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Abstract

We initiate the study of a proof system model that naturally combines two well-known models:
interactive proofs (IPs) and probabilistically-checkable proofs (PCPs). An interactive oracle proof (IOP)
is an interactive proof in which the verifier is not required to read the prover’s messages in their entirety;
rather, the verifier has oracle access to the prover’s messages, and may probabilistically query them.

IOPs simultaneously generalize IPs and PCPs. Thus, IOPs retain the expressiveness of PCPs, capturing
NEXP rather than only PSPACE, and also the flexibility of IPs, allowing multiple rounds of communication
with the prover. These degrees of freedom allow for more efficient “PCP-like” interactive protocols,
because the prover does not have to compute the parts of a PCP that are not requested by the verifier.

As a first investigation into IOPs, we offer two main technical contributions. First, we give a compiler
that maps any public-coin IOP into a non-interactive proof in the random oracle model. We prove
that the soundness of the resulting proof is tightly characterized by the soundness of the IOP against
state restoration attacks, a class of rewinding attacks on the IOP verifier. Our compiler preserves zero
knowledge, proof of knowledge, and time complexity of the underlying IOP. As an application, we obtain
blackbox unconditional ZK proofs in the random oracle model with quasilinear prover and polylogarithmic
verifier, improving on the result of Ishai et al. (2015).

Second, we study the notion of state-restoration soundness of an IOP: we prove tight upper and
lower bounds in terms of the IOP’s (standard) soundness and round complexity; and describe a simple
adversarial strategy that is optimal across all state restoration attacks.

Our compiler can be viewed as a generalization of the Fiat–Shamir paradigm for public-coin IPs
(CRYPTO ’86), and of the “CS proof” constructions of Micali (FOCS ’94) and Valiant (TCC ’08) for PCPs.
Our analysis of the compiler gives, in particular, a unified understanding of all of these constructions, and
also motivates the study of state restoration attacks, not only for IOPs, but also for IPs and PCPs.

Keywords: probabilistically checkable proofs, interactive proofs, Fiat–Shamir paradigm, computationally-sound proofs
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1 Introduction

The notion of proof is central to modern cryptography and complexity theory. The class NP, for example, is
the set of languages whose membership can be decided by a deterministic polynomial-time verifier by reading
proof strings of polynomial length; this class captures the traditional notion of a mathematical proof. Over the
last three decades, researchers have introduced and studied proof systems that generalize the above traditional
notion, and investigations from these points of view have led to breakthroughs in cryptography, hardness of
approximation, and other areas. In this work we introduce and study a new model of proof system.

1.1 Models of proof systems

We give some context by recalling three of the most well-known among alternative models of proof systems.

Interactive proofs (IPs). Interactive proofs were introduced by Goldwasser, Micali, and Rackoff [GMR89]:
in a k-round interactive proof, a probabilistic polynomial-time verifier exchanges k messages with an all-
powerful prover, and then accepts or rejects; IP[k] is the class of languages with a k-round interactive proof.
Independently, Babai [Bab85] introduced Arthur–Merlin games: a k-round Arthur–Merlin game is a k-round
public-coin interactive proof (i.e., the verifier messages are uniformly and independently random); AM[k] is
the class of languages with a k-round Arthur–Merlin game. Goldwasser and Sipser [GS86] showed that the
two models are equally powerful: for polynomial k, IP[k] ⊆ AM[k + 2]. Shamir [Sha92], building on the
“sum-check” interactive proof of Lund, Fortnow, Karloff, and Nisan [LFKN92], proved that interactive proofs
correspond to languages decidable in polynomial space: IP[poly(n)] = PSPACE. (Also see [Bab90].)

Multi-prover interactive proofs (MIPs). Multi-prover interactive proofs were introduced by Ben-Or,
Goldwasser, Kilian, and Wigderson [BGKW88]: in a k-round p-prover interactive proof, a probabilistic
polynomial-time verifier interacts k times with p non-communicating all-powerful provers, and then accepts
or rejects; MIP[p, k] is the class of languages that have a k-round p-prover interactive proof. In [BGKW88],
the authors show that two provers always suffice (i.e., MIP[p, k] = MIP[2, k]), and that all languages in
NP have perfect zero knowledge proofs in this model. Fortnow, Rompel, and Sipser [FRS88] show that
interaction with two provers is equivalent to interaction with one prover plus oracle access to a proof string,
and from there obtain that MIP[poly(n), poly(n)] ⊆ NEXP; Babai, Fortnow and Lund [BFL90] show that
NEXP has 1-round 2-prover interactive proofs, thus showing that MIP[2, 1] = NEXP.

Probabilistically checkable proofs (PCPs). Probabilistically checkable proofs were introduced by [FRS88,
BFLS91, AS92, ALM+98]: in a probabilistically-checkable proof, a probabilistic polynomial-time verifier
has oracle access to a proof string; PCP[r, q] is the class of languages for which the verifier uses at most r
bits of randomness, and queries at most q locations of the proof (note that the proof length is at most 2r). The
above results on MIPs imply that PCP[poly(n),poly(n)] = NEXP. Later works “scaled down” this result to
NP: Babai, Fortnow, Levin and Szegedy [BFLS91] show that NP = PCP[O(log n),poly(log n)]; Arora and
Safra [AS92] show that NP = PCP[O(log n), O(

√
log n)]; and Arora, Lund, Motwani, Sudan, and Szegedy

[ALM+92] show that NP = PCP[O(log n), O(1)]. This last is known as the PCP Theorem.

Researchers have studied other models of proof systems, and here we name only a few: linear IPs [BCI+13],
no-signaling MIPs [IKM09, Ito10, KRR13, KRR14], linear PCPs [IKO07, Gro10, Lip12, BCI+13, GGPR13,
PGHR13, BCI+13, SBW11, SMBW12, SVP+12, SBV+13], interactive PCPs [KR08, KR09, GIMS10].

We introduce interactive oracle proofs (IOPs), a model of proof system that combines aspects of IPs
and PCPs. (Later, in Section 1.3.1, we describe how interactive PCPs are a special case of IOPs.) Our work
focuses on cryptographic applications of this proof system, as we discuss next.
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1.2 Compiling proof systems into argument systems

The proof systems mentioned so far share a common feature: they make no assumptions on the computational
resources of a (malicious) prover trying to convince the verifier. Instead, many proof systems make “structural”
assumptions on the prover: MIPs assume that the prover is a collection of non-communicating strategies
(each representing a “sub-prover”); PCPs assume that the prover is non-adaptive (the answer to a message
does not depend on previous messages); linear IPs assume that the prover is a linear function, and so on.

In contrast, in cryptography, one often considers argument systems [BC86, BCC88, Kil92, Mic00]:
these are proof systems where soundness holds only against provers that have a bound on computational
resources (e.g., provers that run in probabilistic polynomial time). The relaxation from statistical soundness to
computational soundness allows circumventing various limitations of IPs [BHZ87, GH98, GVW02, PSSV07],
while also avoiding “structural” assumptions on the prover, which can be hard to enforce in applications.

Constructing argument systems. A common methodology to construct argument systems with desirable
properties (e.g., sublinear communication complexity) follows these two steps: (1) give a proof system
that achieves these properties in a model with structural restrictions on (all-powerful) provers; (2) use
cryptographic tools to compile that proof system into an argument system, i.e., one where the only restriction
on the prover is that it is an efficient algorithm. In other words, the compilation trades any structural
assumptions for computational ones. This methodology has been highly productive; see Figure 1 for some
examples that follow this paradigm. (On the flip side, many other argument systems are constructed, without
the explicit use of underlying proof systems, using cryptographic tools “directly”; for instance see [BCC88].
A partial list of more recent examples is [PR14, GHRW14, BGL+15, CHJV15, CH15, CCC+15, KP15].)

Proofs in the random oracle model. An idealized model for studying computationally-bounded provers
is the random oracle model [FS86, BR93], where every party has access to the same random function. A
protocol proved secure in this model can potentially be instantiated in practice by replacing the random
function with a concrete “random-looking” efficient function. While this intuition fails in the general case
[CGH04, BBP04, GK03, BDG+13], the random oracle model is nonetheless a useful testbed for cryptographic
primitives. In this paper we focus on proof systems in this model for which the proof consists of a single
message from the prover to the verifier. A non-interactive random-oracle proof (NIROP) for a relation R
is a pair of probabilistic polynomial-time algorithms, the prover P and verifier V, that satisfy the following.
(1) Completeness: for every instance-witness pair (x,w) in the relation R, Pr[Vρ(x,Pρ(x,w)) = 1] = 1,
where the probability is taken over the random oracle ρ as well as any randomness of P and V. (2) Soundness:
for every instance x not in the language of R and every malicious prover P̃ that asks at most a polynomial
number of queries to the random oracle, it holds that Pr[Vρ(x, P̃ρ) = 1] is negligible in the security parameter.

Prior NIROPs and our focus. Prior work uses the above 2-step methodology to obtain NIROPs with
desirable properties. For example, the Fiat–Shamir paradigm maps 3-message public-coin IPs to corre-
sponding NIROPs [FS86, PS96]; when invoked on suitable IP constructions, this yields very efficient zero
knowledge non-interactive proofs. As another example, Micali’s “CS proof” construction, building on [Kil92],
transforms PCPs to corresponding NIROPs; Valiant [Val08] revisits Micali’s construction and proves that it
is a proof of knowledge; when invoked on suitable PCPs, these yield non-interactive proofs of knowledge
that are extremely short and easy to verify. In this work we study the question of how to compile IOPs, which
generalize both IPs and PCPs, into NIROPs. As discussed below, our work ultimately leads to formulating
and studying a game-theoretic property of IOPs, which in turn motivates similar questions for IPs and PCPs.
We now turn to the discussion of our results. (We do not study the question of avoiding assuming random
oracles, as this question continues to be open for the aforementioned prior works and, also, our work.)
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proof model work crypto tools used properties of argument system
by transformation setup # of messages verifiability

IP (public-coin) [FS86, PS96] (explicitly-programmable) RO RO 1 public
[KR09] PIR none 2 private

NIZK w/ hidden bits [FLS90, PS05] OWF CRS 1 public
Σ-protocols [Lin15] (non-programmable) RO CRS + RO 1 public
PCP [Kil92, BG08] CRF none 4 public

[Mic00, Val08] (explicitly-programmable) RO RO 1 public
[BCCT12, DFH12, GLR11] extractable CRF none 2 private

MIP [BC12] extractable FHE none 2 private
MIP (no signaling) [KRR13, KRR14] PIR none 2 private
IPCP (public-coin) [KR09] PIR none 2 private
LIP (any) [BCI+13] linear-only encryption CRS 1 private
LIP (algebraic) [BCI+13] linear-only encoding CRS 1 public
IOP (public-coin) this work (explicitly-programmable) RO RO 1 public

Figure 1: Summary of some works (including this work) that obtain transformations from (information-theoretic)
proof systems to corresponding (cryptographic) argument systems. For each, we highlight the main cryptographic
tools used by the transformation and properties of the resulting argument system. These properties include: the
setup model; the number of messages exchanged by the prover and verifier (non-interactive argument systems are 1
message); and whether the verifier relies on public or private randomness. The abbreviations used in the table are:
CRF=“collision resistant functions”, CRS=“common reference string”, FHE=“fully homomorphic encryption”,
PIR=“private information retrieval”, RO=“random oracle”.

1.3 Results

We present three main contributions: one is definitional and the other two are technical in nature.

1.3.1 Interactive oracle proofs

A new proof system model. We introduce a new proof system model: interactive oracle proofs (IOPs).
This model naturally combines aspects of interactive and probabilistically checkable proofs; namely, an
IOP generalizes an interactive proof as follows: the verifier is not required to read the prover’s messages in
their entirety; rather, the verifier has oracle access to the prover’s messages (viewed as strings), and may
probabilistically query these messages. In more detail, a k-round IOP comprises k rounds of interaction. In
the i-th round of interaction: the verifier sends a message mi to the prover, which he reads in full; then the
prover replies with a message fi to the verifier, which he can query (via random access) in this and all later
rounds. After the k rounds of interaction, the verifier either accepts or rejects. See Figure 2 for a diagram.

Like the PCP model, two fundamental measures of efficiency in the IOP model are the proof length p,
which is the total number of bits in all of the prover’s messages, and the query complexity q, which is the
total number of locations queried by the verifier across all of the prover’s messages. Unlike the PCP model,
another fundamental measure of efficiency is the round complexity k; the PCP model can then be viewed as a
special case where k = 1 (and the first verifier message is empty).

Basic complexity-theoretic properties. We show that IOPs characterize NEXP (like PCPs); both sequential
and parallel repetition of IOPs yield (perfect) exponential soundness error reduction (like IPs); and any IOP
can be converted into a public-coin one (like IPs). These basic complexity-theoretic properties confirm that
our definition of IOP is a natural way to combine aspects of PCPs and IPs.

Motivation: efficiency. IOPs generalize both IPs, by treating the prover’s messages as oracle strings, and
PCPs, by allowing for more than 1 round. These degrees of freedom enable IOPs to retain the expressive
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power of PCPs (supporting all languages in NEXP, unlike IPs), while also allowing for additional efficiency.
For example, Ben-Sasson et al. [BCGV16] obtain unconditional zero knowledge via a 2-round IOP

with quasilinear proof length, and such a result is not known for PCPs (or even IPCPs [KR08]). More-
over, when combined with our compiler (see next contribution) we obtain blackbox unconditional zero-
knowledge with quasilinear prover and polylogarithmic verifier in the random-oracle model, improving on
results of [IMSX15].

More generally, Arora and Safra [AS98] introduce PCP proof composition, used by numerous later PCP
constructions (e.g., [ALM+98, HS00, BGH+04]). In a composed proof, the prover first writes a part π0 of
the proof (e.g., in [ALM+98] π0 is an evaluation of a low-degree multivariate polynomial, and in [BS08]
it is an evaluation of a low-degree univariate polynomial). Then, to demonstrate that π0 has certain good
properties (e.g., it is low degree), the prover also appends a (long) sequence of sub-proofs, where each
sub-proof allegedly demonstrates to the verifier that a subset of entries of π0 is “good”. Afterwards, in another
invocation of the recursion, the prover appends to each sub-proof a sequence of sub-sub-proofs, and so on. A
crucial observation is that the verifier typically queries locations of only a small number of such sub-proofs;
moreover, once the initial proof π0 is fixed, soundness is not harmed if the verifier randomly selects the set
of sub-proofs he wants to see and tells this to the prover. In sum, in many PCP constructions (including the
aforementioned ones), the proof length can be greatly reduced via interaction between the prover and verifier,
via an IOP.

Remark 1.1 (comparison with IPCP). Kalai and Raz [KR08] introduce and study interactive PCPs (IPCPs),
a model of proof system that also combines aspects of IPs and PCPs, but in a different way: an IPCP is an IP
in which the verifier additionally has oracle access to a PCP provided before the start of the interactive proof.
An IPCP can be viewed as a special case of an IOP, i.e., it is an IOP in which the verifier has oracle access to
the first prover message, but must read in full subsequent prover messages. The works of [KR08, GKR08]
show that boolean formulas with n variables, size m, and depth d have IPCPs where the PCP’s size is
polynomial in d and n and the communication complexity of the subsequent IP is polynomial in d and logm.
This shows that even IPCPs give efficiency advantages over both IPs and PCPs given separately.

𝑉
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…
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𝑚
⋮

𝑓 𝑓 𝑓
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Figure 2: An interactive oracle proof system.
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Figure 3: A non-interactive random-oracle proof system.

1.3.2 From interactive oracle proofs to non-interactive random-oracle proofs

We give a polynomial-time transformation that maps any public-coin interactive oracle proof (IOP) to a
corresponding non-interactive random-oracle proof (NIROP). We prove that the soundness of the output
proof is tightly characterized by the soundness of the IOP verifier against state restoration attacks, a class of
rewinding attacks on the verifier that we now describe.
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At a high level, a state restoration attack against an IOP verifier works as follows: the malicious prover
and the verifier start interacting, as they normally would in an IOP; at any moment, however, the prover can
choose to set the verifier to any state at which the verifier has previously been, and the verifier then continues
onwards from that point with fresh randomness. Of course, if the prover could restore the verifier’s state an
unbounded number of times, the prover would eventually succeed in making the verifier accept. We thus only
consider malicious provers that interact with the verifier for at most a certain number of rounds: for b ∈ N,
we say a prover is b-round if it plays at most b rounds during any interaction with any verifier. Then, we say
that an IOP has state restoration soundness ssr(x, b) if every b-round state-restoring prover cannot make the
IOP verifier accept an instance x (not in the language) with probability greater than ssr(x, b).

Informally, our result about transforming IOPs into NIROPs can be stated as follows.

