Shadow-Bitcoin: Scalable
Simulation via Direct Execution
of Multi-threaded Applications

Workshop on Cyber Security
Experimentation and Test

August 101, 2015

Andrew Miller, University of Maryland
2 amiller@cs.umd.edu

) * Rob Jansen, U.S. Naval Research Laboratory
rob.g.jansen@nrl.navy.mil

. [video removed for space reasons]

Goals of this Work

. Directly execute Bitcoin inside the Shadow
network simulator

. Run a local and private Bitcoin network

. Explore performance attacks on Bitcoin using
our simulation framework

Why should anyone care?

. Expedite research and development

. Evaluate software mods or attacks without
harming real users

. Understand holistic effects before deployment

. Our techniques allow simulation support for
many new applications and domains

Thread 1

SHADOW BACKGROUND

What is Shadow?

. Parallel discrete-event network simulator

. Emulates POSIX C API on Linux,
directly executes apps as plug-ins

. Simulates time, network, CPU @

N

. Models routing, latency, bandwidth

Bootstrapping Shadow

Virtual Network Configuration

bw down: 2048 KiB/s
bw up: 1024 KiB/s
loss: .0005% ‘ latency: 15ms

/
=

Virtual Host Configuration

Simulation Engine

Simulation Engine

Compile with Clang, extract
state addresses with LLVM pass

Each program
loaded only once

per thread

A\

{3 4

oo

Simulation Engine

Save default
values on 1nitial
load

Copy state for each
virtual process

Simulation Engine

Swap state into/out of
memory as virtual
processes are switched

Function Interposition
LD PRELOAD=/home/rob/libpreload.so

App
Libraries

(libc, ...)

App
Plug-in

Function Interposition
LD PRELOAD=/home/rob/libpreload.so

App
hooks Pﬁ; P I-)in [ibraries
:: S (libc, ...)

Function Interposition
LD PRELOAD=/home/rob/libpreload.so

App
@ IA‘pp, @ Libraries
Sl (libe, ...)

Function Interposition
LD PRELOAD=/home/rob/libpreload.so

Socke>

N

App
@ IA‘pp, @ Libraries
Sl (libe, ...)

Function Interposition
LD PRELOAD=/home/rob/libpreload.so

write>

N

App
@ IA‘pp, @ Libraries
Sl (libe, ...)

Function Interposition
LD PRELOAD=/home/rob/libpreload.so

Single call stack,
must return

write>

N

App
@ IA‘pp, @ Libraries
Sl (libe, ...)

Shadow limitations

. App shall not block

- Call any blocking library function (sleep)

- Use blocking descriptors (read/write, send/recv)
- Wait for events (select, poll)

- Busy wait (infinite loop)

Shadow limitations

. App shall not block

- Call any blocking library function (sleep)

- Use blocking descriptors (read/write, send/recv)
- Wait for events (select, poll)

- Busy wait (infinite loop)

. App shall not spawn

— Multiple threads (pthreads)
- Multiple processes (fork, exec)

Shadow limitations

. App shall not block

— Call any blocking library function (sleep)
- Use blocking descriptors (read/write, send/recv)
- Wait for events (select, poll)

- Busy wait (infinite loop) % Probl y
roblems!

Bitcoin blocks
. App shall not spawn and spawns
— Multiple threads (pthreads) threads! ®

- Multiple processes (fork, exec)

Thread 2

RUNNING BITCOIN IN SHADOW

Architectural Update

Virtual
processes

New virtual
thread layer

Non-blocking Virtual Threads

. GNU portable threads (pth) to the rescue

- User-land cooperative threading (non-preemptive)

- Single OS thread, multiple portable threads,
supports pthread API

- Supports many blocking 10 functions: uses
make/set/get/swapcontext() magic to
jump program stacks

Limitations of GNU pth

. Not reentrant or thread-safe

. Relies on select() to poll events when all
portable threads would block (max 1024 fds)

W

// g

=
Y
-
O
)
QO
—
e
-
O
9
-
O
>
=

Reentrant Portable Threads (rpth)

. Not reentrant or thread-safe

. Relies on select() to poll events when all
portable threads would block (max 1024 fds)

Reentrant Portable Threads (rpth)

. Notreentrantorthread-safe

- Replace global state with user-supplied states
- Thread-local storage for current state pointer

. Relies on select() to poll events when all
portable threads would block (max 1024 fds)

Reentrant Portable Threads (rpth)

. Notreentrantorthread-safe

- Replace global state with user-supplied states
- Thread-local storage for current state pointer

