
libconsensus

Jorge Timón

October 13, 2016

Contents

1 TODO Motivation 3

2 Current situation 4

3 Phase 2: Expose VerifyHeader() 6

4 TODO Phase 3: Expose GetConsensusFlags() 7

5 TODO Phase 4: Expose VerifyTx() 8

6 TODO Phase 5: Complete libconsensus API (expose VerifyBlock()) 9

7 TODO Phase 6: Separate libconsensus to its own repository 10
7.1 Phase 6.1: Remove non-consensus code. 10
7.2 Phase 6.2: Move all consensus code to the same directory 10
7.3 Phase 6.3: Create a sub-repository or subtree . 10

8 TODO Phase 7: Make Bitcoin Core eat its own dog food 11

9 TODO Final proposed complete libconsensus’ C API 12

Abstract

In Bitcoin (a distributed consensus system), there’s a set of rules which define whether
a block is valid or not. In a typical software system, those rules would be described in a
specification document written in a natural language that would then be translated to one or
more software implementations. But since software deployment coordination is critical to the
security of the system when the software validation of the rules is changed, the documentation
doesn’t necessarily have preference over the deployed implementation when it comes to what is
the specification to follow.

This produces an unnecessary network effect in favor of the implementation deployed more
widely, in this case, Bitcoin Core. Not all of bitcoin is consensus critical, there’s network mes-
sages, storage, local relay and mining policies, wallet-specific code, code specific to maintain
indexes, GUI specific code... This puts alternative implementations in an unnecessarily compli-
cated position when it comes to review and upgrade for changes to the consensus rules.

Even if Bitcoin Core was adverse to the existence of alternative full-node implementations,
encapsulating consensus-critical code is necessary and urgent for Bitcoin Core because it will

1

enormously increase the number of potential contributions to the project by drastically reducing
the probabilities that one particular change needs to touch any file containing consensus-critical
code and therefore reduce the demand for critical review.

At the same time, the attack surface area of a bitcoin node is big, and this sometimes leads
to necessary complexity in the code to protect a node from different potential attacks. These
complexities must be kept separated from the specification of the consensus rules of the chain.
But experience shows us that in the case of distributed consensus systems like Bitcoin, for the
specification to be truly unambiguous it needs to be written directly in code.

Since Bitcoin Core is currently the more widely adopted full-node implementation, it makes
sense to exact the first it from

2

1 TODO Motivation

This document describes a detailed plan to separate consensus critical code from Bitcoin Core.
to be able to give reasonable guarantees that the same specification will be exactly replicated by

all nodes (that want to replicate it, see BIP99 for a classification of potential changes to the speci-
fication) These nodes may be implemented and integrated in diverse stacks with diverse machines.
A common specification of the consensus rules is necessary (but not sufficient) for all participant to
converge on the same view of the history of global states of the system. But this specification is
currently coupled with Bitcoin Core’s implementation of a full node, which reduces its clarity and
ease of modification.

Additionally, alternative implementations of the consensus protocol are currently forced to chose
between providing an incomplete full node and relying on trusted nodes using the reference imple-
mentation (Bitcoin Core)

Matt Corallo came up with the idea of exposing the newly encapsulated. . . TODO

3

2 Current situation

In 0.13, Bitcoin core is divided in the following basic packages:

LIBBITCOIN_SERVER=libbitcoin_server.a
LIBBITCOIN_COMMON=libbitcoin_common.a
LIBBITCOIN_CONSENSUS=libbitcoin_consensus.a
LIBBITCOIN_CLI=libbitcoin_cli.a
LIBBITCOIN_UTIL=libbitcoin_util.a
LIBBITCOIN_CRYPTO=crypto/libbitcoin_crypto.a
LIBBITCOINQT=qt/libbitcoinqt.a
LIBSECP256K1=secp256k1/libsecp256k1.la
LIBBITCOIN_ZMQ=libbitcoin_zmq.a
LIBBITCOIN_WALLET=libbitcoin_wallet.a

The figure 2.1 contains a simplified UML components diagram of the current structure of Bitcoin
Core, showing the executable binaries as interfaces

Figure 2.1: Current Bitcoin Core architecture

The arrows mean dependencies. The dotted discontinuous arrows mean that the dependency can
optionally be removed at compile time (it’s only used for LIBBITCOIN_WALLET and LIBBITCOIN_ZMQ,
which are optional to both bitcoind and bitcoin-qt).

Since some dependencies are implicit, we can remove some arrows to simplify things as shown
in figure 2.2.

