + Il)

for all k and y; (3.11) follows from (3.10) because all computations are bounded by some super-

polynomial function in the security parameter, say k1"E k, and hence can bound tv,C (IzI +| + I C1)

by klog k and thus log tv,c(z + leI + IcTI) (log k) 2 (see Remark (3.4.7)); (3.12) follows from

(3.11) because C is polynomially-balanced and thus Izi 5 tC (I zo).

Overall, from (3.12), we conclude that the total computation time of Mv,c ((z., ao, cT), (Iin p, zi, 7ri, i)

can be bounded by tv,c(IzoI + eol + IcT I) = (Izol + dol + ICr)evc where ev,c is an exponent that

can be efficiently computed from tEvalk, V (and tv), and C (and tC). (Note that the running time

of Vevc is tv, which is is independent of evc; thus, there is no issue of circularity here; see Defini-

tion 3.3.4.)

114

Proof Of Security

We now show that (G, P, V) is a (designated-verifier) PCD system for constant-depth compliance

predicates. The completeness and efficiency properties of the PCD system immediately follow from

those of the SNARK. We thus concentrate on proving the adaptive proof of knowledge property.

Let us fix a compliance predicate C with constant depth d (C).

Our goal is (again) the following: for any (possibly malicious) polynomial-size prover P*, we

need to construct a corresponding polynomial-size extractor Ep. such that, when P* convinces VC

that a message z. is C-compliant, the extractor can find a C-compliant transcript T with output

zo (which "explains" why Vr accepted). To achieve this goal, we employ a recursive extraction

strategy similar to the one we used in the publicly-verifiable case (see Section 3.5.1), which we now

describe.

Given the prover P*, we construct d(C) (families of) polynomial-size extractors 61 , ... , Ed(C),

one for each potential depth of the distributed computation. As before, to make notation lighter, we

do not explicitly write the auxiliary input z that may be given to P* and its extractor Ep. (e.g., any

random coins used by P*). Unlike before, however, when we run SNARK extractors, we will need

to explicitly specifcy the auxiliary input they get (in this case, an encryption of the verification state;

see Remark (3.5.5)). All mentioned implications hold also with respect any auxiliary input distri-

bution Z, provided the underlying SNARK is secure with respect to the auxiliary input distribution

Z.

Overall, the PCD extractor Ep. is defined analogously to the case of publicly-verifiable SNARKs,

except that now statements refer to the new PCD machine as well as to ciphertexts of the aggre-

gated verification bits, and the encrypted verification state cT .

* Use the PCD prover P* to construct the SNARK prover P* that works as follows: on input

(0, c'), P* computes (zi, 7ri, di) <- P*(a, C), constructs the instance yi := (MVC, (zi, E1 , cT), tv,c(Izi I+

I1j I + c I)) and outputs (yi, 7rI). (We think of cT as an auxiliary input to P*.) Then define

1 : = Spr to be the SNARK extractor for the SNARK prover P*. Like P*, .i also expects

input (a, cT); Si returns a string (Iin p1 , z2 , Wr2, c 2) that hopefully is (with all but negligible

probability) a valid witness for the SNARK statement yi, assuming that VC (and hence also

Vevc) accepts 7ri. (As we shall see later on, showing the validity of such a witness will re-

quire invoking semantic security, because the SNARK prover receives C as auxiliary input,

while the guarantee of extraction is for when (a, r) are drawn independently of the auxiliary

115

input.)

" Use 9i to construct the new SNARK prover P2* that works as follows: on input (o, CT),

P2* computes (Iinp 1 , z2 , 7r2, C2) +- 91(o, C) and then outputs (y2, 7r2), where the vector of

SNARK statements Y2 contains an entry y(z,e) := (Mvc, (z, e, cT), tv,c(Izl + 1 1 + jc'r)) for

each (z, C) in (z 2 , C2). Then define .2 :Sp to be the SNARK extractor for the SNARK

prover P2*. Given (o-, c"), with all but negligible probability, 2 should output a witness for

each statement and convincing proof (y, wr) in (y2, 7r2). (See Remark (3.3.6).)

" In general, for each 1 < j d(C), we similarly define Pj and 8:= P .

We can now define the extractor Ep.. On input (or, CT), Ep. constructs a distributed computation

transcript T whose graph is a directed tree, by running ,, Ed(c) in order; each such extractor

produces a corresponding level in the distributed computation tree. Specifically, each witness (z,

7r, c, linp) extracted by E corresponds to a node v on the j-th level of the tree, with local input

linp(v) := linp and incoming messages inputs(v) := z. The tree has a single sink s with only

one edge (s', s) going into it; the message on that edge is data(s, s') := zi. (Recall that zi is the

message output by Ep..) The leaves of the tree are the vertices for which the extracted witnesses

are (z, 7r, ^, Iinp) = _. (See Footnote 11.)

As before, because d (C) is constant, each E is of polynomial size, and thus Ep. is of polynomial

size.

Remark 3.5.5 (SNARK security with auxiliary input). We require that the underlying SNARK

is secure with respect to auxiliary inputs that are encryptions of random strings (independently

of the state (a, -) sampled by the SNARK generator). Using FHE schemes with pseudo-random

ciphertexts (e.g., [BV I1]), we can relax the auxiliary input requirement to only hold for truly random

strings (which directly implies security with respect to pseudo-random strings).

We are left to argue that the transcript T extracted by Ep. is C-compliant and has output zj:

Proposition 3.5.6. Let P* be a polynomial-size PCD prover and let E p. be its corresponding

polynomial-size extractor as defined above. Then:

Pr C V(r, sk, zj , , j) = 1 ((a, cT), (r, sk)) +- G(lk)
Pr (zi, 7i, el) +P*(o-, c7) < negl(k)

(out(T) 5 z1 V C(T) # 1) T +- Ep* (a, C) j

116

Proof By construction, out(T) = zi always. We are left to prove that (with all negligible proba-

bility whenever VC accepts) it holds that C(T) = 1. The proof is by induction in the level of the

extracted tree (going from root to leaves). Recall that there are at most d(C) = 0(1) levels all

together.

For the base case, we show that for all large enough k E N, except with negligible probability,

whenever the prover P* convinces the verifier Vc to accept (zi, Iri, d1), the extractor Si outputs

(in p, z2 , r 2 , Z 2) such that:

1. C(zi; z 2 , linp) = 1,

2. E1 = Evalek (H, (C 2, CV)), where each EV in Ev corresponds to one (z, 7, E) in (z2, r2, Z2)

and is the result of homomorphically evaluating Vevc as required (i.e., Ev = Eva 1ek (Vevc (,

Y(z,e), Ir), cT), where y(z,e) (Mv,c, (z, E, cT), tv,c(Iz + 1lE + icrl))),

3. for each E in C2, it holds that DecSk(E) = 1, and

4. for each (z, 7r, E) in (z 2 , 7r2, C2), letting y(z,E) : (MV, (z I, cr), tv,c (0zI + Idl + Icf1)), it

holds that Vev c (r, y(z,e), I7r) = 1.

Consider the alternative experiment where the prover P*, instead of receiving the encrypted

verification state c', receives an encryption of an arbitrary string, say 0111, denoted by c0 . We

first argue that, in the alternative experiment, whenever VC accepts (and except with negligible

probability), the first two conditions above must hold, and then (via semantic security) we deduce

the same for the original experiment. Indeed, in the the alternative experiment, the SNARK prover

P* is only given the auxiliary input c0 , which is independent of the verification state r; hence,

the SNARK proof of knowledge can be invoked. Specifically, except with negligible probability,

whenever VC (and hence also Vevc) accepts, it must be that the extractor Li outputs a valid witness

(z2 ,7r 2 ,c 2,Iinpi) for the statement y(zlie) = (Mv,c,(zi, , c),tv,c(IziIl + d1ii + lc0 D) output

by P* (when given c0 rather than cT). In particular, by construction of Mvc, we deduce that (z2 ,

r2, C2 , iInpl) satisfies the first two conditions above. Next, note that the first two conditions above

can be efficiently tested given only (zi, 7ri, 1 Z2, r2 , 2̂ , Inp,, c0), by running the (deterministic)

algorithms C and Evalek. (In particular, neither sk nor r are required for such a test.) We can

thus deduce that in the original experiment, where P* and Si are given c', the first conditions hold

with all but negligible probability. (For, otherwise, we could break the semantic security of the

encryption scheme, by distinguishing encryptions of a random r from encryptions of OM.)

117

We have thus established that whenever VC accepts (and except with negligible probability), the

first two conditions above must hold. We now argue that whenever the second condition holds, we

can deduce the last two conditions. Indeed, since the statement y(zi, i) is accepted by V, we know

that DecS(el) = 1. This and the correctness of Evalek implies that all ciphertexts in (C2, Cv) must

also decrypt to "1".14 Hence, we deduce the third property (all ciphertexts in e2 decrypt to "1"), and

by invoking the correctness of Evalek once more we can deduce the last property (namely, for each

(z, 7r, e) in (vadata2 , r2, C2), it holds that Vevc (, Y(z,e), ir) = 7).

To complete the proof, we can proof in a similar manner the inductive step. That is, assuming

that conditions three and four are satisfied by the j-th level of the tree, we can deduce that conditions

one and two hold for level j + 1. This is done by first establishing conditions one and two in an

alternative experiment where c' is replaced by co, and then invoking semantic security to deduce the

same for the original experiment. We then deduce, from the second property, the last two properties

as we did for the base case. Overall, we can conclude that T is C-compliant. E]

3.6 Proof Of The Locally-Efficient RAM Compliance Theorem

We provide here the technical details for the high-level discussion in Section 3.1.4. Concretely, we

prove the Locally-Efficient RAM Compliance Theorem, which is one of the three tools we use in the

proof of our main result (discussed in Section 3.8). Throughout this section, it will be useful to keep

in mind the definitions from Section 3.2 (where random-access machines and the universal language

Lu are introduced) and Section 3.4.1 (where the notions of distributed computation transcripts,

compliance predicates, and depth are introduced).

