
PREPRINT: Nonoutsourceable Scratch-Off Puzzles to
Discourage Bitcoin Mining Coalitions

Andrew Miller, Elaine Shi, Jonathan Katz, and Ahmed Kosba
University of Maryland, College Park

{amiller,elaine,jkatz,ahmed}@cs.umd.edu

This is a preprint, and may contain errors. Last updated 2014/06/18 16:26:30.

A newer version may be found at https://cs.umd.edu/~amiller/nonoutsourceable_full.pdf.

ABSTRACT
An implicit goal of Bitcoin’s reward structure is to diffuse
network influence over a diverse, decentralized population
of individual participants. Indeed, Bitcoin’s security claims
rely on no single entity wielding a sufficiently large portion
of the network’s overall computational power Unfortunately,
rather than participating independently, most Bitcoin min-
ers join coalitions called mining pools in which a central pool
administrator largely directs the pool’s activity, leading to
a consolidation of power. Recently, the largest mining pool,
GHash.IO, has accounted for more than half of network’s
total mining capacity.1 Relatedly, “hosted mining” service
providers offer their clients the benefit of economies-of-scale,
tempting them away from independent participation. We
argue that the prevalence of mining coalitions is due to a
limitation of the Bitcoin proof-of-work puzzle – specifically,
that it supports an effective mechanism for enforcing cooper-
ation in a coalition. We present several definitions and con-
structions for “nonoutsourceable” puzzles that thwart such
enforcement mechanisms, thereby deterring coalitions. We
also provide an implementation and benchmark results for
our schemes to show they are practical.

1. INTRODUCTION
Bitcoin [25] is a successful virtual currency, built around

a consensus protocol for a public peer-to-peer network. The
security claim in the original Bitcoin whitepaper [25] is that
the network maintains an acceptable state whenever a ma-
jority of participants (weighted by their contribution of com-
putational effort) follow the protocol correctly. This notion
is not compelling on its own, however, since the a priori as-
sumption of an “honest majority” is unjustified, and because
it yields little insight about the role of participation incen-
tives that have been key to Bitcoin’s success. An implicit
goal of Bitcoin’s reward system is to encourage widespread

1See http://arstechnica.com/security/2014/06/
bitcoin-security-guarantee-shattered-by-anonymous-
miner-with-51-network-power/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

participation from a diverse set of independent entities, lead-
ing to diffusion (rather than consolidation) of power. Sev-
eral recent works have analyzed the incentive structure of
the Bitcoin protocol [14, 19]; Eyal and Sirer [14] showed in
particular that the Bitcoin protocol is not incentive com-
patible when a single entity accounts for more than a third
of the network overall. An entity that controls a majority
of the network would be able to conduct harmful “history
revision” or “double-spend” attacks, and therefore poses a
threat to the overall stability of the network.

A single entity, in this case, need not be an individual per-
son or computer, but instead may be a coalition of several
participants. In fact, over the past several years, the vast
majority of Bitcoin participants join coalitions called “min-
ing pools” rather than participating as independents (i.e.,
“solo-mining”), primarily in order to reduce uncertainty in
their payoff [28]. Most mining pools (with the exception of
P2Pool) are administered by a trusted “pool operator” who
directs how the hashpower of the pool is used. At several
times over the past year, the largest mining pools have ac-
counted for well over a third of the network’s overall comput-
ing effort [6]. A key enabling factor in the growth of mining
pools is a simple yet effective enforcement mechanism; mem-
bers of a mining pool do not inherently trust one another,
but instead submit cryptographic proofs (called “shares”) to
the other pool members (or to the pool operator), in order
to demonstrate they are contributing work that can only
benefit the pool (e.g., work that is tied to the pool adminis-
trator’s public key).

Another form of power consolidation in Bitcoin occurs
when individuals outsource their mining effort to one or a
few large service providers. Hosted mining services have al-
ready emerged, such as Alydian [5], whose “launch day pric-
ing was $65,000 per Terahash, and mining hosting contracts
are only available in 5 and 10 Th/sec blocks” [5]. Hosted
mining is appealing because it can potentially reduce min-
ers’ cost due to economies of scale. If there is sufficient mar-
ket demand for hosted mining, then the cloud may become
a concentration of power.

We refer to both mining pools and hosted mining arrange-
ments as “coalitions,” and consider these harmful. The orig-
inal Bitcoin whitepaper [25] draws an analogy between Bit-
coin mining and voting in a democratic election (i.e. “one-
cpu-one-vote”). Viewed in this light, joining a mining coali-
tion may be considered an abdication of responsibility, akin
to selling one’s vote. Therefore the goal of this paper is to
have practical cryptographic mechanisms to deter coalitions.
We acknowledge that even though mining pools are poten-

https://cs.umd.edu/~amiller/nonoutsourceable_full.pdf
http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-by-anonymous-miner-with-51-network-power/
http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-by-anonymous-miner-with-51-network-power/
http://arstechnica.com/security/2014/06/bitcoin-security-guarantee-shattered-by-anonymous-miner-with-51-network-power/

tially hazardous, they also serve a important useful purpose
of lowering the payoff variance for individual miners. In
Section 8, we argue for a alternative design approach where
lower variance is baked into the protocol, without relying on
coalitions.

1.1 Our Results and Contributions
In this paper, we suggest that the existence of effective

coalition enforcement mechanisms is a limitation of Bitcoin’s
underlying proof-of-work puzzle construction. The goal of
our work is to construct a modified puzzle that thwarts such
enforcement mechanisms, and hence prevents coalitions from
forming in the first place.

Nonoutsourceable puzzles. We are the first to formally
define a novel type of computational puzzle, called nonout-
sourceable puzzles. In a weakly nonoutsourceable puzzle, if
one party outsources the task of mining to a worker by any
effective outsourcing protocol, then the worker can easily
steal the puzzle solution and claim the reward for itself. We
further provide a strengthened definition of strongly nonout-
sourceable puzzles, which additionally require that that if a
worker defects and steals the puzzle solution, it cannot be
held accountable.

Provably secure constructions and evaluation results.
We give constructions for weakly and strongly nonoutsource-
able puzzles and prove their security in the random ora-
cle model. We show implementation and evaluation results
to demonstrate the practical performance of our puzzles.
Specifically, we show that our weakly nonoutsourceable puz-
zle construction incurs only 2% overhead for the block veri-
fication operation, in comparison with today’s Bitcoin. Fur-
thermore, for any protocol that can “effectively” outsource
work to a worker, the worker can easily steal the client’s
reward with insignificant additional computation.

We further modify our weakly nonoutsourceable construc-
tion to achieve strong nonoutsourceability. Our strongly
nonoutsourceable puzzles have two modes of operation. The
normal mode of operation (encountered by independent min-
ers) is very cheap, and incurs the same overhead as the un-
derlying weakly nonoutsourceable puzzle. Besides this, the
strongly nonoutsourceable construction additionally allows
a worker to defect and “steal” a reward by using a zero-
knowledge option such that it cannot be held accountable.
Based on an instantiation using the succinct zero-knowledge
option of Pinocchio [26], we show that it costs a cheating
server roughly $45 of Amazon EC2 computation to success-
fully steal a reward worth $10,000 based on Bitcoin’s current
market price. We believe this provides a sufficiently strong
deterrent against mining coalitions.

1.2 Related Work
Computational puzzles. Moderately hard computational
puzzles, often referred to as “proofs of work,” were origi-
nally proposed for the purpose of combating email spam [13]
(though this application is nowadays generally considered
impractical [20]). Most work on computational puzzles has
focused instead on “client puzzles,” which can be used to
prevent denial-of-service attacks [18]. Recently, several at-
tempts have been made to provide formal security definitions
for client puzzles [9, 16, 30].

Theoretical and economic understanding of Bitcoin.
Although a purely digital currency has been long sought
after by researchers [7, 8, 10], Bitcoin’s key insight is to
frame the problem as a consensus protocol and to provide
an incentive for users to participate. Although Bitcoin’s se-
curity has initially been proven (informally) in the “honest
majority” model [24, 25], this assumption is unsatisfying in
practice, since it says nothing about what design require-
ments the incentive scheme should satisfy in order to ensure
an honest majority. An economic analysis of Bitcoin mining
was provided by Kroll et al. [19], who showed that honest
participation in Bitcoin may be incentive compatible under
assumptions such as a homogeneous population of miners.
More recently, Eyal and Sirer considered a broader strategy
space [14] and showed that when a single player (or coali-
tion) comprises more than a third of the network’s overall
strength, the protocol is not incentive compatible (and in
fact the threshold is typically much less than one-third, de-
pending on other factors involving network topology). This
result underscores the importance of discouraging the for-
mation of Bitcoin mining coalitions.

Altcoins. Numerous attempts have been made to tweak the
incentive structure by modifying Bitcoin’s underlying puz-
zle. The most popular alternative, Litecoin2 uses an scrypt-
based [27] puzzle intended to promote the use of general
purpose equipment (especially CPUs or GPUs) rather than
specialized equipment (e.g., Bitcoin mining ASICs). An-
other oft-cited goal is to make the puzzle-solving computa-
tion have an intrinsically useful side effect (this is discussed,
for example, in [19]). To our knowledge, we are the first to
suggest deterring mining coalitions as a design goal.

Zerocoin [22] and Zerocash [4] focus on making Bitcoin
transactions anonymous by introducing a public cryptographic
accumulator for mixing coins. Spending a coin involves pro-
ducing a zero-knowledge proof that a coin has not yet been
spent. Although our zero-knowledge proof construction may
bear superficial resemblance to this approach, our work ad-
dresses a completely different problem.

