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1 Introduction
Bitcoin provides strong cryptographic proofs throughout its ecosphere. However, areas remain 

where authentication can be improved. One example involves proving that an invoice sent to a paying 
entity contains accurate information. A compromised invoice could cause a payment to be sent to a 
malicious third party, or an incorrect amount of bitcoins to be sent, or both. As a workaround, a payee 
could use public key cryptography to sign the invoice. This is not secure enough because a 
compromised certificate authority can issue invalid certificates in the name of any entity.

This specification proposes a system for giving payees secure tools to procure payments. A 
payee can send an invoice with cryptographic proofs attached. The payer can then leverage an 
appropriate verification layer to prove that the payee sent the invoice, with the cryptographic proofs 
verifying that the invoice is accurate. The following goals apply to this specification.

• Prove a given payment script is related to a wallet.

• Proof of relationship does not reveal other scripts in the wallet.

• Proofs are optional. A payee can provide scripts without proof in order to preserve key chain 

privacy.

• Provide a mechanism that allows identity information to be embedded in “identity records” 

found in verifiable authentication chains.

• An identity scheme has a long lifetime. Entities create highly secure offline and/or multisig 

wallets, generate a master wallet identifier, and sign the identifier one time.

• With a secure cryptographic signature, payment scripts (with proofs) can be safely distributed 

via an “insecure” web server.

• An attacker compromising a web server cannot replace make payment scripts malicious: Payers

can expect a proof that the script is related to the secure ID found in an identity record.

• Provide compatibility with Bitcoin Improvement Protocol (BIP) 32 [BIP32] keypair trees (aka 

hierarchical deterministic wallets).

• Provide compatibility with complex, non-standard scripts.

One possible solution is to use DNS-based Authentication of Named Entities (DANE) 
[RFC6394], which is based on DNSSEC [DNSSEC]. An individual DANE record can contain identity-
based information. DNSSEC provides an inherent authentication chain that allows the payer to verify 
that the payee did send the payment request. In addition, if a domain's key is compromised, only that 
domain and sub-domain is compromised. In other words, payment requests issued by cleansocks.com 
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will not be compromised because the key for buymorestuff.com has been compromised. This is 
superior to the certificate authority (CA) system, where a compromised CA can forge keys for any 
domain.

2 Structural Concepts

2.1 Bitcoin addresses
The technical side of Bitcoin causes addresses to have ambiguous meanings. Therefore, the 

word “address” is not used in this specification without giving a specific definition for the address; an 
address indicates particular use types that are strictly defined.

At a high level, a Bitcoin address provided to receive payment is simply a chunk of data to be 
used in a particular script template type. Such templates are known as TxOut script templates 
[TXOUT]. A TxOut script specifies who exactly will receive payment. As of Jan. 2015, there are five 
standard TxOut types on the Bitcoin network. The TxOut types are not of specific interest except to 
help explain what this specification is attempting to accomplish.

As of Feb. 2015, the most common TxOut type on the Bitcoin network is known as the pay-to-
public-key-hash (P2PKH) template. P2PKH uses addresses starting with 1. In P2PKH, the payer must 
insert a 20 byte payload, based on a secure hash of a public key, into the accompanying P2PKH script 
template. The P2PKH template is defined as follows:

OP_DUP OP_HASH160 <20 byte payload> OP_EQUALVERIFY OP_CHECKSIG

Another address example is an address starting with 3. For such addresses, the payer must insert
the inner 20 byte payload into what is known as a pay-to-script-hash (P2SH) template, as defined in 
BIP 16 [BIP16]. The P2SH template is defined as follows:

OP_HASH160 <20 byte payload> OP_EQUAL

This specification focuses on that fact that the Bitcoin wallet software, at the time of payment, 
is ultimately constructing a destination, or destinations, for the coins. This specification defines a way 
for Bitcoin wallet software to communicate both the TxOut script to be paid, as well as a secure 
authentication chain for verifying that a TxOut script will be spendable only by the intended recipient.

3 Implementation Details
Unless otherwise noted, all variables are stored in network order.
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The Bitcoin Core source code defines integers with VAR_INT encoding [VI] and strings with 
VAR_STR encoding [VS]. When integers are defined as VAR_INT, the integers are unsigned and 
defined as follows.

Value Variable Size Format

<= 252 (0xfc) 1 byte uint8_t integer.

<= 65535 (0xffff) 3 bytes 0xfd followed by the uint16_t (host order) integer.

