
The Problem with ASICBOOST

Jeremy Rubin

April 9, 2017

1 Intro

Recently there has been a lot of interesting material coming out regarding ASIC-
BOOST. ASICBOOST is a mining optimization that allows one to mine many
times faster by taking advantage of a quirk of SHA-256. There are multiple
ways of implementing ASICBOOST, and recent claims are that one which is
incompatible with upgrading Bitcoin is being used.

I thought it was a bit confusing, so I hand wrote some notes for myself. They
became somewhat popular, so I decide (by popular request) to LATEX them.

Enjoy!

Update Log:

• April 9th: Fixed a few typos/formatting errors. Clarified witness commit-
ment diagram to be more accurate.

• April 9th: Posted LATEX Notes.

• April 6th: Posted Original Handwritten Notes.

1



2 Basics

A Bitcoin Header looks like this:

0 4 36 68 72 76 80

V
E
R
S
I
O
N

PREVIOUS BLOCK MERKLE ROOT
T
I
M
E

N
B
I
T
S

N
O
N
C
E

A SHA-256 Hash of 80-Bytes looks like this:

0 64 128

Data Data padding: 0x80. . . 00
S
I
Z
E

Chunk 1 Chunk 2

The Hash computation has the following control flow:

S0 Chunk 1

S1

S2

Chunk 2

Preprocess
Chunk 1

Preprocess
Chunk 2

2



3 Reduced Work Updates

ASICBOOST takes advantage of the following reductions in work if you modify
the first or second half of the header only. In the following diagrams, I’ve blacked
out parts that aren’t recomputed.

Modifying Chunk 1 Only Modifying only chunk 1 gives a small improve-
ment.

S0 Chunk 1

S1

S2

Chunk 2

Preprocess
Chunk 1

Preprocess
Chunk 2

Modifying Chunk 2 Only Modifying only chunk 2 gives a huge improve-
ment.

S0 Chunk 1

S1

S2

Chunk 2

Preprocess
Chunk 1

Preprocess
Chunk 2

3



3.1 How do headers get hashed?

Let’s juxtapose the header and hash alignment.

0 4 36 64 68 72 76 80 128

Chunk 1 Chunk 2

Data Data padding: 0x80. . . 00
S
I
Z
E

V
E
R
S
I
O
N

PREVIOUS BLOCK MERKLE ROOT
T
I
M
E

N
B
I
T
S

N
O
N
C
E

The Merkle root commitment is in both chunk 1 and chunk 2. The first 28
Bytes are in chunk 1, the remaining 4 bytes are in chunk 2.

3.1.1 What is in the Merkle root?

At each level, the hash of the concatenated strings is computed. Each letter
A . . .H is the hash of a transaction. The node ABCDEFGH is called the
merkle root.

ABCD
EFGH

AB
CD

EF
GH

AB CD EF GH

B D E GA C F H

If any of the underlying data A . . .H are either modified or reordered, the

4



Merkle root will have a different value (uniformly random).

3.2 What if we find two merkle roots with the same last
4 bytes?

Now we can run our very efficient algorithm to only modify chunk 2 on many
precomputed chunk 1s.

Chunk 2

Preprocess
Chunk 2

SA,2SA,1S0 SB,2 SB,1 S0

Preprocess
Chunk 1 A

Chunk 1 A

Preprocess
Chunk 1 B

Chunk 1 A

So now for a little extra setup work, we get a 2× hash rate multiplier for every
nonce we try in chunk 2. The below diagram shows the part that doesn’t need
to be recomputed.

Chunk 2

Preprocess
Chunk 2

SA,2SA,1S0 SB,2 SB,1 s0

Preprocess
Chunk 1 A

Chunk 1 A

Preprocess
Chunk 1 B

Chunk 1 A

If we find N chunk 1s, we can use the same trick for an N× hash rate
multiplier.

5



4 Practical Collision Generation

How do we generate colliding (in the last 4 bytes) transaction tree Merkle com-
mitments efficiently?

4.1 Birthday Paradox

The Birthday Paradox says that if 23 people are in a room, there is a 50%
chance that at least two people share a birthday.