Nonoutsourceable puzzles. Nonoutsourceable puzzles
were first suggested by Miller et al. in the design of Per-
macoin [23], leaving open the intriguing open question of
formally defining nonoutsourceable puzzles and construct-
ing provably secure schemes.

Permacoin investigates how to repurpose Bitcoin’s com-
putational puzzle for long-term data archival. As part of
this, Permacoin uses a proof-of-retrievability puzzle that
deters consolidation of storage capacity. Our Merkle-tree-
based weakly outsourceable puzzle construction is directly
inspired by this construction in Permacoin. Permacoin does
not make any attempt to formalize the notion of nonout-
sourceable puzzles, nor to consider outsourcing deterrents
outside the context of archival storage. Our paper is the first
formal treatment of nonoutsourceable puzzles, and the first
to propose and construct strongly nonoutsourceable puzzles.

2. BACKGROUND ON BITCOIN AND USE
OF PUZZLES

We define puzzles and nonoutsourceable puzzles as an in-
dependent concept, abstracting away the less relevant details
about the Bitcoin protocol itself. Later, however, we will

2https://litecoin.org/

https://litecoin.org/

discuss how the puzzles we introduce can be integrated into
a Bitcoin-like distributed digital currency. For this reason,
as well as to understand the motivation behind our formal
definitions, we first present some additional background on
Bitcoin and its use of computational puzzles. For a more
thorough explanation of the Bitcoin protocol, we refer the
readers to [3, 25].

Puzzles, rewards, and epochs. In Bitcoin, new money
is printed at a predictable rate, through a distributed coin-
minting process. At the time of writing, roughly speaking,
25 bitcoins are minted every 10 minutes (referred to as an
epoch) on average. When an epoch begins, a public puzzle
instance is generated by computing an up-to-date hash of
the global transaction log (called the “blockchain”). Then,
Bitcoin nodes race to solve this epoch’s puzzle. Whoever
first finds an eligible solution to the puzzle can claim the
newly minted coins corresponding to this epoch. For a miner
to cryptographically claim the reward, it searches for a “so-
lution” r such that the hash of the puzzle instance puz, a
payload m, and r result in a hash value with d leading 0s.
The payloadm incorporates the miner’s public key pk, which
enables the miner to later spend the coin, along with a set of
new transactions to be committed to the log. The difficulty
of the puzzle, which depends on d, is adjusted according to
the total amount of computational resources devoted to min-
ing to ensure that each epoch lasts 10 minutes on average.
In Section 3.1, we explain Bitcoin’s puzzle construction in
more detail, after formally defining a generalization called
scratch-off puzzles.

Block chain and transaction verification. In Bitcoin,
the coin minting process is also tied to transaction confirma-
tion. After computing each epoch’s puzzle instance, a Bit-
coin miner can choose to incorporate unconfirmed transac-
tions into the description of the puzzle. The winning puzzle
solution, as well as these transactions, are then cryptograph-
ically bound to the puzzle instance. When a winning puzzle
solution is found (ending the epoch), a new block is incorpo-
rated into the block chain, containing information about all
newly confirmed transactions as well as the public key of the
miner who claims the minted coin of this epoch. Transac-
tions can declare a percentage of fees (similar to credit card
processing fees) to be paid to miners who incorporate the
transaction in their puzzle solutions; this encourages miners
to incorporate and verify transactions during coin minting,
since they can claim the transaction fees in addition to their
base reward.

Consensus mechanism. Bitcoin nodes reach consensus
on the history of transactions by having nodes accept the
blockchain with the largest total difficulty. Roughly speak-
ing, this defeats a history revision attack, since to revise
history would involve computing a blockchain that is more
difficult than the known good chain. An adversary must
therefore possess a significant fraction of the total computa-
tional resources to successfully race against the rest of the
network in extending the chain.

Bitcoin is novel in its use of computational puzzles as
part of a consensus protocol for anonymous networks with-
out any pre-established PKI. A related approach was ear-
lier proposed by Aspnes et al. [2], although their network
model nonetheless retained a strong assumption about pre-
established point-to-point channels.

3. SCRATCH-OFF PUZZLES
As introduced earlier, the Bitcoin protocol is built around

a moderately hard computational puzzle. Bitcoin miners
compete to solve these puzzles, and whoever solves a puzzle
first in each epoch receives a reward. As there is no short-
cut to solving this puzzle, for an attacker to dominate the
network would require the attacker to expend more compu-
tational resources than the rest of the honest participants
combined. Although the Bitcoin puzzle is commonly re-
ferred to as a proof-of-work puzzle, the requirements of the
puzzle are somewhat different than existing definitions for
proof-of-work puzzles [9, 13, 16, 30].

Before proceeding with our main contribution of nonout-
sourceable puzzles, we first provide a formal definition of
the basic requirements of the Bitcoin puzzle, which we call
a scratch-off puzzle.3 In particular, while a traditional proof-
of-work puzzle need only be solvable by a single sequential
computation, a scratch-off puzzle must be solvable by sev-
eral concurrent non-communicating entities.

In what follows, we let λ denote a security parameter. A
scratch-off puzzle is parameterized by parameters (t, µ, d, t0)
where, roughly speaking, t denotes the amount of work needed
to attempt a single puzzle solution, µ refers to the maximum
amount by which an adversary can speed up the process of
finding solutions, d affects the average number of attempts
to find a solution, and t0 denotes the initialiaztion overhead
of the algorithm. We typically assume that t0 � 2dt, where
2dt is the expected time required to solve a puzzle.

Definition 1. A scratch-off puzzle is parameterized by
parameters (t, µ, d, t0), and consists of the following algo-
rithms:

1. G(1λ)→ puz: generates a puzzle instance.

2. Work(puz,m, t) → ticket: The Work algorithm takes a
puzzle instance puz, some payload m, and time param-
eter t. It makes t unit scratch attempts, using t · t+ t0
time steps in total. Here t = poly(λ) is the unit scratch
time, and t0 can be thought of as the initialization and
finalization cost of Work.

3. Verify(puz,m, ticket) → {0, 1}: checks if a ticket is
valid for a specific instance puz, and payload m. If
ticket passes this check, we refer to it as a winning
ticket for (puz,m).

Intuitively, the honest Work algorithm makes t unit scratch
attempts, and each attempt has probability 2−d of finding
a winning ticket, where d is called the puzzle’s difficulty pa-
rameter. For simplicity, we will henceforth use the notation

ζ(t, d) := 1− (1− 2−d)t

to refer to the probability of finding a winning ticket using t
scratch attempts. For technical reasons that will become ap-
parent later, we additionally define the shorthand ζ+(t, d) :=
ζ(t+ 1, d). For the remainder of the paper, we assume that
the puzzle’s difficulty parameter d is fixed, hence we omit
the d and write ζ(t) and ζ+(t) for simplicity. We also define
the algorithm WorkTillSuccess(puz,m) = Work(puz,m,∞);

3The terms“scratch-off puzzle”and“winning ticket”are mo-
tivated by the observation that Bitcoin’s coin minting pro-
cess resembles a scratch-off lottery, wherein a participant
expends a unit of effort to learn if he holds a winning ticket.

i.e., this algorithm runs until it finds a winning ticket for
the given instance and payload.

A scratch-off puzzle must satisfy three requirements:

1. Correctness. For any (puz,m, t), if Work(puz,m, t)
outputs ticket 6= ⊥, then Verify(puz,m, ticket) = 1.

2. Feasibility and parallelizability. Solving a scratch-
off puzzle is feasible, and can be parallelized. More
formally, for any ` = poly(λ), for any t1, t2, . . . , t` =
poly(λ), let t :=

∑
i∈[`] ti.

Pr

puz← G(1λ),
m← {0, 1}λ,
∀i ∈ [`] : ticketi ←Work(puz,m, ti) :
∃i ∈ [`] : Verify(puz,m, ticketi)

≥ ζ(t)− negl(λ).

Intuitively, each unit scratch attempt, taking time t,
has probability 2−d of finding a winning ticket. There-
fore, if ` potentially parallel processes each makes t1,
t2, . . ., t` attempts, the probability of finding one win-
ning ticket overall is ζ(t)±negl(λ) where t =

∑
i∈[`] ti.

3. µ-Incompressibility. Roughly speaking, the work
for solving a puzzle must be incompressible in the sense
that even the best adversary can speed up the finding
of a puzzle solution by at most a factor of µ. More for-
mally, a scratch-off puzzle is µ-incompressible (where
µ ≥ 1) if for any probabilistic polynomial-time adver-
sary A taking at most t · t steps,

Pr

 puz← G(1λ),
(m, ticket)← A(puz) :
Verify(puz,m, ticket) = 1

 ≤ ζ+(µt)± negl(λ).

Note that ζ+(t) = 1 − (1 − 2−d)t+1 is roughly the
probability of outputting a winning ticket after t unit
scratch attempts, though we additionally allow the ad-
versary to make a final guess at the end (as in [30]),
and hence the t + 1 in the exponent instead of just t.
Ideally, we would like the compressibility factor µ to
be as close to 1 as possible. When µ = 1, the honest
Work algorithm is the optimal way to solve a puzzle.

This definition implies, in particular, that solutions to pre-
vious puzzles do not help in solving a freshly generated puz-
zle unseen ahead of time.

3.1 Bitcoin’s Scratch-Off Puzzle
An abstraction of Bitcoin’s scratch-off puzzle is shown in

Figure 1. This scratch-off puzzle abstraction allows us to
study it as a stand-alone concept. We elaborate more below
on how this scratch-off puzzle would be integrated in the
Bitcoin application.

