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Abstract

This is badly incomplete and some proofs are wrong. If you have encountered this
paper floating around the Internet, please disregard it. Sorry to be a tease. Full version
forthcoming.

At about 04:30 UTC on the morning of August 2nd, 2016, an anonymous person using the
name Tom Elvis Jedusor signed onto a Bitcoin research IRC channel, dropped a document hosted
on a Tor hidden service TODO CITE, then signed out. The document, titled Mimblewimble, de-
scribed a blockchain with a radically different approach to transaction construction from Bitcoin,
supporting noninteractive merging and cut-through of transactions, confidential transactions, and
full verification of the current chainstate without requiring new users to verify the full history of
any coins.

Unfortunately, while the paper was detailed enough to comminicate its main idea, it con-
tained no arguments for security, and even one mistake CITE CITE. The purpose of this paper is

to make precise the original idea, and add further scaling improvements developed by the author.

1 Preliminaries

1.1 Cryptographic Primitives

Groups. Throughout, ¢, ¢ will denote elliptic curve groups adorned with an efficiently com-
putable bilinear pairing e : 4 x %, — 97, with &r equal to the multiplicative group of F  for some
prime ¢, small positive integer k. We further require both ¢, and G, to have prime order r. and be
generated by fixed elements G| and G, r whose discrete logarithms relative to each other are un-
known (i.e. they are nothing-up-my-sleeve (NUMS) points. We will make computational hardness
assumptions about these groups as needed. We write ¢ = |G|, Z; for the integers modulo ¢, and
write + for the group operation in all groups.

All cryptographic schemes will have an implicit GenParams(l’l) phase which generates ¢, ¢p

and chooses G, H uniformly randomly given a security parameter A.

1.1.1 Standard Primitives

Definition 1. A commitment scheme is a pair of algorithms Commit(v,r) — ¢, Open(v,r,C) —
{true, false} such that Open(v,r,Commit(v,r)) accepts for all (v,r) in the domain of Commit. It

must satisfy the following security properties.



e Binding. The scheme is binding if for all (v,r) in the domain of Commit, there is no (V',r') #
(v,r) such that Open(v', ¥ ,Commit(v,r)) accepts. It is computationally binding if no PPT

algorithm can produce such a (V',r') with nonneglible probability.

e Hiding. The scheme is (perfectly, computationally) hiding if the distribution of Commit(v, r)

for uniformly random r is (equal, computationally indistinguishable) for different values of v.

Definition 2. We define a homomorphic commitment scheme as one for which there is a group
operations on commitments and Commit is homomorphic in its value parameter. That is, one where
commitments to v, V' can be added to obtain a commitment to v+V' having the same security

properties.

Example 1. Define a Pedersen commitment as the following scheme: Commit : Zé — < maps (v, r)
to vH + rG, and Open : Zé x & — {true, false} checks that (v,r) equals vH + rG.
If the discrete logarithm problem in ¢ is hard, then this is a computationally binding, perfectly

hiding homomorphic commitment scheme. TODO cite pedersen

Definition 3. Given a homomorphic encryption C, we define a rangeproof on C as a cryptographic
proof that the committed value of C lies in some given range |a,b). We further require that range-
proofs are zero-knowledge proofs of knowledge (zkPoK) (TODO cite) of the opening information of

the commitments.

Unless otherwise stated, rangeproofs will commit to the range [0,2"] where n is small enough
that no practical amount of commitments can be summed to produce an overflow.
TODO cite greg’s rangeproofs for pedersen commitments
1.1.2 Sinking Signatures
This brings us to the first new primitive needed for Mimblewimble.
Definition 4. We define a sinking signature as the following collection of algorithms:
o Setup(1*) outputs a keypair (sk,pk);

o Sign(sk,h) takes a secret key sk and nonnegative integer “height” h which is polynomial in

A, and outputs a signature s.
o Verify(pk, h,s) takes a public key pk and signature s and outputs from {true, false}.
satisfying the following security and correctness properties:

e Correctness. For all polynomial h, (sk,pk) < Setup(1%), s < Sign(sk,h), we have that
Verify(pk, h,s) accepts.

o Security. Let (-,pk) < Setup(1%). Then given pk and an oracle H which given h returns
Sign(sk, k), no PPT algorithm < can produce a pair (s,h') with W' > h for all h given to the
oracle, and Verify(pk, 1’ ,s) accepts. (Except with negligible probability.)



