
6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=m… 1/21

Bryan Bishop <kanzure@gmail.com>

[bitcoin-dev] Hardware Wallet Standard
26 messages

Jonas Schnelli via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Tue, Aug 16, 2016 at 9:10 AM
Reply-To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Bitcoin development mailing list <bitcoin-dev@lists.linuxfoundation.org>

Hi

Unfortunately, there is no standard in how desktop- or mobile-wallets
can interact with a hardware device resulting in wallet vendors adding
plugins with proprietary code for non-standardized interfaces.

I started a BIP (extreme draft, feel free to improve language, grammar
and content) to address this missing part of the ecosystem.

I think it would be extremely helpful if @ledger, @trezor,
@voisin/@breadwallet, @electrum, @bitpay (and more?!) would help working
on a such standard.

The BIP describes two approaches how to communicate (pipe and
URI-scheme) with the signing-devices app, although, in my opinion, all
major platform do support the URI approach (maybe we could drop the pipe
approach then).
The URI approach means that there is no need to configure the
application location in order to start a inter-process(-app) communication.

Mediawiki:
https://github.com/jonasschnelli/bips/blob/8abb51f0b21b6664388f6e88f6fd642c90d25dca/bip-undef-0.mediawiki

</jonas>

---- BIP (rough early stage draft)

<pre>
 BIP: ???
 Title: Detached Signing
 Author: Jonas Schnelli <dev@jonasschnelli.ch>
 Status: Draft (early stage!)
 Type: Standards Track
 Created: 2016-08-02
</pre>

== Abstract ==

This BIP describes a way how wallet applications can decouple sensitive
privatekeys from the internal keychain and interact with a
signing-devices (hardware wallet, "cold" storage) over a generic
interface in order to get signatures.

== Motivation ==

It seems like that the current approach for allowing signing-devices to
interact with third party wallets is to build a plugin [1][2][3]. Adding
plugins for each hardware wallet type will increase possible security
issues and result in multiple proprietary-third-party code within the
wallet application with very similar structures.

https://github.com/jonasschnelli/bips/blob/8abb51f0b21b6664388f6e88f6fd642c90d25dca/bip-undef-0.mediawiki
mailto:dev@jonasschnelli.ch

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=m… 2/21

A generic interface how wallets can interact with signing-devices would
result in better user experience, less critical code and simpler
adaption for various signing-devices.

== Specification ==

In order to support desktop- and smartphone-wallet-applications, this
BIP describes two slightly different approaches (process pipe and URI
call) in how to interact with the signing-devices. If possible, the
modern URI approach should be chosen.

=== Signing-Device-Controller-Application ===

To allow a generic interface while still allowing different ways how to
internally communicate with the signing device itself (USB, TCP/IP,
air-gapped Qr-Code scanning, etc.) a controller-application is required.

=== General signing process ===

The wallets signing process must be according the following principal:
* Wallet prepares signing-request-object including bitcoin-transaction
or message together with metadata (scriptPubKey, hd-keypath of the inputs)
* Wallet passes signing-request-object to the
signing-device-controller-application
* Signing-device-controller-application processes
signing-request-object, eventually shows UI, user can sign or cancel
* Signing-device-controller-application sends back
signing-response-object with signatures or an error
* Wallet processes signing-response-object and completes data-object
creating process (example: add signatures to transaction and broadcast)

=== Desktop Process Intercommunication ===

Desktop wallets can interact with a signing device over process
intercommunication (pipe) together with a
signing-device-controller-application.
As specified below, the signing-request-object is a URI string passed
through the pipe. The desktop wallet needs to wait (with a recommended
timeout between 1 and 5 minutes) until the signing-response-object will
be sent back by the signing-device-controller-application.

=== Smartphone/URI App Intercommunication ===

Smartphones and modern operating systems are trying to sandbox
applications and interprocess communication (on pipe level) is mostly
disallowed.
On smartphones, we must use URI-schemes.
The wallet can pass information to the
signing-device-controller-application by using a predefined URI scheme.

<code>detatchedsigning://<command>?<querystring>&returnurischeme=<returnurischeme://></code>

The <code>querystring</code> must be URI encoded.
RFC 2616 does not specify a maximum length of URIs (get request). Most
modern smartphone operating system allow URIs up to serval megabytes.
Signing complex data-structure is therefore possible.

The <code>returnurischeme</code> must contain a URI schema where the
result of the signing process should be returned to.
The returnurischeme must be populated and "opened" once the signing
process has been completed (or cancled).

=== Signing Request ===

The signing request is a flexible URI-Query-String that will be used by

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=m… 3/21

the Signing-device-controller-application for user confirmation as well
as for creating the signature.

The URI-query-string must conform to the following format:

<code>detatchedsigning://sign?type=<bitcoin-p2pkh|bitcoin-p2sh|bitcoin-msg>&data=<raw-transaction|message>&
inputscripts=<scriptPubKey-input0>,<scriptPubKey-input1>,...&inputhdkeypath=<hdkeypath0>,<hdkeypath1>,...&
returnscheme=<returnurischeme></code>

type = type of the data to sign
data = raw unsigned bitcoin transaction or text-message
(optional)inputscripts = scriptPubKey(s) of the inputs in exact order
(optional)inputhdkeypath = hd-keypath of the inputs in exact order
(optional)returnscheme = a URI scheme where the response must be sent to
(smartphone approach)

* inputhdkeypath or inputscripts must be provided.

=== Signing Response ===

The signing response is a flexible URI-Query-String that will be sent
back to the wallet application and must contain the signatures or an
error code.
The URI-query-string can be opened (smartphone approach) or will be sent
back though the interprocess pipe.