In the actual Bitcoin network, a new puzzle is generated
for each epoch (on average, every 10 minutes) by taking a
hash of the puzzle solution from the previous epoch. This
serves two purposes:

1. There is, in general, a single globally-known puz instance
each epoch. Further, this puz instance can be gener-
ated without a trusted third-party – everyone can inde-
pendently compute the puz instance by downloading the
up-to-date blockchain.

Let H : {0, 1}∗ → {0, 1}λ be a hash function modeled as a
random oracle.

• G(1λ) : Draw a puzzle randomly, puz
$← {0, 1}λ.

• Work(puz,m, t):
For i ∈ [t]: //repeat up to t unit scratch attempts

Draw a random nonce, r
$← {0, 1}λ.

If H(puz‖m‖r) < 2λ−d then return ticket := r.

Return ⊥.

• Verify(puz,m, ticket).
Check that H(puz‖m‖ticket) < 2λ−d.

Figure 1: An abstraction of the Bitcoin scratch-off
puzzle.

2. It prevents precomputation of puzzle solutions (since puz
is unpredictable).

The payload message m includes the following:

• The miner’s public key pk. This allows the miner who
owns the corresponding secret key sk to later claim the
reward (i.e., the newly minted coins) if it succeeds in
finding a winning ticket.
• A batch of transactions to be committed. Miners are

incentivized to commit transactions since they can claim
the transaction fees associated with them.

We assume that each random-oracle call takes time tRO,
and all other work in each iteration of Work takes tother time.
We then have the following:

Theorem 1. The construction in Figure 1 is a (d, t, t0, µ)-
scratch-off puzzle, where t = O(λ) · tRO, t0 = 0, and µ =
tRO/(tRO + tother).

Proof. The correctness proof is trivial, as is the proof
of feasibility and parallelizability. For µ-incompressibility,
observe that for any adversary that makes t random oracle
calls, its probability of successfully finding a winning ticket
is at most ζ+(t). Since the honest Work algorithm takes
(tRO + tother) · t time, this scratch-off puzzle is tRO/(tRO +
tother)-incompressible.

3.2 Non-Transferability
For a practical scheme we could integrate into Bitcoin, we

should require that the payload of a ticket is non-transferable,
in the following sense: if an honest party publishes a ticket
attributed to a payload m (e.g., containing a public key be-
longing to the party to whom the reward must be paid),
the adversary should not gain any advantage in obtaining
a puzzle solution attributed to some different payload m∗

for the same puz. This is because in Bitcoin, each epoch is
defined by a globally known, unique puzzle instance puz; at
most one winning ticket for puz and a payload message is
accepted into the blockchain; and a user who solves a puz-
zle only receives the reward if their message is the one that
is attributed. If an adversary can easily modify a victim’s
winning ticket to be attributed to a different payload of its
choice, then the adversary can listen for when the victim’s
ticket is first announced in the network, and then immedi-
ately start propagating the modified ticket (e.g., containing
its own public key for the reward payment) and attempt
to outrace the victim. It is possible that the network will

now deem the adversary as the winner of this epoch—this is
especially true if the adversary has better network connec-
tivity than the victim (as described in [14]). For simplicity
in developing our constructions and nonoutsourceable def-
inition, we define this non-transferability requirement sep-
arately below. Intuitively, non-transferability means that
seeing a puzzle solution output by an honest party does not
help noticeably in producing a solution attributed to a dif-
ferent payload m∗.

Definition 2. Let δ be a non-negative function of `. A
scratch-off puzzle is δ-non-transferable if it additionally sat-
isfies the following property:

• for any ` = poly(λ), and for any adversary A taking t · t
steps,

Pr

puz← G(1λ)
m1,m2, . . . ,m` ← A(1λ)
∀i ∈ [`] : ticketi ←WorkTillSuccess(puz,mi),
(puz,m∗, ticket∗)← A(puz, {mi, ticketi}`i=1) :

Verify(puz, ticket∗,m∗) ∧ (∀i ∈ [`] : m∗ 6= mi)

≤ ζ+((µ+ δ)t) + negl(λ)

4. OUTSOURCED MINING AND WEAKLY
NONOUTSOURCEABLE PUZZLES

The Bitcoin scratch-off puzzle described in the previous
section is amenable to secure outsourcing, in the sense that
it is possible for one party (the server) to perform mining
work for the benefit of another (the client) and to prove to
the client that the work done can only benefit the client.

To give a specific example, let m be the public key of

the client; if the server performs 2d
′

scratch attempts, on
average it will have found at least one value r such that

H(puz‖m‖r) < 2λ−d
′
. The value r can be presented to

the client as a “share” (since it represents a portion of the
expected work needed to find a solution); intuitively, any
such work associated with m cannot be reused for any other
m∗ 6= m. This scheme is an essential component of nearly
every Bitcoin mining pool to date [28]; the mining pool op-
erator chooses the payload m, and mining participants are
required to present shares associated with m in order to
receive participation credit. The rise of large, centralized
mining pools is due in large part to the effectiveness of this
mechanism.

We now formalize a generalization of this outsourcing pro-
tocol, and then proceed to construct puzzles that are not
amenable to outsourcing (i.e., for which no effective out-
sourcing protocol exists).

4.1 Notation and Terminology
Parties. We use the terminology client and server referring
respectively to the party outsourcing the computation and
the party performing the computation. For example, in min-
ing pool operations, individual miners joining the pool are
the “servers,” and the pool operator is the “client.” In cloud
hosted mining, the cloud server is the “server,” and the in-
dividuals who outsource their mining infrastructure are the
clients.

Protocol executions. A protocol is defined by two algo-
rithms S and C, where S denotes the (honest) server, and C
the (honest) client. We use the notation (oS ; oC) ← (S, C)

to mean that a pair of interactive Turing Machines S and C
are executed, with oS the output of S, and oC the output of
C.

In this paper we assume the client is honest but the server
may be malicious. We use the notation (A, C) to denote an
execution between a malicious server A and an honest client
C. Note that protocol definition always uses the honest algo-
rithms, i.e., (S, C) denotes a protocol or an honest execution;
whereas (A, C) represents an execution.

4.2 Definitions
Outsourcing protocol. We now define a generalization
of outsourced mining protocols, encompassing both mining
pools and hosted mining services. Essentially, a server helps
the client attempt to compute a winning ticket.

Definition 3. An (tS , tC , te)-outsourcing protocol for a
scratch-off puzzle (G,Work,Verify), where te < tS + tC and
tc < te, is a two-party protocol, (S, C), such that

• The client’s input is puz, and the server’s input is ⊥.

• The client C runs in at most tC · t time, and the server
S in at most tS · t time.

• C outputs a tuple (ticket,m) at the end, where ticket is
either a winning ticket for payload m or ticket = ⊥.
Further, when interacting with an honest S, C outputs
a ticket 6= ⊥ with probability at least ζ(te)− negl(λ).

Formally,

Pr

 puz← G(1λ)
(·; ticket,m)← (S, C(puz)) :
Verify(puz,m, ticket)

 ≥ ζ(te)− negl(λ).

The parameter te is referred to as the effective billable
work, because the protocol (S, C) has the success probability
of performing te unit scratch attempts. Note that it must be
the case It must be the case that te < µ(tS+tC). Intuitively,
an outsourcing protocol allows effective outsourcing of work
by the client if te � tC .

Note that this definition does not specify how the payload
m is chosen. In typical Bitcoin mining pools, the client (i.e.,
the pool operator) chooses m so that it contains the client’s
public key. However, our definition also includes schemes
where m is jointly computed during interaction between S
and C, for example.

Weak nonoutsourceability. If we want a puzzle to dis-
courage outsourcing, we would like to say that for any out-
sourcing protocol that can “effectively” outsource work to
a server (i.e., if the client does less work than the server,
and the server does not incur too much overhead relative
to honest Work) then the server can easily “steal” the work
for its own benefit. More specifically, the server gains an
advantage in generating a winning ticket associated with a
payload of its own choice, over which the client has no in-
fluence. Based on this intuition, we now formally define the
notion of a weakly nonoutsourceable scratch-off puzzle.

Definition 4. A scratch-off-puzzle is (tS , tC , te, α, ps)-
weakly-nonoutsourceable if for every (tS , tC , te)-outsourcing
protocol (S, C), there exists an adversary A that runs in time
at most tS · t+ α, such that:

• Let m∗
$← {0, 1}λ. Then, at the end of an execution

(A(puz,m∗), C(puz)), the probability that A outputs a win-
ning ticket for payload m∗ is at least psζ(te). Formally,

Pr

 puz← G(1λ);m∗
$← {0, 1}λ

(ticket∗; ticket,m)← (A(puz,m∗), C(puz)) :
Verify(puz, ticket∗,m∗)

 ≥ psζ(te).
• Let viewh denote the client’s view in an execution with the

honest server (S, C(puz)), and let view∗ denote the client’s
view in an execution with the adversary (A(puz,m∗), C(puz)).
Then,

view∗
c≡ viewh.

When C interacts with A, the view of the client view∗ is
computationally indistinguishable from when interacting
with an honest S.

Later, when proving that puzzles are weakly-nonoutsourceable,
we typically construct an adversary A that runs the honest
protocol S until it finds a ticket for m, and then transforms
the ticket into one for m∗ with probability ps. For this rea-
son, we refer to the adversary A in the above definition as a
stealing adversary for protocol (S, C). In practice, we would
like α to be small, and ps ≤ 1 to be large, i.e., A’s run-time
is not much different from that of the honest server, but A
can steal a ticket with high probability.