The name “sinking signature” is motivated by the fact that given a signature (p,h), it may
be possible for a forger to create a signature (p’,h’) with the same public key and 4’ < h, thus
“decreasing the height” of the signature. We will use this feature later to aid scalability for a

Mimblewimble chain.

Definition 5. We say a sinking signature is aggregatable or summable if given a a linear combina-
tion pk of pk; values computed from Setup(1*), the same linear combination of s; + Sign(sk;, h)
(for fixed h) it is possible to compute a signature s such that Verify(pk, h, s) accepts.

For a summable sinking signature, we generalize the above security game to allow the adversary
& to play polynomially many times in parallel and win with an arbitrary linear combination of its

received public keys. (It must also provide the coefficients of the linear combination.)

We propose the following summable sinking signature (Poelstra, Kulkarni). Let .7 be a random

oracle hash with values in ¢.
° Setup(l'l) chooses a uniformly random sk < 7Z,, and sets pk = sk - G.

e Sign(sk,x) first computes the sequence {xo,...,x,} where xo = x and x;; is obtained by
subtracting from x; the largest power of 2 that divides it (i.e., by clearing its least significant 1
bit). We observe that x, = 0 and that » is one plus the number of one bits in x and is therefore
O(log, x).

Next, it sets s = {sk- H (x; }7_,.

o Verify(pk,x, p) computes P as the sum of all elements of p, H =Y? , H(x;), and checks that
e(G,P) =e(pk,H).

Observe that the verification step uses only the sum P of the elements of the proof. However, the
extra data will be useful later, so we state it here so we can prove the scheme is secure with it.
Correctness and summability of the scheme are immediate.

Theorem 1. This is a secure summable sinking signature, in the following sense: if an adversary
o exists which wins the game described in Definition 5, a simulator 9 exists which can solve the

computational Diffie-Hellman (CDH) problem in 9, given oracle access to < .

Proof. % answers random oracle queries to H and works in the following way. (Recall that the
game in Definition 5 is the game from Definition 4 played in parallel.)

We suppose without loss that before making signature queries on any height x, the adversary first
all random oracle queries needed to verify such a signature; similarly before producing a forgery on
height x* it makes the required queries. We then suppose that in total it requests at most g,, public
keys and makes at most g;, random oracle queries.

1. A receives a CDH challenge (P, Q) from its challenger.

2. o/ responds to the ith public key request by generating a uniformly random keypair (x;,P;)
and replies with P, + P.



. o/ responds to the jth random oracle query by generating a uniformly random keypair (y;, H;)

except that Hj» = Q for j* & {1,...,q1}, and replying with H;.
. .« responds to the kth signature query on height #¥ and pubkey P* as follows: it computes
the sequence {/X} and checks if any of the H (hX) values is Q; if so, it aborts.

Otherwise, for each i{0,...,n} it knows a z; such that H(h¥) = z;G and produces s = {z;P};.

. Finally, % wins by producing a forgery consisting of coefficients {c;}?" | with not all ¢; zero,

apubkey P*=Y"" ¢;(P;+P), aheight h* greater than any #* thus queried on, and a signature
s* = {8;} such that " e(G,S;) = Y-y e(P*, H(h})).

. If some H (hlt) = Q, then for the above sum to hold, writing x* for P* = x*G, we must have
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where R is the solution to %’s CDH challenge, and every other term is computable by 2.

TODO show we don’t abort (except with probability bounded away from 1), this win condition

occurs with nonneglible probability, also let the challenger add its own pubkeys (as long as it de-

clares them) (in MW it hasta declare them because any “excess” it adds is the sum of a subset of

outputs) O

1.2 Mimblewimble Primitives

Definition 6. A Mimblewimble transaction is the following data:

o A list of homomorphic commitments termed the inputs, with attached rangeproofs. Alter-
nately, inputs may be given as explicit amounts, in which case they are treated as homomor-

phic commitments to the given amount with zero blinding factor.

o A list of homomorphic commitments termed the outputs, with attached rangeproofs.

e A blockheight x.

e An excess commitment to zero, with a summable sinking signature on blockheight x with this

as pubkey.

We make the further restriction on transactions that every input within a transaction be unique.



Definition 7. We define the sum of a transaction to be its outputs minus its inputs, plus its excess.