<code><returnurischeme>://signresponse?errorcode=<errorcode>&signatures=<signature-input0>,<signature-input0>,...
</code>

In case of ECDSA, the returned signatures must be normalized compact
signatures with the size of 64bytes (128 hex chars).

==== Possible error code ====

0 = no error
1 = user canceled
2 = timeout
10 = missing key identifier (missing HD keypath or input scriptpubkey)
11 = unsupported signing type
12 = could not resolve script
50 = unknown internal error

==== Examples ====

===== Simple p2pkh transaction =====
Unsigned raw transaction:
<code>0100000001fd3cd19d0fb7dbb5bff148e6d3e18bc42cc49a76ed2bfd7d760ad1d7907fd9ce0100000000ffffff
ff0100e1f505000000001976a9149062e542a78d4fe00dcf7cca89c24a8013c381a388ac00000000</code>
(input ced97f90d7d10a767dfd2bed769ac42cc48be1d3e648f1bfb5dbb70f9dd13cfd
vout:1, output: P2PKH mtgQ54Uf3iRTc9kq18rw9SJznngvF5ryZn 1 BTC)

signing-request URI must be:
<code>detatchedsigning://sign?type=bitcoin-p2pkh&data=0100000001fd3cd19d0fb7dbb5bff1
48e6d3e18bc42cc49a76ed2bfd7d760ad1d7907fd9ce0100000000ffffffff0100e1f505000000001976a91490
62e542a78d4fe00dcf7cca89c24a8013c381a388ac00000000&inputscripts=76a914531148ad17fdbffd4bac72d4
3deea6c7cf0387d088ac&inputhdkeypath=m/0'/0'/1&returnscheme=myapp</code>
The <code>inputhdkeypath</code> is optional in this case

signing-response URI must be:
<code>detatchedsigning://signresponse?error=0&signatures=<128hex-chars></code>

===== Simple a bitcoin message =====
Message: <code>Lorem ipsum dolor sit amet</code>

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=m… 4/21

signing-request URI must be:
<code>detatchedsigning://sign?type=bitcoinmsg&data=Lorem+ipsum+dolor+sit+amet&inputhdkeypath=m/0'/0'/2</code>

signing-response URI must be:
<code>detatchedsigning://signresponse?error=0&signatures=<128hex-chars></code>

=== Support for multiple signing-devices ===
Must operating systems allow only one registered application per
URI-scheme. To support multiple signing-devices, wallets and
signing-devices can optional add support for brand based URI-schemes.

In addition to the standard URI scheme,
signing-devices-controller-applications can register an additional URI
scheme (with the identical request/response syntax and logic) including
a brand-identifier.

Registering a brand-identifier based URI scheme without registering the
default URI scheme is not allowed.

Wallets can detect if a certain brand based URI scheme is supported and
therefore gives user a selection if multiple signing-devices where
detected [4][5].

<code>detatchedsigning<brandid>://</code>

Supported brand-identifiers are:
* trezor
* ledger
* keepkey
* digitalbitbix

== References ==
[1] https://github.com/spesmilo/electrum/pull/1662
[2] https://github.com/spesmilo/electrum/pull/1391
[3] https://github.com/bitpay/copay/pull/3143
[4]
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplication_Class/
[5]
https://developer.android.com/reference/android/content/pm/PackageManager.html
== Acknowledgements ==

== Copyright ==
This work is placed in the public domain.

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Pavol Rusnak via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Tue, Aug 16, 2016 at 9:48 AM
Reply-To: Pavol Rusnak <stick@satoshilabs.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

I think it does not make sense to try to get this standardized for

https://github.com/spesmilo/electrum/pull/1662
https://github.com/spesmilo/electrum/pull/1391
https://github.com/bitpay/copay/pull/3143
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplication_Class/
https://developer.android.com/reference/android/content/pm/PackageManager.html
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=15693b08a2e34238&attid=0.0.1&disp=inline&safe=1&zw

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=m… 5/21

current Bitcoin transactions. They are just too complex.

What might be interesting is to have something similar for Segwit and
Lightning transactions.

* TREZOR performs extended validation of the inputs, when all of
prev-txs are streamed into the device and validated. Your standard does
not tackle this at all and I don't think it's worthy to make this
standard unnecessarily complicated.

--
Best Regards / S pozdravom,

Pavol "stick" Rusnak
SatoshiLabs.com

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Jonas Schnelli via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Tue, Aug 16, 2016 at 10:13 AM
Reply-To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Pavol Rusnak <stick@satoshilabs.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

> I think it does not make sense to try to get this standardized for
> current Bitcoin transactions. They are just too complex.
>
> What might be interesting is to have something similar for Segwit and
> Lightning transactions.
>
> * TREZOR performs extended validation of the inputs, when all of
> prev-txs are streamed into the device and validated. Your standard does
> not tackle this at all and I don't think it's worthy to make this
> standard unnecessarily complicated.

I'm aware of this approach but I don't think this makes sense long term.
We need a better way on the protocol level to validate inputs amounts
(where segwit is a first step towards this).

IMO, not having a standard for hardware wallet interfaces/communication
will long term result in reducing the end user experience.

I think we should collaborate together and work out a standard.

My goal is to add hardware wallet support in Bitcoin-Core where adding
proprietary code (plugin-ish) is something we don't want to do for the
sake of security and compatibility.

As said, the "BIP" is very draft and I'm happy to include the input
streaming as part of it (or you could add it if you want because you
have more experience with it).

</jonas>

bitcoin-dev mailing list

mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=15693dad3652f952&attid=0.0.1&disp=inline&safe=1&zw

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=m… 6/21

bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Pavol Rusnak via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Tue, Aug 16, 2016 at 10:21 AM
Reply-To: Pavol Rusnak <stick@satoshilabs.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

On 16/08/16 17:13, Jonas Schnelli wrote:
> I'm aware of this approach but I don't think this makes sense long term.
> We need a better way on the protocol level to validate inputs amounts
> (where segwit is a first step towards this).