Theorem 1.2 (IOP→ NIROP). There exists a polynomial-time transformation T such that, for every relation
R, if (P, V ) is a public-coin interactive oracle proof system for R with state restoration soundness ssr(x, b),
then (P,V) := T (P, V ) is a non-interactive random-oracle proof system for R with soundness

ssr(x,m) +O(m22−λ) ,

where m is an upper bound on the number of queries to the random oracle that a malicious prover can
make, and λ is a security parameter. The aforementioned soundness is tight up to small factors. (Good state
restoration soundness can be obtained, e.g., via parallel repetition as in Remark 1.6.)

Moreover, we prove that the transformation T is benign in the sense that it preserves natural properties of
the IOP. Namely, (1) the runtimes of the NIROP prover and verifier are linear in those of the IOP prover
and verifier (up to a polynomial factor in λ); (2) the NIROP is a proof of knowledge if the IOP is a proof of
knowledge; and (3) the NIROP is (malicious-verifier) statistical zero knowledge if the IOP is honest-verifier
statistical zero knowledge. See Theorem 7.1 for the formal statement; the statement employs the notion of
restricted state restoration soundness (see Section 5.4) as it allows for a tighter lower bound on soundness.

An immediate application is obtaining blackbox unconditional ZK in the random oracle model with
quasilinear prover and polylogarithmic verifier, improving on results of [IMSX15], by plugging the work of
[BCGV16] into our compiler.

Our compiler can be viewed as a generalization of the Fiat–Shamir paradigm for public-coin IPs [FS86,
PS96], and of the “CS proof” constructions of Micali [Mic00] and Valiant [Val08] for PCPs. Our analysis of
the compiler gives, in particular, a unified understanding of all of these constructions, and motivates the study
of state restoration attacks, not only for IOPs, but also for IPs and PCPs. (Indeed, we are not aware of works
that study the security of the Fiat–Shamir paradigm, in the random oracle model, applied to a public-coin IP
with arbitrary number of rounds; the analyses that we are aware of focus on the case of 2 rounds.)

Our next contribution is a first set of results about such kinds of attacks, as described in the next section.

Remark 1.3 (resetting, backtracking). We compare state restoration soundness with other soundness notions:
• State restoration attacks generalize resetting attacks [BGGL01], in which the prover invokes multiple

verifier incarnations with the same randomness prefix. Resettable soundness is thus bounded from above
by state restoration soundness (and so bounds on the former do not always imply bounds on the latter).
• State restoration is closely related to backtracking [BD16]. The two notions differ in that: (1) backtracking

“charges” more for restoring verifier states that are further into the past, and (2) backtracking also considers
the case of the verifier restoring states of the prover (as part of the completeness property of the protocol);
backtracking soundness is thus polynomially related to state restoration soundness.
Bishop and Dodis [BD16] give a compiler from a public-coin IP to an error-resilient IP, whose soundness
is related to the backtracking soundness of the original IP; essentially, they use hashing techniques to limit
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a malicious prover impersonating an adversarial channel to choosing when to backtrack the protocol. Their
setting is a completely different example in which backtracking, and thus state restoration, plays a role.

Remark 1.4 (zero knowledge and programmability). There are several notions of zero knowledge in the
random oracle model, depending on “how programmable” the random oracle is (see Remark 2.2). The notion
that we use is zero knowledge in the explicitly-programmable random oracle (EPRO) model; the stronger
notion in the non-programmable random oracle model is not achievable for NIROPs (see Appendix C). (And,
as in prior works, soundness and proof of knowledge do not rely on any programming of the random oracle.)

1.3.3 State restoration attacks on interactive oracle proofs

The analysis of our transformation from public-coin IOPs to NIROPs highlights state restoration soundness
as a notion that merits further study. We provide two results in this direction. First, we prove tight upper and
lower bounds on state restoration soundness in terms of the IOP’s (standard) soundness and round complexity.

Theorem 1.5. For any relation R, public-coin k-round IOP for R, and instance x not in the language of R,

∀ b ≥ k(x) + 1,
⌊

b

k(x) + 1

⌋
s(x)(1− o(1)) ≤ ssr(x, b) ≤

(
b

k(x) + 1

)
s(x) , 1

where ssr(x, b) is the state restoration soundness of IOP and s(x) its (standard) soundness for the instance x.
Also, the bounds are tight: there are IOPs that meet the lower bound and IOPs that meet the upper bound.

Remark 1.6 (good state restoration soundness). One way to obtain state restoration soundness 2−λ in the
general case is to apply r-fold parallel repetition to the IOP with r = Ω(k log b+λlog s(x) ); note that r is polynomially
bounded for natural choices of k, b, λ. This choice of r is pessimistic, because for IOPs that do not meet the
upper bound (e.g., they are “robust” against such attacks) a smaller choice of r suffices.

Second, we study the structure of optimal state restoration attacks: we prove that, for any public-coin
IOP, there is a simple state restoration attack that has optimal expected cost, where cost is the number of
rounds until the prover wins. This result relies on a correspondence that we establish between IOP verifiers
and certain games, which we call tree exploration games, pitting one player against Nature. We go in more
detail about this result in later sections (see Section 1.4 and Section 8).

1.4 Techniques

We summarize the techniques that we use to prove our technical contributions.
The transformation. Our transformation maps any public-coin IOP to a corresponding NIROP, and it
generalizes two transformations that we now recall.

The first transformation is the Fiat–Shamir paradigm [FS86, PS96], which maps any public-coin IP to a
corresponding NIROP, and it works as follows. The NIROP prover runs the interaction between the IP prover
and the IP verifier “in his head”, by setting the IP verifier’s next message to be the output of the random
oracle on the query that equals the transcript of previously exchanged messages. The NIROP prover sends a
non-interactive proof that contains the final transcript of interaction; the NIROP verifier checks the proof’s
validity by checking that all of the IP verifier’s messages are computed correctly through the random oracle.

1 We note that [BGGL01] prove an analogous upper bound on the more restrictive notion of resettable soundness (see Remark 1.3),
and does not imply our bound. Also, [BD16] prove an analogous, weaker upper bound on the related notion of backtracking soundness
(see Remark 1.3). Neither of the two studies lower bounds, or tightness of bounds.
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The second transformation is the “CS proof” construction of Micali [Mic00] and Valiant [Val08], which
maps any PCP to a corresponding NIROP, and it works as follows. The NIROP prover first commits to the
PCP via a Merkle tree [Mer89a] based on the random oracle, then queries the random oracle with the root of
this tree to obtain randomness for the PCP verifier, and finally sends a non-interactive proof that contains the
root as well as authentication paths for each query by the PCP verifier to the PCP; the NIROP verifier checks
the proof’s validity by checking that the PCP verifier’s randomness is computed correctly through the random
oracle, and that all authentication paths are valid. (The transformation can be viewed as a non-interactive
variant of Kilian’s protocol [Kil92, BG08] that uses ideas from the aforementioned Fiat–Shamir paradigm.)

Our transformation takes as input IOPs, for which both IPs and PCPs are special cases, and hence must
support both (i) multiple rounds of interaction between the IOP prover and IOP verifier, as well as (ii) oracle
access by the IOP verifier to the IOP prover messages. Given an instance x, the NIROP prover thus uses the
random oracle ρ to run the interaction between the IOP prover and the IOP verifier “in his head” in a way that
combines the aforementioned two approaches, as follows. First, the NIROP prover computes an initial value
σ0 := ρ(x). Then, for i = 1, 2, . . . , it simulates the i-th round by deriving the IOP verifier’s i-th message
mi as ρ(x‖σi−1), compressing the IOP prover’s i-th message fi via a Merkle tree to obtain the root rti, and
computing the new value σi := ρ(rti‖σi−1). The values σ0, σ1, . . . are related by the Merkle–Damgård
transform [Dam89, Mer89b] that, intuitively, enforces ordering between rounds. If there are k(x) rounds
of interaction, then ρ(x‖σk(x)) is used as randomness for the queries to f1, . . . , fk(x). The NIROP prover
provides in the non-interactive proof all the roots rti, the final value σk(x), the answers to the queries, and an
authentication path for each query. This sketch omits several details; see Section 6 and Figure 6.

Soundness analysis of the transformation. We prove that the soundness of the NIROP produced by the
above transformation is tightly characterized by the state restoration soundness of the underlying IOP. This
characterization comprises two arguments: an upper bound and a lower bound on the NIROP’s soundness. We
only discuss the upper bound here: proving that the soundness (error) of the NIROP is at most the soundness
(error) of the IOP against state restoration attacks, up to small additive factors.

The upper bound essentially implies that all that a malicious prover P̃ can do to attack the NIROP verifier
is to conduct a state restoration attack against the underlying IOP verifier “in his own head”: roughly, P̃ can
provide multiple inputs to the random oracle in order to induce multiple fresh samples of verifier messages
for a given round so to find a lucky one, or instead go back to previous rounds and do the same there.

In more detail, the proof itself relies on a reduction: given a malicious prover P̃ against the NIROP
verifier, we show how to construct a corresponding malicious prover P̃ that conducts a state restoration attack
against the underlying IOP verifier. We prove that the winning probability of P̃ is essentially the same as that
of P̃; moreover, we also prove that the reduction preserves the resources needed for the attack in the sense
that if P̃ asks at most m queries to the random oracle, then P̃ plays at most m rounds during the attack.

Intuitively, the construction of P̃ in terms of P̃ must use some form of extraction: P̃ outputs a non-
interactive proof that contains only (i) the roots that (allegedly) are commitments to underlying IOP prover’s
messages, and (ii) answers to the IOP verifier’s queries and corresponding authentication paths; in contrast,
P̃ needs to actually output these IOP prover’s messages. In principle, the malicious prover P̃ may not have
“in mind” any underlying IOP prover, and we must prove that, nevertheless, there is a way for P̃ to extract
some IOP prover message for each round that convince the verifier with the claimed probability.

Our starting point is the extractor algorithm of Valiant [Val08] for the “CS proof” construction of Micali
[Mic00]: Valiant proves that Micali’s NIROP construction is a proof of knowledge by exhibiting an algorithm,
let us call it Valiant’s extractor, that recovers the underlying PCP whenever the NIROP prover convinces
the NIROP verifier with sufficient probability. Our setting differs from Valiant’s in that the IOP prover P̃
obtained from the NIROP prover P̃ needs to be able to extract multiple times, “on the fly”, while interacting
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with the IOP verifier; this more complex setting can potentially cause difficulties in terms of extractor size
(e.g., if relying on rewinding the NIROP prover) or correlations (e.g., when extracting multiple times from
the same NIROP prover). We tackle the more complex setting in two steps.

First, we prove an extractability property of Valiant’s extractor and state it as a property of Merkle trees
in the random oracle model (see Section 3.1). Informally, we prove that, except with negligible probability,
whenever an algorithm with access to a random oracle outputs multiple Merkle tree roots each accompanied
with some number of (valid) authentication paths, it holds that Valiant’s extractor run separately on each of
these roots outputs a decommitment that is consistent with each of the values revealed in authentication paths
relative to that root. We believe that distilling and proving this extractability property of Valiant’s extractor is
of independent interest.

Second, we show how the IOP prover P̃ can interact with an IOP verifier, by successively extracting
messages to send, throughout the interaction, by invoking Valiant’s extractor multiple times on P̃ relative to
different roots. The IOP prover P̃ does not rely on rewinding P̃, and its complexity is essentially that of a
single run of P̃ plus a small amount of work.
Preserving proof of knowledge. We prove that the above soundness analysis can be adapted so that, if the
underlying IOP is a proof of knowledge, then we can construct an extractor to show that the resulting NIROP
is also a proof of knowledge.
Preserving zero knowledge. We prove that, if the underlying IOP is honest-verifier statistical zero knowl-
edge, then the resulting NIROP is statistical zero knowledge (i.e., is a non-interactive statistical zero knowl-
edge proof in the explicitly-programmable random oracle model). This is because the transformation uses a
Merkle tree with suitable privacy guarantees (see Section 3.2) to construct the NIROP. Indeed, the authenti-
cation path for a leaf in the Merkle tree reveals the sibling leaf, so one must ensure that the sibling leaf does
not leak information about other values; this follows by letting leaves be commitments to the underlying
values. A Merkle tree with privacy is similarly used by [IMS12, IMSX15], along with honest-verifier PCPs,
to achieve zero knowledge in modifications of Kilian’s [Kil92, BG08] and Micali’s [Mic00] constructions.
Understanding state restoration attacks. We prove tight upper and lower bounds to state restoration
soundness in terms of the IOP’s (standard) soundness and round complexity k. The upper bound takes the
form of a reduction: given a b-round state-restoring malicious prover P̃sr that makes the IOP verifier accept
with probability ssr, we construct a (non state-restoring) malicious prover P̃ that makes the IOP verifier
accept with probability at least

(
b

k+1

)−1
ssr. Informally, P̃ internally simulates P̃sr, while interacting with the

“real” IOP verifier, as follows: P̃ first selects a random subset S of {1, . . . , b} with cardinality k+ 1, and lets
S[i] be the i-th smallest value in S; then, P̃ runs P̃sr and simulates its state restoration attack on a “virtual”
IOP verifier, executing round j (a) by interacting with the real verifier if j = S[i] for some i; (b) by sampling
fresh randomness otherwise. While this reduction appears wasteful (since it relies on S being a good guess),
we show that there are IOPs for which the upper bound is tight. In other words, the sharp degradation as a
function of round complexity (for large b,

(
b

k+1

)
≈ bk+1/(k + 1)!) is inherent for some choices of IOPs; this

also gives a concrete answer to the intuition that compiling IOPs with large round complexity to NIROPs
is “harder” (i.e., incurs in a greater soundness loss) than for IOPs with small round complexity. As for the
lower bound on state restoration soundness, it takes the form of a universal state restoration attack that always
achieves the lower bound; this bound is also tight.

While state restoration soundness may be far, in the worst case, from (standard) soundness for IOPs with
large round complexity, it need not always be far. We thus investigate state restoration soundness for any
particular IOP, and derive a simple attack strategy (which depends on the IOP) that we prove has optimal
expected cost, where cost is the number of rounds until the prover wins. To do so, we “abstract away” various
details of the proof system to obtain a simple game-theoretic notion, which we call tree exploration games,
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that pits a single player against Nature in reaching a node of a tree with label 1. Informally, such a game is
specified by a rooted tree T and a predicate function φ that maps T ’s vertices to {0, 1}. The game proceeds
in rounds: in the i-th round, a subtree Si−1 ⊆ T is accessible to the player; the player picks a node v ∈ Si−1,
and Nature randomly samples a child u of v; the next accessible subtree is Si := Si−1 ∪ {u}. The initial S0
is the set consisting of T ’s root vertex. The player wins in round r if there is v ∈ Sr with φ(v) = 1.

We establish a correspondence between state restoration attacks and strategies for tree exploration games,
and then show a simple greedy strategy for such games with optimal expected cost. Via the correspondence,
a strategy’s cost determines whether the underlying IOP is strong or weak against sate restoration attacks.

1.5 Roadmap

The rest of this paper is organized as follows. In Section 2, we provide basic notations and definitions,
including for Merkle trees and non-interactive random-oracle proofs (NIROPs). In Section 3, we state and
prove the extractability and privacy properties of Merkle trees that we use in this work. In Section 4, we
introduce interactive oracle proofs (IOPs), the new proof system that we study. In Section 5, we define state
restoration attacks against IOPs and present our results about them. In Section 6, we describe a transformation
for compiling IOPs into NIROPs; after that, in Section 7, we present our tight analysis of this transformation.
In Section 8, we define tree exploration games and present our results about them.
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2 Preliminaries

2.1 Basic notations

We denote the security parameter by λ. We let f = Oλ(g) mean there exists c > 0 such that f = O(λcg).
For f : {0, 1}∗ → R, we define f̂ : N→ R as f̂(n) := maxx∈{0,1}n f(x).

Languages and relations. We denote by R a relation consisting of pairs (x,w), where x is the instance
and w is the witness, and by Rn the restriction of R to instances of size exactly n. We denote by L (R)
the language corresponding to R. For notational convenience, we define L̄ (Rn) := {x ∈ {0, 1}n | x /∈
L (R)}.
Random oracles. We denote by U(λ) the uniform distribution over all functions ρ : {0, 1}∗ → {0, 1}λ
(implicitly defined by the probabilistic algorithm that assigns, uniformly and independently at random, a
λ-bit string to each new input). If ρ is sampled from U(λ), then we say that ρ is a random oracle. Given
an oracle algorithm A, NumQueries(A, ρ) is the number of oracle queries that Aρ makes. We say that A is
m-query if NumQueries(A, ρ) ≤ m for any ρ ∈ U(λ).

