
Smart	Signatures	
A	White	Paper	from	Rebooting	the	Web	of	Trust	

by	Christopher	Allen,	Greg	Maxwell,	Peter	Todd,	Ryan	Shea,	Pieter	Wuille,												
Joseph	Bonneau,	Joseph	Poon,	and	Tyler	Close	

	

	

Abstract	

Traditional	cryptographic	signature	systems	are	based	on	strictly-defined	
authentication	and	authorization	mechanisms	that	assume	a	single	private	key	can	
be	used	to	produce	a	given	signature	and	that	a	single	public	key	can	be	used	to	
verify	it.	Given	the	evident	limitations	of	this	design,	we	propose	an	alternative	with	
more	powerful	capabities,	based	on	the	ability	to	explicitly	outline	and	fully	
program	conditions	for	verification.	These	conditions	would	then	be	used	to	
determine	when	a	signature	or	set	of	signatures	can	be	considered	valid.	

Our	inspiration	for	this	authorization	system	is	the	bitcoin	scripting	language,	
where	the	authorization	to	spend	funds	is	explicitly	defined	within	a	script,	rather	
than	being	implicitly	defined	through	the	reference	to	an	authorized	public	key.	The	
largest	benefit	of	explicit	specification	of	authorization	conditions	is	that	the	system	
is	fully	extensible,	so	new	operations	can	be	defined	at	any	time,	with	the	only	
limitation	being	the	set	of	operations	that	the	authorization	interpreters	
understand.		

	

	

Smart Signatures v1.0.1, 12/23/15 Page 2 	

	

1.	Background	

1.1	Traditional	Message	Signing	and	Verification	

In	traditional	message	signing	systems,	one	generates	two	mathematically-linked	
keys,	a	public	key	and	a	private	key,	where	the	public	key	can	be	derived	from	the	
private	key,	but	the	reverse	derivation	cannot	be	performed.	

To	produce	a	signature	for	a	given	message,	a	signature	generation	function	takes	as	
inputs	a	private	key	and	the	message	to	be	signed.	A	reader	can	verify	the	signature	
with	a	known	public	key,	which	is	linked	to	that	unknown	private	key.	This	is	done	
by	a	signature	verification	function	that	uses	the	public	key,	the	signature,	and	the	
signed	message	as	inputs.	

Traditional	signature	systems	are	very	powerful	on	their	own,	as	one	can	verify	a	
signature	without	being	able	to	produce	it.	However,	these	longstanding	
cryptographic	systems	are	also	limited	in	scope.	

1.2	Bitcoin	Scripting	

Bitcoin	contains	a	fairly	advanced	authorization	system.	Every	transaction	in	bitcoin	
has	a	set	of	recipients,	where	each	of	the	recipients	is	actually	a	script	that	outlines	
the	conditions	under	which	the	coins	can	be	spent	at	a	future	date.	These	scripts	are	
the	equivalent	of	challenges.	Anyone	who	can	meet	the	conditions	outlined	by	the	
script	is	granted	access	to	spend	the	funds.	

These	scripts	can	be	very	powerful	and	support	various	levels	of	complexity:	

1. Scripts	can	require	signatures	that	correspond	to	a	given	hash	of	an	unknown	
public	key.	This	is	a	traditional	signature,	referred	to	in	bitcoin	as	a	"pay-to-
pubkey-hash"	script.	

2. Scripts	can	require	a	set	of	signatures	to	be	provided	that	correspond	to	K	out	
of	N	specified	public	keys.	This	is	known	as	a	multi-signature	script.	

3. Scripts	can	keep	their	actual	redemption	conditions	secret	and	simply	provide	a	
hash	of	those	conditions.	At	a	later	date,	a	redeemer	can	reveal	the	redemption	
conditions	along	with	the	signatures	that	allow	it	to	meet	those	conditions	—	
simultaneously	providing	the	conditions	and	meeting	them.	If	the	conditions	
are	met	and	the	hash	of	the	conditions	matches	the	hash	provided	in	the	script,	
authorization	is	granted.	

The	following	examples	shows	a	standard	bitcoin	script:	

OP_DUP	OP_HASH160	<pubKeyHash>	OP_EQUALVERIFY	OP_CHECKSIG	

Here,	authorization	would	be	granted	if	a	user	could	provide	a	smart	signature	that	
contains	a	standard	signature	and	a	public	key	that	together	could	be	used	as	input	

Smart Signatures v1.0.1, 12/23/15 Page 3 	

for	a	bitcoin	script-compatible	verification	function	and	that	together	produce	a	
"true"	output.	