<= 4294967295 (0xffffffff) 5 bytes 0xfe followed by the uint32_t (host order) integer.

<= 264 – 1  (0xffffffffffffffff) 9 bytes 0xff followed by the uint64_t (host order) integer.

VAR_STR variables are defined as follows.

Field Description Data Type Variable Size Field Comments

String Length VAR_INT 1-9 bytes Length of the string. Length can be 0.

String Unsigned char array String Length bytes Actual string. Not present if length=0.

3.1 BTCA components
There are multiple components of the wallet ID verification system that need to be considered.

• BTCA Resource Record: A DANE-like record type, similar to TLSA [RFC6698] or the work-in-

progress SMIMEA [SMIME07]. Such records can be signed with a zone operator's zone signing
key (ZSK) which can be securely traced back to a trust anchor.

• Public Key Source (PKS): Communicates the simplest of ID information, typically about a 

single BIP32 key tree that would be used as a single signature wallet to manage funds. A PKS 
can also be used as a placeholder in a more complex, constructed script. A public key source 
can also be a reference to another resource for getting the public key source. This data structure 
will typically be signed with a ZSK.

• Constructed Script (CS): This is a data structure which includes a script template and a list of 

public key sources. The template and list of PKS's will typically be signed with a ZSK.

• Raw Payment Script (RPS): This is the final, complete script expected to receive payment as 

part of a given payment request. The payer may ignore any attached proofs and simply use this 
script to pay. The script will usually be provided with a PKRP and/or SRP (see below). 
However, if a PKS is a stealth address, requires a user-supplied key, or uses an external source, 
a PKRP or SRP cannot be included. There may be other conditions when a PKRP or SRP 
cannot be provided.
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• Public Key Relationship Proof (PKRP): This is a list of multipliers to apply to a given PKS. If 

the PKS specifies a root-level public key, but the payment script uses a 3 rd level public key, then
the proof will actually be three 32-byte multipliers.

• Script Relationship Proof (SRP): This is a list of PKRPs to be applied to a Constructed Script, 

one per public key placeholder in the script template.

3.2 Public Key Source Components
Public key cryptography performs a critical piece of Bitcoin functionality. When coins are sent 

to another entity, control of the coins is actually transferred to a public key, or public key data. Using a 
public key controlled by a payee, a payer can use standard TxOut scripts or custom scripts to make 
payments. In such a case, a signed PKS can be placed in an identity record and downloaded by a 
paying entity as part of a payment request.

The public key source must contain metadata on top of the public key. The metadata is as 
follows.

Variable Description

version PKS version.

sourceStr String containing raw key material or a resource (e.g., URL) describing the external
location of the raw key material.

isExternalSrc Boolean indicating whether or not sourceStr is an external key resource.

useCompressed Boolean indicating if the user should use a compressed version of the public key.

useHash160 Boolean indicating if the user should apply RIPEMD-160(SHA256(PK)) 
[RIPEMD160] [SHA2] to the public key before usage.

isStatic Boolean indicating that sourceStr must be used as-is when applied to script 
templates.

isStealth Boolean indicating that sourceStr contains a “stealth address.” The paying party 
must generate payment information based on the stealth address and an agreed-
upon key exchange method. The paying party must then attach extra information to 
a transaction so that the payee can determine if the payment information in the 
transaction actually applies to the payee.

isUserKey Boolean indicating that the user must supply their own key.

isChksumPresent Boolean indicating that a checksum is part of the PKS.

checksum A 4-byte subsection of a double-SHA256() hash of all the other data in the PKS.
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The PKS data format is as follows. Unless otherwise specified, all data is transmitted in 
network order.

+ Byte + 0 Byte + 1 Byte + 2 Byte + 3

Bytes 0-2 Version Flags

Bytes 3-(m-1) sourceStr  (VAR_STR)

Bytes m-(m+3) Checksum

The flag field is defined as follows, with reserved bytes set to 0. Bits are listed in network order.

+ Bit + 7 Bit + 6 Bit + 5 Bit + 4 Bit + 3 Bit + 2 Bit + 1 Bit + 0

Bits 15-8 Reserved  (set to 0)

Bits 7-0 Reserved
(set to 0)

isChksum
Present

isExtSrc isUsrKey isStealth hash160 useComp isStatic

3.2.1 Version

The field is 1 byte large. The current PKS version number is 0.