If the client outputs a valid ticket form and the server out-
puts a valid ticket for m∗, then there is a race to determine
which ticket is accepted by the Bitcoin network and earns a
reward. Since the µ-incompressibility of the scratch-off puz-
zle guarantees the probability of generating a winning ticket
associated with either m or m∗ is bounded by ζ+(µ(tS+tC)),
the probability of the client outputting a ticket – but not the
server – is bounded by ζ+(µ(tS + tC))− ps.

Note that weak nonoutsourceability does not imply that
the puzzle is transferable. In other words, a puzzle can be
simultaneously non-transferable and weakly nonoutsource-
able. This is so because the stealing adversary A may rely
on its view of the entire outsourcing protocol when stealing
the ticket for its own payload m∗, whereas the adversary for
the non-transferability game is only given winning tickets as
input (but no protocol views).

As we mentioned in the beginning of this section, the
prevalence of Bitcoin mining pools can be attributed in part
to the effective outsourcing protocol used to coordinate un-
trusted pool members - in other words, the Bitcoin puzzle
is not nonoutsourceable. We state and prove a theorem to
this effect in Appendix D.

5. A WEAKLY NONOUTSOURCEABLE
CONSTRUCTION

In this section, we describe a weakly nonoutsourceable
construction based on a Merkle-hash tree construction. We
prove that our construction satisfies weak nonoutsourceabil-
ity (for a reasonable choice of parameters) in the random
oracle model. In particular, we show that for any outsourc-
ing protocol that can effectively outsource a fixed constant
fraction of the effective work, an adversarial server will be
able to steal the puzzle with at least constant probability.
Our construction is inspired by the Floating Preimage Signa-
ture (FPS) scheme used in Permacoin [23], which is a puz-
zle integrated with a proof-of-retrievablity. However, Per-
macoin [23] only described the issue of nonoutsourceability

informally, and made no attempt to formalize the defini-
tion nor to discuss nonoutsourceability beyond the context
of archival storage.

5.1 Construction
Our Merkle tree-based weakly nonoutsourceable puzzle

construction is described formally in Figure 2.

Intuition. To solve a puzzle, a node first builds a Merkle
tree with random values at the leaves; denote the root by
digest. Then the node repeatedly samples a random value r,
computes h = H(puz||r||digest), and uses h to select q leaves
of the Merkle tree and their corresponding branches (i.e., the
corresponding Merkle proofs). It then hashes those branches
(along with puz and r) and checks to see if the result is less
than 2λ−d.

Once successful, the node has a value r what was“difficult”
to find, but is not yet bound to the payload message m. To
effect such binding, a “signing step” is performed in which
H(puz||m||digest) is used to select a set of 4q′ leaf nodes. Any
q′ of these leaves, along with their corresponding branches,
constitute a signature for m and complete a winning ticket.

Intuitively, this puzzle is weakly nonoutsourceable because
in order for the server to perform scratch attempts, it must
either

• know a large fraction of the leaves and branches of
the Merkle tree, in which case it will be able to sign
an arbitrary payload m∗ with high probability – by re-
vealing q′ out of the 4q′ leaves (and their corresponding
branches) selected by m∗,

• or incur a large amount of overhead, due to aborting
scratch attempts for which it does not know the nec-
essary leaves and branches,

• or interact with the client frequently, in which case
the client performs a significant fraction of the total
number of random oracle queries.

To formally prove this construction is weakly nonoutsource-
able, we assume that the cost of the Work algorithm is domi-
nated by calls made to random oracles. Thus, for simplicity,
in the following theorems we equate the running time with
the number of calls to the random oracle. However, the the-
orem can be easily generalized (i.e., relaxing by a constant
factor) as long as the cost of the rest of the computation is
only a constant fraction of the random-oracle calls.

Theorem 2. The construction in Figure 2 is a scratch-
off puzzle.

Proof. Correctness, feasibility/parallelizability proofs are
trivial. We now prove incompressibility.

For any adversaryA to obtain a winning ticket with ζ+(te)
probability, the adversary must have made at least te good
scratch attempts. A good scratch attempt consists of at
least two random oracle queries, h := H(puz||r||digest) and
H(puz||r||σh) such that the branches σh are consistent with
h and digest. For each good scratch attempt the adversary
must know at least a constant fraction (for any constant
< 1) of the branches, and have made random oracle calls to
generate the branches such that they are consistent with the
digest. Otherwise, when the adversary calls the random ora-
cle for selecting the leaves (notice that the digest is an input

Let H,H2 : {0, 1}∗ → {0, 1}λ denote random oracles.

• G(1λ): generate puz
$← {0, 1}λ

• Work(puz,m, t):

Construct Merkle tree. Sample L random strings leaf1, . . . , leafL
$← {0, 1}λ, and then construct a Merkle tree over the

leafi’s using H2 as the hash function. Let digest denote the root digest of this tree.

Scratch. Repeat the following scratch attempt t times:

∗ Draw a random nonce, r
$← {0, 1}λ.

∗ Compute h := H(puz‖r‖digest), and use the value h to select q distinct leaves from the tree.
∗ Let B1, B2, . . . , Bq denote the branches corresponding to the selected leaves. In particular, for a given leaf node, its branch

is defined as the Merkle proof for this leaf node, including leaf node itself, and the sibling for every node on the path from
the leaf to the root.

∗ Compute σh := {Bi}i∈[q] in sorted order of i.

∗ If H(puz‖r‖σh) < 2λ−d then record the solution pair (r, σh) and goto “Sign payload”.

Sign payload. If no solution was found, return ⊥. Otherwise, sign the payload m as follows:

∗ Compute h′ := H(puz‖m‖digest), and use the value h′ to select a set of 4q′ distinct leaves from the tree such that these
leaves are not contained in σh. From these, choose an arbitrary subset of q′ distinct leaves. Collect the corresponding
branches for these q′ leaves, denoted B1, B2, . . . , Bq′ .

∗ Let σ′h := {Bi}i∈[q′] in sorted order of i.

∗ Return ticket := (digest, r, σh, σ
′
h).

• Verify(puz,m, ticket):
Parse ticket := (digest, r, σh, σ

′
h)

Compute h := H(puz||r||r||digest). Compute h′ := H(puz||m||digest).
Verify that σh and σ′h contain leaves selected by h and h′ respectively.
Verify that σh and σ′h contain valid Merkle paths with respect to digest.
Verify that H(puz||r||σh) < 2λ−d.

Figure 2: A weakly nonoutsourceable and non-transferable scratch-off puzzle.

to this call for selecting leaves), except with negligible proba-
bility, no polynomial-time adversary can output the selected
branches (which are then fed into another random oracle to
determine the difficulty). Also, for each good scratch at-
tempt (that contributes to the ζ+(te) success probability),
the adversary must also make the random oracle call to se-
lect the branches, and the call to determine the difficulty.
Therefore, the adversary must make an arbitrarily large con-
stant fraction (for any constant < 1) of the random oracle
calls for each good scratch attempt. Therefore, the scratch-
off puzzle is µ-incompressible for an appropriate choice of µ,
assuming that the rest of the computation is only at most a
constant fraction of the random oracle calls.

Theorem 3. Let q, q′ = O(λ). Let the number of leaves
L ≥ q + 8q′. Suppose d > 10 and te · 2−d < 1/2. Under
the aforementioned cost model, the above construction is a
(tS , tC , te, α, ps) weakly nonoutsourceable puzzle, for any 0 <
γ < 1 s.t. tC < γte, ps >

1
2
(1−γ)−negl(λ), and α = O(λ2);

and is 0-non-transferable.

In other words, if the client’s work tC is a not a significant
fraction of te, i.e., work is effectively outsourced, then an ad-
versarial server will be able to steal the client’s ticket with a
reasonably big probability, and without too much additional
work than the honest server.

The proof that this puzzle is weakly nonoutsourceable can
be found in the Appendix, but we sketch the main idea here.
Very informally, to“effectively”outsource work to the server,
the server must know more than a constant fraction (say,
1/3) of the leaves before calling the random oracle to de-
termine whether an attempt is successful. However, if the
server knows more than 1/3 fraction of the leaves, due to a
simple Chernoff bound, it will be able to easily steal the so-
lution should one be found. To make this argument formally
is more intricate (see Appendix).

The proof that this puzzle that this puzzle is non-transferable
is deferred to the appendix.

6. STRONGLY NONOUTSOURCEABLE
PUZZLES

In the previous section, we formally defined and constructed
a scheme for weakly nonoutsourceable puzzles, which en-
sure that for any “effective” outsourcing protocol, there ex-
ists an adversarial server that can steal the client’s winning
ticket with significant probability, should a winning ticket
be found. This can help deter outsourcing when individuals
are expected to behave selfishly.

One potential drawback of the weakly nonoutsourceable
scheme is that a stealing adversary may be detected when he
spends his stolen reward, and thus might be held account-
able through some external means, such as legal prosecution
or a tainted public reputation. Ideally, we should enable the
stealing adversary to evade detection and leave no trail of
evidence. Therefore, in this section, we define a “strongly
nonoutsourceable” puzzle, which has the additional require-
ment that a stolen ticket cannot be distinguished from a
ticket produced through independent effort.