Statistical distance. The statistical distance between two discrete random variables X and Y with support
V is ∆(X;Y ) := 1

2

∑
v∈V |Pr[X = v]− Pr[Y = v]|. We say that X and Y are δ-close if ∆(X;Y ) ≤ δ.

Remark 2.1. An oracle ρ ∈ U(λ) outputs λ bits. Occasionally we need ρ to output more than λ bits; in such
cases (we point out where), we implicitly extend ρ’s output via a simple strategy, e.g., we set y := y1‖y2‖ · · ·
where yi := ρ(i‖x) and prefix 0 to all inputs that do not require an output extension.

2.2 Merkle trees

We use Merkle trees [Mer89a] based on random oracles as succinct commitments to long lists of values for
which one can cheaply decommit to particular values in the list. Concretely, a Merkle-tree scheme is a tuple
MERKLE = (MERKLE.GetRoot,MERKLE.GetPath,MERKLE.CheckPath) that uses a random oracle ρ
sampled from U(λ) and works as follows.
• MERKLE.GetRootρ(v) → rt. Given input list v = (vi)

n
i=1, the root generator MERKLE.GetRoot

computes, in time Oλ(n), a root rt of the Merkle tree over the list v.
• MERKLE.GetPathρ(v, i) → ap. Given input list v and index i, the authentication path generator

MERKLE.GetPath computes the authentication path ap for the i-th value in v.
• MERKLE.CheckPathρ(rt, i, v, ap) → b. Given root rt, index i, input value v, and authentication path
ap, the path checker MERKLE.CheckPath outputs b = 1 if ap is a valid path for v as the i-th value in a
Merkle tree with root rt; the check can be carried out in time Oλ(log2 n).

We assume that an authentication path ap contains the root rt, position i, and value v; accordingly, we define
Root(ap) := rt, Position(ap) := i, and Value(ap) := v.

Merkle trees are well known, so we do not review their construction. Less known, however, are the hiding
and extractability properties of Merkle trees that we rely on in this work; we describe these in Section 3.

2.3 Non-interactive random-oracle proofs

A non-interactive random-oracle proof system for a relation R with soundness s : {0, 1}∗ → [0, 1] is a tuple
(P,V), where P,V are (oracle) probabilistic algorithms, that satisfies the following properties.
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1. COMPLETENESS. For every (x,w) ∈ R and λ ∈ N,

Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)
π ← Pρ(x,w)

]
= 1 .

2. SOUNDNESS. For every x /∈ L (R), m-query P̃, and λ ∈ N,

Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)

π ← P̃ρ

]
≤ s(x,m, λ) .

Complexity measures. Beyond soundness, we consider other complexity measures. Given p : {0, 1}∗ → N,
we say that (P,V) has proof length p if π has length p(x, λ). Given tprv, tver : {0, 1}∗ → N, we say that
(P,V) has prover time complexity tprv and verifier time complexity tver if Pρ(x,w) runs in time tprv(x, λ)
and Vρ(x, π) runs in time tver(x, λ). In sum, we say that (P,V) has complexity (s, p, tprv, tver) if (P,V) has
soundness s, proof length p, prover time complexity tprv, and verifier time complexity tver.
Proof of knowledge. Given e : {0, 1}∗ → [0, 1], we say that (P,V) has proof of knowledge e if there exists
a probabilistic polynomial-time algorithm E (the extractor) such that, for every x, m-query P̃, and λ ∈ N,

Pr
[
(x,w) ∈ R

∣∣∣ w← EP̃(x, 1m, 1λ)
]
≥ Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)

π ← P̃ρ

]
− e(x,m, λ) .

The notation EP̃(x, 1m, 1λ) means that E receives as input (x, 1m, 1λ) and may obtain an output of P̃ρ for
choices of oracles ρ, as we now describe. At any time, E may send a λ-bit string z to P̃; then P̃ interprets z as
the answer to its last query to ρ (if any) and then continues computing until it reaches either its next query
θ or its output π; then this query or output is sent to E (distinguishing the two cases in some way); in the
latter case, P̃ goes back to the start of its computation (with the same randomness and any auxiliary inputs).
Throughout, the code, randomness, and any auxiliary inputs of P̃ are not available to E.
Zero knowledge. Given z : {0, 1}∗ → [0, 1], we say that (P,V) has z-statistical zero knowledge (in the
explicitly-programmable random oracle model) if there exists a probabilistic polynomial-time algorithm S (the
simulator) such that, for every (x,w) ∈ R and unbounded distinguisher D, the following two probabilities
are z(x, λ)-close:

Pr

[
Dρ[µ](π) = 1

∣∣∣∣ ρ← U(λ)
(π, µ)← Sρ(x)

]
and Pr

[
Dρ(π) = 1

∣∣∣∣ ρ← U(λ)
π ← Pρ(x,w)

]
.

Above, ρ[µ] is the function such that, given an input x, equals µ(x) if µ is defined on x, or ρ(x) otherwise.

Remark 2.2. Zero knowledge in the random oracle model can be defined in several ways. Wee [Wee09]
details the following hierarchy. (i) Fully-programmable random oracle (FPRO): the simulator has access
to the random oracle but the distinguisher does not; (ii) Explicitly-programmable random oracle (EPRO)
[BR93]: the simulator has access to the random oracle and also outputs a function µ, but the distinguisher has
access to the same oracle modified so that a query to an input x in the domain of µ is answered with µ(x);
(iii) Non-programmable random oracle (NPRO) [Nie02, Pas03]: the simulator and the distinguisher have
access to the same random oracle. ZK in the NPRO implies ZK in the EPRO, and the latter implies ZK in the
FPRO; there exist protocols that are ZK in the EPRO but not in the NPRO, and ones that are ZK in the FPRO
but (assuming one-way permutations exist) not in the EPRO.

The above definition that we use for NIROPs follows ZK in the EPRO. We do not use the stronger notion
of ZK in the NPRO, since Pass shows that it cannot be achieved for non-trivial relations (see Appendix C). In
particular, zero-knowledge NIROPs are not deniable in the sense of [Pas03].
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3 Extractability and privacy of Merkle trees

We describe the specific extractability and privacy properties of Merkle trees that we rely on in this work.

3.1 Extractability

We rely on a certain extractability property of Merkle trees: there is an efficient procedure for extracting
the committed list in a Merkle-tree scheme. We call the procedure Valiant’s extractor, and denote it by VE,
because it is described in [Val08]. Our presentation of the extractor and its guarantee differs from [Val08]
because our use of it in this work requires “distilling” a more general property; see Lemma 3.2 below.
The extractor. For any oracle algorithm A, integers `, i?, imax > 0 with i? ∈ {1, . . . , imax}, and ρ sampled
from U(λ), the procedure VE, given input (A, `, i?, imax) and with oracle access to ρ, works as follows.
1. Run Aρ until it has asked imax unique queries to ρ (and abort if Aρ asks fewer than imax). Along the way,

record the queries θ1, . . . , θimax and answers ρ(θ1), . . . , ρ(θimax), in order and omitting duplicates.
2. Parse each query θi as θ0i ‖θ1i where θ0i are the first λ bits of θi and θ1i the second λ bits. For brevity, we

write z ∈ θi if z = θ0i or z = θ1i . (If a query has length not equal to 2λ, then z /∈ θi for all z.)
3. If there exist indices i, j such that i 6= j and ρ(θi) = ρ(θj), abort.
4. If there exist indices i, j such that i ≤ j and ρ(θj) ∈ θi, abort.
5. Construct a directed graph G with nodes V = {θ1, . . . , θimax} and edges E = {(θi, θj) : ρ(θj) ∈ θi}.

Note that G is acyclic, every node has out-degree ≤ 2, and θ1, . . . , θimax is a (reverse) topological ordering.
6. Output v, the string obtained by traversing in order the first ` leaf nodes of the depth-dlog2 `e binary tree

rooted at θi? and recording the first bit of each node. If any such node does not exist, set this entry to 0.
A sample execution of the extractor is depicted in Figure 4.

Remark 3.1. The queries to ρ asked by VEρ(A, `, i?, imax) equals the first imax queries to ρ asked by Aρ

(provided that A does not ask fewer than imax queries). Later on we use this fact.

The extractor’s guarantee. We interpret A’s output as containing a (possibly empty) list of tuples of the
form (rt, i, v, ap), where rt is a root, i an index, v a value, and ap an authentication path.2 We define the
following events:

(i) E1 is the event that, for each tuple (rt, i, v, ap) output by Aρ, MERKLE.CheckPath(rt, i, v, ap) = 1;
(ii) E2 is the event that, for each rt ∈ {0, 1}λ, there exists an integer `rt such that if Aρ outputs a tuple of

the form (rt, ·, ·, ap) then ap is an authentication path for a `rt-leaf Merkle tree; and
(iii) E3 is the event that, for every rt ∈ {0, 1}λ such that Aρ outputs some tuple of the form (rt, ·, ·, ·),

there is a unique jrt ∈ {0, . . . ,NumQueries(A, ρ)} such that ρ(θjrt) = rt and, for every imax ∈
{jrt, . . . ,NumQueries(A, ρ)}, v := VEρ(A, `rt, jrt, imax) is such that v’s i-th entry equals vi for any
tuple of the form (rt, i, v, ap) output by Aρ.

The extractability property that we rely on is the following.

Lemma 3.2. Let Aρ be a m-query algorithm. Then

Pr [(¬(E1 ∧ E2)) ∨ E3 | ρ← U(λ)] ≥ 1− (m2 + 1)2−λ .

Proof. Observe the following.
• By the union bound, the probability that there exist indices i, j such that (i 6= j) ∧ (ρ(θi) = ρ(θj)) or

(i ≤ j) ∧ (ρ(θj) ∈ θi) is at most m22−λ. If this occurs, we say that Aρ has found a collision.

2Note that A’s output may contain additional information not of the above form; if so, we simply ignore it for now.
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• The probability that, for a tuple (rt, i, v, ap) output by Aρ such that MERKLE.CheckPath(rt, i, v, ap) = 1,
the authentication path ap contains a node with no corresponding query is at most 2−λ, since this would
mean that Aρ has ‘guessed’ the answer to the query. In other words, no matter what strategy A uses to
generate the result, if it does not query the oracle on this input then it can perform no better than chance.

Now suppose that E1 ∧ E2 occurs with probability δ. Then, with probability at least δ − (m2 + 1)2−λ:
(a) for each root rt output by Aρ there is a unique query θi? such that ρ(θi?) = rt; (b) for each root rt output
by Aρ, if an authentication path ap claims to have root rt then ap appears in the tree rooted at θi? in G; and
(c) the condition in the VE’s Step 3 or Step 4 does not hold. In such a case we may take jrt := i?, and then
VEρ(A, `rt, jrt, imax) outputs a list v with the desired property. Hence, Pr[E1∧E2∧E3] ≥ δ− (m2 +1)2−λ.
The predicate is also satisfied if ¬(E1 ∧ E2) occurs, which is the case with probability 1− δ and is disjoint
from E1 ∧ E2 ∧ E3. The lemma follows.

𝜃 = 𝑣 ∥ 𝑟  
𝜃 = 𝜌(𝜃 ) ∥ 𝑥 
𝜃 = 𝑣 ∥ 𝑟  
𝜃 = 𝜌(𝜃 ) ∥ 𝜌(𝜃 ) 
𝜃 = 𝑦 
𝜃 = 𝜌(𝜃 ) ∥ 𝜌(𝜃 ) 
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Figure 4: A diagram of an execution of Valiant’s
extractor VE, with input parameters ` = 2, i? = 4,
and imax = 6.
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 𝜌 𝑏 ∥ 𝑏  
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randomness 

Figure 5: A diagram of the data structure of a
Merkle tree with privacy. An authentication path
for v2 is shaded; the corresponding truncated au-
thentication path is the same minus r2 and v2.

3.2 Privacy

We rely not only on the fact that the root rt of a Merkle tree is hiding, but also on the fact that an authentication
path ap reveals no information about values other than the decommitted one. The latter property can be
ensured via a slight tweak of the standard construction of Merkle trees: when committing to a list v = (vi)

n
i=1,

the i-th leaf is not vi but, instead, is a hiding commitment to vi. In our case, we will store the value ρ(vi‖ri)
in the i-th leaf, where ri ∈ {0, 1}2λ is drawn uniformly at random; see Figure 5. (An authentication path for
vi then additionally includes ri, and path verification is modified accordingly.) In what follows, we regard
ρ(vi‖ri) as a leaf, rather than vi; moreover, a truncated authentication path ap′i is identical to api except that
it does not contain ri or vi, and the truncated Merkle tree for v is T ′v := (ap′i)1≤i≤n. Note that the same
randomness r ∈ {0, 1}2λn is used by MERKLE.GetRoot and MERKLE.GetPath (to be “in sync”).

We summarize the privacy property of Merkle trees as above via the following definition and lemma.

Definition 3.3. A Merkle-tree scheme has z(n, λ)-statistical privacy if there exists a probabilistic polynomial-
time simulator S such that, for every list v = (vi)

n
i=1 and unbounded distinguisher D, the following two
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probabilities are z(n, λ)-close:

Pr
r

 I ⊆ {1, . . . , n}
Dρ(rt, (api)i∈I) = 1

∣∣∣∣∣∣∣∣
ρ← U(λ)

rt← MERKLE.GetRootρ(v; r)
I ← Dρ

∀ i ∈ I , api ← MERKLE.GetPathρ(v, i; r)


and

Pr

 I ⊆ {1, . . . , n}
Dρ(rt, (api)i∈I) = 1

∣∣∣∣∣∣
ρ← U(λ)
I ← Dρ

(rt, (api)i∈I)← Sρ(n, (i, vi)i∈I)

 .

We make no assumption on the power of the distinguisher D in the definition above. In particular, D
may query the random oracle ρ at every input, and use the information to attempt to learn vi for some i /∈ I .
For example, for some ρ, it is the case that Prr[v = 1 | ρ(v‖r) = x] � Prr[v = 0 | ρ(v‖r) = x] for
x = ρ(v2‖r2), in which case D can determine v2 from ap1 with good accuracy. The next lemma shows that
the probability that D gains a significant statistical advantage in this way (or otherwise) is negligible in λ.

Lemma 3.4. There exists a Merkle-tree scheme having z(n, λ)-statistical privacy with z(n, λ) := n2−λ/4+2.

Proof. Given v = (vi)
n
i=1 and I ⊆ {1, . . . , n}, we define a sequence of random variables W0, . . . ,W` for

which W0 = T ′v and W` contains the output of a probabilistic polynomial time simulator S (see below) on
input (n, (i, vi)i∈I) and with access to a random oracle ρ. The random variables are defined as follows:

• We obtain W1 from W0 by (i) replacing each leaf node j ∈ [n] − I with an independently uniformly
random string in {0, 1}λ; (ii) ‘marking’ each such leaf; and (iii) recomputing the rest of the tree.

• For i ∈ {2, . . . , `}, we obtain Wi from Wi−1 by choosing a node whose children are both marked and
replacing its value with a string drawn uniformly at random from {0, 1}λ, marking that node, and then
recomputing the Merkle tree above it. (Note that the authentication paths for the leaves i ∈ I are still valid
with respect to the root and each other.) The last W` is when there are no such nodes remaining.

We now argue that the statistical distance between W0 and W` is at most n2−λ/4+1. For this, we require the
following two facts:

• FACT 1. For all but a 2−λ fraction of ρ ∈ U(λ), ρ(r) is 2−λ/4-close to r′ where r is random in
{0, 1}2λ and r′ is random in {0, 1}λ. (Proof: For z ∈ {0, 1}λ and ρ ∈ U(λ) fixed, define δρ(z) :=
|Pr[ρ(r) = z]− Pr[X = z]| where r ∈ {0, 1}2λ and X ∈ {0, 1}λ are random. Clearly Pr[X = z] = 2−λ.
By a Chernoff bound, for every z ∈ {0, 1}λ: Prρ[δρ(z) ≥ 2−5λ/4 | ρ← U(λ)] ≤ 2−2λ. By a union bound,
Prρ[∃ z ∈ {0, 1}λ s.t. δρ(z) ≥ 2−5λ/4 | ρ← U(λ)] ≤ 2−λ. Hence, with probability at least 1− 2−λ over
ρ, the statistical distance between ρ(r) and X is at most 1

2

∑
z∈{0,1}λ δz,ρ ≤ 2λ · 2−5λ/4 = 2−λ/4.)

• FACT 2. If X1, . . . , Xn and Y1, . . . , Yn are independent random variables such that, for each i, Xi and Yi
are δ-close, then (X1, . . . , Xn) and (Y1, . . . , Yn) are nδ-close.