2.	Proposal	

2.1	Bitcoin’s	Scripting	Outside	of	the	Blockchain	

Bitcoin's	smart	authorization	mechanism	can	be	used	in	other	contexts.	A	wide	
variety	of	resources,	from	API	endpoints	to	assets	on	a	blockchain,	can	be	protected	
by	an	authorization	system	where:	(i)	each	resource	links	to	script-encoded	
conditions	for	access;	and	(ii)	each	authorization	request	links	to	information	
intended	to	meet	those	conditions.	Such	a	system	would	be	a	smart	signature	
system.	

2.2	Smart	Verification	

A	smart	signature	system	could	begin	with	the	standard	bitcoin	script	referenced	
above:	

OP_DUP	OP_HASH160	<pubKeyHash>	OP_EQUALVERIFY	OP_CHECKSIG	

This	script	would	be	embedded	inside	a	smart	certificate	that	is	used	outside	of	the	
blockchain	context.	When	provided	with	a	signature,	certificate	validation	code	
would	verify	the	authenticity	of	the	script,	as	follows:	

1. The	user's	signature	is	pushed	onto	the	stack,	producing	[SIG1]	
2. The	user's	public	key	is	pushed	onto	the	stack,	producing	[SIG1][PUB1]	
3. The	user's	public	key	is	duplicated	(OP_DUP)	on	the	stack,	producing	

[SIG1][PUB1][PUB2]	
4. The	top	public	key	on	the	stack	is	replaced	by	a	hash	of	itself	(OP_HASH160),	

producing	[SIG1][PUB1][PUBHASH1]	
5. The	smart	certificate's	public	key	hash	is	pushed	onto	the	stack,	producing	

[SIG1][PUB1][PUBHASH1][PUBHASH2]	
6. The	public	key	hashes	from	the	user	and	the	smart	certificate	are	checked	for	

equality	and	then	popped	off	the	stack	(OP_EQUALVERIFY),	producing	
[SIG1][PUB1]	

7. The	user's	signature	is	checked	against	the	user's	public	key	(OP_CHECKSIG),	
and	if	it	is	valid,	both	items	are	popped	off	the	stack	and	replaced	by	"true",	
producing	[true]	

8. The	certificate	is	validated	

This	process	demonstrates	the	simplest	sort	of	smart	certificate,	which	is	valid	if	its	
signature	is	valid.	Basically	it's	the	same	as	a	self-signed	certificate,	except	the	rules	
for	its	validity	are	inside	the	certificate.	

Smart Signatures v1.0.1, 12/23/15 Page 4 	

More	complex	scripts	could	replicate	CA-style	infrastructures,	web-of-trust	
approaches,	or	use	multisig	scripts	to	create	certain	kinds	of	smart	contracts.	
Examples	of	some	of	these	results	are	included	in	the	use	cases,	below.	

2.3	Implications	

Embedding	the	script	inside	the	certificate	ensures	that	the	same	method	is	used	to	
evaluate	it	on	all	devices.	Refactoring	certificate	policies	into	scripts	that	are	
executed	and	specifying	a	standard-tested	virtual	machine	that	executes	those	
scripts	may	help	avoid	many	of	the	common	errors	in	certificate	policy	code	in	
various	apps	and	services.	

The	script	inside	a	certificate	can	be	inspected	and	evaluated.	Like	bitcoin	today,	
some	standard	scripts	may	emerge	that	are	trusted	at	a	higher	level	than	arbitrary	
written	scripts.	

3.	Use	Cases	

At	minimum	smart	signatures	should	support	existing	trust	models,	including	self-
signed	certificates,	CA-style	certificates,	and	PGP-style	key	validation.	In	addition,	
they	need	to	demonstrate	flexibility	for	uses	cases	such	as:	

3.1	Short-term	Delegation	
• Bob	has	a	key	for	website	authentication,	but	is	going	on	vacation.	He	wants	

website	sysadmin	Alice	to	be	able	to	sign	on	his	behalf	while	he's	gone.	Alice	
should	be	able	to	get	into	Bob's	servers	for	a	week,	but	things	should	revert	to	
normal	when	Bob	returns.	

• Carol	has	a	very	secure	key	for	signing	her	email.	She	wants	to	give	her	phone	
the	temporary	ability	to	sign	emails	with	that	key	for	the	next	week.	