Definition 5. A puzzle is (tS , tC , te, α, ps)-
strongly-nonoutsourceable if it is (tS , tC , te, α, ps)-weakly-
nonoutsourceable, and additionally the following holds:

For any (tS , tC , te)-outsourcing protocol (S, C), there ex-
ists an adversary A for the protocol such that the stolen
ticket output by A for payload m∗ is computationally indis-
tinguishable from a honestly computed ticket for m∗, even
given the client’s view in the execution (A, C). Formally, let

puz ← G(1λ), let m∗
$← {0, 1}λ. Consider a protocol exe-

cution (A(puz,m∗), C(puz)): let view∗ denote the client C’s
view and ticket∗ the stolen ticket output by A in the exe-

Let NIZK be a non-interactive zero-knowledge proof sys-
tem. Also assume that E = (Key,Enc,Dec) is a CPA-secure
public-key encryption scheme.
Let (G′,Work′,Verify′) be a weakly nonoutsourceable
scratch-off puzzle scheme. We now construct a strongly
nonoutsourceable puzzle scheme as below.

• G(1λ): Run the puzzle generation of the underlying
scheme puz′ ← G′(1λ). Let crs ← NIZK.Setup(1λ); and
let (skE , pkE)← E .Key(1λ). Output

puz← (puz′, crs, pkE)

• Work(puz,m, t):

Parse puz := (puz′, crs, pkE).
ticket′ ←Work′(puz′,m, t),
Encrypt c← Enc(pkE ; ticket

′; r).
Compute π ← NIZK.Prove(crs, (c,m, pkE , puz

′), (ticket′, r))
for the following NP statement:

Verify′(puz′,m, ticket′) ∧ c = Enc(pkE ; ticket
′; r)

Return ticket := (c, π).

• Verify(puz,m, ticket);
Parse puz := (puz′, crs, pkE), and parse ticket as (c, π).
Check that Verify(crs, (c,m, pkE , puz

′), π) = 1.

Figure 3: A generic transformation from any weakly
nonoutsourceable scratch-off puzzle to a strongly non-
outsourceable puzzle.

cution. Let ticketh denote an honestly generated ticket for
m∗, i.e., ticketh := WorkTillSuccess(puz,m∗), and let viewh
denote the client’s view in the execution (S, C(puz)). Then,

(view∗, ticket∗)
c≡ (viewh, ticketh)

In Figure 3, we present a generic transformation that turns
any weakly nonoutsourceable puzzle into a strongly nonout-
sourceable puzzle. The strengthened puzzle is essentially a
zero-knowledge extension of the original – a ticket for the
strong puzzle is effectively a proof of the statement “I know
a solution to the underlying puzzle.”

Theorem 4. If (GenKey′,Work′,Verify′) is a (tS , tC , te, α, ps)
weakly nonoutsourceable puzzle, then the puzzle described in
Figure 3 is a (tS , tC , te, α+tenc+tNIZK, ps−negl(λ)) strongly
nonoutsourceable puzzle, where tenc + tNIZK is the maximum
time required to compute the encryption and NIZK in the
honest Work algorithm.

Proof. We first prove that this derived puzzle preserves
weak nonoutsourceability of the underlying puzzle. Suppose
that (S, C) is a (tS , tC , te) outsourcing protocol. We will
construct a suitable stealing adversary A. To do so, we
begin by deriving an outsourcing protocol (S ′, C′) for the
underlying puzzle; the stealable property of the underlying
puzzle allows to introduce an adversary A′, from which we
will derive A. Let the outsourcing protocol (S ′, C′) for the
underlying puzzle be constructed as follows: Suppose that
C′ is given the input puz′.

1. S ′ executes S unchanged.

2. C′ first generates a keypair according to the encryption
scheme, (pkE , skE)← E .Key(1λ), runs the NIZK setup

crs ← NIZK.Setup(1λ), and then runs C using puzzle
(puz′, crs, pkE).

3. If C outputs a ticket (c, π), then C′ decrypts c and
outputs ticket′ ← Dec(skE , c).

When run interacting with S, the original client C outputs
a valid ticket with probability at least ζ(te)−negl(λ); there-
fore, the derived client C′ decrypts a valid ticket with prob-
ability ζ(te) − negl(λ). Since the underlying puzzle scheme
is assumed to be weakly nonoutsourceable, there exists a
stealing adversary A′ running in time t′a = tS + α. We can
thus construct an A that runs A′ until it outputs ticket′A for
the underlying puzzle, and then generate an encryption and
a zero-knowledge proof.

We also need to prove it satisfies the additional indistin-
guishability property required from a strongly nonoutsource-
able puzzle. This follows in a straightforward manner from
the CPA-security of the encryption scheme, and the fact that
the proof system is zero-knowledge.

We next state a theorem that this generic transformation
essentially preserves the non-transferability of the underly-
ing puzzle.

Theorem 5. If the underlying puzzle (G′,Work′,Verify′)
is δ′-non-transferable, then the derived puzzle through the
generic transformation is δ non-transferable for

µ+ δ′ ≤ (µ+ δ)t

t · t+ (tenc + tnizk)`

where tenc and tnizk are the time for performing each encryp-
tion and NIZK proof respectively.

Again, the proof of this theorem is deferred to the ap-
pendix.

7. IMPLEMENTATION AND
MICROBENCHMARKS

In order to demonstrate the practicality of our schemes, we
implemented both our weakly-nonoutsourceable and strongly-
nonoutsourceable puzzle schemes and provide benchmark re-
sults below.

Metrics. We are concerned with two main performance cri-
teria. First, the size of a ticket and cost of verifying a ticket
should be minimal, since each participant on the network
is expected to verify every ticket independently. Second, in
order for our scheme to be an effective deterrent, the cost
and latency required to“steal”a ticket should be low enough
that it is at least plausible for an outsourcing server to com-
pute a stolen ticket and propagate it throughout the network
before any other solution is found.

When comparing the verification cost of our schemes to
that of the current Bitcoin protocol, we include both the
cost due to the puzzle itself, as well as the total cost of vali-
dating a block including transactions. At present, there are
over 400 transactions per block on average; 4 we assume
each transaction carries at least 1 ECDSA signature that
must be verified. In general, the computational cost of val-
idating blocks in Bitcoin is largely dominated by verifying
the ECDSA signatures in transactions rather than verifying
puzzle solutions. We measured that the time to verify an

4Average number of transactions per block: https://
blockchain.info/charts/n-transactions-per-block

https://blockchain.info/charts/n-transactions-per-block
https://blockchain.info/charts/n-transactions-per-block

ECDSA signature on a 2.4GHZ Intel CPU is 1.7ms.5 On
average, a block contains about 0.15 megabytes of data. 6

7.1 Our Weakly Nonoutsourceable Puzzle
The weakly-nonoutsourceable puzzle is straightforward to

implement, and its overhead relative to the Bitcoin puzzle
consists only of λ log λ additional hashes; we implemented
this in unoptimized Python and discuss its performance later
on. The strongly-nonoutsourceable puzzle, however, requires
much more care in implementation due to the NIZK proof.
For this purpose we used Pinocchio [26], an implementation
of the generic GGPR [15] NIZK scheme that takes high-level
C code as input.

We used the SHA-1 hash function throughout our imple-
mentation, since this has a relatively efficient implementa-
tion as an arithmetic circuit [26]. We restricted our focus to
the following puzzle parameters: the signature tree consists
of 2h = 210 leaves, and the number of leaves revealed during
a scratch attempt and a claim is q = q′ = 10. This pro-
vides roughly 50 bits of security for the non-transferability
property.

Performance results. In Table 2, we show that if we
replace Bitcoin’s puzzle with our weakly nonoutsourceable
puzzle, the slowdown for the block verification operation will
be only 2%. More specifically, while our puzzle verification
itself is over a thousand times more expensive than the Bit-
coin puzzle, puzzle verification only accounts for a very small
percentage of the overall verifier time. Therefore, the overall
performance slowdown is insignificant for practical purposes.
Likewise, while the size of the ticket in our scheme is almost
a hundred times larger than that of Bitcoin, the ticket is a
small fraction of the total size of a block when transactions
are included.

An adversarial server can steal a ticket in a marginal
amount of time (only one additional hash in expectation, for
example, assuming the server knows at least a third of the
Merkle tree branches used during scratch attempts). This
cost is insignificant compared to the expected time for solv-
ing a puzzle.

7.2 Our Strongly Nonoutsourceable Puzzle
We next describe more details of our instantiation and im-

plementation of our strongly nonoutsourceable puzzle, fol-
lowed by evaluation.

Diffie-Hellman + SHACAL Encryption Pinocchio effi-
ciently supports group operations in Z∗p, where p is a 254-bit
prime corresponding to the BN family of “pairing-friendly”
elliptic curves. Unfortunately, the order of this group, p−1,
is not prime, nor was p constructed so that p− 1 has a large
prime factor. Therefore, taking inspiration from “Pinocchio-
Coin” [11], we do our public key operations in a prime-order
subgroup of the Galois extension field Fpµ , where we have
chosen µ = 4 such that pµ is over 1000 bits, and Fpµ has a
subgroup of prime-order q ≈ 501 bits.

Our encryption scheme is a variant of DHIES [1], except
we replace the symmetric-key encryption component AES
with SHACAL [17] (i.e. SHA-1 used as a block cipher) since

5Unless otherwise noted, we conducted our measurements
over at least 1000 trials, and omit the error statistic if the
standard deviation is within ±1%.
6 Average block size: https://blockchain.info/charts/
avg-block-size

SHA-1 has a relatively efficient implementation in Pinocchio.
Note that the known attacks on SHACAL-1 [12] require an
adaptive distinguisher to ask for multiple encryptions under
a single key, whereas in our setting an encryption key is used
one time only, and therefore is not vulnerable to this attack.