So you basically rephrased what I am saying but in another words.

> I think we should collaborate together and work out a standard.

I am for it. I am just saying we should create a standard for new forms
of transactions (Segwit and maybe Lightning), not the current "ugly" ones.
[Quoted text hidden]

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Jochen Hoenicke via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Tue, Aug 16, 2016 at 12:48 PM
Reply-To: Jochen Hoenicke <hoenicke@gmail.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: bitcoin-dev@lists.linuxfoundation.org

Hello Jonas,

thanks for your efforts of writing the draft for the standard.

First, this only describes detached signing. A wallet also needs to
connect with a hardware wallet at some time to learn the xpubs
controlled by the hardware. Do you plan to have this in a separate
standard or should this also be included here? Basically one needs one
operation: get xpub for an HD path.

From a first read over the specification I found the following points
missing, that a fully checking hardware wallet needs to know:

- the amount spent by each input (necessary for segwit).
- the full serialized input transactions (without witness informations)
to prove that the amount really matches (this is not necessary for segwit)
- the position of the change output and its HD Path (to verify that it
really is a change output).
- For multisig change addresses, there are more extensive checks
necessary: All inputs must be multisig addresses signed with public
keys derived from the same set of xpubs as the change address and use
the same "m of n" scheme. So for multisig inputs and multisig change
address the standard should allow to give the parent xpubs of the other
public keys and their derivation paths.

mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=15693ea666da5444&attid=0.0.1&disp=inline&safe=1&zw
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=15693f24a35ed2a7&attid=0.0.1&disp=inline&safe=1&zw

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=m… 7/21

It is also a bit ambiguous what the "inputscript" is especially for p2sh
transactions. Is this always the scriptPubKey of the transaction output
that is spent by this input? For p2wsh nested in BIP16 p2sh transactions
there are three scripts

 witness: 0 <signature1> <1 <pubkey1> <pubkey2> 2 CHECKMULTISIG>
 scriptSig: <0 <32-byte-hash>>
 (0x220020{32-byte-hash})
 scriptPubKey: HASH160 <20-byte-hash> EQUAL
 (0xA914{20-byte-hash}87)
 (quoted from BIP-141).

In principle one could put witness and scriptSig (with "OP_FALSE" in
places of the signatures) in the raw transaction and make inputscript
always the scriptPubKey of the corresponding output. Then one also
doesn't need to distinguish between p2pkh or p2sh or p2wpkh or "p2wpkh
nested in bip16 p2sh" transactions.

Regards,
 Jochen

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Luke Dashjr via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Tue, Aug 16, 2016 at 2:22 PM
Reply-To: Luke Dashjr <luke@dashjr.org>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: bitcoin-dev@lists.linuxfoundation.org, Jonas Schnelli <dev@jonasschnelli.ch>
Cc: Pavol Rusnak via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org>

On Tuesday, August 16, 2016 2:10:04 PM Jonas Schnelli via bitcoin-dev wrote:
> The BIP describes two approaches how to communicate (pipe and
> URI-scheme) with the signing-devices app, although, in my opinion, all
> major platform do support the URI approach (maybe we could drop the pipe
> approach then).

IMO it's kindof ugly to abuse URIs for communication. Stdio pipes are pretty
universally supported, why not just use those?

On the other hand, no matter how the plugin is implemented, it's still a
security risk, and requires installation (which the user might not have access
for). It would be best if the hardware protocol were standardised, so the user
doesn't need a plugin of *any* sort... I notice some hardware wallets have
begun to implement (or reuse) Trezor's interface, so that would seem a good
place to start?

Luke

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

Aiqin Li via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Tue, Aug 16, 2016 at 6:36 PM
Reply-To: Aiqin Li <liaiqin.lanzhou@gmail.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=1569478b5199bde0&attid=0.0.1&disp=inline&safe=1&zw
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=m… 8/21

Out of curiosity, what is the technical reason a normal ECC-enabled smart-card cannot be used for the hardware signing
component of a wallet app? (Since if it can, its standardization must have been discussed.)

Debian wiki gives a list of such cards with related opensource software to access them.

Regards
[Quoted text hidden]

Peter Todd via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Tue, Aug 16, 2016 at 7:14 PM
Reply-To: Peter Todd <pete@petertodd.org>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Aiqin Li <liaiqin.lanzhou@gmail.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

On Wed, Aug 17, 2016 at 09:36:02AM +1000, Aiqin Li via bitcoin-dev wrote:
> Out of curiosity, what is the technical reason a normal ECC-enabled
> smart-card cannot be used for the hardware signing component of a wallet
> app? (Since if it can, its standardization must have been discussed.)
>
> Debian wiki gives a list of such cards with related opensource software to
> access them.

I'm not aware of any ECC-enabled smart-cards that can sign the specific curve
that Bitcoin uses, not to mention the fact that those smartcards generally only
speak higher level protocols than raw signature generation, precluding the
signing of bitcoin transactions.

The other serious problem - and this is a problem with smartcards in general
anyway - is that without Bitcoin-specific logic you're just signing blindly; we
recently saw the problems with that with the Bitfinex/BitGo hack. And even
then, without a screen most of the hardware wallets in are still just signing
blindly, with at best hard-to-use limits on maximum funds moved
per-transaction. Also note how even hardware wallets with a screen, like
Trezor, aren't yet able to authenticate who you are paying.

--
https://petertodd.org 'peter'[:-1]@petertodd.org

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Thomas Daede via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Tue, Aug 16, 2016 at 7:03 PM
Reply-To: Thomas Daede <bztdlinux@gmail.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: bitcoin-dev@lists.linuxfoundation.org

On 08/16/2016 12:22 PM, Luke Dashjr via bitcoin-dev wrote:
> It would be best if the hardware protocol were standardised, so the user
> doesn't need a plugin of *any* sort... I notice some hardware wallets have
> begun to implement (or reuse) Trezor's interface, so that would seem a good
> place to start?