3.2	Limited	Delegation	
• Dan,	Dana,	Erin,	Frances,	and	Frank	are	in	charge	of	the	development	branch	of	

a	software	project.	Project	leader	Alice	wants	to	give	them	a	key	that	lets	them	
release	development	versions	of	the	project	without	allowing	them	to	release	
stable	versions.	

3.3	Unbundling	Delegation	
• Carol	uses	a	revocation	service.	She	wants	to	give	them	the	ability	to	revoke	her	

key	or	her	previously	signed	certificates	without	letting	them	authenticate	
keys.	

3.4	Complex	Delegation	
• CFO	Augustus	wants	to	delegate	authority	to	a	department	to	issue	a	set	

amount	of	new	bonds,	but	no	more	than	the	set	amount,	and	with	an	interest	
rate	within	certain	specifications.	

Smart Signatures v1.0.1, 12/23/15 Page 5 	

• When	Dan,	Dana,	Erin,	Frances,	and	Frank	release	a	development	release,	3-of-
5	of	them	need	to	sign	the	release.	Further,	Dan	has	a	hardware	token	and	
wants	to	sign	with	2-of-2	keys,	where	one	key	is	stored	on	his	hardware	token	
and	one	is	stored	on	his	desktop	computer.	

4.	Implementation	Status	

At	this	point,	self-validating	certificates	only	exist	as	a	rough	"on	the	napkin"	
proposal:	neither	a	specification	nor	a	proof-of-concept	has	been	created.	The	next	
step	may	be	to	create	a	proof-of-concept	prototype	before	focusing	too	much	on	a	
detailed	specification.	

4.1	Implementation	Concepts	

Some	possible	implementation	concepts:	

• Schnorr	Signatures	&	Script2	–	Many	of	the	more	complex	signature	
delegations	that	we	wish	to	offer	(in	particular	Tree	Signatures)	require	
implementation	of	Schnorr	Signatures,	which	bitcoin's	script	language	does	not	
currently	offer.	Blockstream	offers	a	new	library	to	support	Schnorr	under	
curve	secp256k1	and	is	working	on	Script2,	an	upgrade	of	bitcoin's	script,	to	
support	it.	

• Merkelized	Abstract	Syntax	Tree	(MAST)	-	MAST	is	a	cryptographically	
committed	version	of	an	abstract	syntax	tree	that	naturally	maps	to	Lisp-like	
syntax	and	semantics.	MAST-based	Tree	Signatures	allow	for	multisig	scripts	
with	sophisticated	AND/OR	operations,	which	can	be	supported	using	bitcoin's	
script	language	by	adding	a	single	op-code:	OP_CAT.	

• Pruning	-	Unexecuted	branches	of	the	MAST	can	be	pruned	away	and	replaced	
by	hashes.	The	verifier	knows	that	the	code	was	executed	correctly	while	code	
not	executed	isn’t	relevant.	This	improves	privacy.	

• Delegation	via	signed	code	-	To	delegate	control	to	another	party,	sign	a	
secondary	MAST	that	implements	additional	checks,	such	as	a	secondary	public	
key	and	have	the	master	MAST	execute	that	code	if	the	signature	passes.	

• Upgrades	-	We	can	add	an	operation	that	looks	like	a	no-op.	By	definition	this	
means	"There	are	rules	here	that	I	don't	know	how	to	enforce";	systems	have	to	
treat	that	as	a	failure.	Then	we	can	add	meaning	to	that	operand	in	an	upgrade.	
Once	a	supermajority	is	updated	to	enforces	the	rules,	everyone	sees	the	new	
op	and	can	validate	the	script.	

5.	Open	Questions	
• Static	Context	&	Run	Context	-	In	order	to	perform	a	number	of	use	cases,	the	

virtual	machine	may	need	to	provide	a	context	to	a	script	and	some	way	to	
parse	that	context.	In	the	above	example	the	[SIG1][PUB1]	was	provided	to	the	
script;	in	bitcoin,	this	would	come	from	the	output	script	of	the	previous	
transaction,	but	smart	signatures	don't	have	a	parallel	construct.	Other	
examples	abound:	a	certificate	authority-like	script	needs	to	know	which	

Smart Signatures v1.0.1, 12/23/15 Page 6 	

domain	a	child	script	is	approving	access	to	(an	internal	static	context),	which	
domain	is	actually	being	accessed	(an	external	static	context),	and	even	the	
content	of	a	web	page	itself	(a	run	context),	and	then	it	must	compare	these	
values.	What	context	is	required?	What	additional	script	operands	may	be	
needed	to	parse	and	evaluate	context	given	the	limitations	of	a	single	Forth-like	
stack?	

