
On Stake and Consensus
Andrew Poelstra
March 18, 2015

1 Introduction

In 2009, Satoshi Nakamoto introduced the Bitcoin cryptocurrency[Nak09], an online currency sys-
tem which allowed peer-to-peer transfer of digital tokens. To ensure a consistent view of token
ownership, Nakamoto used a public ledger which can be replicated and validated by all network
participants. To avoid a single point of failure, this ledger is authenticated using a dynamic mem-

bership multiparty signature (DMMS)[BCD+14] consisting of an expensive (but cheaply verifiable)
computation done on the entire ledger history every “heartbeat”.

Unlike a traditional digital signature, there is no notion of “forgability” for a DMMS. Instead,
every DMMS is costly to produce (in Bitcoin, by requiring a large energy expenditure) and rewarded
by introduction of new coins on the ledger. Since these coins are only useful if others recognize
them, participants are incentivized to extend one “true ledger” rather than attempting to create their
own version of history1.

Because Bitcoin’s DMMS is computationally, and therefore thermodynamically[Poe14a], very
expensive, alternatives have been proposed which seek to be economically and environmentally
more efficient. One popular alternative, proof-of-stake, is frequently proposed as a mechanism for a
cheap distributed consensus. As argued by the author[Poe14b] in 2014, this is simply not workable,
but nonetheless the idea continues to arise in various forms. Meanwhile, the author’s argument
is commonly asserted on various forums to be “debunked” or “wrong”, despite the author having
never been made aware of any counterexamples or mistakes. (He has, of course, been contacted with
many, many articles and descriptions of proof-of-stake systems which claim to be this. They are
uniformly not.) This, combined with (correct) accusations that the paper is obtuse and unreadable,
demonstrate that its exposition leaves much to be desired.

Further, there has been significant progress in scientific understanding of Bitcoin’s consensus[MLJ14,
BMC+15] which was not available when the original paper was written.

This paper aims to be an updated version of the author’s original paper, which gives more
explication on the problem Bitcoin solves, why it makes the design decisions that it does, and why
proof-of-stake and similar mechanisms are fundamentally unable to produce a distributed consensus
within Bitcoin’s trust model.

2 Dynamic Membership Multiparty Signatures

Bitcoin’s ledger is publically available and the validity of its transactions can be checked by any
participant in the network. However, because the ledger is untimately a historical claim, and cryp-

1To ensure that the “true ledger” is visible to all participants, we require a synchronous network such that all (valid) data
reaches all participants in some characteristic time λ , and that the network heartbeat time is much larger than λ . Without a
synchronous network, it appears that distributed consensus is impossible (c.f. [FLP85]).

1

tography cannot distinguish a true history from a false one, there must be some party to authenticate
the ledger, and this party must be trusted not to sign false histories.

The earliest digital cash systems used a single non-anonymous party to sign all transactions[Cha83].
However, this introduced a single point-of-failure for the system as well as giving the signing party
(and everyone with legal or physical power to coerce it) the ability to censor transactions or en-
able double-spending. Censorship can be prevented by use of blind signatures (also described in
[Cha83]), but the single-point-of-failure and double-spending problems cannot be. They may be
alleviated by using multiple signing parties, but the requirement that these parties be difficult to
simultaneously coerce (e.g. by putting them in different legal jurisdictions) conflicts with the re-
quirement that these parties be trusted by all participants. Their non-anonymity also means that a
dedicated attacker will eventually always be able to attack the system.

Bitcoin’s solution is to do away with the idea of a fixed, identifiable signer entirely. Instead
Bitcoin’s ledger is authenticated by a collection of signers called miners who do not identify them-
selves to other participants and may costlessly enter or leave the system. They produce signatures
by a process called mining wherein they collectively produce proofs of work[Bac02] on successive
blocks of transactions.

In this section we explain how mining works and how it provides authentication.

2.1 Authentication in an Anonymous World

A cryptographic digital signature scheme works as follows. A signing party produces a keypair
(s,v) of “signing” and “verification” keys, and publishes v in some public channel alongside her
name. Then given a message m, she can produce a signature σ such that anyone can check that σ

is valid. That is, there is a verification algorithm which takes v, m and σ and will always output 1 if
the signature was created honestly.