I also agree with this - the user experience would be a lot better
without the need to install custom adapter software, especially for the
desktop case.

There could be two layers to the specification - the raw messages that
need to be passed, and the transport mechanism to pass them (USB HID, QR
code, audio...). For the most common case (USB), both layers could be

https://petertodd.org/
http://petertodd.org/
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=15695d9802ed50b7&attid=0.0.1&disp=inline&safe=1&zw

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=m… 9/21

defined, and other transports could be added later. This split already
exists in the draft specification, though it's not very clear (URIs
include return URIs that don't make sense for a pipe, for example).

The existing URI scheme, while allowing disambiguate by manufacturer,
provides no way to to enumerate available manufacturers or enabled
wallets. This means that the "driver" would have to include a GUI to
select this. Also, passing return URIs seems rather fragile - are there
any other examples of protocols that use URIs for bidirectional IPC?

Thomas
[Quoted text hidden]

Thomas Kerin via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Tue, Aug 16, 2016 at 7:25 PM
Reply-To: Thomas Kerin <me@thomaskerin.io>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: bitcoin-dev@lists.linuxfoundation.org

Hi all,

Thanks again Jonas for starting this!

I worked on a similar proposal a while back (never posted), approaching the same problem as if a merchant's website
accepted xpubs/public keys, created multi-signature addresses, and wanted the user to easily sign offline instead of using
some javascript code / using Core's debug console / coinb.in

Happily the procedure is largely the same, though I would echo Jochen's point that there needs to be a way to request an
xpub/public key.

The redeemScript and witnessScript are also required fields for full validation & signing a transaction input if it's P2SH, or
just the witnessScript if it's bare V0_P2WSH

Since the output amounts are required, so maybe instead provide serialized TxOut's? or Utxo's i.e: [txid, vout, amount,
scriptPubKey].

The protocol ought to be as stateless as possible - it can't be assumed whether the redeemScript and other details will
ever be saved on the device - so perhaps provide the redeemScript + witnessScript as the final fields on the Utxo
structure above.

I do think it enables two important choices for bitcoin users:

* it might be preferable to provide your own xpub vs generating a brand new HD key to potentially lose.

* you could leverage the services provided by [random example] GreenAddress without necessarily having to rely on
signing code provided by them, and so end up only having to trust only one ECDSA implementation when interacting with
a wide number of services

All the best

Thomas
[Quoted text hidden]

[Quoted text hidden]

bitcoin-dev mailing list

bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

[Quoted text hidden]

[Quoted text hidden]
[Quoted text hidden]

http://coinb.in/
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 10/21

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Jonas Schnelli via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Wed, Aug 17, 2016 at 2:24 AM
Reply-To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: bitcoin-dev@lists.linuxfoundation.org

Hi all

Thanks for the response.

Jochen's points:
===============
Indeed. There are some missing points and I'd like to work this into the
BIP. Thanks for bringing this up.

Along with a support for wallet-creation with a xpub from the signing
device, we might also want to support loading multiple pubkeys into a
keypool from the device (in case someone likes to use hardened
derivation at all levels). I guess this would not be over-complex to
achieve.

Luke's points:
=============

USB / Plugin/Driver problematic

I don't think it would be wise to set Trezors USB communication
(hardware interface) as "the standard". A) A USB stack/interaction in
wallets should be avoided IMO. B) This approach won't work for some
platforms (like iOS) due to technical and legal restrictions.

In my opinion, each hardware wallet has to provide custom software in
any case. We don't want to standardize how a hardware wallet has to do
backups, recovers, firmware upgrade, etc. and if we agree on that, then
hardware wallets must provide an application (mostly Chrome extensions
today) to implement theses processes.

Also diversity at the hardware interface will reduce centralized risks
for weak security/vulnerabilities.

The proposed URI scheme approach does not require any sorts of
libraries/dependencies. USB HID can be a problem for cross platform
desktop wallets as well as it won't work of one of the major mobile
platform (iOS). USB HID interaction can be restricted or disabled in non
superuser setups where I'm not aware of any restriction on URI-Scheme level.

URI scheme instead of stdio/pipe

The URI scheme is not ugly. Its a modern way – implemented in almost all
platforms – how applications can interact with each other while not
directly knowing each other. Registering a URI scheme like "bitcoin://"
has some concrete advantages over just piping through stdio.

mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=15695e43db0c5935&attid=0.0.1&disp=inline&safe=1&zw

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 11/21

Also, the stdio/piping approach does not work for mobile platforms
(where the URI scheme works).

The URI scheme does not require any sorts of wallet app level
configuration (where the stdio/pipe approach would require to configure
some details about the used hardware wallet).

Thomase D.'s points:
===================
Standardizing to many layers of the interaction stack (including the
hardware interaction) will very likely result in vendors not sticking to
the standard.

I agree, the URI scheme has some fragility, but at a level where we can
handle it and with the advantage of abstracting the used brand/device
for privacy and security reasons.

> The existing URI scheme, while allowing disambiguate by manufacturer,
provides no way to to enumerate available manufacturers or enabled
wallets.

Most operating systems allow to check if a certain URL-Scheme is
supported (registered), this would allow at least to check for known
major vendors (like trezor, etc.) which should solve most
multi-hardware-wallet use-cases.

The URI return scheme does work fine and with the correct set timeouts
it should result in a neat user experience.
It's the proposed way of application intercommunication in Apple iOS [1]
and Google Android [2].