If the sum is zero', we say the transaction is valid.

Definition 8. We define the canonical form of a transaction T as the transaction equal to T except
if any input is equal to an output, both are removed.
Notice that the canonical form of any transaction has equal sum to the original transaction; in

particular a transaction is valid if and only if its canonical form is valid.

We observe that all valid transactions are noninflationary; the total output value must be equal

to the total input value.

Definition 9. Given a finite set of transactions {T;} with pairwise disjoint input sets, we define the

cut-through of {T;} as the canonical form of the union of all T;’s.

Next, we define some terms that will allow us to treat Mimblewimble transactions as mecha-

nisms for the transfer of value within a blockchain.

Definition 10. (Ownership.) We say that a party S owns a set of transaction outputs if she knows
the opening of the sum of the outputs.

Definition 11. (Sending n coins.) To send n coins from S to R, S produces a transaction: chooses
inputs, creates uniformly random change output(s) and a uniformly random excess, whose sum is a

commitment to n. S sends this to R along with the opening information of the sum.

Definition 12. (Receiving n coins.) To receive n coins, R receives a transaction T' which sums to a
commitment of m > n coins, along with opening information of this sum, and completes it to a valid

transaction T by the following process:

1. R first produces uniformly random outputs whose total committed value is n, and adds these

to the transaction.

2. If m = n, R negates the sum of this transaction and adds it to the excess of the transaction, so

that the total sum is now zero.

Otherwise the transaction now has sum committing to m — n, so R adds a uniformly random
value to excess, then gives the opening information of the new sum to another recipient who

can take the remaining value.

When we define a blockchain and require transaction inputs to be outputs of earlier transactions,
we will show that after this process, R is the only party who owns any of the outputs that he added.

2 The Mimblewimble Payment System

Theorem 2. (Fundamental Theorem of Mimblewimble) Suppose we have a binding, hiding ho-
momorphic commitment scheme. Then no algorithm </ can win at the following game against a

challenger € except with negligible probability:

By zero we mean the homomorphic commitment which commits to zero with zero blinding factor.



1. (Setup.) € computes a finite list L of uniformly random homomorphic commitments. € sends
Lto o

2. (Challenge.) At most polynomially many times, <f selects some (integer) linear combination

T; of L and requests the opening of this combination from €. € obliges.

3. (Forgery.) o then chooses a new linear combination T which is not a linear combination of

{T;} and reveals the opening information of T.

Proof. TODO I think this proof is totally wrong, can probabily use it to prove things that are vul-
nerable to Wagner’s algo (tho this is not) ... need to somehow define “linear combination” in a
way that excludes combinations that are not computationally accessible; similar for “lattice” and
“projection”. Or take a different strategy entirely.

Consider the lattice A generated by L, that is, the set {Y.4c; baA : by € Z}. Consider the quo-
tient lattice A/T" where T is the sublattice of A generated by the queries {7;}. We may consider
every element of A/I" to be a homomorphic commitment by using some canonical representative.
In particular, every element of A/T" is a homomorphic commitment which satisfies the same hid-
ing/blinding properties that the original scheme did.

Then the projection of every {7;} into A/T is zero, and the projection of T is nonzero. Therefore
&/ has learned no information about the projection of 7 from its queries; however, if &/ knows the
opening of T then it also knows the opening of the projection of T, contradicting the hiding property
of the homomorphic commitment scheme. O

2.1 The Blockchain

Mimblewimble consists of a blockchain, which is a weighted-vertex directed rooted tree of blocks
(defined below) for which the highest-weighted path is termed the consensus history. [TODO cite]

Definition 13. We define a Mimblewimble block as the following data:
e A canonical transaction, whose inputs are of one of the two forms:

— A reference to an output of the transaction in an earlier block; or
— An explicit (i.e. with zero blinding factor) input restricted by rules above those given in

this paper?.

e A block header, which has a binding commitment to earlier blocks in the chain, termed back-
links; the transaction included in this block; the cut-through of this transaction and every

previous block’s transactions.
If the block’s transaction is valid, we say the block is valid.

In Section 2.2, we will describe how blocks are weighted, and which previous blocks specifically

should be linked to. For now we will

2 A typical rule would be that each block can have only a single coinbase input of fixed value.



Definition 14. We define the consensus chain state of a Mimblewimble blockchain as the cut-
through of all transactions on the consensus history.

