

“You paid a bitcent, here's my thoughts”
2015-04-20 meetup

(no refunds)

● Privacy in Bitcoin Core 0.10.1 and 0.11
● Requirements for future multisignature,

– ACEUP: Accountable, Composable, Efficient, Usable, Private

● Some thoughts on “Selection Cryptography”

Greg Maxwell
<greg@xiph.org>

DE47 BC9E 6D2D A6B0 2DC6 10B1 AC85 9362 B041 3BFA

Privacy improvements in Bitcoin Core 0.10.1/0.11

Why Privacy?
● Privacy is an essential characteristic for a

money-like good; without it:
– Your business strategy and deals are made public

– Your landlord hikes your rent when you get a raise

– Nosey inlaws/neighbors nitpicking your spending

– Thieves and con-artists can improve their targeting

● Privacy and fungibility go hand-in-hand
● Transparent and accountable systems can be

built out of private and fungible ones; doing the
reverse is much harder.

Why Privacy?
● Privacy is an essential characteristic for a

money-like good, without it:
– Your business strategy and deals are made public

– Your landlord hikes your rent when you get a raise

– Nosey inlaws/neighbors nitpicking your spending

– Thieves and con-artists can improve their targeting

● Privacy and fungibility go hand in hand
● Transparent and accountable systems can be

built out of private and fungible ones; doing the
reverse is much harder.

“Money is not speech, it is money. But the expenditure of money
enables speech, and that expenditure is often necessary to
communicate a message,[...]. A law that forbade the expenditure of
money to communicate could effectively suppress the message.”

‒Justice Stephen Breyer,
(Active Liberty, 2008)

Government could repress speech by “attacking all levels of the
production and dissemination of ideas,” for “effective public
communication requires the speaker to make use of the services of
others”

‒Justice Kennedy
(Citizens United)

quoting Justice Scalia
(McConnell v. FEC)

Why Privacy in Bitcoin Core?
● Best practices implementation; “full node”

model has strong and fundamental privacy
advantages

● I've been asked by researchers and companies
to “not fix” some privacy bugs

● We wouldn't add a privacy-harming phone
home; I think not-fixing is morally equivalent

(or even worse!)

● Software should serve one interest: its users

Recent active attacks
● Surveillance nodes that track transactions have

existed since at least 2011, resulting in reports
of false allegations and other drama

● Farms of fake nodes attempt to capture more
users' connectivity to get better visibility

● Basic protections longstanding in Bitcoin Core
(e.g. netgroup limits)

● Weaknesses here encourage wasting network
resources and cause outages

Recent active attacks
● Longstanding general advice is to run Bitcoin

Core over Tor
– Not perfect: Tor is weak against state actors,

vulnerable to DOS, but usually strictly superior

● Some argue the active attacks are unlawful...

...but we already have to defend against
attackers who don't care about the rule of law

(organized crime groups, NSA, GCHQ, etc.)

● Fortunately‒room to improve the tech

Anti-“eclipse attacks”
● Sybils try to make your node forget about the

honest network and mostly connect to them
● Consensus security needs only a single honest

peer, but privacy is weakened by having a
single dishonest one

● Recent simulation research showed ways
attackers could gain more concentration in
node memory than intended

● Expanded tables, removed some randomness,
ignoring unsolicited addr floods, all improved for
0.10.1

Further connection anti-sybil
● Several proposals for hashcashy POW

schemes to make using up lots of connections
costly, tricky to balance against normal users
– I have designs that are storage hard, and allow

partial reusability but they're complex

● Tool to run alongside Bitcoin Core that uses
private set intersection to ban mass connectors

Other network level improvements
● 0.11 will avoid reusing circuits on Tor

– Prevents linking your connections with each other
(partitioning risk), or with your web connections
(privacy)

● 0.10.1 reduces leakage about the network
topology from addr timestamps
– Reduces risk from targeted DOS attacks, and

knowledge gained from transaction timing

● Improvements to increase trickle batches in
progress for 0.11

Wallet Relay control improvement
● Wallet rebroadcasts can give away a node's

origin to an attacker watching the network
– and if they don't, automatic rebroadcast probably

does

● New flag for 0.11 disables wallet transaction
broadcast; user can manually trigger

● Opens up the possibility to run an interface
alongside Bitcoin Core to send transactions via
Bitmessage or a mixmaster network

(but someone needs to write it!)

Full-node usability more privacy⊂

● Privacy is more or less broken for SPV, bloom
filters in practice are uniquely identifying, etc.

● Full nodes are completely private for receiving
● But 30+GB diskspace is painful
● Pruning in the pipeline gets 0.11 down to ~1GB

when enabled; just as private
● Bursty bandwidth irritates buffer-bloat, rate-

limiting for 0.11; is automatic tuning possible?