This is the same problem as our tree collision, but with different numbers.
It works because as the number of people increases, the number of indepen-

dent chances of sharing a birthday increases more quickly.
You can visualize this as counting the number of connections in the following

graphs. These represent independent chances to share a birthday between nodes.

The closed form for the number of connections for n nodes is
(
n
2

)
= n!

2·(n−2)! =
n·(n−1)

2 = O(n2) chances

4.1.1 Generalized Birthday Paradox

A general closed formula for computing the number E of entries of T types
needed to be P probable to have a C-way collision is hard to find, but the
following approximation works well as an upper bound1.

P ≈ 1− e−(E
C)T−C+1

For instance, for the standard birthday paradox problem:

P ≈ 0.5 ≈ 1− e−(23
2 )365−2+1

4.2 Summary

It’s clear that the key in collision hunting is to store and generate a large number
of potential matches to compare against. The probability of a collision becomes
very likely even with a large set of possible “birthdays” (T ), and relatively small
numbers of “people” (E).

Using our formula, for 4 bytes of potential “birthdays”, at 110k “people”,
the probability of a shared “birthday” is more than 75%.

1− e−(110k
2 )(232)−1

> 0.75

1It should over-count. See
https://math.stackexchange.com/questions/25876/probability-of-3-people-in-a-room-of-30-having-the-same-birthday

6

https://math.stackexchange.com/questions/25876/probability-of-3-people-in-a-room-of-30-having-the-same-birthday


Creating a last 4 bytes colliding Merkle tree commitments is now reduced
to a problem of generating 110k unique transaction commitment merkle roots.

5 Generating N Unique Merkle Trees

5.1 Naive Algorithm

We can generate a unique Merkle tree by changing one of the base nodes.

ABCD
EFGH

AB
CD

EF
GH

AB CD EF GH

B D E GA C F H

ABC’D
EFGH

AB
C’D

EF
GH

AB C’D EF GH

B D E GA C F H

The non-blacked out boxes all need to be recomputed when changing C →
C ′. Let m be the number of leaf nodes, the naive algorithm requires O(N logm)
hashes.

7



5.2 Higher Order Permutations

Instead, we can do higher-order permutations

EFGH
ABCD

AB
CD

EF
GH

AB CDEF GH

A CF H B DE G

Now we only need to do one re-computation to get a second potential match.
If we black out the ones that don’t need recomputing we see clearly this is better

EFGH
ABCD

AB
CD

EF
GH

AB CDEF GH

A CF H B DE G

In the naive version, each new potential match is expensive to compute. In
the smarter version, we can recursively apply this principle to very efficiently
generate potential matches.

There are several strategies for generating candidates, not just swapping.
Swapping isn’t optimal because Bitcoin transactions have order dependencies,
but it is demonstrative of the principles at play.

8



5.3 Efficient Algorithm

Let’s say we want to generate R collisions, and the birthday paradox says it is
likely with N hashes.

First, we generate
√
N unique left hand sides and

√
N unique right hand

sides (i.e., Aα, Bβ where α, β ∈ 1 · · ·
√
N).

AαAαAαAαAαAαAαAα

BβBβBβBβBβBβBβBβ

With our
√
N Aαs and Bβs, we can generate N candidates by combining

each Aα with each Bβ . The diagram below illustrates the combination process.

Merkle
Root

Candidates

AαAαAα−5

AαAαAαAαAα

BβBβBβBβBβBβBβ−1

Bβ

Merkle
Root

Candidates

AαAαAα−5

AαAαAαAαAα

BβBβBβBβBβBβ−2

BβBβ

We can apply this recursvely: to generate
√
N Aαs, we generate

√√
N

left hand sides and right hand sides. In the base case, we can modify a single
transaction or swap two trivially independent transactions to generate a unique
parent.

This algorithm uses Θ(N) work. This is optimal (for this component of the
algorithm), because we need to produce N hashes.