3.2.2 isExternalSrc

If the isExternalSrc flag in the PKS is set, the other flags are irrelevant. sourceStr will represent 
one of the following:

• An HTTPS URL, optionally with an attached SSL/CA certificate fingerprint. This indicates that

BIP70/BIP72 payment requests [BIP70] [BIP72] can be obtained from the specified URL. If a 
SSL/CA fingerprint is included, the payee can expect the BIP70/BIP72 payment request to be 
signed with a certificate that traces back to the specified SSL cert. A PKS that uses an external 
source must not be provided as part of a Constructed Script. The payment request retrieved 
from the specified HTTPS URL will provide complete script information for payment.

• A record name or URL to another domain/zone, from which the user can expect to retrieve a 

PKS. This is a recursive call, allowing chaining of PKS records. This is most useful in escrow 
situations, where the Constructed Script specifies a PKS controlled by an independent third-
party. Instead of initially copying the PKS information into the CS record, the location of the 
PKS is supplied. This helps the payee identify the PKS, as well as allowing the third-party to 
update their PKS record without requiring the original CS to be updated.

If this flag is used, no RPS will be provided by the payee, as the payee cannot predict all 
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components of the final script to be paid.

3.2.3 isUserKey

If the user key flag is enabled, the user must insert data instead of relying on sourceStr. An 
example involves a 2-of-3 multi-signature (multisig) escrow transaction. When coins are sent to a 
multisig address, every potential signing key must be present in the transaction. The user sending coins 
may also be a user who can provide a signature authorizing dispersal of the coins. In such a case, the 
user must supply a public key as part of the multisig transaction. The key must not be affected by any 
flags or multipliers. The payer is also assumed to understand how to insert appropriate data based on 
the appropriate script type.

If this flag is used, no RPS will be provided by the payee, as the payee cannot predict all 
components of the final script to be paid.

3.2.4 isStealth

If the stealth flag is enabled, the supplied source string is a stealth address. It is assumed that the
payer and payee will understand how to use the stealth address to generate appropriate payment 
information.

A core idea of this specification is that a payer does not know exact payment details ahead of 
time; payment details must be provided by the payee. In particular, the payer must calculate the final 
payment destination. By default, anybody who sees payment information generated according to this 
specification can determine where the coins are going. Such viewing means anybody can determine 
how many coins the payee controls at the given address.

Stealth addresses obfuscate the identity of the receiving party. Using carefully constructed 
mathematical concepts (e.g., elliptic curve Diffie-Hellman key exchanges [SEC1]), a payee can provide
enough information to allow a payer to dynamically generate Bitcoin network payment information 
understood only by the payer and payee. Such a setup requires the wallet ID verification code to 
specify that extra metadata is required to determine the final payment destination. Extra metadata may 
also be required to be sent to the payee.

The concept of Bitcoin “stealth addresses” is relatively new. One example currently in use was 
developed in 2013 as part of the sx program [SX1]. Online documentation that explains the sx stealth 
process [SX2] is available.

If this flag is used, no RPS will be provided by the payee, as the payee cannot predict all 
components of the final script to be paid.

3.2.5 useHash160

If the useHash160 flag is enabled, the final public key will be hashed using SHA256 and then 
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RIPEMD-160. (The SHA256-RIPEMD sequence is also known as Hash160().) If enabled, the 
RIPEMD-160 result is what will be inserted into the script template.

3.2.6 useCompressed

If the compression flag is enabled, the final public key will be “point compressed” before being 
inserted into the script template. Sect. A.3.1.3 of ANSI X9.62:2005 [X962] explains how elliptic curve 
point compression works. If useCompressed is set, point compression must be applied before hashing 
the key.

3.2.7 isStatic

If the static flag is enabled, the data in sourceStr is to be inserted into a script template as-is. No
calculations will be performed.

3.2.8 sourceStr

The PKS record contains a source string encoded as a VAR_STR. When isExternalSrc is false, 
the string contains the public key source material required to generate the final payment destination. 
When isExternalSrc is set to true, the string contains a URL pointing to a server that will provide the 
required public key source material.

Note that sourceStr may be a zero-length string; the payee has the option of sending a fully 
formed payment script.

3.2.9 checksum

When a PKS is sent to the entity that will post the PKS in an identity record, the posting entity 
will require reasonable certainty that the received data is what was intended to be posted. Therefore, a 
checksum is added to PKS records to be posted in an identity record. The checksum will consist of the 
first four bytes (network order) of a SHA256(SHA256()), or double-SHA256, hash of the other data in 
the PKS. The checksum must be present for a PKS embedded by itself in an identity record. The 
checksum is optional, and not recommended, for a PKS embedded in a CS.

