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Abstract. Blind signatures allow maintaining privacy while using third-party 
services such as digital cash server. Existing proposals of blind signatures for 
ECC lack compatibility with standard ECDSA and thus cannot be used directly 
in Bitcoin transactions. We propose a scheme that allows generating a blind 
signature compatible with existing Bitcoin protocol. The client requests a set of 
parameters from the signing server and synthesizes a public key to use in 
Bitcoin transaction. To redeem the funds, client transforms the hash of the 
transaction (“blinds”), sends to the server to sign and then transforms the 
signature (“unblinds”) to arrive at a valid ECDSA signature. The signed 
transaction is published revealing the synthetic public key and the unblinded 
signature. Signing server cannot learn about its participation neither from the 
public key, nor from the signature. The scheme is particularly useful in a multi-
signature transaction (“M-of-N”) that securely locks funds using private keys of 
third parties, but keeps information about the funds absolutely private to the 
initiator and the recipient of the transaction.


1. Introduction!
A blind signature scheme is a protocol allowing the recipient to obtain a valid signature for a 
message, from the signer without him or her seeing the message. Blind signature scheme is a 
digital signature scheme which satisfies non-forgeability and unlinkability properties. Non-
Forgeability property means that only signer should be able to generate valid signatures. Every 
digital signature scheme should satisfy non-forgeability property. Unlinkability property means no 
one can derive a link between a protocol view and a valid blind signature except the requester or 
the author of the message. [1] The concept of blind signatures was introduced by David Chaum in 
1982 [2] and extended by multiple authors in the Elliptic Curve Cryptography (ECC) [3] [4]. All 
works on blind signatures for ECC describe fairly simple methodology to blind messages and 
unblind signatures, but they all lack compatibility with existing standardized ECDSA scheme.


What is needed is a scheme that produces a compatible ECDSA signature which can be used in 
the current systems and protocols relying on ECDSA without any change on their part. In 
particular, author seeks a solution applicable to ECDSA signatures on curve secp256k used in 
Bitcoin protocol. Ability to make blind signatures directly for Bitcoin transactions would allow to 



separate signing party (a “custodian”) from knowing anything about the funds they are protecting. 
This can be viewed as an ultimate solution for secure storage of Bitcoin as any individual 
computer system can never be fully trusted (e.g. RNG may leak information about private keys 
through ECDSA signatures [5]). By spreading the trust between several independently operated 
computers, the risk is significantly reduced. Attacker not only has to compromise several 
computers instead of just one, but also has to link together their cooperation to find out which 
transaction to target (blind signatures make it ver). Therefore the scheme enables safer Bitcoin 
storage on convenient personal computers and smartphones without additional specialized 
hardware or compromising privacy.


2. Use case!
Lets say, Alice wants to protect her bitcoins against active attackers. All her personal computing 
devices may be confiscated or secretly compromised in order to access her secrets. Her “paper 
wallets” may be stolen, or become inaccessible. Specialized “hardware wallets” can be badly 
compromised as well. To protect her funds, Alice may choose to lock them in a “5-of-9” 
multisignature transaction with 9 of her friends (possibly located in different jurisdictions, using 
different hardware and software). To unlock her funds, she will need any 5 of her friends to sign 
the redeeming transaction. Friends are instructed to authenticate Alice either in person, by phone 
or via other secure channel. As long as any 5 of her friends are available, did not lose their keys 
and no one is able to coordinate attack against the majority of the friends at the same time, her 
funds are much more safe than locked with just her personal keys. The only problem: Alice reveals 
her funds to all her friends. This reduces security drastically as some friends may attempt to 
conspire against Alice if she posesses a lucrative amount of bitcoins. By using blind signatures, 
Alice may enjoy security provided by her friends, without revealing the transaction she is signing. 
Assuming her friends are keeping their money safe in a similar way, all participants mutually help 
each other without revealing sensitive information.


3. Ordinary ECDSA signature!
Let n be an order of the elliptic curve.


Let G be a standard “generator” point on the curve.


Let t be a private key (integer on the interval [1, n – 1]).


Let T be a public key corresponding to t (by definition, T = t·G).


Let h be a cryptographic hash of a message to be signed (integer on the interval [1, n – 1]).


Let k be a unique random number chosen per signature (integer on the interval [1, n – 1]).


!
Then the ECDSA signature is defined as a pair (Kx, s), where:


!
	 Kx is x-coordinate of the point k·G on the elliptic curve.




	 s = k-1·(h + t·Kx) mod n


	 Note: k-1 is an inverse of k modulo n such that (k-1·k) = 1 mod n.


!
For brevity we will not present the verification algorithm. Suffice to say, the verification requires 3 
objects to be present: message hash h, public key T (=t·G) and a signature pair (Kx, s).


4. Transformations!
We observe that the core of the signature is a linear transformation of a parameter h with both 
factors unknown to the recipient: s = a·h + b. We will use this idea to perform blinding of the 
message and unblinding of the signature. 


Lets imagine Alice wants Bob to sign a Bitcoin transaction blindly. First, she needs to send him a 
transformed (“blinded”) hash of the transaction. Then, Bob transforms (“signs”) the blinded hash 
and returns the resulting number to Alice. Alice then transforms (“unblinds”) Bob’s number and 
arrives at a valid signature. This signature can be verified by some synthetic public key that Alice 
computed in advance from a combination of her secret parameters and Bob’s public parameters.


Let a, b, c and d be unique random numbers within [1, n – 1] chosen by Alice.


Let p and q be unique random numbers within [1, n – 1] chosen by Bob.


Alice computes the hash of her message h and then transforms it as follows:


	 h2 = a·h + b mod n	 	 (blinding)


She sends h2 to Bob who performs another transformation:


	 s1 = p·h2 + q mod n	 	 (signing)


Bob sends s1 back to Alice. She performs the final transformation:


	 s2 = c·s1 + d mod n 	 	 (unblinding)


The resulting number s2 should be a part of the signature (Kx, s2) verifiable by a public key T (= 
t·G). The only question: is it possible to determine Kx and T without compromising the secrecy of 
all chosen parameters? Also, T must be known in advance, before h is determined.


Lets expand s2 as transformation of h:


	 s2 = c·(p·(a·h + b) + q) + d mod n 	  

	 s2 = c·p·a·h + c·p·b + c·q + d mod n 		 	 	 	 	 	 	 (1)


At the same time we want s2 to be the second part of the ECDSA signature as a function of h:


 	 s2 = k-1·(h + t·Kx) = k-1·h + k-1·t·Kx mod n	 	 	 	 	 	 	 (2)


where


	 k — unique secret number within [1, n – 1]




	 Kx —x-coordinate of the point k·G (this number is the first half of the signature)


	 t — private key, number within [1, n – 1] 

We need Bob to know k and t, while Alice needs to know Kx and t·G. By comparing (1) and (2) we 
can find the relation between ECDSA parameters with our chosen parameters a, b, c, d, p, q.


From (1) and (2) as equivalent linear transformations of an independent variable h follows:


	 k-1 = c·p·a mod n	 	 	 	 	 	 	 	 	 	 (3)


	 k-1·t·Kx = c·p·b + c·q + d mod n	 	 	 	 	 	 	 	 (4)


From (3) we can find k and K:


	 k = (c·p·a)-1 mod n	 	 	 	 	 	 	 	 	 	 (5)


	 K = (c·a)-1·p-1·G	 	 	 	 	 	 	 	 	 	 (6)


It’s evident from (6) that Bob can communicate p-1·G to Alice without revealing p. So Alice can 
know K and Kx without knowing k.


From (4) we can find t and T:


	 t = Kx-1·(k·c·p·b + k·c·q + k·d) mod n		 	 	 


Expanding k:	 


	 t = Kx-1·((c·p·a)-1·c·p·b + (c·p·a)-1·c·q + (c·p·a)-1·d) mod n 

	 t = (a·Kx)-1·(b + q·p-1 + d·c-1·p-1) mod n


Multiplying by G to arrive at a target public key:	 


	 T = t·G = (a·Kx)-1·(b·G + (q·p-1·G) + d·c-1·(p-1·G))	 	 	 	 	 	 (7)


From (7) we see that Bob can communicate EC points (q·p-1·G) and (p-1·G) without compromising 
secrecy of p or q.


Now we have everything to present the protocol of constructing a blind signature by Bob for Alice.


5. Core protocol!
1. Alice chooses random numbers a, b, c, d within [1, n – 1].


2. Alice asks Bob to generate random numbers p, q within [1, n – 1].


3. Bob stores his numbers p, q for later use when time comes to sign something.


4. Bob sends two EC points to Alice: P = (p-1·G) and Q = (q·p-1·G).


5. Alice computes K = (c·a)-1·P.


6. Alice computes public key T = (a·Kx)-1·(b·G + Q + d·c-1·P) and uses it in the output script of 
her transaction which locks her funds. Bob cannot know if his parameters were involved in T 
without the knowledge of a, b, c and d.




7. Alice sends her transaction to the Bitcoin network. Once it is included in the blockchain, 
transaction can only be redeemed if Bob helps Alice to produce a blind signature.


8. To redeem the funds, Alice creates another transaction that sends them elsewhere.


9. Alice computes the hash h of her transaction to be signed.


10. Alice blinds the hash and sends h2 = a·h + b (mod n) to Bob.


11. Bob verifies the identity of Alice via separate communications channel.


12. Bob verifies that parameters p and q were never used.


13. Bob signs the blinded hash and returns the signature to Alice: s1 = p·h2 + q (mod n).


14. Bob marks parameters p and q as already used for the hash h2.


15. Alice unblinds the signature: s2 = c·s1 + d (mod n).


16. Alice can use (Kx, s2) to redeem previously locked funds. This will be a valid ECDSA signature 
of hash h verifiable by public key T.


17. Every node on the network will acknowledge her signature, but she wouldn’t be able to 
produce it alone and Bob, who helps her, will have zero knowledge about the transaction he 
helped to sign.


6. Security Note!
Like in ordinary ECDSA, the secret parameters should never be reused in a different signature. In 
ECDSA, parameter k is either always random or at least pseudo-random, determined by the mix 
of the private key and the hash being signed. In our scheme, all 6 parameters must be chosen by 
Alice and Bob in advance, well before the hash h becomes known. While Alice has to keep track 
of her own pending transactions and signatures, it’s not a significant burden for her to not reuse 
parameters for new signatures. However, Bob also must keep track of used parameters to not 
allow Alice (or whoever took over her computer) find them out. 


In practice, the scheme only protects Alice and she trusts Bob to cooperate. So even if her 
computer is compromised, Bob will not sign anything unless Alice identifies herself via other 
means (using phone call, for example). This allows us to put more control over parameters in 
hands of Alice and less in Bob. Alice will still not be able to know Bob’s secret numbers, but she 
will be able to ask Bob for a specific set of parameters matching the transaction she is about to 
create. As a result, Bob does not need to keep track of which parameters were already used 
because Alice will take care of that. Bob only needs a simple mechanism to generate required 
parameters sequentially on demand.


7. Generating and exchanging parameters!
Alice will request parameters from Bob more than once to use in multiple transactions. In order to 
simplify the implementation, we propose a standard way to generate secret parameters and 



exchange public parameters. This is not required for the scheme to work, but is very useful to be 
implemented in a standard way to have interoperable implementations.


Both Alice and Bob need to keep track of series of random parameters per signature. If Alice 
reuses the same parameters for another signature, it will allow recovery of the private key t. 
According to security note (#6), we will have Alice to keep track of the used parameters.


To generate several random numbers we will use a key derivation scheme described in BIP32 
(“Hierarchical Deterministic Wallets”). In that scheme, a sequence of keys is derived from a single 
extended private or public key using a simple incremented index.


The operation is as follows.


1. Alice creates an extended private key u.


2. Bob creates an extended private key w. 


3. Bob sends the corresponding extended public key W to Alice.


4. Alice assigns an index i for each “blind” public key T to use in a transaction. Alice must use 
each value of i only for one transaction output.


5. Alice generates a, b, c, d using HD(u, i), a “hardened” derivation according to BIP32:


	 a = HD(u, 4·i + 0)


	 b = HD(u, 4·i + 1)


	 c = HD(u, 4·i + 2)


	 d = HD(u, 4·i + 3)


6. Alice generates P and Q via ND(W, i), normal (“non-hardened”) derivation according to BIP32:


	 P = ND(W, 2·i + 0)


	 Q = ND(W, 2·i + 1)


7. Using a, b, c, d, P and Q, Alice computes T and K.


8. Alice creates a transaction that uses public key T and publishes it on the blockchain.


9. Alice keeps tuple (T, K, i) in her wallet to be able to request and unblind the signature from 
Bob when redeeming the funds.


10. To redeem funds locked with public key T, Alice finds in her wallet K and i. Alice recovers her 
secret parameters a, b, c, d using HD(u, i).


11. Alice sends Bob a blinded hash h2 = a·h + b (mod n) and index i.


12. Because P and Q are not public keys of p and q, Bob needs to do extra operations to derive p 
and q from w and i (following BIP32 would not be enough):


	 From P = p-1·G = (w + x)·G (where x is a factor in ND(W, 2·i + 0)) follows:


	 	 p = (w + x)-1 mod n


	 From Q = q·p-1·G = (w + y)·G (where y is a factor in ND(W, 2·i + 1)) follows:


	 	 q = (w + y)·(w + x)-1 mod n 	 




	 Factors x and y are produced according to BIP32 as first 32 bytes of HMAC-SHA512. See 
[BIP32] for details.


13. Bob computes blind signature s1 = p·h2 + q (mod n) and sends it to Alice (after verifying her 
indentity).


14. Alice receives a blind signature, unblinds it and arrives at a valid signature (Kx, s2).


8. Conclusion!
We presented a complete scheme to enable blind signatures in Bitcoin transactions. In this 
scheme, a signing party can provide a service of storing private keys and authenticating 
transactions without knowing anything about the funds being transferred. Combined with 
multisignature transactions, this scheme enables one to privately lock some amount of money 
with multiple parties.
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