Conclusion:
===========
* Non of the points convinced me that there is a better alternative to
the proposed URI scheme interaction (please tell me if I'm stubborn).
* Also, we should move the end users UX in the center of the
problems-to-solve (and not overweight the ideal
code-/API-/hardware-interaction-design while ignoring the end user
experience).
* We should try to not over-standardize the interaction with the device
itself to allow flexibility on the hardware wallet vendor side.

[1]
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-
AppCommunication/Inter-AppCommunication.html
[2] https://developer.android.com/training/basics/intents/sending.html

</jonas>

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Nicolas Bacca via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Wed, Aug 17, 2016 at 2:27 AM
Reply-To: Nicolas Bacca <nicolas@ledger.fr>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html
https://developer.android.com/training/basics/intents/sending.html
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=1569763cb469776f&attid=0.0.1&disp=inline&safe=1&zw

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 12/21

On Wed, Aug 17, 2016 at 2:14 AM, Peter Todd via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> wrote:

I'm not aware of any ECC-enabled smart-cards that can sign the specific curve
that Bitcoin uses, not to mention the fact that those smartcards generally only
speak higher level protocols than raw signature generation, precluding the
signing of bitcoin transactions.

any Java Card supporting ECC can sign on user supplied Weierstrass curve parameters - you can find a good shopping
list at http://www.fi.muni.cz/~xsvenda/jcsupport.html (look for ALG_ECDSA_SHA256 on javacard.crypto.signature). The
NXP JCOP platform (found in Yubico Neo) is a popular choice, and then you can add your own custom logic for
validation.

--
Nicolas Bacca | CTO, Ledger

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

Nicolas Bacca via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Wed, Aug 17, 2016 at 2:40 AM
Reply-To: Nicolas Bacca <nicolas@ledger.fr>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

On Wed, Aug 17, 2016 at 9:24 AM, Jonas Schnelli via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> wrote:

Conclusion:
===========
* Non of the points convinced me that there is a better alternative to
the proposed URI scheme interaction (please tell me if I'm stubborn).

I'd also agree with this - and it's convenient to test against simulators / mocks.

--
Nicolas Bacca | CTO, Ledger

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

Dana L. Coe via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Wed, Aug 17, 2016 at 5:13 AM
Reply-To: "Dana L. Coe" <dana.coe@bitlox.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

> On Aug 17, 2016, at 15:24, Jonas Schnelli via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> wrote:
>
> URI scheme instead of stdio/pipe
> --------------------------------
> The URI scheme is not ugly. Its a modern way – implemented in almost all
> platforms – how applications can interact with each other while not
> directly knowing each other. Registering a URI scheme like "bitcoin://"
> has some concrete advantages over just piping through stdio.
>

mailto:bitcoin-dev@lists.linuxfoundation.org
http://www.fi.muni.cz/~xsvenda/jcsupport.html
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
mailto:bitcoin-dev@lists.linuxfoundation.org
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
mailto:bitcoin-dev@lists.linuxfoundation.org

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 13/21

> Also, the stdio/piping approach does not work for mobile platforms
> (where the URI scheme works).
>
> The URI scheme does not require any sorts of wallet app level
> configuration (where the stdio/pipe approach would require to configure
> some details about the used hardware wallet).

Hi everybody, just thought I’d throw my opinion in here.

The URI scheme is a nice idea, but this ignores the fact that hardware wallet vendors do most of the work on talking
between the computer/mobile and the wallet on a lower level of communication. In the case of BitLox, the base protocol is
Google’s ProtoBuf. The commands and transaction data is in a “schema” which is then encoded in different methods
accessible via ProtoBuf (depending on the data being sent). The advantages of this protocol is that it can be implemented
on a wide variety of platforms. (but that’s a whole 'nother discussion)

The URI would be handled waaaaay up in the specific application (such as the mytrezor wallet software or the various
standalone wallets) - nowhere near the actual hardware communications layer.

Best regards,
Dana
BitLox

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Jonas Schnelli via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Wed, Aug 17, 2016 at 6:34 AM
Reply-To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: "Dana L. Coe" <dana.coe@bitlox.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

Hi Dana

>> The URI scheme does not require any sorts of wallet app level
>> configuration (where the stdio/pipe approach would require to configure
>> some details about the used hardware wallet).
>
> Hi everybody, just thought I’d throw my opinion in here.
>
> The URI scheme is a nice idea, but this ignores the fact that hardware wallet vendors do most of the work on talking
between the computer/mobile and the wallet on a lower level of communication. In the case of BitLox, the base protocol is
Google’s ProtoBuf. The commands and transaction data is in a “schema” which is then encoded in different methods
accessible via ProtoBuf (depending on the data being sent). The advantages of this protocol is that it can be implemented
on a wide variety of platforms. (but that’s a whole 'nother discussion)
>
> The URI would be handled waaaaay up in the specific application (such as the mytrezor wallet software or the various
standalone wallets) - nowhere near the actual hardware communications layer.

This is maybe a question of the scope.
The BIP I'm proposing would make a clear interface cut between
wallet-with-unsigned-transaction and a signing-device (and maybe between
wallet-requires-pubkey, signing-device generate some pubkeys [or
non-hardened xpub]).

The detached-signing proposal does not duplicate work. It just moves the
current plugin design into a separate application. Plugins in security
and privacy critical wallet software is something that should probably
be avoided.

mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=15698291804b39fa&attid=0.0.1&disp=inline&safe=1&zw

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 14/21

It's intentional at a high level to allow maximum flexibility at the
hardware interaction layer.

Your protobuf example is a good use-case. You could implement your
custom processes behind the URI scheme (which is probably way more
efficient then writing a couple of wallet plugins where you – at the end
– mostly don't control the deployment and the source-code).

Defining a standard on the hardware interaction layer is possible, but a
fairly different approach.

