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Abstract 

 

DagCoin is a cryptocurrency design that attempts to be highly decentralized by merging the concepts 

of transactions and blocks and making each user that transact a miner. Each transaction carries a 

proof-or-work and references one or more previous transactions. The resulting authenticated data 

structure is a Direct Acyclic Graph (DAG) of transactions where each transaction “confirms” one or 

more previous transactions.  The confirmation security of a transaction is measured in accumulated 

amount of proof-of-work referencing the transaction. In this paper we present the DagCoin design, 

solve the double-spend problem and show several optimizations to aid for an efficient implementation. 

 

 

DagCoin is a cryptocurrency design that merges the concepts of transactions and blocks and making 

each user a miner. Each transaction carries a proof-or-work and references one or more previous 

transactions. The resulting authenticated data structure is a Direct Acyclic Graph (DAG) of 

transactions where each transaction “confirms” one or more previous transactions.  The confirmation 

security of a transaction is measured in accumulated amount of proof-of-work referencing the 

transaction. This structure is better suited for a cryptocurrency without subsidy (such as a side-chain), 

since the cost of reversal of a transaction can be easily measured, where in merged-mining the reversal 

cost depends on the good will of the non-merged hashing power.   

One of the problems with the DAG approach is how to limit the maximum cut of the generated DAG 

or, in other words, how to prevent all new transactions from referencing the same set of parent 

transactions, and degenerating the DAG into a star graph. The DAG must not increase in “width”, 

and it must “look” more like a yarn under microscope. I will call this structure a DAG-chain. 

 

 

 
 

A DAG-chain can be informally defined as DAG that: 

 

- After taking all border (non-parent) nodes k times, it becomes a chain 

- The resulting chain length is proportional to the original node count by a factor close to 2k. 

- If the DAG has more than 2k nodes, you can cut it in two separate DAGs, and the same 

properties hold for each half (each half having a factor k which is close to the original k factor). 

 

To be able to create a DAG-chain the protocol must prevent users from choosing old transactions to 

extend the DAG. Merging branches should be incentivized, but not too much such that users merge 

the same branches over and over. The problem of spam is of less importance, as no transaction can 

get a “free ride” in a block. We show that the election of an adequate data structure allows the DAG-



chain to be formed, but it requires us to change how we think about double-spends. 

  

The premises used to design the DagCoin cryptocurrency are the following: 

 

PREMISE: The cryptocurrency network benefits from creating a DAG-chain growing as “thin” (low 

k) as possible.  

 

In other words, having the average maximal cut as low as possible. Referencing many previous 

transactions (high out degree) can make the DAG thinner only if the following transactions reference 

the transaction with high out degree, but are themselves of low out degree. The DAG requires high 

out degree some times, but low out degree another times. 

 

DagCoin tries to fulfill that premise, using an incentive structure such that: 

 

- There is a benefit for users to reference as many previous transactions as possible 

- Referencing many previous transactions is incentivized only when there are many previous 

transactions unreferenced. 

- There is no competition between users to reference a previous transaction. 

 

Safely accepting Double-spends in the DAG-chain 

 

In Bitcoin, a transaction in a valid block-chain can never be a double-spend, as double-spending 

violates a protocol rule. DagCoin allows two conflicting transactions to be included in the DAG-chain 

as long as the second does not references the first (over one or more hops). We assign each transaction 

a confirmation score. If two conflicting transactions appear, as more transactions are added to the 

DAG-chain, the number of confirmations of one of the two will increase, but the other will not. Each 

transaction adds one unit of confirmation. The score of a node without children is zero. The score of 

a referenced transaction is the sum of all transactions that recursively reference it (including double-

spends). Whenever a transaction is added, it modifies the scores of all transactions recursively 

referenced by it. Whenever a transaction references a list of previous transactions, if there are two 

conflicting transactions, then the one with highest score prevails. If both have the same score, then 

the order of referencing establishes preferences over the conflicting transactions, such that the first 

transaction gets its score increased but any following double-spend will not. 

  



 

 

 

 

  

 

 

 

 

 

 

    (a) Before transaction 5 arrives   (b) After transaction 5 arrives 

 

 

 

 

 

  

 

 

 

(c) After 3 more transactions have been appended 

 

 

 

 

 

  

 

 

 

 

 

 

(d) after a new transaction conflicting with 2 and 3 has appear 

 

Figure 1 

 

 

Figure 1 shows the DAG before a join transaction arrives and afterward. Transactions 2 and 3 (in 

orange) are conflicting. The confirmation score is in brackets. We can see that even both transaction 

2 has transaction 3 have a non-zero confirmation score, only one of them will increase over time. 

Honest nodes will never extend a transaction which is already referenced, so an attacker that wants 

to replace transaction 2 by transaction 10 must invest in proof-of-work at least the difference between 

the confirmation scores. This establishes a very precise bound on the double-spend security. 

Preventing too many transactions merging too many transactions 

The core idea proposed is that each transaction commits to an authenticated forest of previous unref-

erenced transactions. To do so, it includes the value C(N), where C(i)=Commit(C(i-1) || T(i)), where 
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T(i) is the hash of a transaction parent and C(0) is the empty string. These are simple recursive com-

mitments so that C(N) allows the payer to reveal any number of parent hashes between 1 to N. The 

important decision is how many parents the commitment should reveal. Using the transaction as a 

header, the payer tries to find a proof of work with certain base difficulty (more on this base difficulty 

later). If the obtained a proof-of-work whose difficulty is 2^k times harder than the base difficulty, it 

will reveal and reference the first (k+1) nodes of the list. Half of the times a transaction will have a 

single parent, so only the first node T(N) will be revealed, by providing the complementary hash 

chain head (C(N-1)). One fourth of the times, two transactions will be referenced, by providing the 

hashes T(N), T(N-1) and C(N-2).  