3.2.10 isChksumPresent

A CS may use multiple PKS entries. Because a CS will also have a checksum, the usage of a 
checksum in a PKS would be redundant. The isChksumPresent flag is added to indicate whether or not 
the PKS has a checksum. The checksum must be present for a PKS embedded by itself in an identity 
record. The checksum is optional, and not recommended, for a PKS embedded in a CS.

3.3 Constructed Script Components
The constructed script is what provides payment information to the payer. A signed CS can be 

(c) 2015 Armory Technologies, Inc. 11



Bitcoin Wallet Identity Verification Specification Printed 2015/02/27

placed in an identity record and downloaded by a paying entity as part of a payment request.

The constructed script source must contain metadata. The metadata is as follows.

Variable Description

version PKS version.

useP2SH Boolean indicating whether or not the transaction will use the P2SH transaction 
method.

scriptTemplate A TxOut template that contains specially designed opcodes where public key data 
will be inserted to construct the final TxOut script to be paid.

pksList A list of PKS entries, one per placeholder in the scriptTemplate

isChksumPresent Boolean indicating that a checksum is part of the CS.

checksum A 4-byte subsection of a double-SHA256() hash of all the other data in the PKS.

The CS data format is as follows. Unless otherwise specified, all data is transmitted in network 
order.

+ Byte + 0 Byte + 1 Byte + 2 Byte + 3

Bytes 0-2 Version Flags

Bytes 3-m scriptTemplate  (VAR_STR)

Byte m+1 numPKSs
(VAR_INT)

Bytes (m+2)-n pksEntry  (numPKSs * VAR_STR)

Bytes (n+1)-(n+4) Checksum  (4 bytes)

The flag field is defined as follows, with reserved bytes set to 0. Bits are listed in network order.

+ Bit + 7 Bit + 6 Bit + 5 Bit + 4 Bit + 3 Bit + 2 Bit + 1 Bit + 0

Bits 15-8 Reserved  (set to 0)

Bits 7-0 Reserved  (set to 0) isChksum
Present

useP2SH

3.3.1 Version

The field is 1 byte large. The current CS version number is 0.
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3.3.2 useP2SH

When P2SH is to be used, the payment script will be generated. The script will then be hashed 
using the Hash160 sequence and placed into a standard P2SH TxOut script. The P2SH TxOut script is 
what will actually be included in the final transaction.

3.3.3 scriptTemplate

scriptTemplate will match the final TxOut script with two important exceptions.

First, if the useP2SH flag is set, the final scriptTemplate output will be processed using standard
P2SH rules, as discussed in Sect. 3.3.2.

Second, the byte 0xff becomes a special “escaped” value. Any keys in scriptTemplate are 
replaced with two bytes: 0xff, and the number of keys to go in the escaped location. If only one key 
should go in a script location, 0xff01 will be used. If two keys are supposed to go together, 0xff02 will 
be used. If any other part of the script is intended to have a 0xff byte, the 0xff byte will be replaced 
with 0xff00. Once the final payment script is developed, the escaped values will be replaced 
appropriately with either 0xff (0xff00) or the appropriate number of public key data entries (0xff01 – 
0xffff).

3.3.3.1 Multisig scripts

When dealing with multisig transactions, sorting of associated public keys is important. Each 
possible key order results in a different effective address. In the absence of sorting, wallet software may
not be able to recognize relevant TxOut scripts, and different devices would produce different payment 
requests. For this reason, a community standard has arisen where public keys are always sorted before 
being inserted into a TxOut script to guarantee that all wallet software generates identical payment 
scripts.

When an entry in a key list contains multiple keys, the keys must be lexicographically sorted 
before being inserted into the final TxOut script. If the payee has reasons for keeping the keys in a 
particular, non-lexicographic order, the payee can simply use multiple 0xff01 entries in the CS instead 
of one entry for all applicable keys (e.g., 0xff01ff01ff01 instead of 0xff03).

Each key must be derived before being sorted and placed in the script template. There is no way
to determine beforehand which PKS will occupy a given position in the final TxOut script. Therefore, 
any PKS entries in the CS that must be lexicographically sorted in the final TxOut script need not be 
lexicographically sorted in the CS.