If the consensus chain state is valid, we call the blockchain valid.

Note that for a blockchain to be valid, it is not required that all blocks be valid, only that the
entire chain sum to a valid transaction.
Next, we prove that Mimblewimble is a sound payment system, in the sense of the following

two theorems.

Theorem 3. (No inflation.) The total value committed by the outputs of the consensus chainstate of

a valid blockchain is equal to the value of the explicit inputs in each block.

Proof. By hypothesis the consensus chain state, which is the canonical form of the cut-through of
all transactions, is valid. Since every non-explicit input of every block is the output of a previous
transaction, it does not appear in this canonical form. Therefore the only inputs of the chain state

are the explicit ones. O

Lemma 1. (Unique ownership.) Suppose that all outputs of a transaction were created by receiving
coins as in Definition 12, and that all blinding factors are kept secret with the specific exception of
sending coins as in Definition 11. Then for every subset of outputs in which not all have not been
sent, the only owner of that subset is the person who created all its outputs. (In particular, if the

subset contains outputs created by different parties, then that subset has no owner.)

Proof. Let O be an output in the subset which has not been sent. Then the only combination of
outputs containing O whose commitment included O that may have been revealed also included
some uniformly random excess £ which was chosen when O was created.

Further no other sum containing £ was ever revealed, so that any combination including O but
not E is not a linear combination of combinations whose opening information has been revealed.
The subset in question does not contain E, since E is an excess not an output. Therefore by Theorem

2 nobody knows the opening information of the subset except the person who created O. O

Theorem 4. (No theft.) Consider a valid blockchain. An output x created as in Definition 12
cannot be removed from the consensus chain state without replacing the block in which it appeared,
i.e., forming a higher-weighted valid blockchain not containing this block, except by parties who

(collectively) own a set U of outputs containing Xx.

Proof. Suppose otherwise; then there exists a higher-weighted chain containing the block B in
which x appeared, but for which the consensus chain state does not contain x.

Consider the transaction 7" which is the canonical form of the cut-through of the first block after
B to the tip of the chain. (Note that 7 may not be valid; we know only that the full chain states are
valid.)

Then the outputs of T are a subset of the outputs of the new chain state; in particular they contain
rangeproofs which are proofs of knowledge of the openings of the outputs. Similarly, the excess
value is also known. We conclude that the parties who created these blocks (and therefore 7') know
the openings of all outputs and sum of the excess value, and therefore own the set of all inputs of 7'.

However, the inputs of T form a set of outputs containing x, completing the proof. O



2.2 Consensus

Mimblewimble uses a hashcash [TODO cite] style blockchain in which every block in a blockchain
is labelled by a weight called its difficulty. A blockchain is valid if every block of difficulty D has
a header which hashes into a range of size 1/D of the total space of hashes. We define a directed
edge from block A to B iff A commits to B in its header, and require each block commit to its unique
parent.

We can then refine our definition in Section 2.1 of consensus history as the highest-weighted

path terminating at the root. This is the same as Bitcoin’s design.

2.2.1 Block Headers

However, in we also define a second graph structure on blocks as vertices, called the compact

blockchain. We define the compact blockchain iteratively as follows.
1. The genesis block is in the compact blockchain.

2. The first block after the genesis is added to the compact blockchain, and is assigned effective
difficulty equal to its difficulty.

3. Each block added to the tip of the compact blockchain may cause blocks to be removed from

the compact chain as follows:

(a) First, its effective difficulty is calculated as follows. Consider the “maximum possible
difficulty” M of the block, which is the size of the hash space divided by the hash of the
block. (This may be larger than the actual difficulty.)

The effective difficulty is determined by starting with the block’s difficulty, then adding
the effective difficulties of as many consecutive blocks as possible, starting from the tip,

so that the total is less than or equal to M.

(b) All blocks whose effective difficulty was used in the above calculation, except the new

block itself, are dropped from the compact chain.
We next prove several theorems to give an intuition of the properties of the compact blockchain.

Lemma 2. The expected work required to produce a block with effective difficulty D is equivalent to
computing D hashes; similarly to produce several blocks with total effective difficulty D' one must

do expected work of computing D' hashes.
Proof. This is immediate in the random oracle model. O

Theorem 5. The expected amount of work to replace a block B in the compact chain (i.e. produce
a blockchain of greater or equal total difficulty whose compact chain does not contain B) is greater
than or equal to the work needed to replace B, its parent in the non-compact chain, its parent, and

so on, up to but not including B’s parent in the compact chain.