• Asynchronous	Oracles	-	A	number	of	use	cases	may	require	connecting	to	an	
third-party	oracle	to	evaluate	certain	conditions	such	as	a	proof-of-existence	as	
of	a	certain	date,	proof-of-uniqueness,	specific	financial	information,	or	
revocation	status.	It	could	be	that	these	oracles	are	pre-fetched	and	added	to	
the	script's	context	before	execution.	If	so,	how	does	a	script	tell	the	virtual	
machine	what	to	pre-fetch?	It	could	be	that	certain	oracles	are	distributed	on	
DHT	or	blockchain	and	thus	are	always	static.	In	any	case,	any	asynchrony	has	
security	implications	including	the	possibility	of	denial	of	service.	How	do	we	
minimize	these	risks?	

• Revocation	-	There	was	some	discussion	by	the	team	about	how	to	do	
revocation.	Revocation	is	not	as	simple	as	a	failed	authentication;	revoking	a	
key	is	distinct	from	all	other	signature	operations	as	it	implies	a	desire	for	proof	
of	non-revocation.	It	could	be	that	revocation	scripts	need	to	be	separate	and	
distinct	from	a	validation	script.	Possibly	a	proof-of-publication	oracle	can	
support	this	by	providing	a	signature	attesting	to	the	fact	that	a	specific	
revocation	does	not	exist	as	of	some	timestamp.	Finally,	we	could	only	use	
short-lived	keys	and	not	rely	on	revocation	at	all.	

• Hierarchical	Deterministic	Keys	-	A	number	of	use	cases	(in	particular	short-
lived	keys)	may	require	scripts	to	evaluate	validity	of	HD	keys.	Can	we	do	this	
securely	in	script?	What	additional	operands	may	be	required?	

• Choice	of	Language	-	The	team	has	focused	on	a	variant	of	bitcoin's	Forth-like	
scripting	language.	The	advantage	here	is	that	we	can	leverage	the	security	
reviews	and	understanding	of	a	widely	deployed	existing	system.	However,	at	
some	point	if	we	add	enough	features	to	the	language	that	are	unique	to	smart	
signatures,	the	benefits	of	being	derived	from	bitcoin's	script	become	less	
valuable.	Other	language	approaches	may	offer	superior	features	without	
compromising	security,	or	offer	superior	tools.	This	team	agrees	that	a	
simplified	language	should	be	a	requirement,	but	where	to	draw	the	line	is	
unclear.	

Smart Signatures v1.0.1, 12/23/15 Page 7 	

	

Additional	Credits	

Lead	Paper	Editors:	Christopher	Allen,	Ryan	Shea	

About	Rebooting	the	Web	of	Trust	

This	paper	was	produced	as	part	of	the	Rebooting	the	Web	of	Trust	design	workshop.	
On	November	3rd	and	4th	2015,	over	40	tech	visionaries	came	together	in	San	
Francisco,	California	to	talk	about	the	future	of	decentralized	trust	on	the	internet	with	
the	goal	of	writing	3-5	white	papers	and	specs.	This	is	one	of	them.	

Workshop	Sponsors:	Respect	Network,	PricewaterhouseCoopers,	Open	Identity	
Exchange,	and	Alacrity	Software	

Workshop	Producer:	Christopher	Allen	

Workshop	Facilitators:	Christopher	Allen	and	Brian	Weller	with	graphic	facilitation	
by	Sonia	Sawhney	and	additional	paper	editorial	&	layout	by	Shannon	Appelcline	

What’s	Next?	

The	design	workshop	and	this	paper	are	just	starting	points	for	Rebooting	the	Web	of	
Trust.	If	you	have	any	comments,	thoughts,	or	expansions	on	this	paper,	please	post	
them	to	our	GitHub	issues	page:	http://bit.ly/weboftrust-issues.		We	are	also	planning	
for	more	gatherings	on	this	topic	in	the	near	future,	with	the	object	being	to	have	
something	notable	ready	for	release	on	the	25th	anniversary	of	PGP,	in	July	2016.	If	
you’d	like	to	be	involved	or	would	like	to	help	sponsor	these	events,	email:		

ChristopherA@LifeWithAlacrity.com	

