
Shadow-Bitcoin: Scalable
Simulation via Direct Execution
of Multi-threaded Applications

Workshop on Cyber Security
Experimentation and Test

August 10th, 2015

Andrew Miller, University of Maryland
amiller@cs.umd.edu
Rob Jansen, U.S. Naval Research Laboratory
rob.g.jansen@nrl.navy.mil

●  [video removed for space reasons]

Goals of this Work

●  Directly execute Bitcoin inside the Shadow
network simulator

●  Run a local and private Bitcoin network

●  Explore performance attacks on Bitcoin using
our simulation framework

Why should anyone care?

●  Expedite research and development

●  Evaluate software mods or attacks without
harming real users

●  Understand holistic effects before deployment

●  Our techniques allow simulation support for
many new applications and domains

SHADOW BACKGROUND
Thread 1

What is Shadow?

●  Parallel discrete-event network simulator

●  Emulates POSIX C API on Linux,
directly executes apps as plug-ins

●  Simulates time, network, CPU

●  Models routing, latency, bandwidth

Bootstrapping Shadow

Virtual Network Configuration

Virtual Host Configuration

Simulation Engine
Main event

queue

Worker
threads

Virtual hosts

Virtual
processes

Simulation Engine
Compile with Clang, extract

state addresses with LLVM pass
Addr Val

0xA 0

0xB 0

… …

Each program
loaded only once

per thread

Simulation Engine

Save default
values on initial

load

Addr Val

0xA 0

0xB 0

… …

Addr Val

0xA 15

0xB 87

… …

Addr Val

0xA 22

0xB 62

… …

Addr Val

0xA 33

0xB 85

… …

Addr Val

0xA 5

0xB 59

… …

Copy state for each
virtual process

Simulation Engine

Addr Val

0xA 0

0xB 0

… …

Addr Val

0xA 15

0xB 87

… …

Addr Val

0xA 22

0xB 62

… …

Addr Val

0xA 33

0xB 85

… …

Addr Val

0xA 5

0xB 59

… …

Swap state into/out of
memory as virtual

processes are switched

Function Interposition
LD_PRELOAD=/home/rob/libpreload.so

libpreload (socket, write, …)

App
Libraries
(libc, …)

Shadow
Engine

App
Plug-in

Function Interposition
LD_PRELOAD=/home/rob/libpreload.so

hooks

libpreload (socket, write, …)

App
Libraries
(libc, …)

Shadow
Engine

App
Plug-in

Function Interposition

libpreload (socket, write, …)

LD_PRELOAD=/home/rob/libpreload.so

hooks fopen
App

Libraries
(libc, …)

Shadow
Engine

App
Plug-in

Function Interposition

libpreload (socket, write, …)

LD_PRELOAD=/home/rob/libpreload.so

so
ck

et

hooks fopen
App

Libraries
(libc, …)

Shadow
Engine

App
Plug-in

Function Interposition

libpreload (socket, write, …)

LD_PRELOAD=/home/rob/libpreload.so

w
ri

te

App
Libraries
(libc, …)

Shadow
Engine

App
Plug-in

hooks fopen

Function Interposition

libpreload (socket, write, …)

LD_PRELOAD=/home/rob/libpreload.so

w
ri

te

App
Libraries
(libc, …)

Shadow
Engine

App
Plug-in

hooks fopen

Single call stack,
must return

Shadow limitations

●  App shall not block
–  Call any blocking library function (sleep)
–  Use blocking descriptors (read/write, send/recv)
–  Wait for events (select, poll)
–  Busy wait (infinite loop)

Shadow limitations

●  App shall not block
–  Call any blocking library function (sleep)
–  Use blocking descriptors (read/write, send/recv)
–  Wait for events (select, poll)
–  Busy wait (infinite loop)

●  App shall not spawn
–  Multiple threads (pthreads)
–  Multiple processes (fork, exec)

Shadow limitations

●  App shall not block
–  Call any blocking library function (sleep)
–  Use blocking descriptors (read/write, send/recv)
–  Wait for events (select, poll)
–  Busy wait (infinite loop)

●  App shall not spawn
–  Multiple threads (pthreads)
–  Multiple processes (fork, exec)

Problems!
Bitcoin blocks

and spawns
threads! L

RUNNING BITCOIN IN SHADOW
Thread 2

Architectural Update

New virtual
thread layer

Virtual
processes

Non-blocking Virtual Threads

●  GNU portable threads (pth) to the rescue

–  User-land cooperative threading (non-preemptive)

–  Single OS thread, multiple portable threads,
supports pthread API

–  Supports many blocking IO functions: uses
make/set/get/swapcontext() magic to
jump program stacks

Limitations of GNU pth

●  Not reentrant or thread-safe

●  Relies on select() to poll events when all
portable threads would block (max 1024 fds)

If you don’t like it, fork it

Reentrant Portable Threads (rpth)

●  Not reentrant or thread-safe

●  Relies on select() to poll events when all
portable threads would block (max 1024 fds)

Reentrant Portable Threads (rpth)

●  Not reentrant or thread-safe
–  Replace global state with user-supplied states
–  Thread-local storage for current state pointer

●  Relies on select() to poll events when all
portable threads would block (max 1024 fds)

Reentrant Portable Threads (rpth)

●  Not reentrant or thread-safe
–  Replace global state with user-supplied states
–  Thread-local storage for current state pointer

●  Relies on select() to poll events when all
portable threads would block (max 1024 fds)

–  Replace blocking select with asynchronous epoll
–  Add API support for epoll and timers

Integrating rpth with Shadow

Shadow thread

Each virtual process
has a private
rpth instance

Integrating rpth with Shadow

Shadow thread

“main” thread

Spawns an rpth
thread to call the
program main()

function

Integrating rpth with Shadow

Shadow thread

“main” thread

spawned threads

Program may spawn
auxiliary threads

rpth scheduler

Execution Flow with rpth

Time

Swap in
virtual process
and rpth state

Swap out
virtual process
and rpth state

Return to Shadow thread
when all spawned rpth
threads would block:

Creating a Private Bitcoin Network

●  Crawled Bitcoin with CoinScope to learn
topology – 6081 nodes (40% US, 40% EU)

●  Geo-locate nodes based on IP address
●  Bootstrap blockchain – Bitcoin block and

index files are COW – enables aliasing of
these large state files

●  Inject new transactions to each node to
simulate spending

Transaction Propagation

Faster Slower

Simulation Resource Usage

0 20 40 60 80 100 120
Tick (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
ea

lT
im

e
(h

)

simulation run time

2k nodes

6k nodes

0 20 40 60 80 100 120
Tick (s)

0

50

100

150

200

250

300

350

M
ax

im
um

R
es

id
en

tS
et

S
iz

e
(G

iB
)

simulation memory usage

2k nodes

6k nodes

For each node:
~2.1 seconds to run 120 ticks

(~57x speedup)

For each node:
~51.2 MiB consumed

ATTACKING BITCOIN
Thread 3

Transaction Handling

●  Transactions form a directed graph
–  Tx with parent gets handled immediately
–  Validate Tx, verify up to 40 sigs
–  Senders of invalid Txs are marked as bad, and

eventually disconnected

Transaction Handling

●  Transactions form a directed graph
–  Tx with parent gets handled immediately
–  Validate Tx, verify up to 40 sigs
–  Senders of invalid Txs are marked as bad, and

eventually disconnected

●  What if Tx has no parent?
–  Tx w/o parent gets queued as orphan
–  Once queued, sender of orphan is forgotten
–  When new Tx arrives, all linked orphans are

validated (40 sig verifications each)

Dos Attack

●  Goal: Freeze a victim node
–  Fill up orphans queue with invalid Txs
–  Send valid parents with outputs linked to orphans
–  Node checks all orphans

Dos Attack

●  Goal: Freeze a victim node
–  Fill up orphans queue with invalid Txs
–  Send valid parents with outputs linked to orphans
–  Node checks all orphans

40 sigs/orphan,
10k orphans max,

0.6ms per sig

Freeze for 4+ mins,
Peers will abort,
No one to blame

RAM Consumption

●  While MessageHandler thread is frozen,
SocketHandler thread buffers peer data

●  Disconnect peer if |recvBuf| > 5 MiB

RAM Consumption

●  While MessageHandler thread is frozen,
SocketHandler thread buffers peer data

●  Disconnect peer if |recvBuf| > 5 MiB

●  Attack
–  Establish 100+ connections to victim
–  While victim is frozen, fill recvBuf to max
–  Can crash node if < 500 MiB available

Attack Time and Cost Profile

625 megabytes
RAM consumption

CPU exhaustion ready
after 12.8 seconds

Fixed in commit 0608780

Fix Applied to Bitcoin

think like an adversary

shadow.github.io
github.com/shadow

robgjansen.com, @robgjansen
rob.g.jansen@nrl.navy.mil

Summary/Conclusion

●  Enhanced Shadow to support applications
that block and use multiple threads

●  Wrote new Bitcoin plug-in for Shadow
●  Created Bitcoin network for simulation
●  Found and fixed orphans attack using new

simulator architecture