Proof. This follows immediately from Lemma 2 and the fact that the effective difficulty of every
block is defined to be greater than or equal to the sum of the difficulty of the skipped blocks. O



Corallary 1. The expected work required to produce a compact blockchain is at least as large as

the expected work required to produce a full chain containing the same blocks.

Theorem 6. Assuming constant difficulty, given a blockchain of length N, the expected length of
the compact chain will be O(logN).

Proof. The compact chain has been defined such that the proof in CITE, APPENDIX A still holds.

We summarize it here:

1. First, consider starting from the tip and scanning backward until we find a block that can skip
all remaining blocks back to the genesis. By construction this block will be in the compact

chain. The probability that such a block exists within the first x blocks we check is

X N—i N—x «x
l— —_— e
Iﬂ[N—H—l N N

i=1

and the expectation of this over all 1 <x < N is %, i.e. we expect the chain length to be

halved by this one skip.

2. Inductively, we can scan back from the tip until we find a block that skips back to the block

in the previous step. This halves (in expectation) the remaining chain, and so on.

The number of times we repeat this process until we have no more blocks to skip is the length of
the compact chain, since each step added one more block to the compact chain, and since each step

halved the number of remaining blocks, we see that there are only logarithmically many steps. [

We observe that small variations in difficulty do not affect the character of this proof, and there-

fore the constant-difficulty case can be considered a good approximation to the real-world situation.

Theorem 7. for a given blockchain, there is exactly one compact chain, and it can be verified with
log-much work. further, any block which appears in the full chain but not the compact chain, will
not appear in the compact chain of any extension of the full chain (i.e. once a block is dropped it

can be forgotten).

Proof. TODO TODO O

2.2.2 Proven and Expected Work

However, while the expected work can be computed to be the same, the the compact chain does
not, in general, prove as much work as the full chain. For example, consider a blockchain of total
difficulty D across n blocks, whose compact chain has logn blocks.

Suppose an attacker attempts to produce this chain in €D work, where 0 < € < 1. Then this
requires, on average, that each individual block be produced in € the expected time. Each block’s
production time is an independent variable, so the Chernoff bound lets us approximate this more
precisely: if € < 1 then the probability decays exponentially with the number of blocks in the chain.

For the full chain this means probability O(exp((1 — €)n)); for the compact chain O(exp((1 —

€)logn)) or O(n'~%). In fact, the extreme case is even worse: a compact chain may consist of only



a single block which has difficulty D, in which case the probability is simply O(exp(1 — €)). This
means an attacker willing to expend some fixed percentage of the total chain work has the same
probability of successfully rewriting the chain regardless of the length of the chain.

To be conservative, we conclude that compact chains, as described in this paper prove no
work?.

So what good are they? In Mimblewimble, we expect verifiers of a chain to demand all blocks
from the most recent two months, say, and a compact chain from there to the start (in Section 2.2.3
we will see how full verification can proceed using only a compact chain). The resulting composite

will:
e be forgeable with expected work equal to the entire chain’s work; but
e only prove the most recent two months of work

Unlike Bitcoin, where the expected work to forge a blockchain is the same (asymptotically) to its
proven work, in Mimblewimble these quantities are different. The expected work affects incentives:
rational actors will choose to extend the most-work chain rather than attempting forgeries, just as in
Bitcoin; on the other hand, the proven work affects verifiers’ certainty about the state of the world:
they know at least two months worth of work has been done to produce the chain they see, that it
was not an accident, and that if it is a forgery it was a very expensive one that cannot be reliably
repeated.

TODO this is a pretty serious deviation from the bitcoin trust model, needs to be summarized in

a new section 1.1 "trust model”

2.2.3 Sinking Signatures and Compact Chains

In this section, we describe how sinking signatures interact with compact chains, and in particular
we find that it is possible to do a full Mimblewimble verification with only log2 of the total historic
block data.

3 Conclusions

3.1 Scaling Properties

3This says nothing about the compact SPV proofs described in, e.g. CITE PROOFS OF POW, which put lower bounds
on the length of compact proofs in order to upper-bound the probability a less-than-expected-work attacker can succeed. We
cannot take this approach because we are using these proofs in consensus code and therefore need Theorem 7.
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