</jonas>

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Marek Palatinus via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Wed, Aug 17, 2016 at 12:06 PM
Reply-To: Marek Palatinus <marek@palatinus.cz>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

Hi,

I fundamentally disagree with the concept of driving signing workflow by the wallet software. Wallet software does not
know in advance all data necessary for the signer to do the job. As Jochen mentioned above, Segwit vs Non-segwit use
cases are a good example, but there may be many.

Currently the TREZOR protocol works like device is a server and wallet is a client calling methods on it. It's like: "Sign this
for me, please", "Ok, give me this information", "Here it is", "Now I need this another piece".... "There is the signature".
Wallet does not know in advance what will go next, and it is for sake of simplicity. I'm quite happy with the protocol so far.

Considering the difference in between current hardware, I really don't think it is possible to find any minimal URI-based
API good enough for communicating with all vendors. What I see more likely is some 3rd party libraries (JS, C++, Python,
...) defining high-level API and implementing hardware-specific protocols and transports as plugins. That way vendors are
not limited by strict standard and application developers and services can integrate wide range of hardware wallets easily.
However, this can be done already and we do not need any standardization process (yet).

slush

[Quoted text hidden]
[Quoted text hidden]
[Quoted text hidden]

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

Bryan Bishop <kanzure@gmail.com> Wed, Aug 17, 2016 at 1:36 PM
To: Peter Todd <pete@petertodd.org>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>, Bryan Bishop
<kanzure@gmail.com>

On Tue, Aug 16, 2016 at 7:14 PM, Peter Todd via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> wrote:

mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=1569848b08f7fc71&attid=0.0.1&disp=inline&safe=1&zw
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
mailto:bitcoin-dev@lists.linuxfoundation.org

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 15/21

The other serious problem - and this is a problem with smartcards in general
anyway - is that without Bitcoin-specific logic you're just signing blindly; we
recently saw the problems with that with the Bitfinex/BitGo hack. And even
then, without a screen most of the hardware wallets in are still just signing
blindly, with at best hard-to-use limits on maximum funds moved
per-transaction. Also note how even hardware wallets with a screen, like
Trezor, aren't yet able to authenticate who you are paying.

"Welcome to my threat model."

In multisig scenarios, there must be a different "trust root" for each key. For example, storing two private keys next to
each other on the same web server is broken because if one key is compromised it is infinitely trivial to compromise the
second key. Using multiple web servers is also broken if the two servers are controlled by the same AWS keys or same
"help me get my servers back" support email request to whatever single sign-on service is used. In some cases, it can be
better to write software such that transaction data is served at a particular location, and another security-critical step is
responsible for downloading that data from the first machine, rather than the first computer directly pushing (with
authentication credentials in place for the attacker to compromise) the data to the second computer.

I recommend using hardware security modules (HSMs). It's important to have a public, reviewed bitcoin standard for
hardware wallets, especially HSMs. I expect this is something that the entire industry has a tremendous interest in
following and contributing to, which could even lead to additional resources contributed (or at the very least, more detailed
requirements) towards libconsensus work.

Instead of signing any bitcoin transaction that the hardware wallet is given, the hardware should be responsible for
running bitcoin validation rules and business logic, which I recommend for everyone, not only businesses. Without
running business logic and bitcoin validation rules, the actual bitcoin history on the blockchain could be a very different
reality from what the hardware thinks is happening. Using a different out-of-band communication channel, the hardware
could query for information from another database in another trust root, which would be useful for business logic to
validate against.

As for a screen, I consider that somewhat limited because you only get text output (and I don't know if I can reasonably
suggest QR codes here). With a screen, you are limited to text output, which can compromise privacy of the device's
operations and info about the wallet owner. An alternative would be to have a dedicated port that is responsibly only for
sending out data encrypted to the key of the wallet owner, to report information such as whatever the hardware's
transaction planner has decided, or to report about the state of the device, state of the bitcoin validation rules, or any
accounting details, etc. Additionally, even a signed transaction should be encrypted to the key of the device owner
because a signed transaction can be harmless as long as the owner still has the ability to control whether the signed
transaction is broadcasted to the network. It's "separation of concerns" for transaction signing and decrypting a signed
transaction should be unrelated and uncoupled.

Also I am eager to see what the community proposes regarding signed and authenticated payment requests.

((insert here general promotional statement regarding the value of reusable checklists used during every signing ritual
ceremony))

- Bryan
http://heybryan.org/
1 512 203 0507

Jonas Schnelli via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Thu, Aug 18, 2016 at 1:54 AM
Reply-To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Marek Palatinus <marek@palatinus.cz>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

Hi

> I fundamentally disagree with the concept of driving signing workflow by
> the wallet software. Wallet software does not know in advance all data
> necessary for the signer to do the job. As Jochen mentioned above,
> Segwit vs Non-segwit use cases are a good example, but there may be many.

I think this is easily solvable. The required data to verify and sign a
(standard) bitcoin transaction (including P2WSH multi-sig) is manageable.

IMO what a signing devices requires in order to sign a (standard)

http://heybryan.org/

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 16/21

transaction:
-> serialized tx
-> serialized tx of the inputs
-> scriptPubKey of the inputs
-> inputs redeem-Scripts
-> input amounts
-> position of the change output any maybe its keypath
-> cosigners pubkeys for inputs and changeaddress

This seems to be manageable for a 1 round communication?
Or do I miss something?

> Currently the TREZOR protocol works like device is a server and wallet
> is a client calling methods on it. It's like: "Sign this for me,
> please", "Ok, give me this information", "Here it is", "Now I need this
> another piece".... "There is the signature". Wallet does not know in
> advance what will go next, and it is for sake of simplicity. I'm quite
> happy with the protocol so far.