Statement-level parallelism using HMAC commit-
ments. The GGPR scheme underlying Pinocchio is in fact
stronger than a NIZK; it is also succinct (i.e., a SNARK),
meaning that the cost of verifying a proof is independent
of the size of the circuit. However, the prover overhead
grows superlinearly in the size of the circuit. Additionally,
although the GGPR scheme is largely parallelizable, 7 the
current Pinocchio implementation does not take advantage
of this. Therefore, we take the approach of decomposing the
decomposed the overall NP statement into several smaller
sub-statements, for which all the proofs may be computed
separately. In particular, we produce two types of state-
ments. The first type of statement (Type I statements) pro-
cesses a portion (C layers at a time) of one of the q + q′

Merkle tree branches, and checks that they are encrypted
properly; (q + q′)d h

C
e of these statements must be proven.

The Type II statement (of which we require only one in-
stance) performs the public-key operation, checks the win-
ning condition of the puzzle solution, and checks that the q′

chosen tree indices are a subset of the 4q′ selected based on
the attribution message. For every variable shared between
substatements, we add to the substatements a SHA-based
HMAC commitment. In total, the ticket thus consists of
(q + q′)d h

C
e + 2 160-bit HMAC tags, (q + q′)(h + 1) 160-

bit SHACAL ciphertexts, and one 1024-bit Diffie-Hellman
group element.

Performance results. The prover and verifier costs for our
strongly-nonoutsourceable implementation are presented in
Table 1. Each of the top rows corresponds to a different set-
ting of the parameter C, the number of 160-bit blocks (of the
underlying ticket) checked by each substatement. The to-
tal number of substatements required (#) is reported along
with computing time per circuit for the prover and verifier.
We also report the total verification time over all the state-
ments, as well as the total proof size. The bottom row is for
the second type of statement, which does not depend on C.

Keeping in mind our goal is to prove it is plausible for a
server to produce stolen ticket proof with low latency, we be-
lieve it is reasonable to assume that such a server has access
to parallel computing resources. Even absent parallelism in
the underlying NIZK implementation, our statement-parallelism
approach leads to proof times in under 4 minutes at the
minimal setting. Since the average time between puzzle so-
lutions in the Bitcoin network is 10 minutes, this may al-
ready be a plausible deterrent. On the other hand, with
this setting, verification of an entire proof takes under 3 sec-
onds. Since approximately 144 Bitcoin puzzle solutions are
produced each day, it would take almost 6 minutes for a
single-threaded verifier to validate a day’s worth of puzzle
solutions. Thus, replacing the underlying SNARK imple-
mentation with a fully-parallel one would increase both the
plausibility of our scheme as a deterrent, and reduce the ver-
ification cost to a constant by requiring only a single circuit.

Even using the parameter choice with the most overhead,
C = 1, and assuming computational power can be rented at

7For instance, Zaatar [29] reports a near-linear parallel
speedup for a similar scheme.

https://blockchain.info/charts/avg-block-size
https://blockchain.info/charts/avg-block-size

Table 1: Strongly Nonoutsourceable Benchmarks
Type I Statements

C # Gates Prove Verify Total Size
1 220 213k 268.2s 11ms 2.42s 29.4KB
2 120 280k 578.4s 11ms 1.32s 23.2KB
3 80 392k 1002.9s 11ms 0.80s 17.0KB
4 60 467k 1242.1s 11ms 0.66s 10.8KB

Type II Statement
Gates Prove Verify Total Size
1 282K 508.5s 10ms 0.01s <1KB

$2.50 per hour (based on Amazon EC2 prices for the most
powerful machine), it would cost $45 in total to produce
a stolen ticket proof. This is much less than reward for a
puzzle solution, which at the current time is over $10,000.

8. DISCUSSION
Integration in Bitcoin. We have presented our schemes
and definitions in an abstract way that hides many of the
details of how puzzles are integrated in the Bitcoin proto-
col. We now clarify two important integration details: First,
we have assumed that the puzzle instance is generated in-
dependently of all previous puzzles. In practice, each puz-
zle instance puz should be generated by some deterministic
function of the previous puzzle solution; the parameters crs
and pkE may be generated once at the outset and reused be-
tween puzzles. Second, the attribution message m contains
(a commitment to) a payload of transactions to be added
to the log. While in Bitcoin a puzzle solution is immutably
bound to a single payload, in our nonoutsourceable schemes
the payload may be easily modified after the fact (at least by
the original solver); in particular, a dishonest puzzle solver
who computes a ticket may easily create numerous alternate
tickets as well. However, a puzzle solution in our scheme re-
mains immutably bound (via the puzzle instance) to a single
previous puzzle solution. Thus an attacker only gains a one-
block advantage in any history revision attack; transactions
should be considered “confirmed” after seven blocks rather
than six (as is the currently accepted standard in Bitcoin).

Cheap plaintext option. It is fairly expensive and time-
consuming to produce the zero-knowledge proof. Although
we have shown it is plausible for a stealing server (with par-
allel resources) to compute such a proof, this would place
an undue burden on honest independent miners. However,
it is possible to modify our generic transformation so that
there are two ways to claim a ticket: the first is with a zero-
knowledge proof as described, while the second is simply by
revealing a plaintext winning ticket for the underlying puz-
zle. We note that the non-transferable property still applies
to tickets claimed with this plaintext option.

Mining pools. Mining pools result in consolidation of in-
fluence, which we would like to deter. In a mining pool,
individuals are typically anonymous and may join and leave
frequently. In this scenario, even our weakly nonoutsource-
able puzzle may be a sufficient deterrent, since an individual
can claim a winning ticket for himself, and even if the pool
operator detects, the cheater cannot easily be punished.

On the other hand, mining pools serve a desirable purpose
of reducing the payoff variance for individual participants in
the coin minting process. With our nonoutsourceable puz-
zles, we must seek a separate mechanism to achieve lower

variance in mining. This can potentially be achieved by de-
signing and incorporating a more flexible lottery mechanism
into Bitcoin. Specifically, the lottery mechanism should al-
low players to choose different puzzle difficulties, and the
higher the difficulty, the higher the promised reward. How
to design such a lottery mechanism and understanding its
economic implications is part of our future work.

Hosted mining. While mining pools are nearly ubiquitous
in Bitcoin, hosted mining has yet to become widespread; the
need to discourage is therefore speculative (though plausible,
given announcements such as [5]). Furthermore, regardless
of cryptographic enforcement, it may be that some users
are willing to trust a hosed mining service on the basis of
reputation or some enforcement mechanism not captured
by our model, such as institutional auditing. Nonetheless,
we believe our strong nonoutsourceable scheme provides an
effective deterrent by creating the plausibility that a hosted
mining server could both cheat and get away with it.

Limitations. One limitation of our proof of Theorem 3
(and shared by other moderately-hard puzzle proofs [9, 16,
30]) is the use of random oracles. Since random oracles do
not exist in practice, we must instantiate them with cryp-
tographic hash functions. Our proof in particular relies on
an “indivisibility” property of a random oracle – every query
is either made by the client or made by the server. On
the other hand, we know of strong results, for example, in
homomorphic encryption [21] which apply to every efficient
computation, including the hash functions with which we ap-
proximate the random oracle. In practice, the best known
generic techniques for fully homomorphic encryption require
a very large overhead. Although no lower-bound is known
for the cost of techniques like fully homomorphic encryption,
it is reasonable to expect that such techniques will at least
introduce some relative large cost factor. It is our future
work to construct non-outsourceable puzzles in the stan-
dard model. Conceivably, any provably secure construction
in the standard model must eliminate FHE-based outsourc-
ing schemes by saying that FHE-based outsourcing schemes
(or alike) require a large tS in comparison with te – this
seems to require a more fundamental understanding of the
separation (in terms of cost) of computing over encrypted
data as opposed to computing in cleartext.

Another limitation is that the zero-knowledge proof sys-
tem we used in our implementation, GGPR [15], relies on a
common reference string (CRS), which must be generated by
a trusted party during a setup phase; this setup requirement
maybe unacceptable for a Bitcoin-like application . Our con-
structions, however, would apply equally using any other
NIZK system; in particular we rely on neither the succinct-
ness nor the extractability properties of the GGPR scheme.
Similarly, if the public key for the encryption scheme can
be obliviously sampled using public randomness (i.e., with-
out producing a corresponding private key), then a trusted
setup phase may be avoided.

9. CONCLUSION
The prevalence of Bitcoin mining coalitions (including both

mining pools and hosted mining services), which lead to
consolidation of power and increased systemic risk to the
network, are a result of a built-in design limitation of the
Bitcoin puzzle itself – specifically, that it admits an effective
coalition enforcement mechanism. To address this, we have

Table 2: Estimated puzzle and block verification costs for various schemes.
Puzzle only Transactions Included

Scheme Verif. Ratio Size Ratio Verif. Ratio Size Ratio
Bitcoin 11.7µs 1 80B 1 0.68s 1 150KB 1

Weak 15.1ms 1.3e3 6.6KB 83 0.70s 1.02 157KB 1.05
C = 4 0.67s 5.7e4 10.8KB 135 1.35s 1.99 161KB 1.07
C = 3 0.81s 6.9e4 17.0KB 213 1.49s 2.19 167KB 1.11
C = 2 1.33s 1.1e5 23.2KB 290 2.01s 2.96 173KB 1.15
C = 1 2.43s 2.0e5 29.4KB 368 3.11s 4.57 179KB 1.19

proposed formal definitions of nonoutsourceable puzzles for
which no such enforcement mechanism exists. We have con-
tributed two constructions: a weak nonoutsourceable puz-
zle provable in the random oracle model, and a generic
transformation from any weak nonoutsourceable puzzle to a
strong one. The former may already be a sufficient deterrent
against mining pools, while the latter thwarts both hosted
mining and mining pools. We have implemented both of
our techniques and provide performance evaluation results
showing these add only a tolerable overhead to the cost of
Bitcoin blockchain validation.