First we examine the statistical distance between W0 and W1: every node we replace has the form ρ(a‖r) for
a ∈ {0, 1}; since ρ(r) and ρ(a‖r) are identically distributed, Fact 1 holds for ρ(a‖r) also; thus, using Fact 2
and the fact that we place at most n leaves, we deduce that W0 and W1 are n2−λ/4-close for almost all ρ.
Next we examine the statistical distance between Wi and Wi+1 for i ∈ {1, . . . , k − 1}: whenever we replace
a node with a random string, it is of the form ρ(r) where r ∈ {0, 1}2λ is random, since we only replace nodes
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whose children we have already replaced; so, using Fact 1, Wi and Wi+1 are n2−λ/4-close for almost all ρ.
Thus each step in the sequence marks a non-leaf node and ` is bounded by the number of non-leaf nodes in
T ′v; so ` ≤ n. By the triangle inequality, the statistical distance between W0 and W` is at most n2−λ/4+1.

We now construct the simulator S. On input (n, (i, vi)i∈I) and with oracle access to ρ, S works as
follows: (i) set ṽ := (ṽi)

n
i=1 where ṽi := vi for i ∈ I and ṽi := 0 for i 6∈ I; (ii) for every i ∈ I , compute

api ← MERKLE.GetPathρ(ṽ, i; r), except whenever we require the value of a node which is marked in W`,
use a random string in {0, 1}λ; (iii) compute rt← MERKLE.GetRootρ(ṽ; r) in the same way; (iv) output
(rt, (api)i∈I). Note that S runs in probabilistic polynomial time since the number of unmarked nodes is at
most |I| log n, and the only marked nodes we consider are those that are siblings of unmarked nodes.

Finally, in one case, all the information given to D is contained in W0 and (vi, ri)i∈I ; in the other case,
all the information given to D is contained in W` and (vi, ri)i∈I . Moreover, W` was constructed from W0 in
a way that is independent of (vi, ri)i∈I . Thus, since these two sets of random variables are n2λ/4+1-close,
the corresponding outputs of D must also be n2λ/4+1-close.

Choosing ρ uniformly at random, the result follows by the union bound.
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4 Interactive oracle proofs

We first define interactive oracle protocols, and then use these to define interactive oracle proof systems.
Afterwards, we make some remarks regarding basic complexity-theoretic properties of such proof systems.

4.1 Interactive oracle protocols

A k-round interactive oracle protocol between two parties, call them Alice and Bob, comprises k rounds of
interaction. In the i-th round of interaction: Alice sends a message mi to Bob, which he reads in full; then
Bob replies with a message fi to Alice, which she can query (via random access) in this and all later rounds.
After the k rounds of interaction, Alice either accepts or rejects.

More precisely, let k be in N and A,B be two interactive probabilistic algorithms. A k-round interactive
oracle protocol between A and B, denoted 〈B,A〉, works as follows. Let rA, rB denote the randomness for
A,B; set f0 := ⊥ and state0 := ⊥. For i = 1, . . . , k, in the i-th round:

(i) Alice sends a message mi ∈ {0, 1}ui , where (mi, statei) := Af0,...,fi−1(statei−1; rA) and ui ∈ N;
(ii) Bob sends a message fi ∈ {0, 1}`i , where fi := B(m1, . . . ,mi; rB) and `i ∈ N.

The output of the protocol is mfin := Af0,...,fk(statek; rA), and belongs to {0, 1}.
The accepting probability of 〈B,A〉 is the probability that mfin = 1 for a random choice of rA, rB; this

probability is denoted Pr[〈B,A〉 = 1] (leaving rA, rB implicit). The query complexity of 〈B,A〉 is the
number of queries asked by A to any of the oracles during the k rounds. The proof complexity of 〈B,A〉
is the number of bits communicated by Bob to Alice (i.e.,

∑k
i=1 `i). The view of A in 〈B,A〉, denoted

View〈B,A〉(A), is the random variable (a1, . . . , aq, rA) where aj denotes the answer to the j-th query.
Public coins. An interactive oracle protocol is public-coin if for every i ∈ {1, . . . , k}: (i) all queries
to f0, . . . , fi−1 before the i-th round depend only on m1, . . . ,mi−1 (in particular, the prover knows these
queries); (ii) mi is random in {0, 1}ui . We assume, without loss of generality, that in a public-coin protocol
Alice does not maintain state (i.e., statei = ∅) and postpones any query to after the k-th round (i.e., all
queries are asked when running Af0,...,fk(statek; rA)). We can thus take the randomness rA to be of the form
(m1, . . . ,mk, r), where r is additional randomness that A may use of to compute mfin after the last round.

4.2 Interactive oracle proof systems

An interactive oracle proof system for a relation R with round complexity k : {0, 1}∗ → N and soundness
s : {0, 1}∗ → [0, 1] is a tuple (P, V ), where P, V are probabilistic algorithms, that satisfies the following
properties.

1. COMPLETENESS. For every (x,w) ∈ R, 〈P (x,w), V (x)〉 is a k(x)-round interactive oracle protocol
with accepting probability 1.

2. SOUNDNESS. For every x /∈ L (R) and P̃ , 〈P̃ , V (x)〉 is a k(x)-round interactive oracle protocol with
accepting probability at most s(x).

Message lengths. We assume the existence of polynomial-time functions that determine the message
lengths. Namely, for any instance x and malicious prover P̃ , when considering the interactive oracle protocol
〈P̃ , V (x)〉, the i-th messages mi (from V (x)) and fi (to V (x)) lie in {0, 1}ui(x) and {0, 1}`i(x) respectively.
Complexity measures. Beyond round complexity and soundness, we consider other complexity measures.
Given p, q : {0, 1}∗ → N, we say that (P, V ) has proof length p and query complexity q if the proof
length and query complexity of 〈P̃ , V (x)〉 are p(x) and q(x) respectively. (Note that q(x) ≤ p(x) and
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p(x) =
∑k(x)

i=1 `i(x).) Given tprv, tver : {0, 1}∗ → N, we say that (P, V ) has prover time complexity tprv and
verifier time complexity tver if P (x,w) runs in time tprv(x) and V (x) runs in time tver(x). In sum, we say
that (P, V ) has complexity (k, s, p, q, tprv, tver) if (P, V ) has round complexity k, soundness s, proof length
p, query complexity q, prover time complexity tprv, and verifier time complexity tver.

Proof of knowledge. Given e : {0, 1}∗ → [0, 1], we say that (P, V ) has proof of knowledge e if there
exists a probabilistic polynomial-time oracle algorithm E (the extractor) such that, for every x and P̃ ,
Pr[(x, EP̃ (x)) ∈ R] ≥ Pr[〈P̃ , V (x)〉 = 1]− e(x).3 The notation EP̃ (x) means that E receives as input x
and may interact with P̃ via rewinding, as we now describe. At any time, E may send a partial prover-verifier
transcript to P̃ and then receive P̃ ’s next message (which is empty for invalid transcripts) in the subsequent
computation step; the code, randomness, and any auxiliary inputs of P̃ are not available to E.

Honest-verifier zero knowledge. Given z : {0, 1}∗ → [0, 1], we say that (P, V ) has z-statistical honest-
verifier zero knowledge if there exists a probabilistic polynomial-time algorithm S (the simulator) such that,
for every (x,w) ∈ R, S(x) is z(x)-close to View〈P (x,w),V (x)〉(V (x)).

Public coins. We say that (P, V ) is public-coin if the underlying interactive oracle protocol is public-coin.

4.3 Basic complexity-theoretic properties

Several basic complexity-theoretic properties are straightforward to show and provide different points of
comparison with other proof system models.

• Expressivity. Interactive oracle proofs characterize NEXP (see Appendix A). This is like probabilistically-
checkable proofs and multi-prover interactive proofs (which also characterize NEXP), and unlike interactive
proofs (which characterize PSPACE).

• Repetition. Both sequential and parallel repetition of interactive oracle proofs yield (perfect) exponential
soundness error reduction (see Appendix B.1). This is like interactive proofs and probabilistically-
checkable proofs (where the same holds), and unlike multi-prover interactive proofs (where parallel
repetition decays exponentially but not perfectly [Raz95, Hol07]).

• Private vs. public coins. Any interactive oracle proof system can be converted into a public-coin one with
at most two additional rounds. This is like interactive proofs (where the same holds [GS86]), and unlike
probabilistically-checkable proofs and multi-prover interactive proofs (where correlations among queries
are crucial for soundness). This is because the Goldwasser–Sipser set lower-bound approach [GS86]
continues to apply in our setting (since the approach only relies on the verifier’s possible randomness and
corresponding messages, which do not differ from the standard setting of interactive proofs).

3Proof of knowledge e implies soundness s := e. The definition that we use is equivalent to the one in [BG93, Section 6] except
that: (a) we use extractors that run in strict, rather than expected, probabilistic polynomial time; and (b) we extend the condition to
hold for all x, rather than for only those in L (R), so that proof of knowledge implies soundness.
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5 State restoration attacks on interactive oracle proofs

We introduce state restoration attacks on interactive oracle proofs and discuss our results for these. First, in
Section 5.1, we define the notion of state restoration attacks for interactive oracle proof systems; these induce
corresponding notions of soundness (and proof of knowledge). Afterwards, in Section 5.2, we provide upper
and lower bounds on state restoration soundness as a function of (standard) soundness and round complexity;
in Section 5.3, we prove the tightness of these bounds. In Section 5.4, we define restricted state restoration
attacks, a sub-class of state restoration attacks that enables us to state our results of Section 7 in a tighter way.

5.1 State restoration attacks, and soundness and proof of knowledge against these

In an interactive oracle proof, a malicious prover P̃ works as follows: for each round i, P̃ receives the i-th
verifier message mi and then sends to the verifier a message fi computed as a function of his own randomness
and all the verifier messages received so far, i.e., m1, . . . ,mi.

For the case of public-coin interactive oracle proof systems, we also consider a larger class of malicious
provers, called state-restoring provers. Informally, a state-restoring prover receives in each round a verifier
message as well as a complete verifier state, and then sends to the verifier a message and a previously-seen
complete verifier state, which sets the verifier to that state; this forms a state restoration attack on the verifier.

More precisely, let (P, V ) be a k-round public-coin interactive proof system (see Section 4.2) and x an
instance. A complete verifier state cvs of V (x) takes one of three forms: (1) the symbol null, which denotes
the “empty” complete verifier state; (2) a tuple of the form (m1, f1, . . . ,mi), with i ∈ {1, . . . , k(x)}, where
each mj is in {0, 1}uj(x) and each fj is in {0, 1}`j(x); (3) a tuple of the form (m1, f1, . . . ,mk(x), fk(x), r)
where each mj and fj is as in the previous case and r is the additional randomness of the verifier V (x).

The interaction between a state-restoring prover P̃ and the verifier V (x) is mediated through a game:

1. The game initializes the list SeenStates to be (null).
2. Repeat the following until the game halts and outputs:

(a) The prover chooses a complete verifier state cvs in the list SeenStates.
(b) The game sets the verifier to cvs.
(c) If cvs = null: the verifier samples a message m1 in {0, 1}u1(x) and sends it to the prover; the game

appends cvs′ := (m1) to the list SeenStates.
(d) If cvs = (m1, f1, . . . ,mi−1) with i ∈ {2, . . . , k(x)}: the prover outputs a message fi−1 in {0, 1}`i−1(x);

the verifier samples a message mi in {0, 1}ui(x) and sends it to the prover; the game appends cvs′ :=
cvs‖fi−1‖mi to the list SeenStates.

(e) If cvs = (m1, f1, . . . ,mk(x)): the prover outputs a message fk(x) in {0, 1}`k(x)(x); the verifier samples
additional randomness r; the game appends cvs′ := cvs‖fk(x)‖r to the list SeenStates.

(f) If cvs = (m1, f1, . . . ,mk(x), fk(x), r): the verifier computes his decision b := V f0,...,fk(x)(x, statek(x); rV )
where statek(x) := ∅ and rV := (m1, . . . ,mk, r); then the game halts and outputs b.

Note that there are two distinct notions of a round. Verifier rounds are the rounds played by the verifier
within a single execution, as tracked by a complete verifier state cvs; the number of such rounds lies in the
set {0, . . . , k(x) + 1} (the extra (k(x) + 1)-th round represents the verifier V sampling r after receiving
the last prover message). Prover rounds are all verifier rounds played by the prover across different verifier
executions; the number of such rounds is the number of states in SeenStates above. Accordingly, for b ∈ N,
we say a prover is b-round if it plays at most b prover rounds during any interaction with any verifier.

Also note that the prover is not able to set the verifier to arbitrary states but only to previously-seen ones
(starting with the empty state null); naturally, setting the verifier multiple times to the same state may yield
distinct new states, because the verifier samples his message afresh each time. After being set to a state cvs,
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the verifier does one of three things: (i) if the number of verifier rounds in cvs is less than k(x) (see Step 2c
and Step 2d), the verifier samples a fresh next message; (ii) if the number of verifier rounds in cvs is k(x)
(see Step 2e), the verifier samples his additional randomness r; (iii) if cvs contains a full protocol execution
(see Step 2f), the verifier outputs the decision corresponding to this execution. The second case means that
the prover can set the verifier even after the conclusion of the execution (after r is sampled and known to the
prover). The game halts only in the third case.

The above game between a state-restoring prover and a verifier yields corresponding notions of soundness
and proof of knowledge. Below, we denote by Pr[〈P̃ , V (x)〉sr = 1] the probability that the state-restoring
prover P̃ makes the verifier V accept x in this game.

Definition 5.1. Given ssr, esr : {0, 1}∗ → [0, 1], a public-coin interactive oracle proof system (P, V ) has

• STATE RESTORATION SOUNDNESS ssr if, for every x /∈ L (R) and b-round state-restoring prover P̃ ,
Pr[〈P̃ , V (x)〉sr = 1] ≤ ssr(x, b).

• STATE RESTORATION PROOF OF KNOWLEDGE esr if there exists a probabilistic polynomial-time algorithm
Esr (the extractor) such that, for every x and b-round state-restoring prover P̃ , Pr[(x, EP̃sr(x)) ∈ R] ≥
Pr[〈P̃ , V (x)〉sr = 1]− esr(x, b).

Remark 5.2 (results about proof of knowledge). The discussions in Section 5.2, Section 5.3, and Section 5.4
below mention only state restoration soundness ssr. All of these discussions (as well as theorems) also apply,
without change, to state restoration proof of knowledge. (Just substitute esr for ssr, and e for s.)

5.2 General bounds

Let (P, V ) be a k-round public-coin interactive proof system with soundness s and state restoration soundness
ssr. We give upper and lower bounds on ssr as a function of k and s. First, for every instance x ∈ {0, 1}∗
and small enough budget b ∈ N there are two “degenerate” cases: if b ≤ k(x) then ssr(x, b) = 0; and if
b = k(x) + 1 then ssr(x, b) = s(x). For larger values of b, we prove the following bounds:

Lemma 5.3. Let (P, V ) be a k-round public-coin interactive proof system with soundness s and state
restoration soundness ssr. For every instance x ∈ {0, 1}∗ and budget b ∈ N with b ≥ k(x) + 1,⌊

b

k(x) + 1

⌋
s(x)(1− o(1)) ≤ ssr(x, b) ≤

(
b

k(x) + 1

)
s(x) ,

where the lower bound holds if b b
k(x)+1cs(x) = o(1).

Proof. We first prove the lower bound by exhibiting a universal “resetting” attack. Let P̃ be a prover that
attains s(x), i.e., makes V (x) accept with probability s(x). Consider the state-restoring prover P̃sr that
runs P̃ until it halts, then sets V (x) to the empty state null, and repeats this until either V (x) accepts or b
prover rounds have elapsed. Note that P̃sr succeeds with probability at least b b

k(x)+1cs(x)(1− o(1)) provided

b b
k(x)+1cs(x) = o(1). This establishes the lower bound.

We now prove the upper bound. Let P̃sr be a b-round state-restoring prover that makes V accept x
with probability ssr(x, b). We construct a prover P̃ that, using P̃sr as a subroutine, makes V accept x with
probability

(
b

k(x)+1

)−1
ssr(x, b), without any state restoration. The prover P̃ works as follows. First, P̃

chooses a uniformly random subset S ⊆ {1, . . . , b} of cardinality k(x) + 1; we denote by S[i] the i-th
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smallest value in S. Then P̃ runs P̃sr, simulating an interaction between P̃sr and a virtual verifier using
internal randomness, except that, in the simulated prover round S[i] with i ∈ {1, . . . , k(x)}, P̃ gives to P̃sr

the message mi from (the real verifier) V , and sends P̃sr’s response message fi back to V . Finally, in the
simulated prover round S[k(x) + 1], we set the virtual verifier’s randomness to that of V . (More precisely,
since this randomness is not visible to P̃ , we couple these two random variables for the purpose of this
analysis; this coupling does not affect the acceptance probability of the real verifier V .)