3.3.4 numPKSs

numPKSs specifies the number of PKS objects in the CS. Note that the number of entries must 
match the total number of keys specified in scriptTemplate.
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3.3.5 pksEntry

There will be numPKSs PKS objects inserted in the CS. The PKS objects must be inserted in the
order in which the public keys will be inserted in scriptTemplate. If an escaped key entry lists multiple 
keys, the PKS objects do not need to be in sorted order in the CS. The PKS objects only need to be in 
an order that allows the proper PKS objects to be used in the proper escaped key entries.

3.3.6 checksum

When a PKS is sent to the entity that will post the PKS in an identity record, the posting entity 
will require reasonable certainty that the received data is what was intended to be posted. Therefore, a 
checksum is added to PKS records to be posted in an identity record. The checksum will consist of the 
first four bytes (network order) of a SHA256(SHA256()), or double-SHA256, hash of the other data in 
the PKS. The checksum must be present for a PKS embedded by itself in an identity record. The 
checksum is optional, and not recommended, for a PKS embedded in a CS.

3.3.7 isChksumPresent

A CS may use multiple PKS entries. Because a CS will also have a checksum, the usage of a 
checksum in a PKS would be redundant. The isChksumPresent flag is added to indicate whether or not 
the PKS has a checksum. The checksum must be present for a PKS embedded by itself in an identity 
record. The checksum is optional, and not recommended, for a PKS embedded in a CS.

3.4 Public Key Relationship Proof
The PKRP is a struct with 32-byte multipliers meant to be applied to key material in a PKS. The

PKRP will be attached, via an SRP, to a payment request sent to a paying entity by the payee. The 
multipliers must be applied, in order, to the accompanying PKS material.

The PKRP data format is seen below. If no derivation is required for a given key, the 
accompanying SRP must indicate that there are no PKRPs by setting numPKRPs to 0x00. In addition, 
because numMults is intended to be a VAR_INT but is constrained to one byte, numMults cannot be 
larger than 252.

+ Byte + 0 Byte + 1 Byte + 2 Byte + 3

Bytes 0-1 Version  (1 byte) numMults (1 byte)

Bytes 2-m multiplier  (numMults * VAR_STR)

3.4.1 Version

The field is 1 byte large. The current PKRP version number is 0.
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3.4.2 numMults

Specifies the number of multipliers to apply to the matching public key. numMults must match 
the number of public key data entries actually contained in the CS.

3.4.3 Multipliers

When a child public key is derived, multipliers are used as part of the mathematical process. 
The PKRP contains a list of multipliers that must be used, in order, when deriving the child public key. 
Using the multipliers out of order will lead to incorrect results. Appendix A.2 discusses the math in 
finer detail.

The multipliers must be 32 bytes. This implicitly enforces the idea that this spec currently 
supports only BIP 32 multipliers. The multipliers must also be used in a setting where the keys are 
uncompressed. If a compressed key is the final product, an uncompressed public key must be used and 
then compressed once all the math has been completed.

3.5 Script Relationship Proof
The SRP attached to a payment request. The SRP contains the list of PKRPs that to apply to the 

keys in a CS.

The SRP data format is seen below. The number of PKRPs in the SRP must match the number 
of keys to be derived in the script template of the CS. For example, the first PKRP in the SRP will be 
applied to the first PKS entry in the accompanying CS.

+ Byte + 0 Byte + 1 Byte + 2 Byte + 3

Bytes 0-1 Version  (1 byte) numPKRPs
(VAR_INT)

Bytes 2-m pkrpObj  (numPKRPs * VAR_STR)

3.5.1 Version

The field is 1 byte large. The current SRP version number is 0.

3.5.2 numPKRPs

Specifies the number of PKRPs to apply to the matching SRP. numPKRPs must match the 
number of keys referenced in the payment request's CS.

3.5.3 pkrpObj

SRPs are what are attached to the payment request. The SRPs contain PKRPs that will be used 
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to apply multipliers to the public key data in the PKS entries in the CS. When keys are created for 
scriptTemplate in the appropriate CS, each PKS intended for scriptTemplate has a matching SRP. The 
PKRPs will be encoded as VAR_STRs.

3.6 Payment Request
The final payment request sent to a paying entity will have multiple segments and is structured 

as follows.