. Relies-on-select-topolleventswhenall
portable-threads-would-bleck{max1024-1ds)
- Replace blocking select with asynchronous epoll
- Add API support for epoll and timers

Integrating rpth with Shadow

"
A

Each virtual process

(.
has a private
rpth instance

X2

Shadow thread

Integrating rpth with Shadow

Spawns an rpth
thread to call the

program main()
/ function

Shadow thread

“main’’ thread

Integrating rpth with Shadow

o

.5

\ 2 4

$HE o

N

Program may spawn
auxiliary threads

Shadow thread

“main’’ thread

| b

spawned threads

Execution Flow with rpth

) Return to Shadow thread
, Swap In when all spawned rpth , Swap out
virtual process threads would block: virtual process
and rpth state and rpth state
\/ rpth schedulerw N
N\
N\

\ 4 e o

Time

Creating a Private Bitcoin Network

. Crawled Bitcoin with CoinScope to learn
topology — 6081 nodes (40% US, 40% EU)

. Geo-locate nodes based on |IP address

. Bootstrap blockchain — Bitcoin block and
index files are COW — enables aliasing of
these large state files

. Inject new transactions to each node to
simulate spending

Transaction Propagation

=
()
E
|_
©
()
o

— 2k nodes
— 6k nodes

Simulation Resource Usage

simulation run time

For each node:
~2.1 seconds to run 120 ticks
(~57x speedup)

—~

Maximum Resident Set Size (GiB

300

— 2k nodes
— 6k nodes

For each node:
~51.2 MiB consumed

Thread 3

ATTACKING BITCOIN

Transaction Handling

. Transactions form a directed graph

— Tx with parent gets handled immediately
- Validate Tx, verify up to 40 sigs

- Senders of invalid Txs are marked as bad, and
eventually disconnected

Transaction Handling

. Transactions form a directed graph

— Tx with parent gets handled immediately
- Validate Tx, verify up to 40 sigs

- Senders of invalid Txs are marked as bad, and
eventually disconnected

. What if Tx has no parent?

- Tx w/o parent gets queued as orphan
- Once queued, sender of orphan is forgotten

- When new Tx arrives, all linked orphans are
validated (40 sig verifications each)

Dos Attack

. Goal: Freeze a victim node

— Fill up orphans queue with invalid Txs
- Send valid parents with outputs linked to orphans
- Node checks all orphans

Parent Tx OrphanTx 1 through 10,000

il

invalid sig ‘

Dos Attack

. Goal: Freeze a victim node

— Fill up orphans queue with invalid Txs
- Send valid parents with outputs linked to orphans
- Node checks all orphans

40 s1gs/orphan,

10k orphans max,

Parent Tx OrphanTx 1 through 10,000 0.6 .
| , - .6ms per sig
TxOut 01 '
’ 'valid sig valid Slg
| TxOut | -
m Freeze for 4+ mins,

’ L invalid sig ‘

Peers will abort,
No one to blame

RAM Consumption

. While MessageHandler thread is frozen,
SocketHandler thread buffers peer data

. Disconnect peer if [recvBuf| > 5 MiB

RAM Consumption

. While MessageHandler thread is frozen,
SocketHandler thread buffers peer data

. Disconnect peer if [recvBuf| > 5 MiB

. Attack

— Establish 100+ connections to victim
— While victim is frozen, fill recvBuf to max
— Can crash node if < 500 MiB available

Attack Time and Cost Profile

MB)

400

625 megabytes
RAM consumption

e
@
Pk
| -
@
[Tl
v
c
(4]
| -
)
ok
)
=
=
©
=
48]
L0

CPU exhaustion ready
after 12.8 seconds

6 8 10 12 14 16
seconds after attack begins

Fix Applied to Bitcoin

Fixed in commit 0608780

bitcoin / bitcoin

Stricter handling of orphan transactions

Prevent denial-of-service attacks by banning
peers that send us invalid orphan transactions
and only storing orphan transactions given to
us by a peer while the peer 1s connected.

master v0.11.0rc3

ﬂ gavinandresen authored on Aug 28, 2014

Showing 2 changed files with 65 additions and 17 deletions.

Summary/Conclusion

. Enhanced Shadow to support applications
that block and use multiple threads

. Wrote new Bitcoin plug-in for Shadow
. Created Bitcoin network for simulation

. Found and fixed orphans attack using new
simulator architecture

shadow.github.10
github.com/shadow

robgjansen.com, (@robgjansen
rob.g.jansen@nrl.navy.mil

think like an adversary