The view of P̃sr is as in a real state restoration attack, so the virtual verifier accepts with probability
ssr(x, b). If the virtual verifier accepts, there is S′ ∈

( [b]
k(x)+1

)
such that V f ′1,...,f

′
k(x)(x, statek(x); rV ) = 1

where statek(x) := ∅, rV := (m′1, . . . ,m
′
k(x), r

′), the m′i and f ′i are messages received and sent by P̃sr in
prover round S′[i] for i ∈ {1, . . . , k(x)}, and r′ is the additional randomness of the virtual verifier for prover
round S′[k(x) + 1]. So if S = S′ then (the real verifier) V accepts x; the equality occurs with probability(

b
k(x)+1

)−1
. So P̃ makes V accept x with probability

(
b

k(x)+1

)−1
ssr(x, b); rearranging yields the claim.

5.3 Tightness of general bounds

We prove that the bounds of Section 5.2 are essentially tight. First, we show that the lower bound of
Lemma 5.3 is tight up to a factor k(x).

Theorem 5.4. For every k ∈ N there exists a k-round protocol (P, V ) with soundness s(x) and state
restoration soundness ssr(x, b) such that ssr(x, b) ≤ bs(x).

Proof. Take any zero-round protocol (P ′, V ′) with soundness s(x), and add k dummy rounds to obtain a
k-round protocol (P, V ). This protocol also has soundness s(x). Moreover, any b-round state-restoring
prover P̃ for (P, V ) can be converted into a b-round state-restoring prover P̃ ′ for (P ′, V ′) by restoring (null)
whenever P̃ restores (. . . ,mk), and simulating dummy rounds for all other messages. One can verify that
P̃ ′ convinces V ′ with the same probability as P̃ convinces V . By Lemma 5.3, (P ′, V ′) has state restoration
soundness at most bs(x), and hence so does (P, V ).

Next, we show that the upper bound of Lemma 5.3 is tight up to a polynomial factor in |x|, independent
of b, when k(x) = O(log |x|).

Theorem 5.5. For every R ∈ NEXP and k ∈ N there is a k-round public-coin interactive oracle proof
system (P, V ) for R such that, for every sufficiently large b ∈ N, (P, V ) has state restoration soundness
ssr(x, b) ≥ 1

4 · 4
−(k(x)+1)

(
b

k(x)+1

)
s(x), where s(x) is the soundness of (P, V ).

We first prove the following lemma.

Lemma 5.6. For every k ∈ N there exists u ∈ N for which there is a k-round public-coin interactive oracle
proof system (P, V ) such that, for every sufficiently large b ∈ N, (P, V ) has state restoration soundness
ssr(x, b) ≥ 1

2 ≥
1
2 · 4

−(k(x)+1)
(

b
k(x)+1

)
s(x), where s(x) is the soundness of (P, V ). Moreover, each of V ’s

messages has length u ≤
⌊
log
(

b
k+1

)⌋
.

Proof. Let u ∈ N be a parameter to be fixed later.
Consider the k-round public-coin interactive oracle proof system (P, V ) defined as follows. Each message

mi of V is sampled uniformly at random from {0, 1}u; after k interactions with the prover, V samples r
uniformly at random from {0, 1}u and accepts if and only if m1 = · · · = mk = r = 1u. Note that no
malicious prover can make V accept with probability more than 2−(k+1)u without state restoration.

Allowing state restoration, we construct a state-restoring prover P̃ as follows.
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(i) Let cvs0 := null.
(ii) For i = 1, . . . , k, restore cvsi−1 repeatedly (and sending the verifier empty messages) until mi = 1u.

Let the state received when this happens be cvsi.
(iii) Restore cvsk (with an empty proof) repeatedly until V accepts.

We make P̃ be a b-round state-restoring prover by having it abort after playing b rounds.
The prover P̃ makes V accept if and only if drawing b strings uniformly at random from {0, 1}u yields at

least k+ 1 copies of 1u. The expected number of strings we need to draw to obtain k+ 1 copies is (k+ 1)2u,
by linearity of expectation. Thus by Markov’s inequality, the probability that more than 2(k + 1)2u strings
need to be drawn is at most 1/2, that is, with probability at least 1/2, k + 1 copies of 1u are obtained within
2(k + 1)2u draws.

We choose u to be the smallest integer such that 2−(k+1)u ≤ 22(k+1)
(
b

k+1

)−1
. This condition holds for all

u ≥ log
(

b
k+1

)
−2 (using the inequality

(
x
y

)
≥ (xy )y for x ≥ y ≥ 1). By minimality of u, u ≤ log

(
b

k+1

)
−1,

and thus 2(k+ 1)2u ≤ b. With this choice of u, (P, V ) has soundness s(x) = 2−(k+1)u ≤ 4k+1
(
b

k+1

)−1
, but

state restoration soundness ssr(x, b) ≥ 1
2 ≥

1
2 · 4

−(k+1)
(
b

k+1

)
s(x).

We now return to the proof of the theorem.

Proof of Theorem 5.5. The relation R has a public-coin k-round interactive oracle proof system (P̂ , V̂ ),
because R is in NEXP (see the lemma in Appendix A). Moreover, we may assume that (P̂ , V̂ ) has soundness
4k+1

(
b

k+1

)−1
= 2−O(k log b) (see parallel repetition in Appendix B.1).

Construct a k-round interactive oracle proof system (P, V ). Let (P ′, V ′) be the k-round IOP implied by
Lemma 5.6, and u ∈ N the corresponding message length. The verifier V works as follows.

(i) Let m̂1‖ . . . ‖m̂k‖r̂ denote the randomness for V̂ .
(ii) Simulate V̂ until round k (i.e., until before V̂ makes its first query), forwarding V̂ ’s messages to

the prover with the following adjustment. For each i, the i-th message mi equals m̂i padded with
min{0, u− |m̂i|} random bits. The randomness r equals r̂ padded with min{0, u− |r̂|} random bits.

(iii) If V ′f1,...,fk(x,m′1, . . . ,m
′
k; r
′) = 1, where m′i and r′ are the first u bits of mi for i = 1, . . . , k and r

respectively, then halt and accept.
(iv) Continue to simulate V̂ until it halts, and output its decision.

The prover P equals P̂ up to the fact that P ignores any padding in the messages received from V .
Clearly (P, V ) has completeness 1. Also, by the union bound, we see that for all x /∈ L (R) and P̃

without state restoration, Pr[〈P̃ , V (x)〉 = 1] ≤ 2 · 4k+1
(
b

k+1

)−1
. (Any additional random bits generated by

V do not help a malicious prover make V̂ accept because they do not affect V̂ ’s decision.)
The malicious prover P̃ implied by Lemma 5.6 achieves the same soundness (using state restoration)

against V as it does against V ′. The theorem follows analogously.

5.4 Restricted state restoration attacks

We briefly discuss a technical restriction of state restoration attacks that we use for stating bounds in Section 7;
these bounds can also be stated relative to (unrestricted) state restoration attacks, but would not be as tight.

A restricted state restoration attack is one where the prover cannot restore the verifier to the empty state
cvs = null (except for in the first iteration of the game in Section 5.1), but can still restore the verifier to any
other previously-seen verifier state. In other words, a restricted state restoration attack on a k-round protocol
is equivalent to playing the first round as normal, and then performing an (unrestricted) state restoration
attack on the remaining k − 1 rounds. The notion of restricted state restoration yields corresponding notions
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of restricted state restoration soundness, which we denote s̄sr, and restricted state restoration proof of
knowledge, which we denote ēsr.

The above equivalence implies the following lemma, analogous to Lemma 5.3.

Lemma 5.7. Let (P, V ) be a k-round public-coin interactive oracle proof system with soundness s and
restricted state restoration soundness s̄sr. For every instance x ∈ {0, 1}∗ and budget b ∈ N with b ≥ k(x),

s(x) ≤ s̄sr(x, b) ≤
(

b

k(x)

)
s(x) .

Note that the lower bound of Lemma 5.3 no longer holds, because there are interactive oracle proof
systems for which restricted state restoration soundness is equal to standard soundness. (E.g., consider a
k-round proof system where every round but the first does not affect the verifier’s acceptance probability.)
This shows that the lower bound of Lemma 5.7 is tight; also, the upper bound of Lemma 5.7 is tight in a
similar way to the upper bound of Lemma 5.3, by the following theorem (analogous to Theorem 5.5).

Theorem 5.8. For every R ∈ NEXP and k ∈ N there is a k-round public-coin interactive oracle proof
system (P, V ) for R such that, for every sufficiently large b ∈ N, (P, V ) has restricted state restoration
soundness s̄sr(x, b) ≥ 1

4 · 4
−k(x)(b−1

k(x)

)
s(x), where s(x) is the soundness of (P, V ).

Finally, using a similar technique to the proof of the upper bound in Lemma 5.3, we also obtain the
following bounds for s̄sr in terms of ssr:

Lemma 5.9. For every instance x ∈ {0, 1}∗ and budget b ∈ N it holds that

1

b
ssr(x, b) ≤ s̄sr(x, b) ≤ ssr(x, b) .
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6 From interactive oracle proofs to non-interactive random-oracle proofs

We describe a transformation T such that if (P, V ) is a public-coin interactive oracle proof system for a relation
R then (P,V) := T (P, V ) is a non-interactive random-oracle proof system for R. The transformation T
runs in polynomial time: given as input code for P and V , it runs in time polynomial in the size of this code
and then outputs code for P and V. Concretely, we proceed as follows:
• Below, we describe the polynomial-time transformation T by giving the construction of P and V.
• In Section 7, we state and prove T ’s main properties, relating features of (P, V ) to those of (P,V).

Notation. For convenience, we split the random oracle ρ into two random oracles, denoted ρ1 and ρ2, as
follows: ρ1(x) := ρ(0‖x) and ρ2(x) := ρ(1‖x). At a high level, we use ρ1 for the verifier’s randomness, and
ρ2 for Merkle trees and other hashing purposes. When counting queries, we count queries to both ρ1 and ρ2.

Construction of P. The algorithm P, given input (x,w) and oracle access to ρ, works as follows.
1. Set k := k(x), q := q(x), f0 := ⊥, and σ0 := ρ2(x).
2. Start running P (x,w) and, for i = 1, . . . , k:

(a) Compute the verifier message mi := ρ1(x‖σi−1) (and Remark 2.1 may apply here).
(b) Give mi to P (x,w) to obtain fi.
(c) Compute the Merkle-tree root rti := MERKLE.GetRootρ2(fi).
(d) Compute the “root hash” σi := ρ2(rti‖σi−1).

3. Set statek := ∅ and rV := (m1, . . . ,mk, r), where r := ρ1(x‖σk) (and Remark 2.1 may apply here).
4. Run V f0,...,fk(x, statek; rV ) and compute an authentication path for each query. Namely, for j = 1, . . . , q:

if the j-th query is to the xj-th bit of the yj-th oracle, then compute apj := MERKLE.GetPathρ2(fyj , xj).
(If MERKLE.GetRoot is probabilistic, then give the same randomness to MERKLE.GetPath as well.)

5. Set π :=
(
(rt1, . . . , rtk), (ap1, . . . , apq), σk

)
. That is, π comprises the Merkle-tree roots, an authentication

path for each query, and the final root hash.
6. Output π.
See Figure 6 for a diagram of the construction above.

Construction of V. The algorithm V, given input (x, π̃) and oracle access to ρ, works as follows.
1. Set k := k(x), q := q(x), f0 := ⊥, and σ0 := ρ2(x).
2. Parse π̃ as a tuple

(
(r̃t1, . . . , r̃tk), (ãp1, . . . , ãpq), σ̃k

)
.

3. For i = 1, . . . , k:
(a) Compute mi := ρ1(x‖σi−1).
(b) Compute σi := ρ2(r̃ti‖σi−1).

4. Set statek := ∅ and rV := (m1, . . . ,mk, r), where r := ρ1(x‖σk).
5. Compute mfin := V f0,...,fk(x, statek; rV ), answering the j-th query with the answer aj in the path ãpj .
6. If σk 6= σ̃k, halt and output 0.
7. For j = 1, . . . , q: if the j-th query is to the xj-th bit of the yj-th oracle and MERKLE.CheckPathρ2(rtyj , xj ,
aj , ãpj) 6= 1, halt and output 0.

8. Output mfin.
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Figure 6: Diagram of how the NIROP prover P works. On the left, the diagram shows the part of P’s computation
that involves running the IOP prover P ; on the right, the diagram shows the part of P’s computation that involves
running the IOP verifier V . The highlighted values are those that are eventually included in the output proof π.
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7 Analysis of the transformation T

The theorem below specifies guarantees of the transformation T , described in Section 6. The statement of the
theorem relies on the notions of soundness and proof of knowledge against state restoration attacks, described
in Section 5 (more precisely, the statement relies on their restricted variants, described in Section 5.4).

Theorem 7.1 (IOP → NIROP). For every relation R, if (P, V ) is a public-coin interactive oracle proof
system for R with

round complexity k(x)

restricted state restoration soundness s̄sr(x, b)

proof length p(x)

prover time tver(x)

verifier time tprv(x)

then (P,V) := T (P, V ) is a non-interactive random-oracle proof system for R with

soundness s′(x,m, λ) := s̄sr(x,m) + 3(m2 + 1)2−λ

proof length p′(x, λ) :=
(
k(x) + q(x) · (dlog2 p(x)e+ 2) + 1

)
· λ 4

prover time t′prv(x, λ) := Oλ(k(x) + p(x)) + tprv(x) + tver(x)

verifier time t′ver(x, λ) := Oλ(k(x) + q(x)) + tver(x)

Moreover, the transformation T preserves both proof of knowledge and zero knowledge (if present):

• If (P, V ) has restricted state restoration proof of knowledge ēsr then (P,V) has proof of knowledge e′ with

e′(x,m, λ) := ēsr(x,m) + 3(m2 + 1)2−λ .

• If (P, V ) has z-statistical honest-verifier zero knowledge then (P,V) has z′-statistical zero knowledge with

z′(x, λ) := z(x) + p(x)2−λ/4+2 .

Finally, the above soundness s′(x,m, λ) and proof of knowledge e′(x,m, λ) are tight up to a multiplicative
factor O(λ+ p(x) + u(x)) in m, where u(x) is the total number of bits sent by V (x) (for any choice of its
randomness).

By construction, if 〈P (x,w), V (x)〉 has accepting probability δ, then the probability that Vρ(x,Pρ(x,w))
accepts is δ. The complexities p′, t′prv, t

′
ver above also directly follow from the construction. Therefore, we

are left to discuss soundness (upper bound in Section 7.1 and lower bound in Section 7.2), proof of knowledge
(Section 7.3), and zero knowledge (Section 7.4).

4This bound can be tightened by using additional notation: the term q(x) · dlog2 p(x)e can be replaced by
∑q(x)
j=1dlog2 |fij |e

where fij is the oracle queried by the j-th query.
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7.1 Upper bound for soundness

Let x /∈ L (R) and let P̃ be an m-query prover for the non-interactive random-oracle proof system (P,V).
We construct a prover P̃ (depending on x and P̃) for the interactive oracle proof system (P, V ), and show
that P̃ ’s ability to cheat in a (restricted) state restoration attack is closely related to P̃’s ability to cheat.
Construction of P̃ . Given no inputs or oracles, the prover P̃ works as follows.
1. Let ρ1, ρ2 be tables mapping {0, 1}∗ to {0, 1}λ, and let α be a table mapping λ-bit strings to verifier states.

The tables are initially empty and are later populated with suitable values, during the simulation of P̃.
Intuitively, ρ1, ρ2 are used to simulate P̃’s access to a random oracle, while α is used to keep track of
which verifier states P̃ has “seen in his mind”.

2. Draw σ0 ∈ {0, 1}λ at random, and define ρ2(x) := σ0 (i.e., the oracle ρ2 replies the query x with the
answer σ0). After receiving V ’s first message m1, also define ρ1(x‖σ0) := m1 and α(σ0) := (m1).

3. Begin simulating P̃ρ and, for i = 1, . . . ,m:
(a) Let θi be the i-th query made by P̃ρ.
(b) If θi is a query to a location of ρ1 that is defined, respond with ρ1(θi). Otherwise (if θi to an undefined

location of ρ1), draw a string in {0, 1}λ at random and respond with it. Then go to the next iteration
of Step 3.

(c) If θi is a query to a location of ρ2 that is defined, respond with ρ2(θi); then go to the next iteration of
Step 3. Otherwise (if θi is to an undefined location of ρ2), draw a string σ′ ∈ {0, 1}λ at random and
respond with it; then continue as follows.