Acknowledgments We thank readers and reviewers of ear-
lier drafts of this paper who contributed invaluable feedback,
including Gregory Maxwell, Ian Miers, and Sergio Lerner.
This work was supported in part by NSF awards #0964541
and #1223623.

References
[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway.

Dhaes: An encryption scheme based on the diffie-
hellman problem. Available at citeseer. ist. psu.
edu/abdalla99dhaes. html, 1999.

[2] James Aspnes, Collin Jackson, and Arvind Krishna-
murthy. Exposing computationally-challenged byzan-
tine impostors. Department of Computer Science, Yale
University, New Haven, CT, Tech. Rep, 2005.

[3] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin
Uzun. Bitter to better – how to make bitcoin a better
currency. In Financial Cryptography and Data Security,
pages 399–414. Springer, 2012.

[4] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In Security and Privacy (SP), 2014 IEEE
Symposium on. IEEE. IEEE, 2014.

[5] Danny Bradbury. Alydian targets big ticket min-
ers with terahash hosting. http://www.coindesk.

com/alydian-targets-big-ticket-miners-with-

terahash-hosting/, August 2013.

[6] Vitalik Buterin. Bitcoin network shaken by blockchain
fork. http://bitcoinmagazine.com/3668/bitcoin-

network-shaken-by-blockchain-fork/, 2013.

[7] David Chaum. Blind signatures for untraceable pay-
ments. In Crypto, volume 82, pages 199–203, 1982.

[8] David Chaum, Amos Fiat, and Moni Naor. Untrace-
able electronic cash. In Advances in Cryptology—
CRYPTO’88, pages 319–327. Springer, 1990.

[9] Liqun Chen, Paul Morrissey, Nigel P Smart, and Bog-
dan Warinschi. Security notions and generic construc-
tions for client puzzles. In Advances in Cryptology–
ASIACRYPT 2009, pages 505–523. Springer, 2009.

[10] Wei Dai. b-money, 1998.

[11] George Danezis, Cedric Fournet, Markulf Kohlweiss,
and Bryan Parno. Pinocchio coin: building zerocoin
from a succinct pairing-based proof system. In Proceed-
ings of the First ACM workshop on Language support
for privacy-enhancing technologies, pages 27–30. ACM,
2013.

[12] Orr Dunkelman, Nathan Keller, and Jongsung Kim.
Related-key rectangle attack on the full shacal-1. In
Selected Areas in Cryptography, pages 28–44. Springer,
2007.

[13] C. Dwork and M. Naor. Pricing via processing or com-
batting junk mail. In CRYPTO, 1993.

[14] I. Eyal and E. Gun Sirer. Majority is not enough: Bit-
coin mining is vulnerable. arXiv (arXiv:1311.0243v4),
8 Nov. 2013 (v4).

[15] Rosario Gennaro, Craig Gentry, Bryan Parno, and
Mariana Raykova. Quadratic span programs and suc-
cinct nizks without pcps. In Advances in Cryptology–
EUROCRYPT 2013, pages 626–645. Springer, 2013.

[16] Bogdan Groza and Bogdan Warinschi. Cryptographic
puzzles and dos resilience, revisited. Designs, Codes
and Cryptography, pages 1–31, 2013.

[17] Helena Handschuh, H Helena, and David Naccache.
Shacal (-submission to nessie-). 2000.

[18] Ari Juels and John G Brainard. Client puzzles: A cryp-
tographic countermeasure against connection depletion
attacks. In NDSS, volume 99, pages 151–165, 1999.

[19] Joshua A Kroll, Ian C Davey, and Edward W Felten.
The economics of bitcoin mining or, bitcoin in the pres-
ence of adversaries. WEIS, 2013.

[20] Ben Laurie and Richard Clayton. Proof-of-workâĂİ
proves not to work; version 0.2. In Workshop on Eco-
nomics and Information, Security, 2004.

[21] Tancrède Lepoint, Jean-Sébastien Coron, Mehdi Ti-
bouchi, et al. Scale-invariant fully-homomorphic en-
cryption over the integers. In 17th International Con-
ference on Practice and Theory in Public-Key Cryptog-
raphy (PKC’14), 2014.

http://www.coindesk.com/alydian-targets-big-ticket-miners-with-terahash-hosting/
http://www.coindesk.com/alydian-targets-big-ticket-miners-with-terahash-hosting/
http://www.coindesk.com/alydian-targets-big-ticket-miners-with-terahash-hosting/
http://bitcoinmagazine.com/3668/bitcoin-network-shaken-by-blockchain-fork/
http://bitcoinmagazine.com/3668/bitcoin-network-shaken-by-blockchain-fork/

[22] Ian Miers, Christina Garman, Matthew Green, and
Aviel D Rubin. Zerocoin: Anonymous distributed e-
cash from bitcoin. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 397–411. IEEE, 2013.

[23] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and
Jonathan Katz. Permacoin: Repurposing bitcoin work
for long-term data preservation. In IEEE Symposium
on Security and Privacy, 2014.

[24] Andrew Miller and Joseph J. LaViola, Jr. Anonymous
byzantine consensus from moderately-hard puzzles: A
model for bitcoin. UCF Tech Report. CS-TR-14-01.

[25] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008.

[26] Bryan Parno, Craig Gentry, Jon Howell, and Mariana
Raykova. Pinocchio: Nearly practical verifiable compu-
tation. In IEEE Symposium on Security and Privacy,
pages 238–252, 2013.

[27] Colin Percival and Simon Josefsson. The scrypt
password-based key derivation function. 2012.

[28] Meni Rosenfeld. Analysis of bitcoin pooled mining re-
ward systems. arXiv preprint arXiv:1112.4980, 2011.

[29] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J
Blumberg, Bryan Parno, and Michael Walfish. Resolv-
ing the conflict between generality and plausibility in
verified computation. In Proceedings of the 8th ACM
European Conference on Computer Systems, pages 71–
84. ACM, 2013.

[30] Douglas Stebila, Lakshmi Kuppusamy, Jothi Ran-
gasamy, Colin Boyd, and Juan Gonzalez Nieto.
Stronger difficulty notions for client puzzles and denial-
of-service-resistant protocols. In Topics in Cryptology–
CT-RSA 2011, pages 284–301. Springer, 2011.

APPENDIX
A. PRELIMINARIES

A Non-Interactive Zero-knowledge Proof system (NIZK)
is a collection of three algorithms NIZK = (Setup,Prove,Verify):

• crs ← Setup(1λ) : Takes in the security parameter λ,
and generates a common reference string crs.

• π ← Prove(crs, stmt, w) : Takes in crs, a statement
stmt, and a witness w such that (stmt, w) ∈ L, outputs
a proof π.

• b ← Verify(crs, stmt, π): Takes in the crs, a statement
stmt, and a proof π, and outputs 0 or 1, denoting re-
jection or acceptance. stmt, and a witness w,

Completeness. A NIZK system is said to be complete, if
an honest prover with a valid witness can always convince
an honest verifier. More formally, for any (stmt, w) ∈ R, we
have

Pr

 crs← Setup(1λ),
π ← Prove(crs, stmt, w) :
Verify(crs, stmt, π) = 1

 = 1− negl(λ)

Soundness. A NIZK system is said to be sound if it is
infeasible for any polynomial-time adversary A to prove a
false statement. More formally,

Pr

[
crs← Setup(1λ), (stmt, π)← A(crs):
(stmt /∈ L) ∧ (Verify(crs, stmt, π) = 1)

]
= negl(λ)

Zero-knowledge. Informally, a NIZK system is compu-
tationally zero-knowledge, if the proof does not reveal any
information about the witness to any polynomial-time ad-
versary. More formally, a NIZK system is said to compu-
tationally zero-knowledge, if there exists a simulator S =
(SimSetup,SimProve), such that for all non-uniform polynomial-
time adversary A, for any stmt, w such that (stmt, w) ∈ R,
it holds that

∣∣∣∣∣∣∣∣∣∣∣
Pr

 crs← Setup(1λ),
π ← Prove(crs, stmt, w) :
A(crs, stmt, π) = 1

−
Pr

 (c̃rs, τ)← SimSetup(1λ, stmt),
π̃ ← SimProve(crs, stmt, τ) :
A(c̃rs, stmt, π̃) = 1

∣∣∣∣∣∣∣∣∣∣∣
= negl(λ)

B. PROOF OF WEAK NONOUTSOURCE-
ABILITY

We now prove Theorem 3. For simplicity of presentation,
we prove it for the case when γ = 1/2. It is trivial to extend
the proof for general 0 < γ < 1. To summarize, we would
like to prove the following: for a protocol (S, C), if no ad-
versary A (running in time not significantly more than the
honest server) is able to steal the winning ticket with more
than 1

2
ζ(te) probability, then tC must be a significant frac-

tion of te, i.e., the client must be doing a significant fraction
of the effective work. This would deter outsourcing schemes
by making them less effective.