This system provides a logarithm distribution in the amount of parents, with an average of 2. Also 

this method cannot be gamed, since referring more parents has a PoW cost. 

There should be an incentive to include as many references as possible in the authenticated branch. 

This can be achieved by several methods: 

1. Invalidating a transaction that has less references than what the PoW requires. 

2. Incrementing the score of a transaction that has more revealed references. For instance, a 

transaction having K revealed references could add a fractional score of (K-1)/K to the 

transaction score. 

Preventing Unbounded Cascade Updates to Confirmation Scores 

Suppose that for each transaction we save an integer score that we update for each new transaction 

that references it directly or recursively. It is evident that the proposed data structure requires updating 

almost all previous confirmation scores each time a transaction is added. To reduce the workload, we 

use pointers and checkpoints. At a certain frequency the software chooses a transaction that references 

a high number of parent nodes. Figure 2 show how a checkpoint is found.  

 

 

 

 

  

 

 

 

 

 

 

 

Figure 2 

Red box is a checkpoint 

 

Of course, not every past transaction could be reachable, as users may decide to never reference 

certain published transaction. However, the parent selection, with average out-degree 2, and low net-

work latency, can guarantee that there will be frequent checkpoints referencing almost all previous 

transactions. 
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After a checkpoint is found, the software updates all nodes reachable from the checkpoint with a 

forward pointer to this checkpoint. A checkpoint has its own score counter, initially set to zero. When 

the update algorithm reaches a checkpoint node, it increments the counter and stops propagating 

backward. The score of a transaction is computed as the last stored score in the transaction plus the 

score of the pointed checkpoint. Checkpoints are considered as nodes on the DAG, so the same check-

point finding algorithm can make checkpoints that refer to other forward checkpoints. After several 

continuous checkpoints, a checkpoints of a higher level is created referencing previous checkpoints, 

forming a skip-list. Using the skip-list it is possible to compute the score of a transaction in O(logN) 

where N is the number of transactions after it. Also, after a certain score has been reached, the wallet 

may decide not to update it anymore and consider it immutable, as in Bitcoin checkpoints. 

Periodic re-computing to reduce computation load 

Even using checkpoints, computation load can be high. When a wallet detects a transaction whose 

destination address is owned, it will start tracking it to find out how deep it is confirmed. But com-

puting the confirmation score using every new transaction that arrives is expensive. To reduce the 

load, the wallet can re-compute the score after a certain amount of accumulated proof-of-work has 

been received, creating arbitrary “blocks” of transactions. Each block is then processed separately to 

find all the parent transactions “inputs” of the block, and a score is added to each input. It’s important 

not to confuse the block inputs with Bitcoin’s UTXOs, DagCoin block inputs are not related with 

spending and represent block parent hashes (instead of a single patent hash). The number of inputs 

will depend on the network latency, but will be generally low and independent of the block size. For 

example, for a network with 10 tps, and 1 second of propagation latency, the block input set cardi-

nality should be around 10. Then the set of inputs is processed. Figure 3 show a block and how the 

input set is constructed (not necessarily in the same way) by each wallet software.  Every input has 

an accumulated score which is propagated to previous nodes. 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3 

Red boxes are the input set of the block 

 

For instance, and to provide a comparison to Bitcoin, the wallet may consider 10K units of transaction 

PoW as equivalent 1 “block confirmation” and so pack 10K transactions into a block and re-compute 

the score every 10K transactions received. A better approach is to construct a block every N seconds, 

independent on the number of transactions in it. Note that if there are no transactions being performed 

after the monitored one, then the confirmation score does not change. This is a direct consequence of 

the nonexistence of a subsidy and Bitcoin will face the same problem if the price does increase con-

stantly. 
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Targeting a fixed transactions/rate vs no maximum rate 

As there are no free-rides for transactions, the transaction/rate is limited by existent deployed com-

puting power and electricity cost. By time-stamping every transaction, one could dynamically adapt 

the difficulty of the proof-of-work to achieve more fixed rate. But if the difficulty of a transactions 

depends on the difficulty of the parent transactions, then there may be incentives to choose old parent 

transactions instead of new ones to reduce the PoW required, if the current rate is over the fixed rate. 

Just to be sure Moore's law does permit spamming in the future, one could embed a re-targeting rule 

such that every 18 months the difficulty is doubled. It seems preferable that the last M transactions 

(such as M=10K) of a certain transaction vote on an increase or decrease of the difficulty of the 

following transactions (with small step changes). Then users could vote more freely on how the net-

work should work without having any immediate benefit to bias voting. This is a similar problem as 

the current Bitcoin block-chain increase problem: only miners can vote, because user votes are prone 

to Sybil attacks. In DagCoin, every user can vote, as long as it transact. 

Conclusion 

We’ve presented a new cryptocurrency design based on a DAG structure where there are no fixed 

blocks and where each transaction carries its own proof of work. Also we’ve presented two optimi-

zations that allow storing and dynamically updating the DAG-chain consuming low CPU resources. 

It must be noted however that the proposed DAG-coin cannot verify new transactions using only a 

subset of the block-chain, such as Bitcoin’s UTXO set. However, by storing the most recent transac-

tions in a fast cache, and by using checkpoints where such that older transactions cannot be references, 

the system can be made as fast as Bitcoin, or faster. 

 

 

 

 

 