We prove that membership in Lu of an instance y = (M, x, t) with t < klog k can be "compu-

tationally reduced" to the question of whether there is a distributed computation compliant with ChY

whose output is a predetermined value (e.g., the string "ok"), where Ch is a compliance predicate of

depth t -poly(k) and h is drawn from a collision-resistant hash-function family. Furthermore, it suf-

fices to consider poly(k + Iy)-bounded distributed computations (i.e, that are "locally-efficient"),

and such a distributed computation can be generated from the instance y and a witness w for y in

time (IMI + Ix| + t) -poly(k) and space (IMI + IxI + s) -poly(k).

Theorem 3.6.1 (Locally-Efficient RAM Compliance Theorem). Let 'W = {'-k}kEN be a collision-

14We can assume without loss of generality that all ciphertexts are decrypted to "0" or "1", either by using an encryption
scheme where any ciphertext can be interpreted as such, or by adding simple consistency checks to the evaluated circuit.

118

resistant hash-function family. There exist functions D, xFo, 1&1 : {0, 1}* -+ {0, 1}* such that:

1. Completeness: For every instance y = (M, w, t), witness w with (y, w) E Ru, k G N with

t < klo< k, and hE lik, it holds that Ch(T) = 1 and out(T) = ok, where Ch := 4(h, y) is a

compliance predicate and T := (h, y, w) is a distributed computation transcript.

2. Proof of knowledge: For every polynomial-size adversary A and large enough security pa-

rameter k E N:

h <- ?1a
t < klokh+

Pr C(T) =1 (M, x, t, T) <- A(h)

Pr Y y +- (M, w, t) < negl(k)

Out(T) okC h -- 4D(h , y)
(y, w) 0 RU

L w <- I,(h, y, T)

3. Efficiency:

* d(Ch) < t -poly(k);

* '1(h, y) runs in linear time;

* xIO (h, y, w) is a poly(k + y|)-bounded distributed computation transcript whose graph is

a path; furthermore, To (h, y, w) outputs the transcript in topological order while running

in time (|MI+|x|+t-poly(k) and space (|M|+|x|+s)-poly(k), where s is the space complexity of M(x, w);

* xF i(h, y, T) runs in linear time.

The Locally-Efficient RAM Compliance Theorem thus ensures a very efficient computational

Levin reduction15 from verifying membership in 4U to verifying certain local properties of dis-

tributed computations.

When invoking the reduction for a given instance y and then using a PCD system to enforce

the compliance predicate Ch, xFO preserves the completeness property of the PCD prover, while x1,

ensures that the proof-of-knowledge property of the PCD verifier is preserved. (Conversely, if the

PCD system used does not have a proof-of-knowledge property, then the Locally-Efficient RAM

Compliance Theorem cannot be used, as can be seen from the security guarantee of the theorem

statement. See the proof of Theorem 4 for more details.)

15Recall that a Levin reduction is a Karp (instance) reduction that comes with witness reductions going "both ways";
in the theorem statement, the instance reduction is D, the "forward" witness reduction is To, and the "backward" witness
reduction is T1. The soundness guarantee provided by <D is only computational.

119

As discussed in Section 3.1.4, the proof of the Locally-Efficient RAM Compliance Theorem

consists of two steps, respectively discussed in the next two subsections (Section 3.6.1 and Sec-

tion 3.6.2).

Remark 3.6.2 (recalling random-access machines). Random-access machines can be defined in

many ways, depending on the choice of architecture (e.g., stack, accumulator, load/store, regis-

ter/memory, and so on). In this work, we do not need to present a formal definition, but having a

very rough idea of how random-access machines work will be helpful towards a better understanding

of the material discussed in this section. For concreteness, our discussions assume random-access

machines following the familiar load/store architecture; also, we assume that the random-access

machine has sequential access to two tapes, one for the input and one for the witness. For additional

details see, e.g., [BCGT13a].

3.6.1 Machines With Untrusted Memory

Ben-Sasson et al. [BCGT13a] observed that, provided collision-resistant hash functions exist, mem-

bership of an instance y = (M, x, t) in the universal language Lu can be "simplified" to mem-

bership of a corresponding instance y' = (M', x, t') where M' is a machine with poly(k) space

complexity and t' = t - poly(k), when t < klog k. We briefly recall here their result, which follows

from techniques for online memory checking [BEG+91].16

Lemma 3.6.3 ([BCGT13a]). Let ?i = {k }keN be a collision-resistant hash-function family. There

existfunctions D, To, IQ1 : {0, 1}"* -+ {0, 1}"* and b: N2 -+ N such that:

1. Syntax: For every random-access machine M, k E N, h E 7Hk, D(h, M) is a random-access

machine.

2. Witness Reductions:

e For every instance y = (M, x, t), witness w with (y, w) E Ru, k E N with t < klog k, and

h E Wk, it holds that ((4(h, M), x, b(t, k)), To(h, y, w)) E Ru.

16Unlike in [BEG-91], in our work (as in [BCGT13a]) universal one-way hash functions [NY89, Rom9O] do not
suffice because the machine M receives, besides the input x, a (potentially-malicious) witness w.

120

* For every polynomial-size adversary A and sufficiently large k E N,

t < k log k
h <- Wk

Pr ((D(h, M), x, b(t, k)), w') E R (M, x, t, w (h) < negl(k)

W)~ <- (M, x, t)

L~~ +- Tj(h, y, w')

3. Efficiency:

* dIP(h, M) is a poly(k)-space random-access machine and b(t, k) = t - poly(k);

* (D(h, M) and T i (h, y, w') run in linear time;

" 'I0o(h, y, w) runs in time (IMI + IxI + t) - poly(k) and space (IMI + IxI + s) - poly(k),

where s is the space complexity of M(x, w).

Remark 3.6.4. For computations that do not use more than poly(k) space, the RAM Untrusted

Memory Lemma is not needed and one can directly proceed to the next step (discussed in Sec-

tion 3.6.2).

Proof sketch. The idea is to construct from M a new machine M' := P(h, M) that uses the hash

function h to delegate memory to "untrusted storage" by dynamically maintaining a Merkle tree

over such storage.

More precisely, the program of M' is equal to the program of M after replacing every load

and store instruction with corresponding sequences of instructions (which include computations of

h) that implement secure loads and secure stores.17 This mapping from h and M to M' can be

performed in linear time by a function 1.

The new machine M' always keeps in a register the most up-to-date root of the Merkle tree. Se-

cure loads and secure stores are not atomic instructions in the new machine M' but instead "expand"

into macros consisting of basic instructions (which include many "insecure" load and store instruc-

tions). Concretely, a secure load for address i loads from memory a claimed value and claimed

hash, and then also loads all the other relevant information for the authentication path of the i-th

leaf, in order to check the value against the locally-stored Merkle root. A secure store for address

i updates the relevant information for the authentication path of the i-th leaf and then updates the
17In fact, the computation of M' begins with an initialization stage during which M' computes a Merkle tree over a

sufficiently-large all-zero memory, and then proceeds to execute the (modified) program of M. One also needs to take
care of additional technical details, such as ensuring that M' has enough registers to compute h and the register width is
large enough for images of h

121

locally-stored Merkle root. Because each secure load and secure store takes poly(k) instructions to

complete, the running time of M' increases only by a multiplicative factor of poly(k).

The security property of h ensures that it is hard for the (efficient) untrusted storage to return

inconsistent values. By thinking of the sequence of accessed values during the computation of M'

on (x, w) as part of the new witness for M' (and not as part of memory), then we see that M' is

"computationally equivalent" to M, except that its space requirement is only poly(k). .

Given a witness w for M, extending w to a witness w' for M' (which includes all the memory

accesses of the computation) can be done in time (IM + lxI +t) -poly(k) and space (IMI + lxI + s) -

poly(k) by a function TO by simply running the computation. Going from a witness w' for M' to a

witness w for M only requires T1 to take a prefix of w', and thus can be done in linear time. D

3.6.2 A Compliance Predicate for Checking RAM Computations

We show how membership of an instance y = (M, x, t) can be reduced to the question of whether

there is a distributed computation compliant with C, whose output is a predetermined value (e.g.,

the string "ok"), where C, is a compliance predicate of depth 0(t) that we call the RAM Checker for

y. Furthermore, it suffices to consider 0(s +I yl)-bounded distributed computations whose graph is

a path, where s is the space complexity of M, and such a distributed computation can be generated

from the instance y and a witness w in time O(IMI + lxi + t) and space O(IMI + lxi + s).

Essentially, CY forces any distributed computation compliant with it to check the computation

of M on x one step at a time, for at most t steps, and the only way such a distributed computation

can produce the message ok is to reach an accepting state.

In Remark (3.6.7) below we explain how Lemma 3.6.3 and Lemma 3.6.5 (which formalizes

the aforementioned reduction) can be combined to obtain the Locally-Efficient RAM Compliance

Theorem (Theorem 3.6.1).

Lemma 3.6.5. There exist functions (D, APo, L1: {0, 11* -÷ {0, 1}* such that for every instance

y = (M, X, t):

1. Syntax: C , := J(y) is a compliance predicate.

2. Witness Reductions:

" For every witness w with (y, w) E Ru, Cy (TO(yjw)) = 1 and out(,Fo(y, w)) = ok.

* For every transcript T with C. (T) = 1 and out(T) = ok, (y, I1 (y, T)) E Ru.

122

3. Efficiency:

" d(CY) < t +1;

" (I(y) runs in linear time;

* To (y, w) is a O(s + Iy|)-bounded distributed computation transcript whose graph is a

path; furthermore, TJo(y, w) outputs the transcript in topological order while running in

time O(IMI + lxi + t) and space O(IMI + lxi + s), where s is the space complexity of

M(x, w);

* I (y, T) runs in linear time.

Proof We begin by giving the construction of the compliance predicate CY from the instance y:

Construction 3.6.6. The RAM Checker Cy for an instance y = (M, x, t) is defined as follows:

def
Cy (z.; zi, Iin p) =

1. Verify that zi = (zi) for some zi.

2. If zi = I:

(a) Verify that Inp = .