+ Byte + 0 Byte + 1 Byte + 2 Byte + 3

Bytes 0-2 Version  (1 byte) Flags  (2 bytes - RESERVED)

Bytes 3-5 numTxOutScripts  (VAR_INT)

Bytes 6-8 reqSize  (VAR_INT)

Bytes 9-a unvalidatedScripts  (numTxOutScripts * VAR_STR)

Bytes (a+1)-b recNames  (numTxOutScripts * VAR_STR)

Bytes (b+1)-c srpLists  (numTxOutScripts * VAR_STR)

It is important to note that the payment request does not have to be validated by the recipient; 
the payment request is designed to give the recipient options. If the paying entity wishes to blindly trust
the fully constructed script in the payment request, the script can be used as-is, with no regard for any 
other data in the request. If the recipient wishes to validate the payment request, the recipient can 
obtain the PKS or CS listed in the payment request, validate the PKS or CS, and use the SRPs to 
generate the keys to be placed in the script template.

The unvalidatedScripts, recNames, and srpLists fields must be in the same order. For example, 
the first unvalidatedScript object can be recreated using the first recName and srpList objects.

3.6.1 Version

The field is 1 byte large. The current payment request version number is 0.

3.6.2 Flags

For now, no flags exist. Two bytes are reserved for possible future flags.

3.6.3 numTxOutScripts

The number of TxOut scripts is listed in a VAR_INT that can be up to 3 bytes, implying a 
maximum of 65,535 TxOut scripts. However, reqSize, which lists the number of bytes after reqSize, can
also be a 3 byte variable. The idea is to prevent DoS attacks by sending requests that require excessive 
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amounts of work or generate very large TxOut scripts.

3.6.4 reqSize

The number of combined bytes in the unvalidatedScript, recName, and srpList fields.

3.6.5 unvalidatedScripts

The completed TxOut scripts that can be used as-is.

3.6.6 recNames

A list of names of records that contain the TxOut scripts to be validated. The user is assumed to 
understand how to obtain identity records based off the record names.

3.6.7 srpLists

A list of SRP objects to be applied to the appropriate identity records. The SRP objects will be 
encoded as VAR_STRs.

4 Usage Concepts

4.1 P2PKH
An entity that wishes to use nothing but P2PKH scripts for their identity can embed just a PKS 

in the BTCA record.  The simplest case would be a static address, such as a vanity address that never 
changes. The output is expected to be put into a P2PKH script. Example BTCA records are seen below.

BTCA Record (PKS): [Flags(static, useHash160) | RawPublicKey]

or

BTCA Record (PKS): [Flags(static)  | Hash160(RawPubKey)]

Using only a static PKS is not recommended due to inflexibility if the key is compromised. The 
recommended use case for a P2PKH payment specifies a raw public key in the PKS object, with 
PKRPs provided in a CS that uses a P2PKH script.

BTCA Record (PKS): [Flags(useCompressed) | rootPublicKey]

4.2 PKRP / Multipliers
When a PKRP is used in a CS, the public key in the PKS is assumed to be a level 0 (root) node 

in a BIP 32 keypair tree controlled by the payee. In theory, any number of levels/multipliers may be 
used. This specification requires the use of one multiplier to obtain the final result. It is highly 
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recommended that the payee distribute multipliers based on level 3 nodes on the tree. That is, usage of 
three multipliers to create one final multiplier is recommended. The payee must start with the root key 
in the PKS and derive the public key at the desired location, saving each multiplier (one per level) 
generated as part of the process. The payer must then apply each multiplier to the root key in the PKS 
and derive a copy of the resultant public key. The result is sent as proof:

Payment Request: [ScriptToPay(RPS) | URLOrPKSRecordName | mult0]

The payer can pay the RPS without any verification if desired. The payer can also verify the CS
record, fetch the PKS record or URL, verify the authentication chain, apply the multiplier to the raw 
public key in the PKS or URL, and insert the resultant public key into the specified script type. The 
payer should also check that the result matches the included RPS.

4.3 CS
A simple P2PKH could be represented using a CS, though it would be unnecessary to do so:

BTCA Record (CS):  [ <OP_DUP OP_HASH 0xff01 OP_EQ OP_CHKSIG> | 0x01 | [Flags(useCompressed) | 
rootPublicKey] | useP2SH=False ]

A standard 2-of-3 multisig P2SH script where one organization controls all the keys, might use 
the following:

BTCA Record (CS):  [ <OP_2  0xff03  OP_3 OP_CHECKMULTISIG> | PKS1 | PKS2 | PKS3  | useP2SH=True]
PubKeySrcList:  ([Flags1 | rootPub1], [Flags2 | rootPub2], [Flag3 | rootPub3])

If the owner wanted to deviate from convention and require the final three keys to be always 
inserted in script-specified order (not sorted before replacing the 0xff03 sequence), then they would use
the identical BTCA record but with only 0xff01 bytes.