(d) Let rt be the first λ bits of θi, and σ be the second λ bits. (If the length of θi is not 2λ bits, go to
the next iteration of Step 3.) If α(σ) is defined, let cvs := α(σ) and let j be the number of verifier
rounds in the state cvs. If α(σ) is not defined, go to the next iteration of Step 3.

(e) Find the query θi? whose result is rt. If this query is not unique, or there is no such query, then answer
the verifier V with some dummy message (e.g., an all zero message of the correct length) and skip to
Step 3g. Otherwise, note the index i? and continue.

(f) Compute f := VEρ2(P̃, `j(x), i?, i); if VE aborts, set f := 0`j(x). Recall that `j(x) is the length of
the prover message in the j-th verifier round, and VE is Valiant’s extractor (see Section 3.1). Also
note that VE does not query ρ2 on any value outside the table, because we have already simulated the
first i queries of P̃ (see Remark 3.1).

(g) Send the message f to the verifier and tell the game to set the verifier to the state cvs. (Whether cvs
lies in the set SeenStates is a matter of analysis further below.) If the game is not over, the verifier
replies with a new message m′. (If j = k(x) + 1, for the purposes of the proof, we interpret m′ as
the additional randomness r.) The game adds cvs′ := cvs‖f‖m′ to SeenStates. The prover defines
ρ1(x‖σ′) := m′ and α(σ′) := cvs′.

Analysis of P̃ . We now analyze P̃ . We first prove a simple lemma, and then discuss P̃ ’s ability to cheat.

Lemma 7.2. Let A be an m-query algorithm. Define:
1. E1 to be the event thatAρ2 outputs x ∈ {0, 1}n, rt1, . . . , rtk(x) ∈ {0, 1}λ, and σk(x) ∈ {0, 1}λ that satisfy

the recurrence σ0 = ρ2(x) and σi = ρ2(rti‖σi−1) for all i ∈ {1, . . . , k(x)};
2. E2 to be the event that Aρ2 queries ρ2 at x, rt1‖σ0, . . . , rtk(x)‖σk(x)−1 (in order) and, if any rti is the

result of a query, this query first occurs before rti‖σi−1.
Then

Pr [(¬E1) ∨ E2 | ρ2 ← U(λ)] ≥ 1− (m2 + 1)2−λ .

Proof. Let rt0 be x and σ−1 be the empty string. Suppose, by contradiction, that E1 occurs and E2 does not.
Then there exists i ∈ {0, . . . , k(x)} for which at least one of the following holds: (i) Aρ2 does not query
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rti‖σi−1; (ii) Aρ2 queries rti+1‖σi before it queries rti‖σi−1; (iii) rti is the result of a query but this query
first occurs after rti‖σi−1. Consider the largest index i for which one of the above holds.

In case (i), the behavior of Aρ2 is independent of ρ2(rti‖σ̃i−1). If i = k(x), then the output σk(x)
of Aρ2 equals ρ2(rtk(x)‖σk(x)−1) with probability 2−λ. If i < k(x), then there is a sequence of queries
rti+1‖σ̃i, . . . , rtk(x)‖σ̃k(x)−1 for which σ̃i = ρ2(rti‖σ̃i−1) for i = 1, . . . , k(x)− 1 and ρ2(rtk(x)‖σ̃k(x)−1) =
σk(x). If this sequence is not unique, then Aρ2 has found a collision. Otherwise, the unique sequence has
σ̃i = σi for each i, which occurs with probability at most 2−λ.

In cases (ii) and (iii), Aρ2 has found a collision, since σi = ρ2(rti‖σi−1). The fraction of oracles ρ2 for
which Aρ2 finds a collision is at most m22−λ. Overall, the probability that E2 does not occur and E1 does is,
by the union bound, at most (m2 + 1)2−λ.

We now state and prove the lemma that establishes the soundness s′ as stated in Theorem 7.1.

Lemma 7.3. Define

ε := Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)

π ← P̃ρ

]
.

Then there exists b ∈ N with b ≤ m such that P̃ is a b-round state-restoring prover that makes V accept with
probability at least ε− 3(m2 + 1)2−λ.

Proof. We first note that P̃ described plays no more than m rounds, because P̃ sends a message to the verifier
V only in response to P̃ making a query. Next, we define some useful notions, and use them to prove three
claims which together imply the lemma.

DEFINITION 1. We say ρ ∈ U(λ) is good if
1. The verifier accepts relative to ρ, i.e., Vρ(x, π) = 1 where π ← P̃ρ.
2. Parsing π as

(
(r̃t1, . . . , r̃tk(x)), (ãp1, . . . , ãpq), σ̃k(x)

)
and setting σ0 := x, for each i ∈ {1, . . . , k(x)},

where σi := ρ2(r̃ti‖σi−1), there exist indices 1 ≤ j1 < · · · < jk ≤ m such that:
(a) P̃ρ’s ji-th query is to ρ2 at r̃ti‖σi−1;
(b) if rti is the result of a query, this query first occurs before ji;
(c) if P̃ρ queries ρ1 at x‖σi, then this query occurs after query ji;
(d) if there exists l such that Root(ãpl) = r̃ti, there is a unique (up to duplicate queries) ai ∈ {0, . . . , ji}

such that ρ2(θai) = r̃ti and, for every imax ∈ {ai, . . . , ji}, v := VEρ2(A, `i, ai, imax) is such that, for
all l with Root(ãpl) = r̃ti, Value(ãpl) equals the Position(ãpl)-th value in v; we say v is extracted
at i if this holds.

3. σ̃k(x) = σk(x).

DEFINITION 2. We say that P̃ chooses ρ ∈ U(λ) if for every query θ made by P̃ρ to its oracle, P̃ supplies it
with ρ(θ) (ignoring whether this response comes from P̃ itself or the messages sent by V ; this choice is fixed
for a given ρ).

CLAIM 1. (P̃ , V ) chooses ρ ∈ U(λ) uniformly at random.

Whenever the simulation of P̃ makes a query, P̃ responds consistently, either with a uniformly randomly
drawn string of its own, or the uniform randomness provided by V . This is equivalent in distribution to
drawing ρ uniformly at random at the beginning of the protocol. �

CLAIM 2. For any choice of randomness such that P̃ chooses a good ρ, P̃ makes V (x) accept with a state
restoration attack.
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We begin by defining a property of the map α.

DEFINITION 3. For i = 0, . . . , k, we say that α is correct at i if, immediately before P̃’s ji+1-th query is
simulated (for i = k, at the end of the simulation), it holds that

α(σi) = (ρ1(x‖σ0), f1, . . . , ρ1(x‖σi)) ,

where for each l ∈ {1, . . . , i}, fl is extracted at l (see Condition 2d above), and α(σi) ∈ SeenStates.

We show by induction that α is correct at i for every i ∈ {0, . . . , k}. First, α is correct at 0 since
α(σ0) = (ρ1(x‖σ0)) by construction. Suppose that α is correct at i − 1. When P̃ρ queries r̃ti‖σi−1 (i.e.,
query θji), P̃ restores α(σi−1) ∈ SeenStates. By Condition 2d, fi is extracted at i. In Step 3g, ρ1(x‖σi) is set
to the message (or, similarly, internal randomness) sent by V in this round, which is possible by Condition 2c.
The newly stored state is then α(σi) = (ρ1(x‖σ0), f1, . . . , ρ1(x‖σi−1), fi, ρ1(x‖σi)) ∈ SeenStates. This
state is stored before query ji+1 by Condition 2a, and so α is correct at i.

Hence P̃ sends a state α(σk) = (ρ1(x‖σ1), f1, . . . , ρ1(x‖σk)) ∈ SeenStates. Since V’s simulation of V
accepts with this state, so does the real V when interacting with P̃. �

CLAIM 3. The probability that ρ ∈ U(λ) is good is at least ε− 3(m2 + 1)2−λ.

By assumption, the density of oracles satisfying Condition 1 is ε. Lemma 7.2 implies that the density
of oracles satisfying Condition 1 but not satisfying Condition 2a, Condition 2b, and Condition 3 is at most
(m2 + 1)2−λ.5 The density of oracles failing to satisfy Condition 2c is at most m22−λ, since this implies
a ‘collision’ (in the sense of Lemma 3.2) between ρ1 and ρ2. Finally, the density of oracles satisfying
Condition 1, Condition 2a, and Condition 2b, but not Condition 2d is at most (m2 + 1)2−λ, by Lemma 3.2
and Condition 2b (where Condition 2b allows us to restrict the possible values for ai to 0 ≤ ai < ji).

By the union bound, the density of good oracles ρ is at least ε− 3(m2 + 1)2−λ. �

Combining the claims, we deduce that P̃ makes V accept with probability at least ε− 3(m2 + 1)2−λ with a
state restoration attack. Finally, note that this state restoration attack is restricted because P̃ never requests to
set V to the empty verifier state null.

7.2 Lower bound for soundness

We show that the soundness analysis of Section 7.2 is essentially tight. Let x /∈ L (R) and let P̃ be a b-round
state-restoring prover for the interactive oracle proof system (P, V ). We construct an m-query prover P̃ for
the non-interactive random-oracle proof system (P,V), and show that P̃’s ability to cheat is closely related to
P̃ ’s ability to cheat in a state restoration attack.

Construction of P̃. Given oracle access to ρ, the prover P̃ works as follows.
1. Initialize SeenStates to be an empty set and α to be an empty mapping from verifier states to {0, 1}λ.
2. Compute k := k(x), σ0 := ρ2(x), and m1 := ρ1(x‖σ0).
3. Send the verifier message m1 to the simulation of P̃ .
4. Set the verifier state cvs := (m1), add cvs to SeenStates, and set α(cvs) := σ0.
5. For j = 1, . . . , b:

(a) Simulate P̃ until it selects cvs(j) = (m1, f1, . . . ,mi(j)) ∈ SeenStates and outputs a message f (j).
(b) Compute the root rt := MERKLE.GetRootρ2(f (j)‖j), where j is encoded in {0, 1}λ.

5More precisely, we apply Lemma 7.2 to an algorithm P̃ that does not itself output x but this does not affect the lemma’s validity
because we can substitute into the definition of the event E1 the fixed instance x.
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(c) Set σ := α(cvsj), σ′ := ρ2(rt‖σ), m(j) := ρ1(x‖σ′), and jf (j) := j.
(d) If i(j) < k, send the verifier message m(j) to the simulation of P̃ , add cvs := cvs(j)‖(f (j),m(j)) to

SeenStates, set α(cvs) := σ′, and continue to the next iteration.
(e) If i(j) = k, compute the bit d := V f1,...,fk(x, ∅; (m1, . . . ,mk,m

(j))). If d = 0, continue to the next
iteration; else if d = 1, compute a proof π as in Step 4 and 5 of the construction of P in Section 6,
using σk := σ and replacing fi with fi‖ifi for i = 1, . . . , k, then output π.

Analysis of P̃. We now analyze P̃.

Lemma 7.4. There exists a constant c such that if P̃ is a b-round state-restoring prover that makes V accept
x with probability ε, then P̃ is an m-query prover that makes V accept x with probability at least ε−m22−λ,
where m := c · (λ+ p(x) + u(x)) · b and u(x) is the sum of the lengths of all the verifier’s messages.

Proof. First, we argue that P̃ makes no more than c · (λ+ p(x) + u(x)) · b oracle queries for some universal
constant c. Whenever P̃ plays a round, P̃ makes:
• one call to ρ1 (chained dui(x)/λe ≤ u(x) times where ui is the length of the i-th verifier message);
• one call to ρ2; and
• one call to MERKLE.GetRootρ2 on a string of length at most p(x)+λ, which requires at most c′ ·(p(x)+λ)

queries for some universal constant c′.
In Step 5e, P̃ does not need to make any new queries. Thus, the number of queries is at most m.

Next, we argue if (the simulation of) P̃ convinces (the simulation of) V , then P̃ convinces V. This is clear
because P̃ constructs the proof π from messages and randomness that cause (the simulation of) V to accept.
It is also clear that (the simulation of) P̃ sees a legal restricted state restoration transcript.

Finally, we argue that (the simulation of) P̃ convinces (the simulation of) V with the claimed probability.
If all the root hashes σ′ are distinct, then all the verifier messages are uniformly randomly drawn, because
each message is computed as ρ1(x‖σ′); hence, by assumption, P̃ convinces V with probability ε. Every
Merkle tree root is computed relative to a distinct string (because we include the prover round index in the
string), so that if two root hashes collide then this implies a collision in ρ2, which can occur with probability
at most m22−λ. By the union bound, P̃ causes V to accept with probability at least ε−m22−λ.

7.3 Proof of knowledge

We describe how the transformation T preserves proof of knowledge. Suppose that the interactive oracle
proof system (P, V ) has restricted state restoration proof of knowledge ēsr(x,m), and denote by Esr the
corresponding extractor. The security reduction in Section 7.1, in which we construct P̃ from x and P̃,
suggests a natural strategy for extracting a witness from P̃. Indeed, note that P̃ does not need to know the
code, randomness, or auxiliary inputs of P̃, but only needs to choose answers for its queries to the random
oracle; this means that one can compute P̃ when only given x and oracle access to P̃.

So consider the extractor E that, given input (x, 1m, 1λ) and oracle access to P̃, works as follows:
(1) construct the oracle P̃ from the instance x and oracle P̃; (2) compute w := EP̃sr(x); (3) output w.
Note that E runs in probabilistic polynomial time because the oracle P̃ can be simulated in probabilistic
poly(|x|+m+λ) time when given input (x, 1m, 1λ) and the oracle P̃ and, moreover, Esr runs in probabilistic
poly(|x|) time.

The extractor E shows that (P,V) := T (P, V ) has proof of knowledge e′(x,m, λ) := ēsr(x,m)+3(m2+
1)2−λ (as stated in Theorem 7.1), as we now argue. By Lemma 7.3, the state-restoring prover P̃ makes
V accept x with probability that is at least the probability that P̃ makes V accept x minus 3(m2 + 1)2−λ.
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Moreover, (P, V ) has restricted state restoration proof of knowledge ēsr, so that Pr[(x, EP̃sr(x)) ∈ R] ≥
Pr[〈P̃ , V (x)〉sr = 1]− ēsr(x,m). We conclude that

Pr
[
(x,w) ∈ R

∣∣∣ w← EP̃(x, 1m, 1λ)
]

= Pr[(x, EP̃sr(x)) ∈ R]

≥ Pr[〈P̃ , V (x)〉sr = 1]− ēsr(x,m)

≥ Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)

π ← P̃ρ

]
− 3(m2 + 1)2−λ − ēsr(x,m)

= Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)

π ← P̃ρ

]
− e′(x,m, λ) ,

as desired.
Finally, the tightness argument of Section 7.2 can be extended from applying to (restricted state restoration)

soundness to also applying to (restricted state restoration) proof of knowledge.

7.4 Zero knowledge

We describe how the transformation T preserves zero knowledge, by proving the following lemma.

Lemma 7.5. If (P, V ) has z-statistical honest-verifier zero knowledge, then (P,V) has z′-statistical zero
knowledge (in the explicitly-programmable random oracle model) with z′(x, λ) := z(x) + p(x)2−λ/4+2.

Proof. Let S be the simulator for (P, V ), and SMERKLE the Merkle-tree simulator (see Section 3.2). We
construct a (candidate) simulator S for (P,V) := T (P, V ) that uses S and SMERKLE as subroutines. To
account for the split of ρ into the two sub-oracles ρ1 and ρ2, we view the function µ from the definition of
zero knowledge (see Section 2.3) as a pair (µ1, µ2) such that ρ[µ] splits into the function pair (ρ1[µ1], ρ2[µ2]).
The simulator S, given instance x and oracle access to ρ, works as follows:
1. Set k := k(x), q := q(x), `1 := `1(x), . . . , `k := `k(x), σ0 := ρ2(x).
2. Compute the view (a1, . . . , aq, rV ) := S(x).
3. Run V with randomness rV , recording its messages m1, . . . ,mk and answering its oracle queries with the

answers a1, . . . , aq, to determine the oracle index yj and bit index xj of each query θj .
4. For i = 1, . . . , k:

(a) Run SMERKLE to obtain the requested authentication paths corresponding to the i-th oracle by setting
(rti, (apj)j∈Ji) := SMERKLE(`i, (xj , aj)j∈Ji) where Ji := {j ∈ {1, . . . , q} s.t. yj = i}.

(b) Compute σi := ρ2(rti‖σi−1).
(c) Set µ1(x‖σi−1) := mi.

5. Set π :=
(
(rt1, . . . , rtk), (ap1, . . . , apq), (σ1, . . . , σk)

)
, and output (π, µ).