To be secure, traditional digital signatures must be unforgeable by any computationally-bounded
adversary except with negligible probability, where forging specifically means winning at the fol-
lowing game:

1. The signer gives the verification key v to the adversary.

2. The adversary sends messages mi and to the challenger and receives valid signatures σi on
these messages. He may do this as many times as he likes.

3. The adversary produces a message m, which was not queried on earlier, along with a valid
signature σ on m.

This notion of security is known as existential unforgeability under chosen-message attack and is
standard in the cryptographic literature.

(For a multiparty signature, there are multiple verification keys corresponding to multiple sign-
ers, and signatures are only valid if they are produced by an “admissible subset” of them. To define
security, the above game is modified so that the adversary may also request (and receive) secret
keys, as long as no subset of the secret keys that he requests forms an admissible subset.)

2

We see the verification algorithm uses the verification key v to check signatures, and in this
way checks the “identity” of the signer that produced it. Since anyone can produce a keypair, for
such signatures to be valuable there must be some public record tying verification keys to real-
life identities. Then given dishonest behaviour, i.e. signatures on invalid histories, blame can be
assigned.

It seems then that this notion of authentication cannot be adapted for use in a system where the
signing parties are anonymous and ephemeral. In fact, it’s not clear what “authentication” can even
mean in such a system! After all, if anyone can anonymously produce a signature, there is nothing
distinguishing dishonest signatures from honest ones, false histories from the true one. Formally,
the above security definition no longer makes sense since the adversary is free to join the set of
signers and produce a “forgery” that way2.

To get around this problem, Bitcoin uses an alternate security model in which all parties are on
equal footing, but they are incentivized to agree. We describe this in the next section.

2.2 Defining Security for a DMMS

For a DMMS, all parties are on equal footing; we cannot have a security property with an “adver-
sary” having incomplete knowledge. We therefore define a DMMS in three components, none of
which resemble the key generation algorithm of a traditional signature:

• A cost function c which takes a trace of an algorithm’s execution and outputs a “cost” t ∈T ,
where T is some “cost domain”. It must be linear in the sense that the cost of running two
algorithms in series is the sum of their individual costs.

• A randomized algorithm AttemptSignwhich takes a message m and outputs a signature σ .
The cost of this algorithm should be 1 for every message m.

• A deterministic algorithm Verifywhich takes a message m, signature σ , and target cost T , and
outputs either 0 or 1.

We say the DMMS is correct if Verify(m,T,AttemptSign(m)) = 1 with probability 1/T for all
T ∈ T , where the probability is taken over the coins of AttemptSign. We say it is secure if no
polynomial-time algorithm A can acheive

Verify(m,T,A (m)) = 1

with probability greater than 1− (1−1/T)t , where t is the cost of A ’s execution.
In other words, a secure DMMS is one for which there is no better (in the sense of producing

signatures which verify) signing algorithm than to simply execute AttemptSign repeatedly.
We briefly justify our security definition. In order to achieve a dynamic membership set, we

cannot have expensive entrance costs, nor can we allow existing signers to exclude new entrants

2As we will see in Section 3, given a cryptocurrency, it is actually possible for anonymous parties to bond value, giving a
mechanism to punish dishonest behaviour without identifying anyone. This is essentially what proof-of-stake is. However, a
cryptocurrency needs a consensus to work, so the phrase given a cryptocurrency prevents us from using proof-of-stake here,
on pain of circular reasoning. We will come back to this.

3

either explicitly or through economic consideration. This implies that signing should be “separable”
in the sense of neither requiring nor rewarding any communication between the signers, which
in turn means that running a signing algorithm for twice as long should be exactly as likely to
succeed as running signing algorithms in parallel across twice as much hardware. In the limit, this
means that the optimal signing algorithm should consist of executing a single basic step many times
independently, which is the given definition.

2.3 Mining as a DMMS

Bitcoin mining works using a hash-based proof-of-work called hashcash[Bac02]. It is a DMMS in
the random oracle model[BR93]. The random oracle model is a computational model in which a
hash function is modelled as a “random oracle” or truly random function3 whose output is uniformly
random and cannot be computed except by evaluating the function itself.

The use of the random oracle model is quite controversial[Gre11] but there is strong empirical
evidence justifying its use in security arguments. From here on H will denote a hash function taking
arbitrarily many bits to 256 bits, modelled as a random oracle.