9



5.3.1 Complexity Proof

For the interested:
At each step we must do n work to create the outputs, and we recurse on 2

times the square root of the output size. Therefore, our recurrence is:

T (n) = 2 · T (
√
n) + n

Let
n = 2p

Substitute n with 2p

T (2p) = 2 · T (
√

2
p
) + 2p

T (2p) = 2 · T (2p/2) + 2p

S(p) = T (2p)

S(p) = 2 · S(p/2) + 2p

This is Case 3 of Master Theorem:

S(p) = Θ(2p)

S(p) = T (2p)

T (2p) = Θ(2p)

p = log n

T (n) = Θ(n)

This algorithm is also “Embarrassingly Parallel”, so can get efficiency gains
using multiple cores.

5.4 N-Way Hit

Our earlier approximation predicts that in order to be likely to produce a 4-way
collision we need to generate around 225 hashes, and store them for collision
detection. This is about a gigabytes worth, so most computers should be able
to generate this quickly.

0.49 ≈ 1− e−(225

4 )(232)−3

A 5-way and greater, the amount of time required to generate a collision will
increase markedly, but I would imagine that miners with ASICBOOST would
not want to use that, and prefer to generate many 4-way collisions with rolled
coinbase extra-nonces.

10



6 What does Segregated Witness (SegWit) have
to do with it?

In SegWit we generate an additional commitment of all the signatures and we
put it into the coinbase transaction.

This commits to which transactions are present in the block and in what
order they appear, which means no more easy generation of unique Merkle
roots; the commitment is in the leftmost transaction, so modifying the order or
contents of any transaction triggers a full a factor of logm rehash.

The figures below demonstrates this. A commits to BCDEFGH. Any
change in the order or contents of the tree triggers the update to A’s nested
commitment, which also triggers an update to ABCDEFGH. Note the direc-
tion of the arrows for the witness commitment2.

ABCD
EFGH

AB
CD

EF
GH

AB CD EF GH

B D E GA C F H

CD EF GH

BCD

EF
GH

Witness
Commit

2Technically, A is put into the witness tree with a zero value so the structure of the tree
is identical. Representing this would make this diagram less clear, because no data from A is
committed to.

11



7 Are SegWit and ASICBOOST are fundamen-
tally incompatible?

No.
Recall our header format. . .

0 4 36 68 72 76 80

V
E
R
S
I
O
N

PREVIOUS BLOCK MERKLE ROOT
T
I
M
E

N
B
I
T
S

N
O
N
C
E

The version field can be used to make “collisions” trivialy!
Simply set it to a different value.

7.1 Why go through the trouble of finding non-trivial col-
lisions?

• Changing versions is easy to detect.

• Version is already used for. . . versions.

12



8 How can we fix this?

There are a few options:

1. Don’t do anything

• Pro: Any changes to Bitcoin are dangerous.

• Con: Status Quo is obviously harming Bitcoin.

2. Change SegWit to be compatible with ASICBOOST

• Pro: If we could start over, it would be easy to do.

• Con: Segwit is already written, reviewed, and adopted in industry.

3. Block just undetectable ASICBOOST

• Pro: Solves the immediate problem.

• Con: We wouldn’t be blocking it because undetectable optimization
is wrong, but because this specific optimization intereferes with pro-
tocol development. The propensity to conflate the two is dangerous.

4. Block all ASICBOOST

• Pro: ASICBOOST is not available to all miners, this levels the field.

• Con: A dangerous precedent to set. Picking winners and losers.

5. Hard fork Bitcoin to a new header format

• Pro: Could leave ASICBOOST intact, put SegWit commitment in
header, and everything else on the Bitcoin Hard-Fork Wish List.

• Con: Dangerous precedent, risk to split network.

13


	Intro
	Basics
	Reduced Work Updates
	How do headers get hashed?
	What is in the Merkle root?

	What if we find two merkle roots with the same last 4 bytes?

	Practical Collision Generation
	Birthday Paradox
	Generalized Birthday Paradox

	Summary

	Generating N Unique Merkle Trees
	Naive Algorithm
	Higher Order Permutations
	Efficient Algorithm
	Complexity Proof

	N-Way Hit

	What does Segregated Witness (SegWit) have to do with it?
	Are SegWit and ASICBOOST are fundamentally incompatible?
	Why go through the trouble of finding non-trivial collisions?

	How can we fix this?