I think multiple rounds would still be possible with a clever design.
Although I could imaging that >95% of the users transaction would
require only a single "shot".

Whats the benefits of the multiple rounds communication? Would a single
round result in to many data transported?

Passing a 300kb chunk (assuming a large transaction) over a URI scheme
requires a couple of milliseconds on standard Smartphones or PCs.

> Considering the difference in between current hardware, I really don't
> think it is possible to find any minimal URI-based API good enough for
> communicating with all vendors. What I see more likely is some 3rd party
> libraries (JS, C++, Python, ...) defining high-level API and
> implementing hardware-specific protocols and transports as plugins. That
> way vendors are not limited by strict standard and application
> developers and services can integrate wide range of hardware wallets
> easily. However, this can be done already and we do not need any
> standardization process (yet).

The URI-based API allows transmitting data of multiple megabytes while
there is no need for...
* dependencies of any form (library, etc.)
* library support for a particular language
* platform that supports the dependencies of the library (like USBHID,
not supported by iOS)

Can you elaborate what benefits you would get from the library approach
and how the library API would be different form the proposed URI-scheme?

How would the library approach work on mobile platforms? Would USB be
the only supported hardware communication layer?

Thanks
--
</jonas>

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 17/21

signature.asc
1K

Marek Palatinus via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Thu, Aug 18, 2016 at 4:15 AM
Reply-To: Marek Palatinus <marek@palatinus.cz>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Jonas Schnelli <dev@jonasschnelli.ch>
Cc: Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

> Can you elaborate what benefits you would get from the library approach
and how the library API would be different form the proposed URI-scheme?

The main benefit is that you don't need "standard" to solve problem, but use natural tools in given environment and
programming stack. Build a "standard" on top of URI protocol is a huge limitation, which does not give any advantage.

We already see issues with dead simple "bitcoin uri" standard, it barely works in most of bitcoin apps. Think of vague
definitions of parameters or ability to send payment requests over it. HW API would be complicated by an order of
magnitude and I have serious concerns that it will be helpful for anything. So why complicate things.

> How would the library approach work on mobile platforms? Would USB be
the only supported hardware communication layer?

Interprocess communication/libraries/dependencies on Android are not bound to specific transport anyhow. Such library
could be used by any android app, and the library would implement proper transports for various supported vendors. USB
for Trezor, NFC for something different etc. If the point is "make life of app developers easier", let's do this and do not define
artifical "standards".

slush

[Quoted text hidden]

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

Jonas Schnelli via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Thu, Aug 18, 2016 at 4:35 AM
Reply-To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Marek Palatinus <marek@palatinus.cz>
Cc: Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

Hi

> The main benefit is that you don't need "standard" to solve problem, but
> use natural tools in given environment and programming stack. Build a
> "standard" on top of URI protocol is a huge limitation, which does not
> give any advantage.

Standards can help an ecosystem to grow, can help to sustain a good user
experience.

The hardware wallet vendors have used "natural tools" and look where we
are. We have *native* plugins in Electrum, Copay, etc. for different
hardware wallets. Mostly the plugins are in the code base of the wallet,
which makes it – in theory – impossible to change from the perspective
of the hardware wallet vendor (there is no control of the deployment if
there are bugs in the plugins code).
The plugins functions overlap significant.

I think this is a bad design for security critical applications.

What I want as hardware wallet user:
* I'd like to have a trusted application (layer) where I'm sure I'm

https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=1569c6e0403d8e10&attid=0.0.1&disp=inline&safe=1&zw
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 18/21

using software provided through my hardware wallet vendor.

What I want as hardware wallet vendor:
* I'd like to be able to provide and update a software layer (app) to my
customer with the ability to provide code signatures and security
updates anytime. I do want to control the user experience.

> We already see issues with dead simple "bitcoin uri" standard, it barely
> works in most of bitcoin apps. Think of vague definitions of parameters
> or ability to send payment requests over it. HW API would be complicated
> by an order of magnitude and I have serious concerns that it will be
> helpful for anything. So why complicate things.

As far as I know most bitcoin wallets do support the bitcoin:// URI
scheme quite well.
I agree that BIP70 is a mess (including the bitcoin:// additions).

The proposed URI scheme would be completely different. The only
similarity is using the URI scheme as transport layer (which is the
proposed long term inter-app communication layer by Apple and Google).

>> How would the library approach work on mobile platforms? Would USB be
> the only supported hardware communication layer?
>
> Interprocess communication/libraries/dependencies on Android are not
> bound to specific transport anyhow. Such library could be used by any
> android app, and the library would implement proper transports for
> various supported vendors. USB for Trezor, NFC for something different
> etc. If the point is "make life of app developers easier", let's do this
> and do not define artifical "standards".

So you propose having one library that would support multiple vendors?
What if new vendors add a new transport layer (lets assume NFC or
Bluetooth), wouldn't that result in every possible consumer of that
library (all wallets) need to update before the new vendors transport
layer could be used, resulting in a huge deployment process probably
require many month until it can be used?

What if there is a critical security issue in the library? How would the
deployment plan looks like?

I really think we should remove the "hardware communication layer" from
wallets and move it towards the hardware vendor app.

What about iOS? Should we just leave that platform unsupported with
hardware wallets?

</jonas>

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Marek Palatinus via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Thu, Aug 18, 2016 at 4:43 AM
Reply-To: Marek Palatinus <marek@palatinus.cz>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Jonas Schnelli <dev@jonasschnelli.ch>

mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=1569d016011ff989&attid=0.0.1&disp=inline&safe=1&zw

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 19/21

Cc: Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

On Thu, Aug 18, 2016 at 11:35 AM, Jonas Schnelli <dev@jonasschnelli.ch> wrote:
I agree that BIP70 is a mess (including the bitcoin:// additions). The proposed URI scheme would be completely
different.