Here is Bitcoin’s DMMS:

• The cost function gives the number of random oracle calls in the execution.

• AttemptSigntakes a message m, and outputs a random σ ∈ {0,1}256.

• Verifytakes a signature σ , message m, and target T . It outputs 1 if and oly if H(m‖σ) <

2256/T .

It easy to see that in the random oracle model, there is no better way to produce valid signatures
than to simply query the random oracle repeatedly.

2.4 No Universal Time

Notice that in the previous section we used the number of hash-function calls as our cost function,
which is roughly proportional to the number of computations, which in turn is roughly propor-
tional to the amount of heat dissipated, which finally is roughly proportional to the economic and
environmental cost of producing these signatures.

An obvious question is whether we can use a cost function which is “cheaper” to satisfy; in
particular, why can’t we directly use clock time? For that matter, why are we creating chains
of DMMS-signed blocks instead of just directly ordering transactions in time, always resolving
conflicts in favor of the first?

The answer is that there is no well-defined clock time in a distributed system. Network la-
tency gives a finite speed of information propagation, which we know from special relativity means
different observers cannot agree on the time-ordering of events that occur closely in time.

If this were the only problem, requiring transactions to be spaced out by several seconds would
be sufficient (if conflicting transactions occur too close together, both are thrown out; but by waiting

3This model is thoroughly unrealistic, since a truly random function from, say, 512 bits to 256 bits, would require almost
2512 ·256 bits on average to represent. This is more bits than can be represented in the known universe.

4

a few seconds after each transaction all parties can be assured that this won’t happen). However,
the situation is worse than this for two reasons:

• “Network latency” is not something that can be bounded in an adversarial setting. An attacker
may be able to slow systems by arbitrary amounts using denial-of-service measures, and may
be able to physically partition the network by other means.

In relativistic terms, this means that there is no amount of waiting that will assure somebody
that they are no longer spacelike separated from other participants in the network.

• Users who are new to the network or have been offline recently need access to historical data.
But there is no way to verify after-the-fact what order transactions occured in, so they cannot
be assured that the transactions they are receiving actually occured before any conflicting
ones.

2.5 Consensus From DMMS

Now that we have this notion of DMMS, and have shown that Bitcoin’s hashcash is a secure one,
let’s consider obtaining a distributed consensus from a DMMS.

Our claim is that given a DMMS, it is possible to create a distributed consensus.
We first need our cost function to measure, i.e. be a monotonic function of, (a) some scarce

resource which cannot be allocated to producing a signature on more than one message at once,
and (b) the amount of time required to produce the signature on average. (It may be required for
decentralization that this resource be permanently consumed, as in Bitcoin, so that marginal costs
of mining dominate capital costs. This is argued by the author in [Poe14a], and disputed by John
Tromp in [Tro14].)

In Bitcoin’s case, our cost function is defined as “number of hash function calls”. We claim that
this is actually a measure of energy consumed in computing the signature, a claim justified by the
Landauer limit[Lan61]. This is a physical minimum on the number of joules of heat which must be
dissipated by any irreversible bit operation. By calculating the number of irreversible bit operations
involved in a sha256d computation, we can, at least in principle, put a lower bound on the amount
of energy that must be expended in creating a Bitcoin DMMS.

It is also therefore a measure of the amount of time taken to produce a signature, since only
so much energy can be expended per unit time without producing a black hole (which would not
allow a signature, or indeed any information, to be extracted in usable form). Of course, in real life
Bitcoin miners operate nowhere near the black hole limit, and this time is determined by the speed
of mining hardware. As this hardware improves, and more of it comes online simultaneously, the
time required to produce a DMMS decreases. In Bitcoin, the target cost adjusts in response to this
to keep the time per signature around 10 minutes4.

4The reader may be wondering how this adjustment can be done accurately, given that in Section 2.4 it was argued that
there is no universal time. In fact, timestamps are inserted into blocks by miners, and it is true that there is no way to enforce
that they do so honestly. Bitcoin is resiliant to small target skew caused by dishonest timestamps, and the target is prevented
from changing too quickly, so that large target skews are expensive to create and likely to be stymied by non-cooperating
miners. For more discussion see [Poe14c, Section 6.3].

5

So, with a secure DMMS whose cost function measures a scarce resource, how do we get
consensus history? First, we assume a network that is syncronous, so that all valid date is available
to (a supermajority of) participants within some time λ . We split our transaction history into a series
of blocks, which each contain a set of transactions along with a cryptographic commitment5 to the
previous block in the series. Each block, to be valid, must have a DMMS on it, whose target is set
so that blocks require significantly more time than λ to be created. (This way all miners working on
the consensus history know which block is the most recent, and its original creator does not gain a
large advantage by knowing it earlier than anyone else.) To be clear: the target cost for each DMMS
is defined by the rules of the system, and is not at the miners’ discretion.

Network participants operate as follows: they consider all series of valid blocks beginning with
some genesis block hardcoded in the system. (Since each block commits to the previous block, the
result is a directed acyclic graph rooted at the genesis block, so these series can be consider as paths
in this graph.) They weight each series by summing the target cost of the DMMS’s on each block.
Whichever series has the highest weight they consider as the “true” history.

Miners create blocks by collecting transactions according to their whim, along with a special
“reward transaction” which assigns fees from the other transactions plus some network-defined
subsidy to the miner himself, adding a commitment to the most recent block of the true history (in
their view), and computing a DMMS on this. If another miner creates and publishes a block, they
update their “most recent block of the true history” accordingly and change the commitment in their
block if necessary. Once they compute a DMMS, they publish the finished block to the network.

We claim that this forms a consensus history in the sense that the network will gradually come to
agreement on which blocks belong to the true history and which don’t, with disagreement occuring
only near the tip. This is argued concretely by Miller and LaViola Jr. in [MLJ14] (using the
observation that our measurably-costly DMMS’s are “moderately-hard puzzles” as described in
that paper) but an informal argument is as follows.

Because the network is synchronous with characteristic time much smaller than the block rate,
all participants are quickly aware of the highest-weighted history.

We further claim that a majority of the network is working on producing a DMMS which extends
the true history. An elegant reason that this is true is given by Vitalik Buterin in [But15]: since the
reward transaction is only recognized if its block occurs in the true history, a Nash equilibrium for
each miner is to go along with the majority6.

For the true history to then change, an attacker must produce an alternate higher-weighted his-
tory, which forks from the true one some number N of blocks away from the tip. He has fewer
resources than network component which is working on extending the true history, since this is the
majority. Then the probability of him gaining on the network is less than 1 (since in any given time
period the network makes more attempts to extend the true history than he can to extend his false

5A commitment is a cryptographic object which is computed from some secret data, but does not reveal it, such that the
data cannot be changed after the fact. An example of a commitment is a collision-resistant hash function: given data x, one
can publish H(x) where H is a hash function, and only later reveal x. Verifiers can then confirm that the revealed value is the
same as the original value by computing H(x) themselves.

6In that same blog post, Buterin says “if you are tired of opponents of proof of stake pointing you to this article[Poe14b]
by Andrew Poelstra, feel free to link them here in response”. It is not clear what he means by this; he did not, there or
anywhere, refute that paper’s claim that you cannot produce consensus except by consuming an external resource.

6

one), and he must do this more than N times before his history is longer than the true one. If his
probability of gaining once was P < 1, his probability of winning is PN , which is negligible in N.

(This is a poor argument since only considers an attacker who constantly gains on the network,
and it doesn’t consider that because of difficulty changes even a very weak attacker can recreate old
blocks faster than the network can create new ones. The author claims without proof that these are
not serious problems, only tedious ones.)

2.6 Consensus Without DMMS

Is it necessary to use a DMMS to produce a distributed consensus? This is an open question. The
author’s guess is “no”. In particular, simple changes to Bitcoin’s protocol, such as rewarding miners
with “coupons” to mine far-future blocks with lower difficulty[BCD+14, Section 6.1] seem unlikely
to harm consensus while definitely not satisfying the given definition of DMMS.

3 Proof of Stake

With Bitcoin’s consensus system behind us, we now consider the most popular alternate proposal,
proof-of-stake. Proof of stake is described in [Poe14b] as

With the advent of modern cryptography, the idea that information can be physically
real — and valuable — has moved from the dingy halls of philosophy departments to
the concrete world of business. We are all familiar with the economic activity enabled
by secure communication: negotiations, contracts, transactions, sales and commands
can be sent on the public Internet with no fear of forgery or interception. We are also
familiar with the financial consequences when secret data is lost or stolen.

Since the advent of cryptographic currency in January 2009 [Nak09] this notion of
valuable information has been made concrete. It is possible to hold and exchange a
fungible store of value, using public communication media, with cryptographic rather
than physical security preventing fraud or theft. Rather than saying “this encryption key
is worth $10,000 because that’s what it will cost us if its encrypted data is exposed”
one can say “this key is worth $10,000 but can be broken up, sending only $20 of it to
another party while keeping the rest”.

With this context, proof-of-stake is a simple idea. A proof of stake is a cryptographic
proof of ownership. With cryptocurrencies, it is possible for a proof-of-stake to not
only prove ownership of a precise amount of currency, but also prove that this cur-
rency satisfies some property (say, it is locked and unspendable until some contract is
satisfied).

In particular, proven stake in a scarce and experimental cryptocurrency can be con-
sidered a proof of vested interest in the project’s success. By proving stake which is
time-locked, it can be used to prove interest in the project’s continued (and sustainable)
existence.

7

That is, proof-of-stake is the idea that we can use cryptographic proof, rather than physical
arguments such as the Landauer limit, to demonstrate that some computation is costly.

3.1 Proof-of-Stake versus DMMS

The idea behind using “pure proof-of-stake” to obtain consensus on a cryptocurrency history is that
it is possible to produce a DMMS-like7 signature whose cost function measures the currency itself.
This is in principle easy, and we again quote [Poe14b]: with a sufficiently expressive ledger,

currency holders are able to lock their currency for some amount of time, renting
“stake” which is cryptographically verifiable. Then to extend the consensus history,
rather than attaching a proof of work, each stakeholder digitally signs the extension.
For reasons of practicality, typically a small random selection of stakeholders is cho-
sen for each extension, and only a majority of the selection are required to give the
extension validity. The chosen stakeholders are given a reward and after some time
they are able to unlock their stake if they so desire.

The idea is that rather than depending on the economic inviability of taking control
of a history, stakeholders are incentivized to agree on each extension because (a) they
are randomly chosen and therefore unlikely to be in collusion, and (b) even if they can
collude, they do not want to undermine the system (e.g. by signing many conflicting
histories) because they want to recover their stored value when their stake comes un-
locked, and (c) they have limited capacity to cause havoc anyway, since for the above
reasons the next random selection of stakeholders will probably choose only a single
reasonable history to extend.

This exposition slightly overcomplicates things: real proof-of-stake systems use single signers
rather than this majority system.

The problem with this is that to well-define a cost function which measures bonded stake in
some currency, we need a consensus history for that currency to already exist. If this is defined
along the lines of “there exists some history in which these coins are bonded” then while the result-
ing DMMS may be well-defined, its cost function no longer measures something scarce, and the
argument in Section 2.5 falls apart.

This scarcity may be recoverable by punishing stakeholders who sign multiple histories. For
example, if they use Schnorr or ECDSA signatures and are constrained to a specific choice of nonce,
they must sign two messages with the same (key, nonce) pair in order to sign multiple histories, and
this allows anyone to algebraically solve for their private key. However, this does not prevent them
from “grinding” through many potential blocks, only publishing one which causes them to be the
signer for the next block8, and taking control of the blockchain by doing this repeatedly. This is an

7Proof of stake schemes do not generally attempt to be progress-free, so they cannot be correct or secure DMMS’s for
this reason alone. However, the high-level principle of “making history costly to create and rewarding participants in the
true one” remains the same, so we continue to speak in terms of costs.

8Notice that any randomness must be determined by the blockchain, since this is the only object on which there is
consensus. So miners are able to skew any random numbers used by the system in this way. Using multiple blocks or
long-past blocks does not solve the problem; ultimately, for every random number there is some party who can manipulate
it.

8

example of a “stake-grinding” attack, which is a special case of a more general problem described
in the next section.

In general, the use of one-time signature schemes can prevents the publication of conflicting
histories (though only if the attacker values the lost coins more than he values causing mayhem),
but they cannot prevent the private creation of conflicting histories.

3.2 Costless Simulation

Ultimately the problem is that the coins bonded against a stake signature only exist within the
blockchain to which those coins belong. This means that if the blockchain can be cheaply created
by some party, such a party can create multiple blockchains and select one which favors him.

If cheap histories are available to everyone, clearly the system is broken. The point of bonding
stake is that “cheap” histories are only available to those willing to those who are holding the
currency, and presumably these people value the system too much to attack it. However, because
there is no universal time (and to new users, no universal history), there is no way to differentiate
users who are “now” holding the currency from users who “were” holding the currency. To the
system, for each point in history there is a set of signing keys which allow transfer of coins, bonding
and unbonding of stake, and blocks to be signed. Presumably there was some point in real time when
the block was created, and at that point these keys corresponded to ownership. However, as real
time ticks on, the block remains static, and with it any signing keys associated to it.

To restate: In real time, the blockchain gets longer, stake is unbonded, coins are exchanged for
other goods and services, and the keys whose misuse would mean loss of value become meaningless.
But to a block in an immutable blockchain, keys will never change their meaning.

Since in a proof-of-stake system some of these signing keys determine the future, this is a
problem. Anyone with access to these keys (this may be the original user, who has since sold her
coins, or it may be somebody she sold or otherwise lost the keys to; users are not good at long-term
storage of secret keys, especially ones they believe they no longer have use for!) has the ability to
fork the network, or to create alternate histories which new users cannot distinguish from true ones.

The point is this: even if stakeholders are bonding coins with a large market value, in a way that
they will lose the coins if they behave dishonestly, this is only a deterrent to dishonest behaviour
until they move their coins, which, being an event in the future (both in realtime and blocktime),
is necessarily not something that can be detected at the the current point in blocktime. So cheap
histories, or “costless simulation”, are not something that can be prevented while only bonding
value defined inside the system.

3.3 “Long-Range” versus “Short-Range” Attacks

It is possible, by requiring stake to be bonded for many consecutive blocks, and by choosing signers
using randomness extracted by long-past (in blocktime) blocks, to force the attacks described above
to rewrite long stretches of history. This is often described as “preventing short-range attacks”.

It is clear that this does not address the costless simulation issue; after all, if it’s easy to change
history, it’s easy to change long stretches of history. However, proponents argue that since for

9

an honestly-created history, long stretches of blocktime correspond to long stretches of real time,
any revision of so much history is sure to contradict the history as remembered by participants in
the system. Thus such an attack would be detected, recognized as an attack, and the new history
rejected.

If this is implemented correctly, there is no problem with this, except that it changes the trust

model from that of Bitcoin. New users who encounter multiple histories are no longer able to
distinguish them on their own; they need to ask existing participants in the network (which may
include friends and family, large corporate entities with reputations to maintain, public websites,
etc.) which history they know to be the true one. This is not a distributed consensus! It is a different
sort of consensus, which may be formed amongst always-online peers in a decentralized way, but
depends on trust for new users and temporarily offline ones. It is correspondingly vulnurable to
legal pressure, attacks on “trusted” entities, and network attacks.

3.4 Other Considerations

Again, I quote [Poe14b]:

Further, this ability to control the future selection of stakeholders (and even the set of
stakeholders, by controlling which transactions appear in blocks) has serious conse-
quences. This is because even without a deliberate attacker, the signers who extend the
history at every point have an incentive to direct the history toward one in which they
have more stake (and therefore more reward), which causes the system to trend toward
centralization. They may do this by skewing the stake selection of future blocks, or
more insidiously by censoring transactions which (may eventually) increase the set of
stakeholders.

4 Conclusions and Further Research

We have described a mechanism, DMMS, for obtaining a distributed consensus. While DMMS,
in conjunction with some economic requirements, is sufficient to form consensus, it is probably
not necessary. Open problems include reducing these economic assumptions (or showing they
cannot be removed), and determining necessary conditions under which distributed consensus can
be obtained.

We also explored an alternative to DMMS, proof of stake. We showed that by depending only
on resources within the system, proof of stake cannot be used to form a distributed consensus, since
it depends on the very history it is trying to form to enforce loss of value.

References

[Bac02] A. Back, Hashcash — a denial of service counter-measure, 2002, http://hashcash.
org/papers/hashcash.pdf.

10

http://hashcash.org/papers/hashcash.pdf
http://hashcash.org/papers/hashcash.pdf

[BCD+14] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poel-
stra, J. Timón, and P. Wuille, Enabling blockchain innovations with pegged sidechains,
2014, https://www.blockstream.com/sidechains.pdf.

[BMC+15] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten, Research

perspectives and challenges for bitcoin and cryptocurrencies, To appear, IEEE Security
and Privacy 2015, 2015.

[BR93] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for design-

ing efficient protocols, ACM Conference on Computer and Communications Security,
1993, pp. 62–73.

[But15] V. Buterin, The P + epsilon attack, 2015, https://blog.ethereum.org/2015/01/
28/p-epsilon-attack/.

[Cha83] D. Chaum, Blind signatures for untraceable payments, Advances in Cryptology Pro-
ceedings of Crypto 82 (1983), no. 3, 199–203.

[FLP85] M.A. Fischer, N.A. Lynch, and M.S. Paterson, Impossibility of distributed consensus

with one faulty process, J. Ass. for Comp. Mach. 32 (1985), no. 2, 374–382.

[Gre11] M. Green, What is the random oracle model and why should you

care? (part 1), 2011, blog.cryptographyengineering.com/2011/09/

what-is-random-oracle-model-and-why.html.

[Lan61] R. Landauer, Irreversibility and heat generation in the computing process, IBM Jour-
nal of Research and Development 5 (1961), no. 3, 183–191, doi:10.1147/rd.53.0183.
http://worrydream.com/refs/Landauer%20-%20Irreversibility%20and%

20Heat%20Generation%20in%20the%20Computing%20Process.pdf.

[MLJ14] A. Miller and J. J. LaViola Jr, Anonymous Byzantine consensus from moderately-hard

puzzles: A model for Bitcoin, Tech. Report CS-TR-14-01, UCF, April 2014, https:
//socrates1024.s3.amazonaws.com/consensus.pdf.

[Nak09] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2009, https://www.
bitcoin.org/bitcoin.pdf.

[Poe14a] A. Poelstra, ASICs and decentralization FAQ, 2014, https://download.

wpsoftware.net/bitcoin/asic-faq.pdf.

[Poe14b] , Distributed consensus from proof of stake is impossible, 2014, https://
download.wpsoftware.net/bitcoin/pos.pdf.

[Poe14c] , A treatise on altcoins, 2014, Unfinished, https://download.wpsoftware.
net/bitcoin/alts.pdf.

[Tro14] J. Tromp, Cuckoo cycle: a memory-hard proof-of-work system, https://github.
com/tromp/cuckoo, 2014.

11

https://www.blockstream.com/sidechains.pdf
https://blog.ethereum.org/2015/01/28/p-epsilon-attack/
https://blog.ethereum.org/2015/01/28/p-epsilon-attack/
blog.cryptographyengineering.com/2011/09/what-is-random-oracle-model-and-why.html
blog.cryptographyengineering.com/2011/09/what-is-random-oracle-model-and-why.html
http://worrydream.com/refs/Landauer%20-%20Irreversibility%20and%20Heat%20Generation%20in%20the%20Computing%20Process.pdf
http://worrydream.com/refs/Landauer%20-%20Irreversibility%20and%20Heat%20Generation%20in%20the%20Computing%20Process.pdf
https://socrates1024.s3.amazonaws.com/consensus.pdf
https://socrates1024.s3.amazonaws.com/consensus.pdf
https://www.bitcoin.org/bitcoin.pdf
https://www.bitcoin.org/bitcoin.pdf
https://download.wpsoftware.net/bitcoin/asic-faq.pdf
https://download.wpsoftware.net/bitcoin/asic-faq.pdf
https://download.wpsoftware.net/bitcoin/pos.pdf
https://download.wpsoftware.net/bitcoin/pos.pdf
https://download.wpsoftware.net/bitcoin/alts.pdf
https://download.wpsoftware.net/bitcoin/alts.pdf
https://github.com/tromp/cuckoo
https://github.com/tromp/cuckoo

	Introduction
	Dynamic Membership Multiparty Signatures
	Authentication in an Anonymous World
	Defining Security for a DMMS
	Mining as a DMMS
	No Universal Time
	Consensus From DMMS
	Consensus Without DMMS

	Proof of Stake
	Proof-of-Stake versus DMMS
	Costless Simulation
	``Long-Range'' versus ``Short-Range'' Attacks
	Other Considerations

	Conclusions and Further Research