Note that S runs in probabilistic polynomial time (as its complexity is dominated by that of SMERKLE and S).
Next, we construct a “hybrid simulator” S′ that is identical to S except that: (a) S′ is given not only

an instance x but also the corresponding witness w; (b) in Step 2, instead of using S’s output view, S′
generates a uniformly random string rV and uses it to simulate (P (x,w), V (x; rV )) and obtain the answers
a1, . . . , aq and corresponding oracle and bit indices. We claim that, for any distinguisher D, the following
two distributions are p(x)2−λ/4+2-close:

Pr

[
Dρ(π) = 1

∣∣∣∣ ρ← U(λ)
π ← Pρ(x,w)

]
and Pr

[
Dρ[µ′](π′) = 1

∣∣∣∣ ρ← U(λ)
(π′, µ′)← S′ρ(x,w)

]
.
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Indeed, note that ρ and ρ[µ′] are identically distributed (since the values in µ′ are uniformly random) and
π ← Pρ[µ′](x,w) is p(x)2−λ/4+2-close to π′ (by Lemma 3.4).

Finally, we know by hypothesis that, for any distinguisher D, the following two distributions are z-close:

Pr

[
Dρ[µ′](π′) = 1

∣∣∣∣ ρ← U(λ)
(π′, µ′)← S′ρ(x,w)

]
and Pr

[
Dρ[µ](π) = 1

∣∣∣∣ ρ← U(λ)
(π, µ)← Sρ(x)

]
.

The lemma then follows by the triangle inequality.

33



8 Tree exploration games

We introduce tree exploration games, which are a class of games pitting a single player against Nature.
We prove a connection between tree exploration games and state restoration attacks on IOPs: we establish
a correspondence between public-coin IOP verifiers and tree exploration games and, similarly, between
state-restoring provers and strategies on these games. Finally, we describe a simple universal strategy, and
prove that it has optimal expected cost (where cost is the number of rounds until the player wins).

8.1 Definition of tree exploration games

A tree exploration game is a complete-information game, between a single player and Nature, that is specified
by a pair G = (T, φ), where T is a rooted tree and φ is a predicate function that maps T ’s vertices to {0, 1};
we denote by V (T ) the vertices of T , and by rt(T ) the root vertex of T .

The game proceeds in rounds: for i = 1, 2, . . . , in the i-th round, a subtree Si−1 ⊆ T is accessible to the
player; the player chooses a node v ∈ Si−1, and Nature samples a child u of v at random; the next accessible
subtree is Si := Si−1 ∪ {u}. The initial accessible set S0 is {rt(T )}, i.e., the set consisting of T ’s root vertex.
The player wins in round r if there is v ∈ Sr such that φ(v) = 1.

A strategy for G is a probabilistic function s : 2V (T ) → V (T ) such that s(W ) ∈W for all W ⊆ V (T ).
Note that s(S0) always equals rt(T ), because the root vertex is the only vertex in the initial accessible set; if
Nature samples the child u of rt(T ), then S1 := {rt(T ), u}, and so s(S1) may output rt(T ) or u (or each with
some probability). Thus the accessible sets form a sequence of random variables each of which depends on
the strategy s; we emphasize this by writing Si(s). Note that we have defined a strategy to be a function only
of the current accessible set (and not also of previous choices); we justify this choice later (see Lemma 8.3).

The cost of a strategy s is the random variable τs that denotes the smallest index r such that there is
v ∈ Sr(s) for which φ(v) = 1. More generally, given a set W ⊆ T containing rt(T ), τs(W ) denotes the cost
of s when the initial accessible set equals W ; thus, in particular, τs = τs({rt(T )}). Note that τs(W ) = 0 if
φ(v) = 1 for some v ∈W and τs(W ) =∞ if φ(v) = 0 for all v ∈W . For other cases, τs(W ) satisfies the
following recursion:

E[τs(W )] = 1 +
1

|Cs(W )|
∑

v∈Cs(W )

E[τs(W ∪ {v})] (1)

where Cv for v ∈ T is the set of children of v.

Remark 8.1. We do not discuss probabilistic strategies in this paper. One can verify, however, that for every
probabilistic strategy s there is a deterministic strategy s′ whose expected cost is no higher; the strategy s′

can be obtained by iteratively fixing the random choices of s such that E[τs] is minimized.

8.2 A connection between tree exploration and state restoration

We establish a connection between tree exploration and state restoration (discussed in Section 5).
From IOPs to tree exploration games. First, we describe how to map an interactive oracle proof system
to a tree exploration game. Let (P, V ) be a k-round public-coin interactive oracle proof system, and let
x be an instance; we use V and x to construct a tree exploration game GV,x = (T, φ) as follows. The
vertices of the rooted tree T consist of sequences of at most k(x) + 1 verifier messages: a vertex v looks
like (m1, . . . ,mi) with i ∈ {1, . . . , k(x)} and each mj in {0, 1}uj(x), or looks like (m1, . . . ,mk(x), r) with
each mj as before and r being additional randomness for the verifier; we denote by v(j) the j-prefix of v.
The edges of T correspond to sequences for which one sequence extends the previous one by an additional
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message: an edge (u, v) is in the edge set if v = u‖m for some message m. The predicate function
φ : V (T )→ {0, 1} is such that for every vertex v: (a) if v is not a leaf node (i.e., contains less than k(x) + 1
messages), φ maps v to 0; (b) if v is a leaf node (i.e., contains exactly k(x) + 1 messages), φ maps v to the bit
V fv(1),...,fv(k(x))(x; statek(x); rV ) where statek(x) := ∅, rV := v, and the fv(j) are defined as follows. Given
a vertex u = (m1, . . . ,mi), let Xu = (m1, . . . ,mi,mi+1, . . . ,mk(x), r) be the random variable obtained by
setting the first i coordinates according to u and choosing the rest uniformly at random. Then

fu := arg max
fi

(
max

f ′i+1,...,f
′
k(x)

Pr
Xu

[
V
fu(1),...,fu(i−1),fi,f

′
i+1...,f

′
k(x)(x, ∅;Xu) = 1

])
,

where, for j = i+ 1, . . . , k(x), f ′j ranges over probabilistic functions of the random variables mi+1, . . . ,mj .
The following lemma is an easy consequence of this definition.

Lemma 8.2. Let X := (m1, . . . ,mk(x), r) be drawn uniformly at random, with mi ∈ {0, 1}ui and r ∈
{0, 1}∗ sufficiently long. Let f1, . . . , fk(x) be such that, for j = 1, . . . , k(x), fj is a probabilistic function of
the random variables m1, . . . ,mj . Then

Pr
X

[
V f1,...,fk(x)(x, ∅;X) = 1

]
≤ Pr

X

[
V fX(1),...,fX(k(x))(x, ∅;X) = 1

]
.

Proof. Follows easily by induction and the definition of fu.

Augmented strategies vs. standard strategies. Next, we extend the notion of a strategy to allow tracking,
and depending on, previous choices; we use this notion in establishing a correspondence later on. We say
a sequence H = (v1, . . . , vh) ∈ V (T )h is a valid history if v1 = rt(T ) and, for all j ∈ {2, . . . , h}, vj is
adjacent to some vertex u ∈ {v1, . . . , vj−1}. Every nonempty prefix of a valid history is also a valid history,
and that vertices in the sequence need not be distinct.

Given a tree exploration game G = (T, φ), a function s : (V (T ))≤b → V (T ) ∪ {⊥} is a b-augmented
strategy for G if, for all valid histories (v1, . . . , vb), it holds that s((v1, . . . , vj)) ∈ {v1, . . . , vj} ∪ {⊥} for
all j ∈ {1, . . . , b}. (The value of s(H) when H is not a valid history is irrelevant.) To play a b-augmented
strategy on a tree, we provide it with the history H of vertices drawn so far. We prove that, in terms of
expected cost, b-augmented strategies are no more powerful than (standard) strategies.

Lemma 8.3. Let G = (T, φ) be a tree exploration game. For every b-augmented strategy s for G there is a
(standard) strategy s′ for G such that E[τs′ ] ≤ E[τs].

Proof. For W = {v1, . . . , vi} ⊆ T , let

s′(W ) :=

{
s((vπ(1), . . . , vπ(i))) if s((vπ(1), . . . , vπ(i))) 6= ⊥
rt(T ) otherwise

where π minimizes E[τs((vπ(1), . . . , vπ(i)))] across all permutations over [i] for which (vπ(1), . . . , vπ(i)) is a
valid history. Note that s′(W ) ∈W since if s((vπ(1), . . . , vπ(i))) 6= ⊥ then s((vπ(1), . . . , vπ(i))) ∈W . The
expected cost of s for any valid history (v1, . . . , vi) is thus bounded from below as follows

E[τs((v1, . . . , vi))] ≥ E[τs′({v1, . . . , vi})] .

Hence in particular, E[τs] = E[τs((rt(T )))] ≥ E[τs′({rt(T )})] = E[τs′ ].
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The correspondence. Let (P, V ) be a k-round public-coin interactive oracle proof system, and let x be an
instance; let GV,x = (T, φ) be the tree exploration game constructed as above. We now describe, for any
budget b ∈ N, a correspondence between (deterministic) b-round state-restoring provers for (P, V (x)) and
b-augmented strategies for GV,x.

Given m1, . . . ,mi ∈ {0, 1}∗, the state corresponding to a vertex v = (m1, . . . ,mi) is cvs(v) :=
(m1, fv(1), . . . ,mi−1, fv(i−1),mi). The vertex corresponding to a state cvs := (m1, f1, . . . ,mi) is v(cvs) :=
(m1, . . . ,mi). A history (v1, . . . , vj) corresponds to the list of states (cvs(v1), . . . , cvs(vj)) and vice versa.

• From provers to strategies. Let P be a b-round state-restoring prover; construct a b-augmented strategy sP
as follows. Given a valid history (v1, . . . , vh) as input, sP works by simulating a state-restoration attack
by P on V (x), as follows. For i ∈ {1, . . . , h− 1}, in the i-th prover round, when P chooses a complete
verifier state cvs = (m1, f1, . . . ,mj), we check whether the vertex vi+1 =: (m′1, . . . ,m

′
j′) in the history

is a child of v(cvs). If it is not, or if P halts, then sP outputs ⊥. Otherwise, we respond to P with m′j′ and
continue. In the h-th prover round, sP outputs v(cvs).

• From strategies to provers. Let s be a b-augmented strategy; construct a b-round state-restoring prover
Ps as follows. In prover round j, Ps computes vs := s((v1, . . . , vj)), then restores the state cvs(vs), and
sends the prover message fvs . Afterwards, Ps sets vj+1 := (m1, . . . ,mi,mi+1), where (m1, . . . ,mi) are
the messages in vs and mi+1 is the verifier’s response; if s((v1, . . . , vj+1)) = ⊥, Ps halts.

The following lemma justifies the study of tree exploration games in relation to state restoration soundness of
interactive oracle proof systems; namely, we prove that b-augmented strategies and b-round state-restoring
provers are equivalent in the following sense.

Lemma 8.4. Let b ∈ N.
• For every b-round state-restoring prover P̃ for (P, V (x)), Pr[sP̃ wins in GV,x] ≥ Pr[P̃ makes V accept x].
• For every b-augmented strategy s for GV,x, Pr[P̃s makes V accept x] = Pr[s wins in GV,x].

Proof. First we prove the first bullet. Note that, by the definition of GV,x, a b-augmented strategy s wins in
GV,x if and only if there exists v = (m1, . . . ,mk(x), r) ∈ Sb such that V fv(1),...,fv(k(x))(x, ∅; v) = 1.

Each prover message fi is a probabilistic function of the messages m1, . . . ,mi that precede it (‘proba-
bilistic’ because P̃ can obtain independent randomness by restoring some state). Then by Lemma 8.2
we can replace P̃ ’s messages with fu, where u is the tuple of verifier messages in the state cvs re-
stored at the beginning of the prover round, without reducing its success probability. We call this prover
P̃ ′; note that sP̃ ′ = sP̃ . We observe that P̃ ′ succeeds if and only if, after b prover rounds, there
is some state cvs = (m1, f(m1),m2, f(m1,m2), . . . ,mk(x), f(m1,...,mk(x)), r) ∈ SeenStates such that for
u := (m1, . . . ,mk(x), r) it holds that V fu(1),...,fu(k(x))(x, ∅;u) = 1.

Suppose that we play the tree exploration game GV,x with strategy sP̃ ′ . We couple this game to an
interaction between P̃ ′ and V , and show that, whenever we add a state cvs to SeenStates, we also add
the corresponding vertex v(cvs) to H , the sequence of vertices drawn during the game. These correspond
initially because SeenStates = (null), and H = (rt(T )) = (v(null)). Now suppose that we have played GV,x
coupled to (P̃ ′, V ) for some number of rounds, and the current history H corresponds to SeenStates. Also,
sP̃ ′(H) = ⊥ if and only if P̃ ′ halts because H must be consistent with the choices of sP̃ ′ , and moreover P̃ ′

is deterministic. Let v′ := sP̃ ′(H); observe that v′ ∈ H since cvs(v′) is restored by P̃ ′ and hence must be in
SeenStates. Then the new vertex v added to H is chosen uniformly at random from the children of v′. This
is equivalent in distribution to V ’s choice of message after P̃ ′ restores the state cvs(v′) and sends its message
fv′ ; hence we may couple these random choices so that the vertex v := vs‖m is added to H if and only if
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cvs(v) is added to SeenStates. Hence sP̃ ′ (i.e., sP̃ ) wins in GV,x if and only if P̃ ′ makes V accept x under
this coupling, and since the probability that this happens is at least the probability that P̃ makes V accept x,
this concludes the proof of the first bullet.

Next we prove the second bullet. The proof is again via coupling argument: consider an interaction
between P̃s and V . We couple this interaction to s played on GV,x, and show that whenever we add a vertex
v to the history H , we also add the corresponding state cvs(v) to SeenStates. Again, SeenStates and H
correspond initially. Suppose that (P̃s, V ) have interacted for some number of rounds, coupled to GV,x, and
that SeenStates and H correspond. Then cvs := cvs(s(H)) ∈ SeenStates since s(H) ∈ H , and P̃s is able
to restore cvs. Again we observe that the response of V and the choice of child of s(H) are identically
distributed, and we may couple them. Under this coupling, a state cvs′ := cvs‖(fs(H),m) is added to
SeenStates if and only if v(cvs′) is added to H . Hence P̃s makes V accept x if and only if s wins in GV,x
under this coupling, which proves the equality.

8.3 The expected value strategy

We show how to construct, for every tree exploration game G = (T, φ), a simple strategy s? that has optimal
expected cost with respect to all strategies of that game; we call this strategy the expected value strategy, for
reasons that will become clear below.

We associate to each vertex v ∈ T a potential ∆(v). If v is a leaf and φ(v) = 0, then we set ∆(v) := 1;
if v is a leaf and φ(v) = 0, we set ∆(v) :=∞. If v is not a leaf, we set

∆(v) := min
U⊆Cv

1

|U |

(
|Cv|+

∑
u∈U

∆(u)

)
.

One can show that the smallest U minimizing the right hand side is C<v := {u ∈ Cv : ∆(u) < ∆(v)}. The
expected value strategy is defined in terms of potentials: for every S ⊆ V (T ), s?(S) := arg minv∈S ∆(v).

We first prove that the expected cost of the expected value strategy equals the potential of the root vertex.

Claim 8.5. E[τs? ] = ∆(rt(T )).

Proof. Since τs? = τs?({rt(T )}) and s?({rt(T )}) = rt(T ), the statement is equivalent to E[τs?(W )] =
∆(s?(W )) for W = {rt(T )}. We prove this by reverse induction on the subtree W . So first suppose that
W = V (T ). In this case, if there is v ∈ V (T ) such that φ(v) = 1 then E[τs?(V (T ))] = 0 = ∆(s?(V (T )));
otherwise, E[τs?(V (T ))] = ∞ = ∆(s?(V (T ))). This establishes the base case; next we establish the
inductive step. Let W be a subtree of T , and suppose that E[τs?(W

′)] = ∆(s?(W ′)) for all W ′ ⊆ T that
contain, but do not equal, W ; we now argue that E[τs?(W )] = ∆(s?(W )) as well. Letting u := s?(W ) and
invoking Equation 1, we obtain that

E[τs?(W )] = 1 +
1

|Cu|
∑
v∈Cu

E[τs?(W ∪ {v})]

= 1 +
1

|Cu|

 ∑
v∈C<u

E[τs?(W ∪ {v})] +
∑

v∈Cu−C<u

E[τs?(W )]


= 1 +

1

|Cu|

 ∑
v∈C<u

∆(v) + |Cu − C<u| · E[τs?(W )]

 (by the inductive hypothesis)
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Then since |Cu − C<u| = |Cu| − |C<u|, we can rearrange to obtain

|C<u|E[τs?(W )]

|Cu|
=

1

|Cu|

|Cu|+ ∑
v∈C<u

∆(v)


so that

E[τs?(W )] =
1

|C<u|

|Cu|+ ∑
v∈C<u

∆(v)

 = ∆(u) ,

as claimed.