If the ticket output at the end of the protocol execution
contains a σh such that 1) the selected leaves corresponding
to σh were not decided by a random oracle call during the
execution; or 2) σh itself has not been supplied as an input
to the random oracle during the execution, then this ticket is
valid with probability at most 2−d. For (S, C) to be an out-
sourcing protocol with te effective billable work, the honest
protocol must perform a number of “good scratch attempts”
corresponding to te. Every good scratch attempt queries
the random oracle twice, one time to select the leaves, and
another time to hash the collected branches. We now define
the notion of a “good scratch attempt”.

Definition 6. During the protocol (S, C), if either the
client or server makes the two random oracle calls h :=
H(puz||r||digest) and H(puz||r||σh) for a set of collected branches
σh that is consistent with h and digest, this is referred to as
a good scratch attempt. Each good scratch attempt requires
calling the random oracle twice – referred to as scratch oracle
calls.

Without loss of generality, we assume that in the honest
protocol, if a good scratch attempt finds a winning ticket,
the client will accept the ticket. This makes our proof sim-
pler because all good scratch attempts contribute equally
to the client’s winning probability. If this is not the case,
the proof can be easily extended – basically, we just need

to make a weighted version of the same argument. For each
good scratch attempt, there are two types of random oracle
calls. Type 1 calls select the leaves. Type 2 calls hash the
collected branches. Assume in the extreme case that server
makes all the Type 1 calls (which accounts for 1/2 of all
work associated with good scratch attempts). Now consider
Type 2 work which constitutes the other half: for each good
scratch attempt, if the server knows < 1/3 fraction of leaves
of the corresponding tree before the Type 1 random oracle
call for selecting the leaves, then the client must have done at
least one unit of work earlier when creating the Merkle tree
digest. This is because if the server knows < 1/3 fraction
of the leaves before leaves are selected, then the probabil-
ity that the selected leaves all fall into the fraction known
by the server is negligible. Since this is a good scratch at-
tempt, for the selected leaves that the server does not know,
the client must then know the leaves and the corresponding
Merkle branches. This means that the client earlier called
the random oracle on those leaves to construct the Merkle
digest.

If we want the client’s total work to be within 1/2 of the
total effective work, then for at least 1/2 of good scratch
attempts: server must know at least 1/3 of leaf nodes before
the Type 1 oracle is called to select the leaves.

Suppose that d > 10 is reasonably large and that te ·2−d <
1/2. Basically, in this case, the probability that two or more
tickets are found within te good attempts are a constant
fraction smaller than the probability of one winning ticket
being found. If for at least 1/2 of the good scratch attempts,
the server knows at least 1/3 fraction of leaves before leaves
are selected, then an adversarial server A would be able
to steal the ticket with constant probability given that a
winning ticket is found. To see this, first observe that the
probability that a single winning ticket is found is a constant
fraction of ζ+(te). Conditioned on the fact that a single
winning ticket is found, the probability that this belongs to
an attempt that the server knows > 1/3 leaves before leaves
are selected is constant. Therefore, it suffices to observe the
following fact.

Fact 1. For a good scratch attempt, if a server knows
> 1/3 fraction of leaves before leaves are selected, then con-
ditioned on the fact that this good scratch attempt finds a
winning ticket, the server can steal the ticket except with
probability proportional to exp(−cq′) for an appropriate pos-
itive constant c.

Proof. By a simple Chernoff bound. The argument is
standard. In expectation, among the selected 4q′ leaves,
the server knows 1/3 fraction of them. Further, the server
only needs to know 1/4 fraction of them to steal the ticket.
The probability that the server knows less than q′ out of 4q′

leaves can be bounded using a standard Chernoff bound,
and this probability is upper bounded by exp(−q′/27).

C. NONTRANSFERABILITY PROOFS

C.1 Proof of Non-Transferability
For non-transferability, we need to show that for any poly-

nomial time adversary A, knowing polynomially many hon-
estly generated tickets to puz for payload m1,m2, . . . ,m`

does not help noticeably in computing a ticket for m∗ to
puz, where m∗ 6= mi for any i ∈ [`].

The adversary A may output two types of tickets for m∗:
1) m∗ uses the same Merkle digest as one of the mi’s; and 2)
m∗ uses a different Merkle digest not seen among the mi’s.

In the latter case, it is not hard to see that the adversary
A can only compress the computation at best as the best
incompressibility adversary. Therefore, it suffices to prove
that no polynomial time adversary can succeed with the first
case except with negligible probability. Below we prove that.

Notice that the honest Work algorithm generates a fresh
Merkle digest every time it is invoked. Therefore, with the
honest algorithm, each Merkle digest will only be used sign
a single payload except with negligible probability. Since
the number of leaves L ≥ q + 8q′, there are at least 8q′

leaves to choose from in the signing stage. q′ of those will
be revealed for signing a message m. The probability that
the revealed q′ leaves are a valid ticket for message m′ 6= m

is bounded by
(
8q′

3q′

)
/
(
8q′

4q′

)
∝ exp(−c2q′). If the adversary

has seen honestly generated tickets for ` different payloads,
by union bound, the probability that there exists a ticket,
such that its q′ revealed leaves constitute a valid signature
for a different message m∗ is bounded by ` · exp(−c2q′).

Proof of Theorem 6

Proof. We show that if an adversary A running in time
t can win the non-transferability game of the derived puzzle,
we can construct another adversary A′ running in slightly
more time than t that can win the non-transferability game
of the underlying puzzle.
A′ will call A as a blackbox. A′ first receives a challenge

for the underlying puzzle, in the form of puz′, m′1,m
′
2, . . . ,m

′
`,

and winning tickets ticket′1, . . . , ticket
′
`. Next, A′ picks crs

honestly, and picks pkE such that A′ knows the correspond-
ing skE . A′ now gives to A the puzzle puz := (puz′, crs, pkE).
For i ∈ [`], A′ computes the zero-knowledge version ticketi :=
(ci, πi). where ci is an encryption of ticket′i, and πi is the
NIZK as defined in Figure 3. A′ gives m′1, . . . ,m

′
` and

ticket1, . . . , ticket` to A as well. Since A wins the non-
transferability game, it can output a winning ticket (m∗, ticket∗)
for puzzle puz with at least ζ+((µ + δ)t) probability where
t · t is the runtime of A; further m∗ 6= m′i for any i ∈ [`].
A′ now parses ticket∗ := (c, π). A′ then uses skE to de-

crypt c and obtain ticket′ – if the NIZK is sound, then ticket′

must be a winning solution for the underlying puzzle puz′

and payload m∗ except with negligible probability – since
otherwise one can construct an adversary that breaks sound-
ness of the NIZK. Now, A′ outputs (m∗, ticket′) to win the
non-transferability game. A′ runs in t · t + (tenc + tnizk)`
time, but wins the non-transferability game with probabil-
ity at least ζ+((µ+ δ)t). This contradicts the fact that the
underlying puzzle is δ′-non-transferable.

D. OUTSOURCING PROTOCOLS
Bitcoin is Outsourceable. We now describe an outsourc-
ing protocol for the Bitcoin puzzle that resembles the scheme
currently used in practice by Bitcoin mining pools to coor-
dinate untrusted pool members. Let d′ < d be a parame-
ter called the “share difficulty”. Intuitively, the client (i.e.,
the pool operator) chooses a payload m (which, in practice,
would contain the client’s public key and new Bitcoin trans-
actions at the client’s discretion), and the server (i.e., the

pool member) performs 2d
′

scratch-off attempts. On aver-
age, the server finds at least one value r (called a “share”)

such that H(puz‖m‖r) < 2λ−d
′
; the server sends this value

to the client, who uses it to distinguish between an honest
or dishonest server (in practice, the server is only paid when
it submits a timely share).

Let µ = tRO/(tRO + tother) be the maximum potential

speedup an adversary can gain over Work. Let tg = 2d
′
−

O(1) be a lower bound on the expected number of random
oracle queries an adversary must take in order to produce
a share with statistically similar probability as the honest
server.

Theorem 6. The Bitcoin puzzle defined in Figure 1 is
not (tS , tC , te, α, ps)-weakly-nonoutsourceable, when tC = O(λ),

tS ≤ 2d
′
, te ≥ 2d

′
, and ps > ζ+(µ(te + α/t)− tg)/ζ(te).

Proof. Consider the (tS , tC , te)-outsourcing protocol (S, C)
as described above, and assume in particular that m

$←
{0, 1}λ is chosen randomly; with high probability, m 6= m∗.
Suppose for contradiction that an adversary A runs in time
tSt + α, that the view of the client is indistinguishable be-
tween executions (A, C) and (S, C), and that the server out-
puts a ticket for m∗ with probability psζ(te). This means
that the adversary, in expectation, must make more than
µ(te + α/t)− tg oracle calls of the form H(puz‖m∗‖...), and
tg oracle calls of the form H(puz‖m‖...). This requires more
than tSt + α total steps on average, which contradicts the
worst-case running time assumption of S.

	Introduction
	Our Results and Contributions
	Related Work

	Background on Bitcoin and Use of Puzzles
	Scratch-off Puzzles
	Bitcoin's Scratch-Off Puzzle
	Non-Transferability

	Outsourced Mining and Weakly Nonoutsourceable Puzzles
	Notation and Terminology
	Definitions

	A Weakly Nonoutsourceable Construction
	Construction

	Strongly Nonoutsourceable Puzzles
	Implementation and Microbenchmarks
	Our Weakly Nonoutsourceable Puzzle
	Our Strongly Nonoutsourceable Puzzle

	Discussion
	Conclusion
	Preliminaries
	Proof of Weak Nonoutsourceability
	Nontransferability Proofs
	Proof of Non-Transferability

	Outsourcing Protocols