(b) Verify that z. = (T', S') for some timestamp -r' and state S' of M.

(c) Verify that S' is an initial state of M.

3. If z. = ok:

(a) Verify that Inp = .

(b) Verify that zi = (r, S) for some timestamp r and state S of M.

(c) Verify that S is a final accepting state of M.

4. Otherwise:

(a) Verify that zi = (T, S) for some timestamp r and state S of M.

(b) Verify that zo = (r', S') for some timestamp T' and state S' of M.

(c) Verify that r,r' E {0, 1,. . .,t}.

(d) Verify that -' = T + 1.

(e) Verify that executing a single step of M starting with state S results in state S', when x is on

the first tape of M and by supplying I in p as the answer to a read to the second tape (if such a

read is made).

The state of a random-access machine contains the values of the registers and the program counter;

the position of the head on the two tapes, and the contents of random-access memory. It is thus easy

to see that Cy (z.; zi,\in p) runs in time O(s + Iy|), and thus it suffices to consider O(s+ I|y|)-bounded

distributed computations.

123

Note that Case 1 ensures that zi is a vector consisting of a single component; in particular; any

distributed computation that is compliant with CY must be a collection of disjoint paths. Case 2 is

triggered when checking the first node of any such path (due to the condition zi = I), and verifies

that the output data consists of a timestamped initial state of M. Case 3 is triggered whenever the

output data is equal to ok (i.e., z. = ok), and verifies that the input data consists of a timestamped

final and accepting state of M. Case 4 is triggered at all other times; it verifies that both input

and output data consist of timestamped states (so that, in particular; if a path contains the message

with data ok, that message is the single and last message), that the timestamp grows by 1, and that

M(x, -) goes from one state to the next when using Ii n p as nondeterminism.

The mapping from y to CY from Construction 3.6.6 can be performed by a function <D in linear

time.

Also, the depth (see Definition 3.4.8) of CY is bounded by the time bound: specifically, d (CY)

t + 1. Indeed, as mentioned in Construction 3.6.6, any transcript that is compliant with CY consists

of disjoint paths. Because CY ensures, along any such path, that timestamps increase by 1 from one

message to the next and are bounded by t, the depth of C, is at most t + 1. (The "+1" comes from

the ok message.)

Next, we discuss the witness reductions, by defining TO and T1.

Define i to be the number of steps that it takes for M(x, w) to halt (note that t < t), and

So, ... , S1 to be the sequence of corresponding states. Define a = (ai)= 1 so that ai is equal to the

value read from the second tape in the i-th step (or an arbitrary value if no value is read from there

in the i-th time step).

Next, define T := (G, linp, data) where G is the (directed) path graph of f + 3 nodes labeled

0,...,i + 2, linp(0) := linp(i + 1) := linp(I + 2) := I and linp(i) := ai for i = 1,...

data(i, i + 1) := (i, Si) for i = 0, 1,. .. , and data(f+ 1, f+ 2) := ok. In other words, T is the

path whose vertices are labeled with the sequence a (and the sink and the source are labeled with

-L) and whose edges are labeled with the timestamped sequence of states of M followed by ok. See

Figure 3-4 for a diagram.

On input (y, w), a function To can output T in topological order, in time O(IMI + IxI + t) and

space O(1 M + IxI + s), by simply simulating M(x, w) for at most t time steps, outputting labeled

vertices and edges as it proceeds from one state of M to the next, and then adding the message ok

after M halts. If (y, w) E Ru, it is easy to see that C, holds everywhere in T (so that Cy(T) = 1)

and, moreover, T has output data ok (i.e., out(T) = ok).

124

(y, w) E1u ++ So,. ..--- , i(OSo) (1 Si) (2 SO) (t S-) ok

Figure 3-4: Constructing a Cy-compliant transcript T starting from (y, w) E
RIu, and vice versa.

Now suppose that T is any transcript compliant with CY and has output data ok (i.e., Cy(T) = 1

and out(T) = ok). Because CY disallows more than one message into a node, the graph of T is a

set of disjoint paths. By assumption, there is a path p where the input data to the sink is equal to

ok. Now construct w as follows. Let I be the subset of [t] consisting of those indices i for which

M, at the state transition of the (i + 1)-th node in T, reads the next value from the second tape.

Define w := (linp(i))ieI, where the indexing is with respect to nodes in the path p. By compliance

of T with C, and because we know that the path p ends with the message ok, we deduce that

(y, w) E RU. Once again see Figure 3-4.

Finally, on input (y, T), a function T, can output w in linear time.

Remark 3.6.7 (combining Lemma 3.6.3 and Lemma 3.6.5 to obtain Theorem 3.6.1). In Section 3.6.1

we discussed how nondeterminism can be used to reduce the space complexity of a random-access

machine to poly(k), by only incurring in a blowup in running time of poly(k). When combining the

reduction of Lemma 3.6.3 from Section 3.6.1 with the reduction from Lemma 3.6.5 in this section,

we obtain a proof to the Locally-Efficient RAM Compliance Theorem (Theorem 3.6.1). Concretely,

first an instance y is reduced to a new instance y' by using a collision-resistant hash function (via

Lemma 3.6.3), and then y' is reduced to Cyt, the RAM Checker for y' (via Lemma 3.6.5).

3.7 Proof of The PCD Depth-Reduction Theorem

We provide here the technical details for the high-level discussion in Section 3.1.3. Concretely, we

prove the PCD Depth-Reduction Theorem, which is one of the three tools we use in the proof of our

main result (discussed in Section 3.8). Throughout this section, it will be useful to keep in mind the

definitions from Section 3.4.1 (where the notions of distributed computation transcripts, compliance

predicates, and depth are introduced).

Recall that the SNARK Recursive Composition Theorem (discussed at high level in Section 3.1.2

and formally proved in Section 3.5) transforms any SNARK into a corresponding PCD system for

(polynomially-balanced) constant-depth compliance predicates. The Locally-Efficient RAM Com-

pliance Theorem (discussed at high level in Section 3.1.4 and formally proved in Section 3.6) tells

125

us that membership in Lu of an instance y = (M, x, t) with t < klog can be "computationally

reduced" to the question of whether there is a "locally-efficient" distributed computation compliant

with CI whose output is a predetermined value (e.g., the string "ok"), where Ch is a compliance

predicate of depth t - poly(k) and h is drawn from a collision-resistant hash-function family.

Unfortunately, the depth of Ch is superconstant. Thus, it seems that we cannot benefit from the

SNARK Recursive Composition Theorem. (Unless we make stronger extractability assumptions;

see Remark (3.5.3).)

To address the aforementioned problem and, more generally, to better understand the expressive

power of constant-depth compliance predicates, we prove in this section a "Depth-Reduction The-

orem" for PCD: a PCD system for constant-depth compliance predicates can be transformed into

a corresponding path PCD system for polynomial-depth compliance predicates; furthermore, the

transformation preserves the verifiability and efficiency properties of the PCD system. (This holds

more generally; see Remark (3.7.8).)

Theorem 3.7.1 (PCD Depth-Reduction Theorem). Let W = {lWk} kEN be a collision-resistant hash-

functionfamily. There exists an efficient transformation DEPTHREDW with the following properties:

" Correctness: If (G, P, V) is a PCD system for constant-depth compliance predicates, then

(G', P', V') = DEPTHRED (G, P, V) is a path PCD for polynomial-depth compliance pred-

icates.18

" Verifiability Properties:

- If (G, P, V) is publicly verifiable then so is (G', P',V').

- If (G, P, V) is designated verifier then so is (G', P', V').

" Efficiency: There exists a polynomial p such that the (time and space) efficiency of (G', P',

V') is the same as that of (G, P, V) up to the multiplicative factor p(k).

The main claim behind the theorem is that we can achieve an exponential improvement in the

depth of a given compliance predicate C, while at the same time maintaining completeness for

transcripts that are paths, by constructing a new low-depth compliance predicate TREEC that is a

"tree version" of C. One can then construct a new PCD system (G', IP', V') that, given a compliance

predicate C, appropriately uses the old PCD system (G, P, V) to enforce TREEC.

18Recall that a path PCD system is one where completeness does not necessarily hold for any compliant distributed
computation, but only for those where the associated graph is a path, i.e., each node has only a single input message. See
Definition 3.4.9.

126

The basic idea is that the new compliance predicate TREEC is to force any compliant distributed

computation to build a Merkle tree of proofs with large in-degree r "on top" of the original dis-

tributed computation. (This technique combines the ideas of proof trees of Valiant [Val08] and of

wide Merkle trees used in the security reduction of [BCCT12, GLR1 1].) As a result, the depth of

the new compliance predicate will be [log, d(C)] + 1; in particular, when d(C) is bounded by a

polynomial in the security parameter k (as is the case for the compliance predicate Ch produced by

the Locally-Efficient RAM Compliance Theorem), by setting r = k, the depth of TREEC becomes

constant - and we can now benefit from the SNARK Recursive Composition Theorem.

For expository purposes, in Section 3.7.1 give the intuition for the proof of the PCD Depth-

Reduction Theorem for the specific compliance predicate Ch produced by the Locally-Efficient

RAM Compliance Theorem. This concrete example, where we explain how to construct a Merkle

tree of proofs on top of the step-by-step computation of a random-access machine with poly(k)

space complexity, will build the necessary intuition for the more abstract setting of the general case

(needed for our main theorem), which we present in Section 3.7.2.

3.7.1 Warm-Up Special Case: Reducing The Depth Of RAM Checkers

As discussed, we sketch the proof of the PCD Depth-Reduction Theorem for the special case where

the desired compliance predicate is Ch; recall that Ch is the compliance predicate generated by

the Locally-Efficient RAM Compliance Theorem (Theorem 3.6.1) when invoked on the instance

y = (M, x, t). By relying on certain properties of Ch, we are able to give a simpler proof sketch,

and thereby build intuition for the general case (discussed in Section 3.7.2). Thus, the goal for now

is to construct a path PCD system for Ch, while only assuming the existence of PCD systems for

constant-depth compliance predicates. Moreover, we must ensure that the verifiability and efficiency

properties of the new PCD system are essentially the same as those of the PCD system we start with.

Step 1: Engineer a new compliance predicate. Recall from the proof of the Locally-Efficient

RAM Compliance Theorem (discussed in Section 3.6) that Ch = C , (see Remark (3.6.7)), where

CY, is the RAM Checker for the instance y' = (M', x, t'), M' is a poly(k)-space machine, and

t' = t - poly(k) when t < klOg k (see Section 3.6.1). Starting from CY/ and an in-degree parameter

r, we show how to construct a new compliance predicate TREECr with O(logr d(Cy,)) depth.

The intuition of the construction is for TREEC4r to force any distributed computation that isy
compliant with it to have the structure of an r-ary tree whose leaves form a path that is compliant

with Cvi. In order to achieve this, TREECft enforces data flowing through the distributed com-Y Y

127

putation to carry certain "metadata" information that helps TREEC r figure out "where" in the

distributed computation a given piece of data belongs. With this information available, TREEC4T

can then reason as follows (see Construction 3.7.2 below for reference):

" LeafNode Stage: the input data to the node consists of two messages (0, ri, Si) and (0, -r2, S2).

Then TREEC1'r interprets (ri, Si) and (-2, S2) as two timestamped states of M' and uses C

to check that T2 = Ti + 1 and that the state S2 follows from Si in one time step; then TREECf'
Y

checks that the output data is (1, Ti, S1, - 2 , S 2), which should be interpreted as claiming that

the verification of the time interval [ri, T2] for the machine M' took place.

" Internal Node Stage: the input data to the node consists of r messages (d, -ri, Si, 7i, Sl) each

from a node at "level d of the tree". We interpret each message (d, ri, Si, r-i, Sj) as claiming

that verification of the time intervals [ri, ir] of M' took place, and that the state of M' at time

ri and 7i- respectively was Si and Sj'; TREECyi checks that these intervals are in fact con-

tiguous and are accompanied by consistent states of the machine M'; then TREECY, checks

that the output data is (d + 1, Ti, S, Tr', S'), that is, that it correctly "collapses" the r input

messages.

* Output Stage: for some r', the input data to the node consists of r' messages (di, ri, Si,r:, Sj)

each from a node at "level di of the tree". The fact that the messages are coming from different

levels of the tree signals that the node wants to claim that the computation of M' is done, and

in this case TREEC r verifies that the input messages carry consistent timestamps and states

(as in the previous case) and furthermore checks that Ti = 0 and s., = ok. Then TREECYr

checks that the output data is (data, ok).

Given the above rough description, the only way to produce the message ok in a distributed com-

putation compliant with TREEC r is for a distributed computation to separately check each step
Y

of M' and then iteratively merge r intervals at a time, for a total of log,. t' times, until it produces

a root attesting to the correct computation of M' for t' steps. When t' < kC for some c, log, t' is

constant by setting r = k. For reference, we give the following more precise construction (which,

for instance, also shows how to deal with the nondeterminism of M'):

Construction 3.7.2. Given r E N and an instance y' = (M', x, t'), define the following compliance

predicate:

TREEC r (zO; zi, Inp)

128

1. Input Stage

If zi = I and linp=:

(a) Verify that z. equals (0, r, S) for some r, S.

(b) If r = 0, verify that C,,((,r, S); I, 1)

2. Leaf Node Stage

If z. = (1, r, S, r', S') and zi = ((0, Ti, Si), (0,72, S2)) for some r, S, T', S', Ti, S1,72, S2:

(a) Verify that r2 = r1 + 1, 7 = 71, and r' = r2.

(b) Verify that S = S1 and S' = S2.

(c) If S2 = ok, verify that C y,(ok; ((- 1 , Si)), -L) accepts.

(d) Otherwise, verify that C y,((r2 , S2); ((Ti, Si)), Inp) accepts.

3. Internal Node Stage

If z. = (d+1, r, S, T', S') and zi = ((d,Tri, Si, Tr, Si))rIfor some d, r, S, T', S', i, , r , 1, . . Sr:

(a) Verify that r = r1 , Ti = r2 , -r = r3, and so on until -' _1 = Tr, T' = r '.

(b) Verify that S = S1, S1 = S2, S2 = S3 , and so on until S'. = Sr, S. = S'.

4. Output Stage

Ifz. = (data, ok) and zi = ((di, r, Si, Tr, Si)) for some z, di,..., dr,, , ,. ,. .,Sr,:

(a) Verify that Tf = T2, 72 = 73, and so on until r|,_ 1 = r.

(b) Verify that S' =S2, S2 = S3 , and so on until S. =Sr.

(c) Verify that ri = 0 and S., = ok.

5. If none of the above conditions hold, reject.

Recall from Lemma 3.6.5 that the depth of the old compliance predicate CY/ could be as bad as

t' + 1. Instead, as promised, the depth of the new compliance predicate TREECtr is much better:
y

Lemma 3.7.3. d (TREEC r +

Proof Any transcript compliant with TREEC r consists of disjoint trees. In each such tree, nodes

of different heights are forced to directly point to the root of the tree, and other nodes of the same

height are grouped in sets of size r. Thus, the "worst possible height", given that any tree can have

at most t' + 1 leaves, is given by [logr (t' + 1)] + 1 (achieved by making maximal use of merging

nodes of the same height). D

The depth reduction is meaningful because we can accompany it with guarantees that ensure that

despite the fact that we switched to a new compliance predicate, the "semantics" of the compliance

predicate have been preserved. Namely, given a transcript T compliant with CY' and with output

129

data ok, we can efficiently produce a new transcript T' compliant with TREEC r and with outputy
data (data, ok). Conversely, given a transcript T' compliant with TREEC"r and with output data

(data, ok), we can efficiently produce a new transcript T compliant with Cy, and with output data

ok. Somewhat more precisely:

Lemma 3.7.4. There exist efficient functions Qo, 11: {0, 1}* -+ {0, 1}* such that:

" For every transcript T with CY, (T) and out(T) = ok, it holds that TREEC r (T') = 1 and

out(T') = (data, ok), where T' := xFo(y', r, T).

" For every transcript T' with TREEC r(T') = 1 and out(T') = (data, ok), it holds that Cy, (T)

and out(T) = ok, where T := xF1 (y', r, T').

Proof Let T be any path transcript that is compliant with CY/ having output data ok. By construc-

tion of Cyt (see Section 3.6.2), T is a path with i + 3 nodes for some T < t'. Let the i + 2 messages

in T be (0, So), ... , (i, Si), ok (i.e., all but the last message are timestamped states of the machine

M'); let the local inputs in T be a,, . . . , ai, I. Now construct a new transcript T' as follows. (See

Figure 3-5 for a diagram of an example where r = 2 and i = 4.) First create i + 2 source nodes

(necessarily labeled with 1), and "above" them create i leaf nodes; label the i-th leaf node with

ai for i = 1, ... , t+ 1 and the (i+ 1)-th leaf node with I. Then connect the first source node to

the first leaf node, the last source node to the last leaf node, and every intermediate source node to

the two adjacent leaf nodes. Label the edge going from the first source node to the first leaf node

with (0, 0, So), the edge going from the last source node to the last leaf node with (0, i + 1, ok),

and the two outgoing edges of the i-th source node with (0, i - 1, Si-1) for i = 2, ... , i + 1. We

have now constructed the "base" of the tree of T'; we now iteratively construct the rest of the tree

by always trying to group sets of r consecutive nodes of the same height together under a parent;

when this cannot be done anymore, all the topmost nodes point directly to a root, which itself points

to a sink. More precisely, first group every consecutive set of r leaves (leaving any leftover leaves

alone) and give a single parent (i.e., first level node) to each set of r leaves; label every edge from

a leaf to its parent with (1, -r, S, r', S') where (0, r, S) and (0, r', S') are the first and second mes-

sages into the leaf. Then group every consecutive set r of first-level nodes (leaving any leftover

first-level nodes alone) and give a single parent (i.e., second-level node) to each set of r leaves;

label every edge from a first-level node to its parent with (2, 7i, Si, 7', S,.) where (1, Ti, Si, r, S')

and (1, rr, Sr, r', Sr.) are the first and last messages into the first-level node; proceed in this manner,

"merging" timestamp-state pairs of sets of r nodes at the same level, until no more grouping can

130

be performed. Then take all the top-level nodes of the trees of different heights and make them all

children of a new "root" node; these edges are again labeled with suitable level numbers and two

timestamp-state pairs. Every internal node is labeled with 1. Finally, put an edge with the message

(data, ok) connecting the root to a sink node (necessarily labeled with _). It is easy to see that T'

is compliant with TREECg' and indeed has output data (data, ok). Clearly, this transformation can

be performed efficiently by a function 'To.

(0,SO) (1,S1) (2,S2) (3,S 3) (4, S 4) ok

(data, ok)
(data, ok)

L
(3, 0, So, 4, S4)

(2, 0, So, 2, 2) (2, 2, S2, 4, S4)

(1, 0, so, 1, SO) (1, 1, S1, 2, S2) (1, 2, S2, 3, S3) (1, 3, S3, 4, S4) (1, 4, S4, 5, ok)

a, a a3 a4

(0,0O) 0,1,Sii) 0,2,S 2)/ 0,3,S3 0,4,S 4 0, 5, ok)

Figure 3-5: Going from T to T' and vice versa, with in-degree r = 2 and a

computation with i = 4.

Conversely, let T' be any transcript that is compliant with respect to TREEC)tr and has out-

put data ok. We show how to "extract" a transcript T compliant with CY/ having output data ok.

According to TREECtr, the only way to obtain the message (data, ok) is to receive messages

(di, ii, Sj, Tr, Sj) with consistent timestamp-state pairs, Ti = 0, and S'., = ok. Again according

to TREECtr, the only way to obtain (di, -r, Si, ri', Sj) with di > 1 is to receive r messages of

level di - 1 that correctly "collapse" to the message; if instead di = 1, the only way to obtain the

message is two receive two messages (0, r, S) and (0, r', S'), consistent with the timestamps and

states, such that CY,((-', S'); ((r, S)), Iinp) and -r' = T + 1 for some local input linp. Thus, the

leaves of T' essentially form a Cy,-compliant path transcript that ends with message ok, so we can

construct T from T' by taking in order the messages we find at the leaves of the tree T'. Clearly,

this transformation can be performed efficiently by a function XF 1. E

Step 2: Construct a new PCD system. Having shown how to construct TREEC' r from Cy,, we
it

131

sketch how to construct a PCD system that leverages TREEC'/r. Concretely, given a PCD system

(G, P, V) for constant-depth compliance predicates, we need to construct a path PCD system (G',

P', V') for Ch = C / (over a random choice of h). Very roughly, the construction is as:

" The new generator G', on input security parameter 1 k and time bound B, draws h from W,

runs the old generator G on input (1k, B') to obtain (a, r), and then outputs (a', r') :=

((h, a), (h, -r)). Intuitively, B' has to be larger than B to ensure that the computation in

TREEC r in addition to computation of Cy (e.g., evaluations of h, consistency comparisons,
Y

and so on) can fit within the time bound B'. So suppose that evaluating CY' at any node of a

distributed computation transcript T takes time at most B; then, evaluating TREEC1r at any

node of a corresponding distributed computation transcript T' (obtained following the proof

of Lemma 3.7.4) takes time poly(k + r + B). Thus picking B' = poly(k + r + B) for some

poly that only depends on W suffices.

9 The new prover P', given reference string a', output data z., local input Iin p, input data zi and

proof 7ri, proceeds as follows. First it parses a' as (h, a) and uses h to construct TREEC r.1

Then parses iri as (i, z,... , IZD, 7 1 , ... , rD), where i is a counter indicating how many

nodes have computed on the path already, and the remaining vectors are data and proofs

corresponding to a "vertical slice" of a virtual tree on top of the computation path so far.

Given this information and using a, P' invokes PTREEC r to first create a proof for the current

node (which should be interpreted as a new leaf added to the tree), and then, potentially,

invoke lPTREEC r additional times to merge r nodes at the same level of the tree, until there

are no such nodes left. Having produced all these proofs, P' updates the information in

Zi,.. ., ZD and 7r, ... ,7FD, and then outputs (i + 1, zi, .. ., ZD, 7r1 , ... 7rD)- In sum, the

"real" prover P' is simulating in his mind many "virtual" provers PTREEC r that maintain a

distributed computation over a growing tree.

" The new verifier V', given verification state i-', data z, and proof 7r, proceeds as follows. First

it parses r' as (h, r) and uses h to construct TREEC Tr. Then uses T to invoke VTREEC&r on

z and the appropriate subproof of 7r.

The above description is especially sketchy because for now we are avoiding the delicate issue of

which subproof the verifier should actually verify. We deal with this issue, and tackle other issues

that do not arise in the case of the compliance predicate CY/, in the general case, described in full

details in the next subsection.

132

3.7.2 General Case

The compliance predicate CY, is very specific: it is the RAM Checker of a poly(k)-space random

access machine. In Section 3.7.1 we explained how to convert CY, into a "semantically-equivalent"

compliance predicate TREEC4,r of much smaller depth, and then sketched how to construct a PCD
Y

system for C , by using a path PCD system for TREEC' r. In this section we generalize the ideas

of Section 3.7.1 to any (polynomial-depth) compliance predicate C. We again proceed in two steps:

1. First, we show how to transform any compliance predicate C to a "tree" version TREEC with

much smaller depth. To make this work in the general case we need to be more careful

because the data in the distributed computation may not be small. (In the case of CY,, the

data was of length poly(k + Iy'I).) Thus, instead of comparing this data as we go up the tree,

we compare hashes of data. Furthermore, we also need to properly handle every potential

output of the distributed computation, while in Section 3.7.1 we only showed how to handle

the output ok of Cy/.

2. Second, we construct a path PCD system (G', P', V') for any polynomial-depth C. As be-

fore, the idea is to map C to TREEC, which has constant depth, and use a PCD system for

constant-depth compliance predicates to enforce TREEc. In Section 3.7.1 we only sketched

the construction for the special case; here we shall give all the details for the general case.

Details follow.

Step 1: Engineer a new compliance predicate. We start again by giving the mapping from C to

TREEC; this construction will be quite similar to the one we gave in Construction 3.7.2, except that,

as already mentioned, we will be comparing hashes of data when going up the tree, rather than the

original data itself.

Construction 3.7.5. Let 1 be a collision-resistant hash function family. For any compliance pred-

icate C, h E XL and r E N, define the following compliance predicate:

TREE '"(zo; z, linp) ckf

1. Input State

If zi = I and linp = :

(a) Verify that z. equals (0, r, z) for some r, z.

(b) If r = 0, verify that C(z; 1, 1) accepts.

133

2. Leaf Node Stage

If zo = (1, r, p, r', p') and zi = ((0,ri, zi), (0, T2, 2)) for some r, p, r', p', ri, zi,r 2, z2:

(a) Verify that r2 = -1 + 1, -r = ri, andr' = 72.

(b) Verify that p = h(zi) and p' = h(z 2).

(c) Verify that C(z2; (zi), inp) accepts.

3. Internal Node Stage

If zo = (d+, -r, p, r', p') and zi = ((d, ri, pi, j, p'))i forsome r, p, r' ' P7, . r, Z1, . . Zr:

(a) Verify that r = r1, l = r2, 72 = r3, and so on until 7'_= Tr, ' = T'.

(b) Verify that p = p1, p'1 = P2, P1 = P3, and so on until p' = P, p' =

4. Output Stage

Ifzo = (data, z) and zi ((di, i, pi, ri, p' for some z, r' di, dr', T1 ,rl, Z,, Zr/:

(a) Verify that il = r2, r& = r3 , and so on until ',_ = rri.

(b) Verify thatp = P2, p'2 = p3, and so on until p', = Pr'.

(c) Verify that-r1 = Oand p', = h(z).

5. If none of the above conditions hold, reject.

As promised, the depth of the new compliance predicate TREEc' is much better than that of

C:

Lemma 3.7.6. For any compliance predicate C, h E 'W, and r E N,

d)TREE' <logr -d(C)J

Proof Any transcript compliant with TREEh,r consists of disjoint trees. In each such tree, nodes

of different heights are forced to directly point to the root of the tree, and other nodes of the same

height are always grouped in sets of size r. Thus, the "worst possible height", given that any tree

can have at most d(C) leaves, is given by Llog, d(C)J + 1 (achieved by making maximal use of

merging nodes of the same height).

As in Section 3.7.1, the depth reduction is meaningful because we can accompany it with guar-

antees that ensure that even if we switch to the new compliance predicate TREE'hr, the "semantics"C

of the compliance predicate are preserved. Namely, given a transcript T compliant with C and with

output data z., we can efficiently produce a new transcript T' compliant with TREEc' r and with

output data (data, z.). Conversely, given a transcript T' compliant with TREEc' and with output

134

data (data, z.), we can efficiently produce a new transcript T compliant with C and with output

data z.. More precisely, the reverse direction holds provided that T' is produced by an efficient

adversary A (when given as input (C, h, r) for a random h), because the guarantee relies on the

adversary not being able to find collisions in h.

Lemma 3.7.7. There exist efficient functions xFO, T: {0, 1}* -+ {0, 1}* such thatfor every com-

pliance predicate C and in-degree parameter r E N:

" For every h E W, output data z., and path transcript T with C(T) and out(T) = z., it holds

that TREEhCr(T') = 1 and out(T') = (data, z.), where T' := o(C, h, r, T).

" For every polynomial-size adversary A and sufficiently large k E N,

h <- Wk

Pr TREE ,,r (T') = 1 T' +- A(C, h, r) <negl(k)
C(T) 7 1 V out(T) # zo T +- Ti(C, h, r, T')

(data, z.) +- out(T')

Proof Let T be any path transcript that is compliant with C; T is a path with a + 2 nodes for some

a < d(C). Let the messages in T be zo, ... , za; in particular, the output message zo := out(T)

of T is equal to za; let the local inputs in T be In pi, ... , in pa. Now construct a new transcript T'

as follows. (See Figure 3-6 for a diagram of an example where r = 2 and d = 5.) First create

j + 1 source nodes (necessarily labeled with 1), and "above" them create a leaf nodes; label the

i-th leaf node with Iin p; for i = 1, . . . , d. Then connect the first source node to the first leaf node,

the last source node to the last leaf node, and every intermediate source node to the two adjacent

leaf nodes. Label the edge going from the first source node to the first leaf node with (0, 0, zo),

the edge going from the last source node to the last leaf node with (0, d, za), and the two outgoing

edges of the i-th source node with (0, i - 1, zi- 1) for i = 2,... , d. We have now constructed the

"base" of the tree of T'; we now iteratively construct the rest of the tree by always trying to group

sets of r consecutive nodes of the same height together under a parent; when this cannot be done

anymore, all the topmost nodes point directly to a root, which itself points to a sink. More precisely,

first group every consecutive set of r leaves (leaving any leftover leaves alone) and give a single

parent (i.e., first level node) to each set of r leaves; label every edge from a leaf to its parent with

(1, r, h(z), r', h(z')) where (0, -r, z) and (0, -r', z') are the first and second messages into the leaf.

135

Then group every consecutive set r of first-level nodes (leaving any leftover first-level nodes alone)

and give a single parent (i.e., second-level node) to each set of r leaves; label every edge from a first-

level node to its parent with (2, ri, pi, r', p') where (1, ri, pi, r, p') and (1, Tr, Pr, r', p') are the

first and last messages into the first-level node; proceed in this manner, "merging" timestamp-hash

pairs of sets of r nodes at the same level, until no more grouping can be performed. Then take all the

top-level nodes of the trees of different heights and make them all children of a new "root" node;

these edges are again labeled with suitable level numbers and two timestamp-hash pairs. Every

internal node is labeled with _. Finally, put an edge with the message (data, za) connecting the

root to a sink node (necessarily labeled with _). It is easy to see that T' is compliant with TREEc'

and indeed has output data (data, za). Clearly, this transformation can be performed efficiently by

a function IO.

(data, z5)

(3, 0, po, 4, p4

(2 , 0, po, 2, p2) (2 ,2, p2, 4 , p4)

(1, 0, po, 1, pI) (1, , pl,
2
, p2) (1,2,P2,3,p3) (1, 3,P3,4,p4) (1, 4, p4,5, ps)

inp, nIp2 Ip linp4 linp5

(0, 0, zo) 0, 1, Z, , 2, 0, 3, ZA , 4, z4 (5 z)

Figure 3-6: Going from T to T' and vice versa, with in-degree r = 2 and a
computation with d = 5. Here pi = h(zi) for i = 1, . .. , 5.

With all but negligible probability in k over a random choice of h in 7 k, on input (C, h, r), the

adversary A does not find any collisions for h. Conditioned on A not having found any collisions

and outputting a transcript T' compliant with TREE ' r having output data (data, z.), we show

h,&rhow to "extract" a transcript T compliant with C having output data z.. According to TREEc' ,the

only way to obtain the message (data, z.) is to receive messages (di, ri, pi, r-5 , p') with consistent

timestamp-hash pairs, Ti = 0, and p'i = h(z.). Again according to TREE, ', the only way to

obtain (di,-ri, pi, if, p') with di > 1 is to receive r messages of level di - 1 that correctly "collapse"

to the message; if instead di = 1, the only way to obtain the message is two receive two messages

136

(0, -r, z) and (0, -r, z'), consistent with the timestamps and hashes, such that C(z'; z, Iin p) and r' =

-r +1 for some local input Iin p. Thus, the leaves of T' essentially form a C-compliant path transcript

that ends with message z., so we can construct T from T' by taking in order the messages we find

at the leaves of the tree T'. Clearly, this transformation can be performed efficiently by a function

i1. ED

Step 2: Construct a new PCD system. Having shown how to construct TREE'&r from C, we

need to construct a PCD system that leverages TREEc, . Concretely, given a PCD system (G, P,

V) for constant-depth compliance predicates, we explain how to construct a path PCD system (G',

P', V') for polynomial-depth compliance predicates. The high-level idea is as follows.

* The new generator G', on input security parameter 1 k and time bound B, draws h from 7,

runs the old generator G on input (1k, B') to obtain (o,, -r), and then outputs (o', r')

((h, o), (h, r)). As explained in Section 3.7.1, B' has to be larger than B, and picking B' =

poly(k + r + B) for some poly that only depends on Wf suffices.

" Given a compliance predicate C, the new prover P' , given reference string or', output data zo,

local input linp, input data zi and proof iri, proceeds as follows. First it parses o' as (h, o)

and uses h to construct TREE Then it uses PEEh,&r to generate a new leaf message andTRE~' .The ituse 'PTREE

proof. Then it parses 7ri as a vector of proofs, each corresponding to a tree root, and again

uses PTREEh,A ,r to "merge" groups of r message-proof pairs corresponding to the same level

of the tree, until there are no such groups to be found. Essentially, P' is using PTREEh'

to dynamically maintain a "vertical slice" of a tree-like distributed computation compliance

with TREEc' , arising from a path distributed computation compliant with C.

" Given a compliance predicate C, the new verifier V', given verification state T', data z, and

proof 7r, proceeds as follows. First it parses r' as (h, r) and uses h to construct TREE'.

Then uses r to invoke VTREEh,ir on z and the appropriate subproof of 7r.

The above sketch leaves out many details; see Figure 3-7 for a detailed construction.

137

Ingredients. A PCD system (G, P, V) for constant-depth compliance predicates and a collision-
resistant hash-function family H. In the construction, one should take the in-degree parameter r to
equal k.

Output. A path PCD system (G', P', V') for polynomial-depth compliance predicates. (In particular,
P' expects only a single proof-carrying message.)

The new generator G'. Given security parameter 1k and time bound B, G' proceeds as follows:
1. h +- Wk;

2. (a, -) +- G(1k, poly(k + r + B)), where poly only depends on W;
3. o' := (h, o);
4. r' := (h, r);
5. output (a', r').

The new prover P'. Given a polynomial-depth compliance predicate C, reference string o', output data
z., local input Iinp, input data zi and proof 7ri, P,' proceeds as follows:

1. parse a' as (h, a) and construct TREE, r (see Construction 3.7.5);
2. parse 7ri as (7ra,i,zl,...,zri,..., WD);
3. set z! := (0, i, zi) and compute 7ro,i +- PTREEh, Ar (U, Zf, 1,1, 1);
4. set' := (0, i + 1, z.) and compute 7ro,i+1 - ,r (, Z,,1);

5. pi +- h(zi);
6. pi+1 +- h(zo);
7. 7r,i+ +- Ptr cAr t(, (1, i, pi, i + 1, pi1), ,in)p, (z!, z;));
8. add an extra coordinate to the end of z and set it to (1, i, Pi, i + 1, Pi+);
9. add an extra coordinate to the end of 7r, and set it to 7r1,i+1;

10. for d = 1, ... , D (in this order), if there are r coordinates in Zd then:
(a) parse Zd as ((d,7j, p , r,, p)

(b) ra+,i+1+- TREh,A~r (0, (d + 1, 71, P1, 7-d, P'), iZd, 7rd);

(c) set Zd and 7rd to be the vector with zero coordinates;
(d) add an extra coordinate to the end Of Zd+1 and set it to (d + 1, 71 , pi, Tr, p');
(e) add an extra coordinate to the end of 7rd+1 and set it to 7rd+1,i+i;

11- 7-all + PTREEh,&r (, zo, I,1 Z o ... OZD, 0 0 .. o 7rD);

12. output (7ra,i+1,z,...,zD,rl,..., rD).

The new verifier V'. Given a polynomial-depth compliance predicate C, verification state T', data z,
and proof 7r, V' proceeds as follows:

1. parse r' as (h, r) and construct TREE h,4r (see Construction 3.7.5);
2. parse 7ri as (7ra, i, zi,.. . , Z , , ., 7rD);
3. b +- VTREE h, 4r (7-, z, 7rall)>

4. output b.

Figure 3-7: The transformation DEPTHREDW, which constructs (G', P', V')
from (G, P, V).

Remark 3.7.8 (depth reduction beyond paths). Focusing 6n paths yields the simplest example of

a PCD Depth-Reduction Theorem. We could modify the mapping from C to TREEC, as well as

the corresponding construction of (G', P', V'), to also support distributed computations that evolve

over graphs that are not just paths. For example, we could have a PCD Depth-Reduction Theorem

for graphs that have the shape of a "Y" instead of for paths, by building a wide Merkle tree inde-

138

pendently on each of the three segments of the "Y". More generally, the PCD Depth-Reduction

Theorem works at least for graphs satisfying a certain property that we now formulate. Let G be a

directed acyclic graph with a single sink s; for a vertex v in G, define #(v) 0 if v is a source

and /(v) := (deg(v) - 1) + Ep parent ofv q (p) otherwise; then define 4(G) : (s). Essentially,

(G) measures how "interactive" is the graph G when viewed as a distributed computation; see

Figure 3-8 for examples. Having defined this measure of interactivity, one can verify that the PCD

Depth-Reduction Theorem holds for all graphs G for which P(G) is a fixed polynomial in the secu-

rity parameter k: namely, assuming that collision-resistant hash functions exist, any PCD system for

constant-depth compliance predicates can be efficiently transformed into a corresponding "C-graph

PCD system" for polynomial-depth compliance predicates, where C is the class of graphs G for

which 4D(G) = poly(k). (And, as in the basic case, the verifiability properties carry over, as do

efficiency properties.)

Figure 3-8: For the path graph, 4D = 0; for the "Y" graph, D = 1; for the "braid"
graph, (D = 2e+i - 1. The first two graphs are not very "interactive", whereas
the last one is.

3.8 Putting Things Together

In Section 3.1.5 we explained at high level how our three main tools can be combined to obtain our

main theorem. In Sections 3.5, 3.6, and 3.7, we have provided details for each of our three tools;

we now provide additional details for how these tools come together to obtain our main theorem.

Theorem 3.8.1 (Main Theorem (Theorem 4 restated)). Let W be a collision-resistant hash-function

family.

1. Complexity-Preserving SNARK from any SNARK. There is an efficient transformation TR

such that for any publicly-verifiable SNARK (G, P, V) there is a polynomial p for which (G*,

P*, V*) := TW(G, P, V) is a publicly-verifiable SNARK that is complexity-preserving with a

polynomial p (see Definition 3.3.2), i.e.,

139

* the generator G*(1 k) runs in time p(k) (in particular there is no expensive preprocessing);

" the prover P*(o-, (M, x,t), w) runs in time (IMI+lx+t)-p(k) and space (IMI+lxl+s)-p(k)

when proving that a t-time s-space N P random-access machine M accepts (x, W);

" the verifier V*(r, (M, x, t), 7r) runs in time (IMI + x) -p(k).

2. Complexity-Preserving PCD from any SNARK. There is an efficient transformation T' such

that for any publicly-verifiable SNARK (G, P, V) there is a polynomial p for which (G*, P*,

V*) T' (G, P, V) is a publicly-verifiable PCD for constant-depth compliance predicates

that is complexity-preserving with polynomial p (see Definition 3.4.12), i.e., for every constant-

depth compliance predicate C,

" the generator G*(1k) runs in time p(k);

" theprover Ph(o-, z.,I inp, zi ,7ri) runs in time (C1 +t) -p(k) and space (ICI + s) -p(k) when

proving that a message z. is C-compliant, using local input linp and received inputs zi, and

evaluating C(z.; Iin p, zi) takes time t and space s;

" the verifer V6(r, z, ir) runs in time (IC + Izi) -p(k).

Assuming a fully-homomorphic encryption scheme ., there exist analogous transformations T-,e

and T', for the designated-verifier case.

Proof Let (G, P, V) be any SNARK, and assume (for the worst) that it is a preprocessing SNARK.

In particular, there are (potentially large) polynomials p and q such that the following holds. The

generator G(lk, B) runs in time p(B + k), and produces a reference string and verification state that

allow proving and verifying statements y = (M, x, t) with t < B. The prover P(o, (M, x, t), w)

runs in time p(IMI + lxi + B + k) and space q(IMI + lxi + B + k). The verifier V(r, (M, x, t), 7r)

runs in time p(IyI + k).

We invoke the SNARK Recursive Composition Theorem on (G, P, V) to obtain a correspond-

ing PCD system (G, P, V) for constant-depth compliance predicates, and then the PCD Depth-

Reduction Theorem to obtain a corresponding path PCD system (G', P', V') for polynomial-depth

compliance predicates.

The efficiency of the PCD system (G', P', V') is comparable to that of the SNARK (G, P, V)

we started with. In other words, there is an "overhead polynomial" p' such that the following holds.

The PCD generator G'(1k, B) runs in time p(B + k) -p'(k), and produces a reference string and

verification state that only for for B-bounded (path) distributed computations (see Definition 3.4.6):

140

namely, they allow proving and verifying compliance of path distributed computations where com-

puting C at each node's output takes time t < B. The PCD prover P' (a, z., linp, zi, 7ri) runs in

time p(ICI + B + k) -p'(k) and space q(ICI + B + k) -p'(k). The PCD verifier V (r, z, 7r) runs in

time p(ICI + Izi + k) -p'(k). In addition, if (G, P, V) is publicly-verifiable then so is (G', P', V');

if (G, P, V) is designated-verifier then so is (G', P', V').

Given the PCD system (G', P', V'), we construct a complexity-preserving SNARK (G*, P*,

V*) as follows. The new generator G*, given input 1 k, outputs (o', r') := ((h, a), (h, r)), where

h <- Wk, (a, r) +- G'(1k, kc), and c is a constant that only depends on W (see below). The new

prover P*, given a reference string o' = (h, a), instance y = (M, x, t), and a witness w, computes

the compliance predicate Ch given by the Locally-Efficient RAM Compliance Theorem and, using

the prover P', computes a proof for each message in the path distributed computation obtained from

(M, x, t) and w (each time using the previous proof); it outputs the final such proof as the SNARK

proof. The time required to compute Ch at any node is only poly(k + IyI) where poly only depends

on X. We can assume, without loss of generality, that IMI and lxi are bounded by a fixed poly(k).

(If that is not the case (e.g., M encodes a large non-uniform circuit), P* can work with a new

instance (Uh, z, poly(k) + t), where Uh is a universal random-access machine that, on input (,),

parses Cv as (M, x, t, w), verifies that i = h(M, x, t), and then runs M(x, w) for at most t steps.)

Thus, poly(k + IyI) = k for a constant c that only depends on W; kC determines the "preprocessing

budget" chosen above in the construction of G*. Finally, the new verifier V* similarly deduces Ch

and uses V' to verify the proof.

Recall that, when applying the Locally-Efficient RAM Compliance Theorem, the messages and

local inputs for the path distributed computation are computed from (M, x, t) and w on-the-fly,

one node a time in topological order, using the same time and space as M does (up to a fixed

poly(k) factor). Thus overall, we have "localized" the use of the (inefficient) PCD system (G',

P', V') (obtained from the inefficient SNARK (G, P, V)). Thus, the new SNARK (G*, P*, V*) is

complexity preserving: the generator G* runs in time p(kc + k) -p'(k), the prover P* runs in time

t -poly(k) -p(k'+ k) -p'(k) and space s -poly(k) -q(kc+ k) -p'(k) (so time and space are preserved

up to fixed poly(k) factors), and the verifier V* runs in time IyI - poly(k).

The proof of knowledge property of (G*, P*, V*) follows from the proof of knowledge property

of (G', P', V') and the guarantee of the Locally-Efficient RAM Compliance Theorem. Concretely,

except with negligible probability over a random choice of (a', T'), if a polynomial-size prover P*

on input a', outputs (y, 7r) such that V*(r', y, 7r) = 1 (and thus, such that V' h(r, ok, 7r) 1), we
CY

141

can efficiently extract from P* an entire Ch-compliant distributed computation transcript T with

out(T) = ok, and then (by the Locally-Efficient RAM Compliance Theorem) we can efficiently

extract from T a witness w such that M(x, w) = 1.

To prove the second item of the theorem (namely, obtaining a complexity-preserving PCD sys-

tem), we invoke again the SNARK Recursive Composition Theorem and the PCD Depth-Reduction

Theorem, but this time we start with the complexity-preserving SNARK (G*, P*, V*); the resulting

PCD systems are complexity preserving. E

142

Bibliography

[ABOROO] William Aiello, Sandeep N. Bhatt, Rafail Ostrovsky, and Sivaramakrishnan Ra-
jagopalan. Fast verification of any remote procedure call: Short witness-
indistinguishable one-round proofs for NP. In Proceedings of the 27th International
Colloquium on Automata, Languages and Programming, ICALP '00, pages 463-474,
2000.

[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In Proceedings
of the 4th Theory of Cryptography Conference, TCC '07, pages 118-136, 2007.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In Proceedings of the 37th International
Colloquium on Automata, Languages and Programming, ICALP '10, pages 152-163,
2010.

[ALM+98a] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501-555, 1998. Preliminary version in FOCS '92.

[ALM+98b] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501-555, 1998. Preliminary version in FOCS '92.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new charac-
terization of NP. Journal of the ACM, 45(1):70-122, 1998. Preliminary version in
FOCS '92.

[AV77] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for hamiltonian
circuits and matchings. In Proceedings on 9th Annual ACM Symposium on Theory of
Computing, STOC '77, pages 30-41, 1977.

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interac-
tive proofs and their efficiency benefits. In Proceedings of the 32nd Annual Interna-
tional Cryptology Conference, CRYPTO '12, pages 255-272, 2012.

[BCC88] Gilles Brassard, David Chaum, and Claude Crdpeau. Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences, 37(2):156-189, 1988.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable col-
lision resistance to succinct non-interactive arguments of knowledge, and back again.
In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
ITCS '12, pages 326-349, 2012.

143

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-

sition and bootstrapping for SNARKs and proof-carrying data. In Proceedings of the

45th ACM Symposium on the Theory of Computing, STOC '13, pages 111-120, 2013.

[BCGT13a] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Fast reductions

from RAMs to delegatable succinct constraint satisfaction problems. In Proceedings

of the 4th Innovations in Theoretical Computer Science Conference, ITCS '13, pages

401-414, 2013.

[BCGT13b] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete

efficiency of probabilistically-checkable proofs. In Proceedings of the 45th ACM
Symposium on the Theory of Computing, STOC '13, pages 585-594, 2013.

[BCI+ 13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.

Succinct non-interactive arguments via linear interactive proofs. In Proceedings of

the 10th Theory of Cryptography Conference, TCC '13, pages 315-333, 2013.

[BEG+91] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Check-

ing the correctness of memories. In Proceedings of the 32nd Annual Symposium on

Foundations of Computer Science, FOCS '91, pages 90-99, 1991.

[Ben8l] Michael Ben-Or. Probabilistic algorithms in finite fields. In Proceedings of the 22nd

Annual IEEE Symposium on Foundations of Computer Science, FOCS '81, pages
394-398, 1981.

[Ben94] Josh Benaloh. Dense probabilistic encryption. In Proceedings of the Workshop on

Selected Areas of Cryptography, pages 120-128, 1994.

[Ber7O] Elwyn R. Berlekamp. Factoring polynomials over large finite fields. Mathematics of

Computation, 24(111):713-735, 1970.

[BFLS91] Laszl6 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking com-
putations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Sympo-

sium on Theory of Computing, STOC '91, pages 21-32, 1991.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM
Journal on Computing, 38(5):1661-1694, 2008. Preliminary version appeared in
CCC '02.

[BGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs and applications to coding. In Proceedings

of the 26th Annual ACM Symposium on Theory of Computing, STOC '04, pages 1-10,
2004.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Short PCPs verifiable in polylogarithmic time. In Proceedings of the 20th Annual

IEEE Conference on Computational Complexity, CCC '05, pages 120-134, 2005.

[BGV1 1] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of
computation over large datasets. In Proceedings of the 31st Annual International

Cryptology Conference, CRYPTO '11, pages 111-131, 2011.

144

[BHLMO9] Eli Ben-Sasson, Prahladh Harsha, Oded Lachish, and Arie Matsliah. Sound 3-query
PCPPs are long. ACM Transactions on Computation Theory, 1(2):7:1-7:49, 2009.
Preliminary version appeared in ICALP '08.

[BHZ87] Ravi B. Boppana, Johan Hastad, and Stathis Zachos. Does co-NP have short interac-
tive proofs? Information Processing Letters, 25(2):127-132, 1987.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC '88,
pages 1-10, 1988.

[BPO4] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-
round zero-knowledge protocols. In Proceedings of the 24th Annual International
Cryptology Conference, CRYPTO '04, pages 273-289, 2004.

[BSO8] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity.
SIAM Journal on Computing, 38(2):551-607, 2008. Preliminary version appeared
in STOC '05.

[BSVWO3] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-
efficient low degree tests and short PCPs via epsilon-biased sets. In Proceedings of the
35th Annual ACM Symposium on Theory of Computing, STOC '03, pages 612-621,
2003.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: Homomorphic en-
cryption for restricted computations. In Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference, ITCS '12, pages 350-366, 2012.

[BV07] Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. In Pro-
ceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,
FOCS '07, pages 41-51, 2007.

[BV1 1] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Proceedings of the 51st Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS '11, 2011.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation
using fully homomorphic encryption. In Proceedings of the 30th Annual International
Cryptology Conference, CRYPTO '10, pages 483-501, 2010.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified com-
putation with streaming interactive proofs. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, ITCS '12, pages 90-112, 2012.

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In
Proceedings of the 4th Annual ACM Symposium on Theory of Computing, STOC '72,
pages 73-80, 1972.

[CRR12] Ran Canetti, Ben Riva, and Guy N. Rothblum. Two protocols for delegation of com-
putation. In Proceedings of the 6th International Conference on Information Theoretic

Security, ICITS 12, pages 37-61, 2012.

145

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from

signature cards. In Proceedings of the 1st Symposium on Innovations in Computer
Science, ICS '10, pages 310-331, 2010.

[CT12] Alessandro Chiesa and Eran Tromer. Proof-carrying data: Secure computation on
untrusted platforms (high-level description). The Next Wave: The National Security

Agency's review of emerging technologies, 19(2):40-46, 2012.

[CTY11] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming
interactive proofs. Proceedings of the VLDB Endowment, 5(1):25-36, 2011.

[CZ81] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials

over finite fields. Mathematics of Computation, 36(154):587-592, 1981.

[Dam92] Ivan Damgfrd. Towards practical public key systems secure against chosen ciphertext
attacks. In Proceedings of the 11th Annual International Cryptology Conference,

CRYPTO '92, pages 445-456, 1992.

[DCL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an extractabil-
ity assumption. In Proceedings of the 4th Conference on Computability in Europe,

CiE '08, pages 175-185, 2008.

[DFH12] Ivan Damgird, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. In Proceedings of the 9th Theory of Cryptography Confer-
ence, TCC '12, pages 54-74, 2012.

[DFK+92] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. Low commu-
nication 2-prover zero-knowledge proofs for NP. In Proceedings of the 11th Annual
International Cryptology Conference, CRYPTO '92, pages 215-227, 1992.

[DGWO9] Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors and rank extractors for
polynomial sources. Computational Complexity, 18(1):1-58, 2009.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12,
2007.

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold.
Succinct NP proofs and spooky interactions, December 2004. Available at www.
openu.ac.il/home/mikel/papers/spooky.ps.

[EG85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469-472, 1985.

[FG12] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large polynomi-
als and matrix computations, with applications. Cryptology ePrint Archive, Report
2012/281, 2012.

[FGL+96] Uriel Feige, Shafi Goldwasser, Laszlo Lovdsz, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. Journal of the ACM,
43(2):268-292, 1996. Preliminary version in FOCS '91.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM, 32(2):374-382, 1985.

146

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification

and signature problems. In Proceedings of the 6th Annual International Cryptology

Conference, CRYPTO '87, pages 186-194, 1987.

[GenO9] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of

the 41st Annual ACM Symposium on Theory of Computing, STOC '09, pages 169-

178, 2009.

[GGP1O] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable comput-

ing: outsourcing computation to untrusted workers. In Proceedings of the 30th Annual

International Cryptology Conference, CRYPTO '10, pages 465-482, 2010.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span

programs and succinct NIZKs without PCPs. In Proceedings of the 32nd Annual

International Conference on Theory and Application of Cryptographic Techniques,

EUROCRYPT '13, pages 626-645, 2013.

[GH98] Oded Goldreich and Johan Ha'stad. On the complexity of interactive proofs with

bounded communication. Information Processing Letters, 67(4):205-214, 1998.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-

tion: Interactive proofs for Muggles. In Proceedings of the 40th Annual ACM Sympo-

sium on Theory of Computing, STOC '08, pages 113-122, 2008.

[GLR1 1] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation with-

out rejection problem from designated verifier CS-proofs. Cryptology ePrint Archive,

Report 2011/456, 2011.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer

and System Sciences, 28(2):270-299, 1984.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity

of interactive proof systems. SIAM Journal on Computing, 18(1):186-208, 1989.

Preliminary version appeared in STOC '85.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game

or a completeness theorem for protocols with honest majority. In Proceedings of the

19th Annual ACM Symposium on Theory of Computing, STOC '87, pages 218-229,
1987.

[GR05] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large

fields. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Com-

puter Science, FOCS '05, pages 407-418, 2005.

[Grol0] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Pro-

ceedings of the 16th International Conference on the Theory and Application of Cryp-

tology and Information Security, ASIACRYPT '10, pages 321-340, 2010.

[GS89] Yuri Gurevich and Saharon Shelah. Nearly linear time. In Logic at Botik '89, Sympo-

sium on Logical Foundations of Computer Science, pages 108-118, 1989.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear

length. Journal of the ACM, 53:558-655, July 2006. Preliminary version in STOC '02.

147

[GVWO2] Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. Computational Complexity, 11(1/2):1-53, 2002.

[GW1 1] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Proceedings of the 43rd Annual ACM Symposium on
Theory of Computing, STOC '11, pages 99-108, 2011.

[HK05] Johan Haistad and Subhash Khot. Query efficient PCPs with perfect completeness.
Theory of Computing, 1(1): 119-148, 2005.

[HS00] Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. Compu-
tational Complexity, 9(3-4):157-201, Dec 2000. Preliminary version in STACS '91.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge
protocols. In Proceedings of the 18th Annual International Cryptology Conference,
CRYPTO '98, pages 408-423, 1998.

[IKO05] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient conditions for
collision-resistant hashing. In Proceedings of the 2nd Theory of Cryptography Con-
ference, TCC '05, pages 445-456, 2005.

[IK007] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short
PCPs. In Proceedings of the Twenty-Second Annual IEEE Conference on Computa-
tional Complexity, CCC '07, pages 278-291, 2007.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, STOC '92, pages 723-
732, 1992.

[KR06] Yael Tauman Kalai and Ran Raz. Succinct non-interactive zero-knowledge proofs
with preprocessing for LOGSNP. In Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science, pages 355-366, 2006.

[KR08] Yael Kalai and Ran Raz. Interactive PCP. In Proceedings of the 35th International
Colloquium on Automata, Languages and Programming, ICALP '08, pages 536-547,
2008.

[KRO9] Yael Tauman Kalai and Ran Raz. Probabilistically checkable arguments. In Proceed-
ings of the 29th Annual International Cryptology Conference, CRYPTO '09, pages
143-159,2009.

[KY86] Anna R. Karlin and Andrew C. Yao. Probabilistic lower bounds for byzantine agree-
ment. Unpublished manuscript, 1986.

[Lip 11] Helger Lipmaa. Two simple code-verification voting protocols. Cryptology ePrint
Archive, Report 2011/317, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In Proceedings of the 29th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, EUROCRYPT '10, pages
1-23,2010.

148

[Meil2] Or Meir. Combinatorial PCPs with short proofs. In Proceedings of the 26th Annual
IEEE Conference on Computational Complexity, CCC '12, 2012.

[MH78] Ralph C. Merkle and Martin E. Hellman. Hiding information and signatures in trap-
door knapsacks. IEEE Transactions on Information Theory, 24(5):525-530, Sep
1978.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253-1298, 2000. Preliminary version appeared in FOCS '94.

[Mie08] Thilo Mie. Polylogarithmic two-round argument systems. Journal of Mathematical
Cryptology, 2(4):343-363, 2008.

[MR08] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. Journal of
the ACM, 57:1-29, June 2008. Preliminary version appeared in FOCS '08.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Proceedings of the 23rd
Annual International Cryptology Conference, CRYPTO '03, pages 96-109, 2003.

[NN90] Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions
and applications. In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, STOC '90, pages 213-223, 1990.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21st Annual ACM Symposium on Theory of Com-
puting, STOC '89, pages 33-43, 1989.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proceedings of the 17th International Conference On Theory And Ap-
plication Of Cryptographic Techniques, EUROCRYPT '99, pages 223-238, 1999.

[PQ12] Christophe Petit and Jean-Jacques Quisquater. On polynomial systems arising from a
Weil descent. In Proceedings of the 18th International Conference on the Theory and
Application of Cryptology and Information Security, ASIACRYPT '12, 2012.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic
proofs. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
STOC '94, pages 194-203, 1994.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
STOC '05, pages 84-93, 2005.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
STOC '90, pages 387-394, 1990.

[Rot 1] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In Pro-
ceedings of the 8th Theory of Cryptography Conference, TCC.' 11, pages 219-234,
2011.

[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a
sub-constant error-probability PCP characterization of NP. In Proceedings of the 29th
Annual ACM Symposium on Theory of Computing, STOC '97, pages 475-484, 1997.

149

[RVO9] Guy N. Rothblum and Salil Vadhan. Are PCPs inherent in efficient arguments?

In Proceedings of the 24th IEEE Annual Conference on Computational Complexity,
CCC '09, pages 81-92, 2009.

[SBV+ 13] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and
Michael Walfish. Resolving the conflict between generality and plausibility in verified

computation. In Proceedings of the 8th EuoroSys Conference, EuroSys '13, pages 71-
84, 2013.

[SBW1 1] Srinath Setty, Andrew J. Blumberg, and Michael Walfish. Toward practical and un-
conditional verification of remote computations. In Proceedings of the 13th USENIX
Conference on Hot Topics in Operating Systems, HotOS '11, pages 29-29, 2011.

[Sch78] Claus-Peter Schnorr. Satisfiability is quasilinear complete in NQL. Journal of the

ACM, 25:136-145, January 1978.

[Sha92] Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, 1992.

[SMBW12] Srinath Setty, Michael McPherson, Andrew J. Blumberg, and Michael Walfish. Mak-
ing argument systems for outsourced computation practical (sometimes). In Proceed-
ings of the 2012 Network and Distributed System Security Symposium, NDSS '12,
pages ???-???, 2012.

[SVP+12] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J. Blumberg, and
Michael Walfish. Taking proof-based verified computation a few steps closer to prac-
ticality. In Proceedings of the 21st USENIX Security Symposium, Security '12, pages
253-268, 2012.

[Va177] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathe-

matical Foundations of Computer Science, volume 53 of Lecture Notes in Computer
Science, pages 162-176. 1977.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Proceedings of the 5th Theory of Cryptography Conference,
TCC '08, pages 1-18, 2008.

[VZGPO1] Joachim Von Zur Gathen and Daniel Panario. Factoring polynomials over finite fields:

a survey. Journal of Symbolic Computation, 31(1-2):3-17, Jan 2001.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In Prceedings of the 32nd
International Colloquium on Automata, Languages and Programming, ICALP '05,
pages 140-152, 2005.

150