BTCA Record (CS):  [ <OP2  0xff01 0xff01 0xff01  OP_3 OP_CHECKMULTISIG> | PKS1 | PKS2 | PKS3  | 
useP2SH=True]

PubKeySrcList:  ([Flags1 | rootPub1], [Flags2 | rootPub2], [Flag3 | rootPub3])

4.4 Payment requests
When an organization generates a payment request on their script distribution server, it will 

calculate three public keys from three different BIP32 public key trees, and will save off the multipliers
for each calculation. It will then insert them into a proof to be incldued with the raw payment script.

Payment Request:  [ScriptToPay(RPS) | RecordNameOrURL | 0x03 | [0x03 | m11 | m12 | m13] | [0x03 | m21 | 
m22 | m23], [0x03 | m31 | m32 | m33] ]
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In both cases, the payer will find the script template and the pubkey source list in the identity 
record. It will apply the lists of multipliers to each key source, it will end up with 3 public keys, it will 
sort them lexicographically, it will insert them into the script template in place of the 0xff03 byte 
sequence, and then it will convert it to a P2SH script. If the result matches the RPS in the payment 
request, the payer's software will indicate that the payment script has been verified.

Perhaps an organization wishes to specify that payment is to be put into 2-of-2 escrow, using a 
third-party that the payer should trust. The process requires the escrow service to shift keys constantly, 
thereby making constant record updates infeasible. One solution is to use an external key source.

BTCA Record (CS):  [ <OP_ 2  0xff02 OP_2 OP_CHECKMULTISIG> | PKS1 | PKS2 | useP2SH=False]

PubKeySrcList:  ([Flags1 | rootPub1], [Flags(isExternal) | btca:escrow._btca.armory.com])

Payment Request:  [ScriptToPay(RPS) | RecordNameOrURL | 0x02 | [0x03 | m11 | m12 | m13] | [0x03 | m21 | 
m22 | m23]]

In this case, the script-distribution server will actually fetch the script and proof of that script 
from the remote resource, and send that to the payer. The payer's software, when attempting to 
compute/verify the second public key source, will fetch an identity record from the specified 
appropriate URL, and match the proof against the record. The payment request looks the same as if it 
wasn't external, but the BTCA record indicates this extra step must be performed to do the verification. 
The benefit of doing this is that it proves:

• The public key being inserted really does belong to the stated third-party.

• The third-party can change their BTCA record without requiring this BTCA record to be 

changed.
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Appendix A - BIP 32

Appendix A.1 - Hierarchical Deterministic Wallet Overview
BIP 32 is a Bitcoin-related specification that provides one method for implementing hierarchical deterministic 

wallet verification. At a high level, the idea is that a cryptographically secure seed and chain code are developed in a 
deterministic manner. The seed and chain code are then used, along with a pseudo-random number, to generate a master 
private key and a master public key. A hierarchical tree of keys, public and/or private, can then be generated in a 
deterministic manner using the chain code and an index value indicating which leaf is to be generated. Table 1 shows an 
example of a hierarchical deterministic (HD) tree.

 Generating the child private or public key requires a multiplier based in part on the parent key and chain code. The
scheme will work with wallet verification because of the multiplier. Given a root public key and a series of multipliers, a 
user can generate keys that coincide with the keys generated at a given index point. Any generated keys are the keys that 
will receive the funds sent by the payer.

All private keys must be kept secret, as is a standard best practice for public key cryptography; private key control 
will allow a user to spend any coins controlled by the private key. In addition, whenever possible, public keys should not be 
exposed to anybody other than intended recipients and to parties with specific interests (e.g., auditors). Anybody with a 
public key will know how many coins are held by the accompanying private key. This represents a potential loss of privacy. 

The chain code must also be kept secret. A subtle point of BIP 32 is that, while not explicitly stated in BIP 32, 
derived chain codes are the same for public keys and non-hardened private keys. (Hardened private keys use a different 
formula to derive children and, subsequently, are not discussed.) The following equations generate a 64 byte value from 
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which the multiplier will be generated.