Lots left to even get started on

● Wallet coin selection strongly assumes no
address reuse; any reuse breaks privacy
– Easy to fix: group addresses select groups; fixes

slowed by inadequate wallet tests

● CoinJoin and other active privacy techniques
● “Stealth addresses” (I hate the name; should be

“reusable addresses”); existing proposal is
unmaintained; causes even greater SPV
privacy loss
– Huge cost in rolling out another address type, need

to get it right

Requirements for the future of multisignature

ACEUP

Accountable, Composable, Efficient, Usable, Private

Bitcoin Multisignature today

● “No tagbacks!”; turns out autonomy is hard,
security is hard, nothing can be trusted, and
everything is broken. More or less.

● Multisignature potential security improvement.
Taken forever to get deployed.

● It's costly. 2 of 3 means roughly a 2.5x increase
in transaction size! 2 of 3 is kind of a weak
policy, also 2x slower to verify. Direct hit on
decentralization.

● We can do better!

A Crypto-detour

● Schnorr is an alternative to ECDSA
– but was patented until recently; can be

implemented over the same groups

● Can do multisignature by … addition:

– Sign(P
1
, M) = {R

1
, S

1
}

– Sign(P
2
, M) = {R

2
, S

2
}

– Sign(P
1
 + P

2
, M) = {R

1
+R

2
, S

1
+S

2
}

(more or less: needs another round of communications to
agree on R

n
 in advance of producing S

n
; care needed to

make sure P
2
≠P

x
-P

1
)

A Crypto-detour

● So a N of N is as network efficient as a 1 of 1.
– and can be extended to arbitrary thresholds

● A panacea! The efficiency problem is solved!

● But the extension to thresholds require the signers to
interact more

● Hmmm... are there other requirements we need to worry
about?

Accountability

● In the existing multiparty scheme, once a
signature exists anyone who sees can tell
which of the participants signed

● This is important because policy and security
doesn't end at the blockchain

● If your vendor cheats, you want to know‒and
you want to be able to prove it to others

(including other customers or potentially the courts)

● Direct Schnorr thresholds are not accountable!

Usability

● In the existing multiparty scheme, someone can
draft a transaction and pass it through enough
signers once
– direct Schnorr requires an additional round to agree

on the nonce either at sign time or in advance

– some other schemes need MANY additional
rounds: a bummer if your keys are in a safe

● Bitcoin multisig pubkey can be made without
interaction
– direct Schnorr cannot except for N of N

Privacy

● Accountability requires the participants (or
people they choose) to know who signed

● Privacy requires random third parties learn as
little about your policy as possible

● If someone knows you are 2 of 3, they know
they only need to kidnap two people to sign
– good security suggests not revealing more than you

must

● An unusual policy identifies your transactions;
competitive repercussions

What about “threshold ECDSA”?

● Fancy crypto; first attempts didn't actually work
without a trusted dealer, maybe it works without
one now

● Requires many rounds of interaction to
generate the pubkey and to sign; hurts usability

● Not accountable
● But it is efficient and maybe available, may find

some applications where the round and non-
accountability aren't an issue

TREECHECKSIG

● N-of-N schnorr is efficient, usable, but not
accountable; less usable with N-of-M

● Enumerate all the M-choose-N possible N-of-N
satisfactions; hash tree over this is the pubkey

● Signature reveals the log2(binomial(m,n)) sized
proof for membership, plus a single signature

● Accountable, can be fairly private, usable
● Efficiency is better than Bitcoin Multisig
● Problem: tree starts becoming too big to

compute

MULTICHECKSIG

● Avoid precomputing all the possible N-of-N?
● Give the verifier all the points, signature

encodes which threshold subset to sum plus a
single N-of-N signature

● Accountable, not private, but usability is good
● Linear in M, instead of M and N as in Bitcoin

– verification is nearly constant speed (add is fast)

– better than now, not as good as we'd like

POLYCHECKSIG

● If the points were already sums? [3 of 4 ex.]

P
1
 = P

A
 + P

B
 + P

C
 + P

D

P
2
 = P

A
 + 2P

B
 + 3P

C
 + 4P

D

P
v

= 3P
1
– P

2
= 2P

A
 + P

B
 – P

D
 C is canceled!

● Works for any number; needs M-N+1 terms
● Encode in an unbalanced hash tree
● Accountable but if all sign it looks like 1-of-1

“Composable”?

● One reason someone can't use a multisig
policy is because they need to be in someone
elses multisig policy
– e.g. a 2-of-3 of 2-of-3 users

– Bitcoin Script and P2SH can support multisig of
multisig; no wallet software does; the efficiency is a
killer

● Access policies are monotone functions
● Build a higher-level construction that allows

composition: sign the parts you understand

Comparison

Scheme Size 2-of-3 13-of-15 50/100 990/1000 CPU

Bitcoin 34N+74M 250 1472 7100 107260 M

Schnorr 34+74 108 108 108 108 1

TREE lg(B(M,N))*32+74 172 332 - - 1+0.01*N

MULTI 34N+74 176 584 3474 34074 1+0.01*N

POLY ≤(M-N+1)*34+74 142 142 - 176 142 - 1808 142 - 448 1+(M-N)/2

Scheme Accountable Usable Private Comms

Bitcoin Y Y N 0 + 0.5

Schnorr N ~N Y Prop N,M + 1

TREE Y Y ~Y 0 + 1

MULTI Y Y N 0 + 1

POLY Y Y Y 0 + 1

The art of Selection Cryptography

What is cryptography?
● Most common definition: (MW, similar in OED, WP, etc.)

– (1) Secret writing

– (2) the enciphering and deciphering of messages in secret code or
cipher

● What about:
– digital signatures?

– compact / zero-knowledge proofs?

– private information retrieval?

– hash functions, multiparty computation, cipher
negotiation (e.g. in TLS), crypto-currency, etc...?

● These are all clearly cryptography

As a young cypherpunk in the 90s I heard the
rallying cry‒

“Information wants to be free”

‒and I knew it to be true

Computers convert much of what matters to
mankind into pure information. Networks can
carry information everywhere without distortion.

With access to computers and networks we can
equalize power imbalances and give people the
freedom they need to fulfill their potential.

Let's not misunderstand a fundamental law of
nature as a political aspiration:

Information does want to be free.
But the result isn't always pretty...

My email wants to be read by the NSA

My login attempts want to be indistinguishable from yours

My reading habits want to disclose my plans to my political opponents

Valuable information I seek wants to be equally available to your
cheaply-sent spam flood

All spends of my digital cash want to be equally valid

… And when all information is free, the already powerful can
afford to exploit these facts more completely than the
disempowered

I think a better definition might be
– Cryptography is the art and science we use to fight

the fundamental nature of information, to bend it to
our political and moral will, and to direct it to human
ends against all chance and efforts to oppose it.

This is an expansive definition
– It encompasses a few things that aren't normally

thought of as cryptography; e.g., parts of computer
security, debatably some parts of law

– I don't offer it lightly; it leads to better intuitions than
any definition I've encountered before

So, Cryptography?

My email wants to be read by the NSA

– Apply: Cryptographic technique of strong encryption

My login attempts want to be indistinguishable from yours

– Apply: Cryptographic technique of digital signatures

My reading habits want to disclose my plans to my political
opponents

– Apply: Cryptographic tool of private information retrieval

Valuable information I seek wants to be equally available to
your cheaply sent spam flood

– Apply: Cryptographic tool of hashcash

All spends of my digital cash want to be equally valid

– Apply: Cryptographic tool of decentralized consensus
(or the cryptographic tool of a protocol with a trusted third party, and digital signatures)

● Secure cryptography may not be possible

● Cryptosystems, today, are only ever secure given
strong assumptions
– A provably secure asymmetric cryptosystem is directly a

proof that P ≠ NP

● Attacks on cryptosystems are themselves also
information that wants to be free

● Virtually every cryptographic idea is broken

● Provable cryptography is about showing constructions
to not be insecure even when their assumptions hold

– Easiest way to make a provable cryptosystem is to
pick stronger assumptions! (Guess what happens?)

Fighting a law of nature sounds hard

Civil engineering is also fighting against nature.
– But has had a long time to mature: loss of life from design flaws was

common in practice not so long ago (and still is in some places)

– Seldom would we be crazy enough to ask a building withstand a
concerted effort of thousands to destroy it...

… but for cryptography that is usually what we must ask; it wouldn't be
worth even trying without the power of software as a building material.

Software reliability today is unfortunate.
– Very complex mechanical engineering project: 200k parts

– Firefox? 17 million lines of code

– We have better tools for building software, which is why it's possible at
all

– I find severe bugs in software almost every day, and cryptography is the
hardest:

“Software testing is making sure your program does what it's
supposed to, security testing is making sure that's all it does.”

In response to this challenge the trope is:

“Never write your own cryptography”

Or, “abstinence only” cryptographic education
– People adopt an overly narrow definition of

cryptography- one which excludes the parts that
break most often

– At best it reduces the problem to selecting secure
parts and then not invalidating their assumptions

If people count on a program to fight the nature
of information, it's cryptography

“We're doomed, I get it...”

I cannot tell you how to practice safe
cryptography in general
– No one knows, might not be possible

We do know some things that are unsafe
– They're usually complex and application specific

The best I can think we can do is
– Face the challenge frankly and understand the risks

– Learn from our mistakes

– Advance the art

Bad news

So what does good “Selection Cryptography”
look like?

Norm in the Bitcoin industry to build tools out of
primitives “found on github”

Unless you're a domain expert, you probably can't review it.

Step (1) Think for a bit and ask “If this code is broken or
malicious how much trouble could it create?”

Step (2) If “not much” go back to step 1.
(Really: What if the installer roots your host? All code is dangerous)

Step (3) Given the risks, what do we know that mitigates the
risk?

Selecting cryptography
‒is cryptography

A ubiquitous Javascript “Secure Random” deployed on tons of
sites in the past

When selection fails‒
(a case study)

Crypto RNG unavailable? “No problem”

Read 16-bits at a time, from what is
often a 48-bit LCG, seeded from the
time at browser start

Feeding a highly biased RC4 RNG
Keep in mind: ECDSA assumes the nonce is uniform,
A 1-bit bias can result in key loss with enough reuse

Any remotely modern browser has window.crypto ...except in
web-workers; but that doesn't even matter here:

When selection fails‒
(a case study, cont.)

> navigator.appversion
“5.0 (X11)”
> navigator.appVersion < "5"
false

Wallet deploys “ECIES” encryption using third party code

Wallet software fixed the use of a non-cryptographic RNG

But it wasn't actually ECIES and they didn't fix:

– 2^16 calls to oracle let you decrypt arbitrary messages

– Directly leaks 7 bits of plaintext per 256 bits of input

– Corrupts many possible messages (e.g. all 1s message)

– Plus lots of less cryptographic suitability-for-purposes issues

Due to domain expertise I found these issues in ~10 minutes.

Yet I consider the wallet authors highly competent‒another
(competent) vendor didn't even fix the RNG in code from the
same source.

Absent domain expertise what can we do better?

When selection fails‒
(another case study)

(0) Is the software intended for your purposes?

(1) Are the cryptographic considerations being taken seriously?

– What is the response to security concerns / issues?

(2) The review process... is there one?

– Cryptography is a team sport. No one can do it alone. Review isn't
always visible, but it can be; we should demand that it be made visible.

– Widespread use is often taken to be a proxy for review, but that hardly
works

(3) What is the experience of the authors?
– It's unlikely that cryptography written without deep understanding by just

following a recipe will turn out secure. Understanding leaves evidence, but don't
mistake punditry for expertise.

– Are the authors striving for domain expertise? (You probably can't tell actual
expertise from technobabble if you're not an expert yourself; look for the process)

Risk Mitigation (1 of 3)

(4) Is the software documented?

– Externally and internally? Are its assumptions clearly documented?

If not, why do you think you aren't violating them?

(5) Is the software portable?

(6) Is the software tested?

– Automated testing is one of the most powerful tools available

– If there are tests: try introducing a bug, do the tests catch it?

(7) Does the software adopt best practices?

– Look for evidence in review even if you don't know them

– Does it “fail safe”? Is it intentionally hard to misuse?

– “What have the authors done to mitigate risk?” If it's not clear, ask;

if they don't have answers they haven't thought about it too hard

Risk Mitigation (2 of 3)

Much of this reduces to looking for strong evidence of conscientiousness

In my experience the number of people recommending something is
inversely correlated with the rigorousness of its development

– It's easier to offer lots of whiz-bang features if you don't care about being
secure

– Iteration doesn't work well here: privacy lost cannot be recovered (nor
Bitcoins!)

All of these measures are imprecise...

Beware crypto-laundering: cryptography is built out of cryptography; your
vendors face the same challenges you do

You can trust, but verify--without verifying there is less reason to do the work
to get it right

What happens when what you want itself violates good practices?

– Pragmatic has its place, but beware of biasing against competence

Risk Mitigation (3 of 3)

There is a lot left to learn
I hardly think I know more that the most basic
essentials for selection cryptography

If we don't make a conscious effort to advance the art
and demand better, nothing will improve

(or it'll be “improved” by regulatory intervention...)

With effort we can someday evolve this art into a
science

I'm very interested in the best techniques you've found
to select stronger systems
(not to mention, techniques to build stronger systems‒but that's its own talk)

Thanks for your time

Greg Maxwell
<greg@xiph.org>

DE47 BC9E 6D2D A6B0 2DC6 10B1 AC85 9362 B041 3BFA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