Also, bitcoin-cli, bitcoin-qt, LIBBITCOIN_ZMQ and LIBBITCOIN_WALLET are encapsulated enough
while not being too relevant to libconsensus that we can remove them from the picture (see figure
2.3).

libbitcoinconsensus currently only exposes VerifyScript(). We will refer to all the previous
work, including exposing VerifyScript() (see PR #4692 and its replacement #5235) and other
preparations up to 0.13 as "phase 1". After phase 1, we actually have some code we can call
libconsensus.

Before discussing phase 2, it is convenient to detail the current state further, including concrete
files within the packages as shown in figure 2.4. The consensus package already contains more
files than are needed for VerifyScript(), but which contain mostly consensus code without also
including globals or undesired dependencies that would break libconsensus. Those files are marked

4

Figure 2.2: Simplified Current Bitcoin Core architecture

as green. Files marked as red contain consensus critical code but cannot be added to the consensus
packages because they contain storage related dependencies or more code that should not be moved
to libconsensus (main.o, chain.o, coins.o, pow.o and versionbits.o). Files marked with orange require
further discussion.

For example, amount.h is necessary for libconsensus, but it contains CFeeRate, which should be
moved out of the consensus packages. CFeeRate is defined in amount.cpp, which is currently not
used by the consensus packages. This situation can be resolved by moving the class CFeeRate to its
own module, for example, policy/feerate.o as in PR #7820.

The only consensus function that uses utilmoneystr.o is Consensus::CheckTxInputs(), currently
in main.o. If the amounts in some errors in that functions are shown in satoshis instead of formatting
them to full bitcoins using FormatMoney(), then utilmoneystr.o doesn’t need to be in the consensus
package.

If we don’t want to have compat/endian.h in libbitcoinconsensus, crypto/common.h and seral-
ize.h need to be decoupled from it.

If we want to include script/sigcache.o in the the consensus library, we need to consider its
dependency memusage.h and decouple it from random.o and util.o.

5

Figure 2.3: Simplified Current Bitcoin Core architecture excluding cli, qt, zmq and wallet.

3 Phase 2: Expose VerifyHeader()

As a next function to expose in libconsensus, we can use VerifyHeader(). Although it relies on
chain storage (CBlockIndex class in Bitcoin Core), it is probably the simplest verify function to
expose. SPV wallets could call this functions for fully verifying the header (including difficulty
adjustments) instead of only checking the proof of work.

Since we want libbitcoinconsensus to be independent of the storage, CBlockIndex needs to be
replaced with some sort of interface compatible with libconsensus’ C API. For example, #8493
introduces a C struct BlockIndexInterface containing function pointers as fields. These functions
are used to access the header index. For libconsensus, each header is just a void pointer used only
with the help of BlockIndexInterface. Since each caller may have a different structure for their
header object, we cannot assume any particular one and we take them as void pointers.

To move the header validation functions and their dependency pow.o to the consensus package,
we need to decoupled the from chain.o (where CBlockIndex is defined) using this interface. Figure
3.1 shows the result of applying phase 2.

6

Figure 2.4: Detail of the current state of libconsensus

Figure 3.1: Phase 2: Expose VerifyHeader()

4 TODO Phase 3: Expose GetConsensusFlags()

7

Figure 4.1: Phase 3: Expose GetConsensusFlags()

5 TODO Phase 4: Expose VerifyTx()

Figure 5.1: Phase 4: Expose VerifyTx()

8

6 TODO Phase 5: Complete libconsensus API (expose VerifyBlock())

Figure 6.1: Phase 5: Expose VerifyBlock()

9

7 TODO Phase 6: Separate libconsensus to its own repository

7.1 Phase 6.1: Remove non-consensus code.

7.2 Phase 6.2: Move all consensus code to the same directory

7.3 Phase 6.3: Create a sub-repository or subtree

Figure 7.1: Phase 6: Separate libconsensus to its own repository

10

8 TODO Phase 7: Make Bitcoin Core eat its own dog food

11

9 TODO Final proposed complete libconsensus’ C API

12

	TODO Motivation
	Current situation
	Phase 2: Expose VerifyHeader()
	TODO Phase 3: Expose GetConsensusFlags()
	TODO Phase 4: Expose VerifyTx()
	TODO Phase 5: Complete libconsensus API (expose VerifyBlock())
	TODO Phase 6: Separate libconsensus to its own repository
	Phase 6.1: Remove non-consensus code.
	Phase 6.2: Move all consensus code to the same directory
	Phase 6.3: Create a sub-repository or subtree

	TODO Phase 7: Make Bitcoin Core eat its own dog food
	TODO Final proposed complete libconsensus' C API