Kpar = Parent public key (uncompressed).  (65 bytes)
Kpar-comp = Parent public key (compressed).  (33 bytes)
kpar = Parent private key.  (33 bytes)
cpar = Parent chain code.  (32 bytes)
Ki = Child public key.  (65 bytes)
i = Index (32-bit unsigned integer) of the child key.  (4 bytes)
I = Result from an HMAC-SHA512 [SHA2] instantiation.  (64 bytes)
IL = Left 32 bytes of the result from an HMAC-512 instantiation. Used as a multiplier on a parent key to obtain a child key.
IR = Right 32 bytes of the result from an HMAC-512 instantiation. Used as the chain code for the resulting child key.
point(X) = Multiplication of the base point of the secp256k1 [SEC2] elliptic curve, which is used by Bitcoin, by scalar X, as
defined in Sect. I.3.1 of [X962]. The result is an uncompressed elliptic curve point.  (65 bytes)
serP(K) = Serialized (most significant byte first) version of a compressed public key.  (33 bytes)
parse(X) = Interpret serialized data (most significant byte first) as an integer.
|| = Concatenation

Non-hardened private key derivation: I = HMAC-SHA512(Key = cpar, Data = serP(point(kpar)) || ser(i))
Public key derivation: I = HMAC-SHA512(Key = cpar, Data = serP(Kpar-comp) || ser(i))

In both cases, I actually yields the same value. Sect. A.4.3 of [X962] describes how an elliptic curve public key is 
generated from the accompanying private key. The result is the following equation.

K = point(k)

Because I is the same for public key and non-hardened private key derivation, IL and IR will also be the same. 
Therefore, the multiplier and the chain code will be the same for the children of non-hardened private and public keys. 
Distribution of the multiplier is acceptable because the multiplier can be used only to obtain one specific child, and private 
keys are assumed to be kept safe. Chain code distribution is not acceptable because all child public keys can be generated 
using a public key's accompanying chain code, along with a non-hardened private key's children should the private key be 
exposed.

Appendix A.2 - Mathematical Proofs
In BIP 32, the section “Public Parent Key → public child key” explains the math behind deriving a child public key

from a parent public key. The math is what makes the wallet identity verification specification possible. If the index value is
non-hardened, a private key is not required to derive a public key. (Hardened index values require a private key to be 
derived and then converted into a public key.)

The following math is applied to obtain child keys with non-hardened index values. Unless otherwise noted, all 
keys in the mathematical equations must be uncompressed.

Kpar = Parent public key.  (65 bytes)
cpar = Parent chain code.  (32 bytes)
Ki = Child public key.  (65 bytes)
i = Index (32-bit unsigned integer) of the child key.  (4 bytes)
I = Result from an HMAC-512 [SHA512] instantiation.  (64 bytes)
IL = Left 32 bytes of the result from an HMAC-512 instantiation.
point(X) = Multiplication of the base point of the secp256k1 elliptic curve by scalar X. The result is an uncompressed 
elliptic curve point.  (65 bytes)
serP(K) = Serialized (most significant byte first) version of a compressed public key.  (33 bytes)
parse(X) = Interpret serialized data (most significant byte first) as an integer.
+ = Elliptic curve point addition

(c) 2015 Armory Technologies, Inc. 22



Bitcoin Wallet Identity Verification Specification Printed 2015/02/27

|| = Concatenation

I = HMAC-SHA512(Key = cpar, Data = serP(Kpar) || ser(i))
Ki = point(parse(IL)) + Kpar

Because the math is standardized, IL can be distributed as a base point multiplier. This is acceptable because 
HMAC-SHA512 is a one-way cryptographic hash function. This means that the result cannot be easily reverse engineered to
obtain the hashing key or data. In other words, multiplier IL cannot be used to find the parent chain code. Because multiplier
IL is used in conjunction with a public key to find another public key, public distribution of multiplier IL is acceptable.

Keys must be provided in an uncompressed or compressed state, as stated in the equations. Uncompressed keys are
65 bytes. Compressed keys are 33 bytes. Sects. A.3.1.3.1 and A.3.1.3.2 of [X962] discusses how to perform elliptic curve 
point compression over a prime field, which is the field type used by the secp256k1 curve. Sects. A.5.7 and A.5.8 of [X962] 
respectively discuss how to convert an elliptic curve point to an octet string and vice versa. Both octet strings and elliptic 
curve points are network order, as seen in Sects. L.2.2, L.2.3, and L.2.7.1 of [X962].

Appendix B - On-the-wire Example
TO BE WRITTEN USING BIP 32 SAMPLE DATA
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