Next we prove that the expected value strategy has optimal expected cost.

Claim 8.6. For any strategy s, E[τs] ≥ E[τs? ].

Proof. Claim 8.5 states that E[τs? ] = ∆(rt(T )), so it suffices to show that E[τs] ≥ ∆(rt(T )). We do so by
proving the following statement: for every subtreeW of T , it holds that E[τs(W )] ≥ minv∈W ∆(v). (We can
then take W = {rt(T )} to finish the proof because τs = τs({rt(T )}) and minv∈{rt(T )}∆(v) = ∆(rt(T )).)

We proceed by a reverse induction on the subtree W . So first suppose that W = V (T ). In this
case, if there is v ∈ V (T ) such that φ(v) = 1 then E[τs(V (T ))] = 0 = minv∈V (T ) ∆(v); otherwise,
E[τs(V (T ))] =∞ = minv∈V (T ) ∆(v). This establishes the base case; next we establish the inductive step.
Let W be a subtree of T , and suppose that E[τs(W

′)] = minv∈W ′ ∆(v) for all W ′ ⊆ T that contain, but
do not equal, W ; we now argue that E[τs(W )] = minv∈W ∆(v) as well. By invoking Equation 1 (and
rearranging), we obtain that

E[τs(W )] =
1

|Cu −W |

[
|Cu|+

∑
v∈Cu−W

E[τs(W ∪ {v})]

]
.

By the inductive hypothesis, the above is equal to

1

|Cu −W |

[
|Cu|+

∑
v∈Cu−W

min
x∈W∪{v}

∆(x)

]
=

1

|Cu −W |

|Cu|+ ∑
v∈C<u−W

∆(v) + |Cu − C<u −W |∆(w)

 ,

where w := arg minv∈W ∆(v). Rearranging, this is equal to

|C<u −W |
|Cu −W |

· 1

|C<u −W |

|Cu|+ ∑
v∈C<u−W

∆(v)

+

(
1− |C<u −W |

|Cu −W |

)
∆(w)

≥ |C<u −W |
|Cu −W |

·∆(u) +

(
1− |C<u −W |

|Cu −W |

)
∆(w) ≥ ∆(w) ,

where the first inequality follows from the construction of ∆(u) and that (C<u −W ) ⊆ Cu, and the second
follows since ∆(u) ≥ ∆(w) by the choice of w; this concludes the proof the claim.
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A Interactive oracle proofs characterize NEXP

We prove that interactive oracle proofs characterize the complexity class NEXP.

Lemma A.1. For every relation R and polynomially-bounded k : {0, 1}∗ → N, R is in NEXP if and only if
R has an interactive oracle proof system with round complexity k and constant soundness. Moreover, the
same is true if we restrict our attention to only interactive oracle proof systems that are public-coin.

Proof. Suppose that R is in NEXP. Then R has a PCP with polynomially-bounded randomness and query
complexity, since NEXP = PCP(poly,poly) (see, e.g., [AB09, p. 164]). The PCP immediately gives a
public-coin interactive oracle proof with one round and the same soundness: the IOP verifier sends an empty
first message, the IOP prover answers with the PCP proof, and the IOP verifier runs the PCP verifier.

Conversely, suppose that R has an interactive oracle proof system (P, V ) with round complexity k and
constant soundness. We argue that R has a 2k-prover interactive proof system, which implies that R is
in NEXP (since MIP = NEXP). We think of the 2k provers as k pairs of provers such that the i-th pair
is responsible for the i-th IOP prover message fi. Following a simulation argument in [BFL90], the MIP
verifier simulates the IOP verifier V as follows. First, run V until it halts, forwarding its output messages
and answering its oracle queries as follows: when V outputs the i-th message mi, send the message history
m1, . . . ,mi to each prover in the i-th pair; when V makes a query θ to the i-th oracle, send θ to the first
prover in the i-th pair, and answer θ by returning that prover’s answer. Next, once has V halted, pick a query
θ of V at random and send it to the second prover of the pair whose first prover had answered θ. Finally,
reject if V had rejected or the answer to the randomly-picked query is inconsistent with the previous one.

Define fi to be the string such that fi(θ) is the value returned by the second prover of the i-th pair when
receiving the query θ (and no other query). If the first prover in the i-th pair ever answers a query θ with a
value different from fi(θ), then the MIP verifier rejects with probability at least 1/q; else, if the first prover
in the i-th pair answers every query consistently with fi, then it behaves as the oracle fi.

Overall, if some pair’s first prover answers inconsistently, then the MIP verifier rejects with probability
at least 1/q; else, if every pair’s first prover answers consistently with its second prover, then convincing
the MIP verifier is equivalent to convincing the IOP verifier V . The soundness error is thus 1 − Ω(1/q).
Repeating the protocol polynomially many times (sequential repetition suffices) can reduce the soundness
error to, e.g., less than 1/3.
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B Soundness error reduction

We discuss approaches for soundness error reduction for IOPs (Appendix B.1) and NIROPs (Appendix B.2),
and then discuss how these interact with the transformation that compiles one into the other (Appendix B.3).

B.1 Soundness error reduction for IOPs

Similarly to the case of interactive proof systems, one can define sequential and parallel repetition of
interactive oracle proof systems, and both yield exact exponential decay in the soundness error. Below we
provide additional details about each, including how other parameters, in addition to soundness, change.

• Sequential repetition. Given r ∈ N, the r-fold sequential repetition of an interactive oracle proof system
(P, V ) is the interactive oracle proof system (Pr, Vr) that is obtained by running r independent instances
of (P, V ) in sequence (and where the new verifier Vr accepts if and only if all r invocations of V accept).

If (P, V ) has complexity (k, s, p, q, tprv, tver) then (Pr, Vr) has complexity (rk, sr, rp, rq, rtprv, rtver).

• Parallel repetition. Given r ∈ N, the r-fold parallel repetition of an interactive oracle proof system (P, V )
is the interactive oracle proof system (Pr, Vr) that is obtained by running r independent instances of (P,
V ) in parallel (and where the new verifier Vr accepts if and only if all r invocations of V accept).

If (P, V ) has complexity (k, s, p, q, tprv, tver) then (Pr, Vr) has complexity (k, sr, rp, rq, rtprv, rtver).

In the case of parallel repetition, the proof of the exact exponential decay of the soundness error is similar
to that for interactive proofs. Namely, Goldreich’s game-tree approach [Gol99, pp. 145–149] carries over,
because it does not depend on whether the prover’s messages are read in their entirety by the verifier (as in
interactive proofs) or are only queried at some locations (as in interactive oracle proofs); in particular, the
prover has complete information about the game and may act to maximize V ’s acceptance probability.

B.2 Soundness error reduction for NIROPs

Because non-interactive random-oracle proof systems are not an interactive proof system, the intuitive notions
of sequential and parallel repetition coincide; so we talk about repetition (without any qualifying adjectives).
We now explain what this means, and show that it yields exact exponential decay in the soundness error. We
also discuss how other parameters, in addition to soundness, change.

Repeating a NIROP. Given r ∈ N, the r-fold repetition of a non-interactive random-oracle proof system
(P,V) is the non-interactive random-oracle proof system (Pr,Vr) that, letting ρi(x) denote ρ(i‖x) for each
ρ ∈ U(λ) and i ∈ {1, . . . , r}, works as follows.
• Pρr(x,w) independently computes πi := Pρi(x,w) for each i ∈ {1, . . . , r} and outputs π := (π1, . . . , πr).
• Vρr(x, π) runs Vρ1(x, π1), . . . ,Vρr(x, πr) and accepts if and only if all of the verifiers accept.

Changes in parameters. Repetition of a NIROP affects its parameters as follows.
• If (P,V) has complexity (s, p, tprv, tver) then (Pr,Vr) has complexity (sr, rp, rtprv, rtver).

Lemma B.1. If (P,V) has soundness s(x,m, λ), then (Pr,Vr) has soundness s′ satisfying

s(x,m/r, λ)r ≤ s′(x,m, λ) ≤ s(x,m, λ)r .
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Proof. We prove the first inequality. Let P̃ be an m/r-query prover that convinces V to accept on x /∈
L (R) with probability at least s(x,m/r, λ). Consider the m-query prover P̃(r) that runs r copies of P̃
independently, with the i-th copy querying ρi; the probability that P̃(r) convinces Vr is at least s(x,m/r, λ)r,
by independence.

We now prove the second inequality. Let P̃ be an m-query prover and x /∈ L (R). We show that
ε ≤ s(x,m, λ)r, where

ε := Pr

[
Vρr(x, π) = 1

∣∣∣∣ ρ← U(λ)

π ← P̃ρ

]
.

Rewriting the right-hand side, we obtain that

ε = Pr


Vρ1(x, π1) = 1

...
Vρr(x, πr) = 1

∣∣∣∣∣∣∣∣∣
ρ1, . . . , ρr ← U(λ)

(π1, ·, . . . , ·)← P̃ρ1,...,ρr
...

(·, . . . , ·, πr)← P̃ρ1,...,ρr

 .

The above implies that there exist m-query provers P̃1, . . . , P̃r such that

ε ≤ Pr


Vρ1(x, π1) = 1

...
Vρr(x, πr) = 1

∣∣∣∣∣∣∣∣∣
ρ1, . . . , ρr ← U(λ)

π1 ← P̃ρ11
...

πr ← P̃ρrr

 ,

because, for each i ∈ {1, . . . , r}, we can hardcode the answers to P̃i from ρj with j 6= i in order to maximize
the probability that Vρi(x, πi) accepts. Then, by independence, the above probability is bounded from above
by s(x,m, λ)r, and the lemma follows.

Lemma B.2. If (P,V) has z-statistical zero knowledge, then (Pr,Vr) has rz-statistical zero knowledge.

Proof. The proof is by a hybrid argument. We start by defining some useful notation: for functions
µ1, . . . , µr with disjoint domains X1, . . . , Xr, let

⋃r
i=1 µi denote the function f with domain

⋃r
i=1Xi where

f(x) = µi(x) for every i ∈ {1, . . . , r} and x ∈ Xi. Let Sr be the “repetition” of the simulator S for (P,V)
that shows its z-statistical zero knowledge. Given any distinguisher Dr, define

ε :=

∣∣∣∣Pr

[
Dρ[µ]
r (π) = 1

∣∣∣∣ ρ← U(λ)
(π, µ)← Sρr(x)

]
− Pr

[
Dρ
r (π) = 1

∣∣∣∣ ρ← U(λ)
π ← Pρr(x,w)

]∣∣∣∣ .
Let Ai be the oracle algorithm that, on input (x,w), outputs ((π1, . . . , πr),

⋃i
j=1 µj) where: (i) for j =

1, . . . , i, (πj , µj)← Sρjr (x); and (ii) for j = i+ 1, . . . , r, πj ← Pρjr (x,w). Note that A0 is equivalent to Pr
and Ar is equivalent to Sr (when discarding w). Then

ε =

∣∣∣∣∣
r∑
i=1

(
Pr

[
Dρ[µ]
r (π) = 1

∣∣∣∣ ρ← U(λ)
(π, µ)← Aρi (x,w)

]
− Pr

[
Dρ[µ]
r (π) = 1

∣∣∣∣ ρ← U(λ)
(π, µ)← Aρi−1(x,w)

])∣∣∣∣∣ .
Consider the distinguisher D that, on input π and with oracle access to ρ, works as follows: (1) choose
i ∈ {1, . . . , r} uniformly at random; (2) for j = 1, . . . , i − 1, compute (πj , µj) ← Sρjr (x); (3) for j =
i + 1, . . . , r, compute πj ← Pρjr (x,w), where w may be hard-coded into D; (4) setting µ :=

⋃i−1
j=1 µj ,
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simulate Dρ′[µ]
r ((π1, . . . , πi−1, π, πi+1, . . . , πr)), where ρ′(i‖x) := ρ(x) and other responses are drawn

uniformly at random, and return its output. Note that if π is produced by P, then the distribution corresponds
to Ai−1; if π is produced by S, then it corresponds to Ai instead. Therefore,

z(x, λ) ≥
∣∣∣∣Pr

[
Dρ[µ](π) = 1

∣∣∣∣ ρ← U(λ)
(π, µ)← Sρ(x)

]
− Pr

[
Dρ(π) = 1

∣∣∣∣ ρ← U(λ)
π ← Pρ(x,w)

]∣∣∣∣
=

∣∣∣∣∣1r
r∑
i=1

(
Pr

[
Dρ[µ]
r (π) = 1

∣∣∣∣ ρ← U(λ)
(π, µ)← Aρi (x,w)

]
− Pr

[
Dρ[µ]
r (π) = 1

∣∣∣∣ ρ← U(λ)
(π, µ)← Aρi−1(x,w)

])∣∣∣∣∣
= ε/r .

Rearranging, we obtain that ε ≤ rz(x, λ) and the lemma follows.

B.3 Strategies for soundness error reduction

Parallel repetition of IOPs is superior to sequential repetition of IOPs because the latter increases the number
of rounds but not does not offer advantages in return. A more interesting question is whether it is better to:
(1) first reduce the soundness error of an IOP and then convert it to a NIROP via the transformation T , or
(2) first transform the IOP to a NIROP and then reduce the soundness error.

The first method yields a soundness error of
(
m
k(x)

)
s(x)r +O(m22−λ), while the second yields one of

(
(
m
k(x)

)
s(x) +O(m22−λ))r. The first method is the only one that is effective when

(
m
k(x)

)
s(x)� 1; indeed,

the second method also amplifies the soundness loss incurred by the transformation, and hence is less effective
for reducing soundness error. With respect to other complexity measures, both methods perform similarly. In
sum, the first method is generally the preferable strategy for soundness error reduction.
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C Zero knowledge with non-programmable random oracles

We provide a lemma showing that, for non-interactive random-oracle proof systems with zero knowledge in
the non-programmable random oracle model, “simulation is as hard as decision”. The lemma is a simple
adaptation of [Pas03, Theorem 7], and implies that non-trivial languages do not have efficient simulators.

Lemma C.1. Let (P,V) be a non-interactive random oracle-proof system for a relation R with soundness
s(x,m, λ) ≤ 1/3 (for all sufficiently large |x|,m, λ). If (P,V) has z-statistical zero knowledge with
z(x, λ) ≤ 1/3 (for all sufficiently large |x|, λ) in the non-programmable random oracle model with a
simulator S that runs in time t(n), then R ∈ BPTIME(poly(t(n))).

Proof. Consider the probabilistic decider algorithm D that, given an instance x, seeks to decide if x belongs
to L (R) as follows: (i) choose a sufficiently large security parameter λ; (ii) simulate a random oracle
ρ ∈ U(λ) in the straightforward way; (iii) compute (π, µ) := Sρ(x); (iv) compute and output Vρ(x, π). Note
that ρ[µ] = ρ (since the random oracle is non-programmable) and that D runs in time poly(t(n)).

We claim that D shows that R lies in BPTIME(poly(t(n))). Fixing a sufficiently large instance x,
consider the following two cases.

• Case 1: x ∈ L (R). We claim that Pr[D(x) = 1] ≥ 2/3. Suppose, by way of contradiction, that
Pr[D(x) = 1] < 2/3. By construction of D, we deduce that

ε := Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)
(π, µ)← Sρ(x)

]
< 2/3 .

On the other hand, by the completeness of (P,V), we know that

Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)
π ← Pρ(x,w)

]
= 1 .

Now let X and Y be the random variables that denote the output of V in the probability distributions of the
above two probability statements, respectively. Then

∆(X;Y ) =
1

2
(|Pr[X = 0]− Pr[Y = 0]|+ |Pr[X = 1]− Pr[Y = 1]|)

=
1

2
(|(1− ε)− 0|+ |ε− 1|) = 1− ε > 1/3 ≥ z(x, λ) ,

which contradicts the zero knowledge property.

• Case 2: x 6∈ L (R). We claim that Pr[D(x) = 1] ≤ 1/3. By the soundness of (P,V), for every m-query
P̃, and λ ∈ N,

Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)

π ← P̃ρ

]
≤ s(x,m, λ) .

In particular, for sufficiently large m, this holds for the t(|x|)-query prover P̃∗ that computes (π, µ) :=
Sρ(x) and outputs π. Thus, by construction of D,

Pr[D(x) = 1] = Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)
(π, µ)← Sρ(x)

]
= Pr

[
Vρ(x, π) = 1

∣∣∣∣ ρ← U(λ)

π ← P̃ρ∗

]
≤ s(x,m, λ) ≤ 1/3.
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