This reminds me https://xkcd.com/927/

I have some experience with hardware wallet development and its integration and I know it's a mess. But it is too early to
define such rigid standards yet. Also, TREZOR concept (device as a server and the primary source of workflow
management) goes directly against your proposal of wallet software as an workflow manager. So it is clear NACK for me.

slush

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

Jonas Schnelli via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Thu, Aug 18, 2016 at 4:49 AM
Reply-To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Marek Palatinus <marek@palatinus.cz>
Cc: Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

Hi

> I have some experience with hardware wallet development and its
> integration and I know it's a mess. But it is too early to define such
> rigid standards yet. Also, TREZOR concept (device as a server and the
> primary source of workflow management) goes directly against your
> proposal of wallet software as an workflow manager. So it is clear NACK
> for me.

The current question – as already mentioned – is we ACK to work together
on a signing protocol or if we NACK this before we even have started.

I'm not saying that the draft proposal I made is the way to go, I'm
happy to NACK it myself in favor of a better proposal.

I strongly recommend to work together on a standard that will have one
central winner: the end user.

</jonas>

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Nicolas Bacca via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Thu, Aug 18, 2016 at 5:23 AM
Reply-To: Nicolas Bacca <nicolas@ledger.fr>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

On Thu, Aug 18, 2016 at 11:49 AM, Jonas Schnelli via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> wrote:

mailto:dev@jonasschnelli.ch
https://xkcd.com/927/
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=1569d0ec1099354f&attid=0.0.1&disp=inline&safe=1&zw
mailto:bitcoin-dev@lists.linuxfoundation.org

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 20/21

Hi

> I have some experience with hardware wallet development and its
> integration and I know it's a mess. But it is too early to define such
> rigid standards yet. Also, TREZOR concept (device as a server and the
> primary source of workflow management) goes directly against your
> proposal of wallet software as an workflow manager. So it is clear NACK
> for me.

The current question – as already mentioned – is we ACK to work together
on a signing protocol or if we NACK this before we even have started.

ACK for Ledger. What's necessary to sign a transaction is well known, I don't see how driving any hardware wallet from
the wallet itself or from a third party daemon implementing that URL scheme would make any difference, other than
providing better devices interoperability, as well as easier maintenance and update paths for the wallets.
[Quoted text hidden]

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

Moral Agent via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Mon, Aug 22, 2016 at 11:50 AM
Reply-To: Moral Agent <ethan.scruples@gmail.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Jonas Schnelli <dev@jonasschnelli.ch>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

It would be nice if the detached signer and the normal wallet could both verify the correctness of generated addresses
before you cause coins to be sent there.

e.g. the hardware wallet could give its master public key to Bitcoin Core and you can thereafter generate your receiving
addresses on Core, with the option to have the HW wallet validate them.

One of my biggest fears about using any wallet is the "whoops, cosmic ray flipped a bit while producing receiving
address; SFYL!" possibility. For high value cold storage, I always generate my addresses on two independent machines
using two different pieces of software. Am I nuts for doing that?

With the above scheme, you are pretty well protected from losing money if your HW wallet is defective. You could still lose
it if the HW wallet was evil of course, but that strikes me as much more likely to be discovered quickly.

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

Thomas Kerin via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Wed, Aug 24, 2016 at 5:31 AM
Reply-To: Thomas Kerin <me@thomaskerin.io>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: bitcoin-dev@lists.linuxfoundation.org

I want to pitch a use-case that might have been ignored in this discussion:

I don't think this protocol is only useful for hardware wallets. Technically any website that wants to request public
keys/signatures and offload the responsibility for managing keys and signing to the user would also find this valuable.

I hope we can move forward with a protocol that suits both the hardware people, and the people who find signing
transactions in browsers unsettling.

Maybe we the focus should move away from only servicing hardware, and asking if the motivation is better captured by
"allow users pick their own ECDSA implementation, hardware or software", then working out what we need to get us
there.
[Quoted text hidden]

mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

6/6/22, 7:24 AM Gmail - [bitcoin-dev] Hardware Wallet Standard

https://mail.google.com/mail/u/0/?ik=88ff9bf960&view=pt&search=all&permthid=thread-f%3A1542829255629685304&simpl=… 21/21

[Quoted text hidden]
[Quoted text hidden]

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

signature.asc
1K

Corey Haddad via bitcoin-dev <bitcoin-dev@lists.linuxfoundation.org> Sun, Aug 28, 2016 at 6:14 PM
Reply-To: Corey Haddad <corey3@gmail.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>
To: Moral Agent <ethan.scruples@gmail.com>, Bitcoin Protocol Discussion <bitcoin-dev@lists.linuxfoundation.org>

One of my biggest fears about using any wallet is the "whoops, cosmic ray flipped a bit while producing receiving
address; SFYL!" possibility. For high value cold storage, I always generate my addresses on two independent machines
using two different pieces of software. Am I nuts for doing that?

A randomly flipped bit would be extremely unlikely to yield a valid address, however, I still think it you are wise to use
independent routes to confirm that your addresses match the keys. I do the same when I generating my cold storage key
pairs. I think malicious address substitution is an under appreciated attack vector.

Regarding this thread in general, would it make sense for this proposal to include standards for multi-sig wallet
interoperability? A whole spectrum of attacks would be made less likely - and easy for typical users to guard against - by
using wallets on separate devices AND where the wallet software was written and provided by different parties.

[Quoted text hidden]
[Quoted text hidden]
[Quoted text hidden]

bitcoin-dev mailing list
bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev
https://mail.google.com/mail/u/0/?ui=2&ik=88ff9bf960&view=att&th=156bd367e61eeab3&attid=0.0.1&disp=inline&safe=1&zw
mailto:bitcoin-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev

