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Abstract. Demonstrating in zero-knowledge the possession of digital
signatures has many cryptographic applications such as anonymous aut-
hentication, identity escrow, publicly verifiable secret sharing and group
signature. This paper presents a general construction of zero-knowledge
proof of possession of digital signatures. An implementation is shown for
discrete logarithm settings. It includes protocols of proving exponentia-
tion and modulo operators, which are the most interesting operators in
digital signatures. The proposed construction is applicable for ElGamal
signature scheme and its variations. The construction also works for the
RSA signature scheme. In discrete logarithm settings, our technique is
O(l) times more efficient than previously known methods.

1 Introduction

1.1 The Problem

Demonstrating the knowledge of secrets, which satisfy some specific relations
while revealing no useful information about the secrets, is a major cryptogra-
phic primitive. It is used to realize many practical cryptographic protocols. In
Camenisch-Stadler group signature[5] a group signature on the message m is
a non-interactive proof of the signer’s group membership certificate which is a
RSA signature signed by the group manager. In identity escrow[17], users have
to prove the possession of valid identity certificates which are digital signatures
on some known messages. Some other protocols to deal with publicly verifiable
secret sharing [25] and fair exchange of digital signatures[1] could also be con-
sidered as this type of problems. This paper focuses on zero-knowledge proof of
secrets that form a valid digital signature.

1.2 Related Works

A digital signature scheme is referred to as a specific arithmetic relation. Theo-
retically, protocols to demonstrate any arithmetic relation can be derived from
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zero-knowledge proof for NP-language[16] and can be converted to proof of
knowledge[14]. Those protocols are very inefficient because they require to en-
code the relations into a Boolean circuit and apply the zero-knowledge proof for
each gate. The common methodology is to commit the secrets in some commit-
ments, form an arithmetic circuit corresponding to the relation and then prove
that the committed secrets satisfy the desired relations using the circuit.

There exist general constructions for zero-knowledge protocols to prove linear
relations connected by Boolean operators[3] and polynomial relations[9,15]. Ho-
wever, proving such relations is relatively easy as all commitments are computed
in the same finite field. For digital signature relations, proving knowledge pos-
session is not an easy task. This is because commitments of signatures are often
computed in different finite fields. If there is an exponentiation in digital signa-
tures of which both the base and exponent are the secrets to be demonstrated,
the proof becomes much more difficult.

1.3 Our Contribution

This paper presents a general construction of zero-knowledge proof of possession
of digital signatures. The construction yields zero-knowledge proofs for many
digital signature schemes, including ElGamal, DSA. Nyberg-Rueppel and RSA
signatures.

Our construction can be briefly described as follows. We first break the rela-
tion into a corresponding arithmetic circuit, that consists of gates, each is only a
standard arithmetic relation. We then compute a commitment for all the secrets
and the output of every gate. The protocol to prove the digital signature relation
is a set of procedures proving that the committed inputs yield the committed
output in all gates.

Thus our first task is to form a language L of all basic arithmetic relations
required in digital signatures and show how to create an arithmetic circuit for
any relation of L. The remaining task is to construct building blocks of proving
all those standard arithmetic relations that include addition, multiplication, ex-
ponentiation, modulo and equality. The building blocks are dependent on the
underlying setting. We give a realization of these building blocks in discrete
logarithm settings. Our general protocol for discrete logarithms is O(l) times
more efficient than current methods. Other modes of proofs and settings can be
achieved with some slight modifications.

The general construction is not only useful for digital signature relations
but can also be used to prove many other arithmetic relations. For instance,
linear and polynomial relations between secrets committed in the same finite
field can be demonstrated with addition and multiplication relation protocols.
The equality relation protocol can turn the problem of showing the relations
between secrets committed in different finite fields into the less difficult problem
of proving the relations between secrets committed in the same finite field.

The Outline of the Paper: The construction of language L and the general zero-
knowledge protocol to prove any arithmetic relation in L are given in section 2.
Section 3 presents the realization of the general protocol for discrete logarithm
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settings. It also discusses zero-knowledge proofs in other settings and models.
The zero-knowledge protocols to prove possession of digital signatures are dis-
cussed in section 4.

2 General Construction

This section gives the description of our setting and the general zero-knowledge
protocol to prove arithmetic relations. The construction is independent of any
particular implementation.

2.1 Notations and Settings

For any number m, let Zm denote the finite field of 0, ..., m − 1. Let L =
{Fi(x1, ..., xn)|i = 0, ..} be the language of all functions Fi(x1, ..., xn) compu-
ted over the finite field Zpi

parsed according to the following BNF rules:

Fj ::= c|xi|Fj + Fj |Fj ∗ Fj |FFk
j |Fj mod pi

Here c is some constant, Fj represents an expression of L computed in Zpj
,

Fk in Zpk
for any j, k. Using these parsing rules, one can form an arithmetic

circuit corresponding to any member Fi() of L. For convenience, let the arith-
metic circuit of function Fi() be the circuit Fi(). Let each node in the circuit
Fi() corresponding to Fj = (Fj + Fj), (Fj ∗ Fj), (FFk

j ) and (Fj mod pi) be ad-
dition, multiplication, exponentiation and modulo gate respectively. The node
corresponds to Fj = xi is referred to as a leaf. Note that gates are computed
over many different finite fields Zpi

(i = 0, ..) and there might be several expo-
nentiation gates in the circuit Fi() computed over the same group Zpj

but with
a different order pk.

2.2 Protocol Description

We now give a general construction for zero-knowledge proof of possession of
the secrets s1, ..., sn for any function Fi() that Fi(s1, ..., sn) = y for a public
constant y. We borrow the model from [9] and assume the existence of the
following building blocks:

1. Commitment scheme lets the prover P commit a number 0 ≤ a < pi in a
commitment A = commit(a) in such a way that the verifier V cannot open
the commitment to get the value a while the prover is unable to find two
different values a corresponding to the same commitment A.

2. Checking Protocol allows P to prove in zero-knowledge to V the knowledge
of the secret a for a given commitment A.

3. Addition Gate Protocol allows P to convince V in zero-knowledge that
a secret is the sum of two other secrets given three commitments computed
over Zpi

.
4. Multiplication Gate Protocol allows P to convince V in zero-knowledge

that a secret is the product of the two other secrets given three commitments
computed over Zpi .
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5. Exponentiation Gate Protocol allows P to convince V in zero-knowledge
the exponentiation relation c = ab mod qi(qi = pj) for the secrets a, b, c
concealed in the commitments A, B, C respectively. A, C are computed in
Zpi

and B is computed in Zpj
.

6. Modulo Gate Protocol allows P to convince V in zero-knowledge that the
secrets ai, aj concealed in commitment Ai and Aj respectively, equal modulo
qj , i.e., ai − aj = 0 mod qj . Ai is computed in Zpi

while Aj is computed in
Zpj

(qi > qj , both are members of {pi|i = 0, ..}).
7. Equality Protocol allows P to prove the equality of the two secrets con-

cealed in two commitments, each computed in different finite fields and/or
different multiplicative groups.

Then the protocol is executed as follows:

Protocol Description

STEP 0
First, P and V agree upon a circuit Fi(). This circuit is known and verified by
both parties such that the circuit is correctly formed from the function Fi(). For
convenience, let L1, ..., Lu be the leave and G1, ..., Gv be the gates of the circuit
Fi(), Gv is the final gate and its output is y.

STEP 1
P makes u commitments U1, ..., Uu and v commitments V1, ..., Vv such that Uj

contains the value of Lj and Vi contains the output value of Gi. All commit-
ments are then sent to V. P then uses the checking protocol for the commitments
U1, ..., Uu to prove to V that P can open all of them1.

STEP 2
For each gate, P proves the relation between the secrets concealed in the com-
mitments representing the inputs and output of the gate using one of Addition,
Multiplication, Exponentiation and Modulo Gate protocols.

STEP 3
If the two commitments Ui, Uj concealed the same secret si = sj computed in
two different finite fields Zpi

and Zpj
, P uses the equality protocol to prove the

equality of the secrets.

STEP 4
P opens the commitment Vv representing the final gate Gv to show the concealed
secret y. V accepts the proof if and only if the circuit is correctly formed in Step
0, all the proofs in Steps 1-3 are valid and P opens the commitment Vv to reveal
y.

1 [9] requires P to prove for commitments V1, ..., Vv as well. This is unnecessary.
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PROOF:
The completeness of the protocol is straightforward from the inspection of the
protocol. The proof of soundness appears in Appendix A.

3 A Realization for Discrete Logarithm Setting

To give an implementation of our protocol, we show the realization of the building
blocks used in the general construction. This section presents those building
blocks in computational zero-knowledge mode for discrete logarithm settings.
Here pi are all primes larger than 2l for some security parameter l (l > 80).

We now give the constructions of the commitment scheme, checking, addition-
gate, multiplication-gate, exponentiation-gate, modulo-gate and equality proto-
cols. Two protocols for special cases: multiplication with a constant factor and
exponentiation with a constant base of multiplication-gate and exponentiation-
gate, are also given for efficiency. For presentation’s sake, we give the protocols
that demonstrate the relation between secrets of every gate in three different
blocks according to the relations demonstrated, namely modulo, polynomial and
exponentiation .

In this section, let p, q denote some generic prime numbers chosen from
{pi|i = 0, 1, ...} such that there is a multiplicative group Gq of order q over
Zp. The constants g, h are chosen randomly in Gq such that logg(h) in Zp is not
known to the prover. The symbol ∈R means a uniformly random choice.

3.1 Commitment Scheme

A commitment of a value x in Zp is constructed as commit(x, r) = gxhr mod p
to V, here r ∈R Zp. There are two phases in this scheme:

Commit to a number x in Zp, P simply sends commit(x, r) = gxhr mod p to
V.

Open a commitment commit(x, r) is done by sending x, r to V. V can easily
check the correctness of the committed values x, r with the commitment.

This scheme is unconditionally hiding. Its security is proven to be equivalent to
the intractable discrete logarithm problem[22]. Unless P knows logg(h) in Zp, it
is infeasible to find two different sets of input (x, r ∈ Zq) that produce the same
output commit(x, r).

3.2 Checking Protocol

The checking protocol is zero-knowledge and convinces V that P knows the secret
x for the given commitment w = commit(x, r).

Protocol

1. P chooses α, β ∈R Zq and sends W = gαhβ mod p to V.
2. V chooses c ∈R Zq and sends c to P.
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3. P sends V two responses u = α − cx and v = β − cr mod q.
4. V accepts the protocol if and only if W = wcguhv mod p.

This protocol is well-known and its security is no weaker than that of Schnorr’s
signature[24].

3.3 Modulo Related Protocols

Modulo related protocols demonstrate modulo and equality relations between
secrets. Here commitments are computed in different group orders/finite fields.
We now present the range-check protocol given in [21] and the equality proof
protocol with an unknown group order. They are used in the construction of the
modulo gate and equality protocols.

Range Check Protocol

Given: commitment w = commit(x, r), a value t < q.
Prove: x ∈ [0, t].

Protocol (run in parallel l times)

1. First both parties agree upon a suitable positive integer e, roughly equals
t/3 − 1.

2. P chooses α1 ∈ [0, e], and sets α2 = α1 − e. P sends to V the unordered pair
of commitments W1 = commit(α1, ρ1) and W2 = commit(α2, ρ2).

3. V challenges P by c ∈R {0, 1}.
4. If c = 0, P sends to V the values of α1, α2, ρ1, ρ2.

If c = 1, P sends to V the value of x+αj , r + ρj such that x+αj ∈ [e, t− e].
5. V verifies Wj = commit(αj , ρj) (j = 1, 2) in the former and wWj = commit

(x + αj , r + ρj), x + αj ∈ [e, t − e] in the latter case.

This protocol allows P to convince V that the commitment w = commit(x, r)
indeed satisfies 0 ≤ x ≤ t for some value t. It works regardless whether the order
q of the multiplicative group of [g, h] is known. If the order q of the group is
unknown, virtually the same protocol can be used[11,21]2. We refer to this par-
ticular version of protocol as Range Check protocol with unknown group order.
Here the corresponding commitment w = commitN (x, r) is also computed as
w = gxhr mod N but x, r are chosen in the integer field . Of course, the facto-
ring of N is not known to P.

2 Another relevant protocol is given in [6]. This protocol is much more efficient. Ho-
wever, it is not suitable for our task as the range of valid secrets is not identical to
the range that prover can prove.
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Equality Protocol with an Unknown Group Order

Given: two commitment wp = commitp(xp, rp) and wN = commitN (xN , rN ).
Here N is a RSA modulo, much larger than p and xN , rN are chosen over the
positive integer field.
Prove: xp = xN = x (x ∈ Zq).

Protocol ( run in parallel l rounds)

1. First both parties agree upon a suitable positive integer e which roughly
equals q/3 − 1.

2. P chooses α1 ∈ [0, e], and sets α2 = α1 − e. P sends to V the unordered set
of commitments (W1, S1), (W2, S2) computed as Wi = commitp(αi, ρi) and
Si = commitN (αi, ρi) (i = 1, 2).

3. V challenges P a bit c ∈R [0, 1].
4. If c = 0, P sends to V the values of α1, α2, ρ1, ρ2.

Otherwise, P sends to V the values of x+αj , r+ρj such that x+αj ∈ [e, q−e).
5. V verifies

If c = 0, Wj = commitp(αj , ρj), Sj = commitN (αj , ρj), αj ∈ [0, e] and
ρj > 0 (j = 1, 2).

If c = 1, wpWj = commitp(x+αj , rp + ρj), wNSj = commitN (x+αj , rN +
ρj) and x + αj ∈ [e, q − e).

Security Proof
The completeness is straightforward by observing that if α2 = α1 − e, and

α1 ∈ [0, e], for at least one i :x + αi ∈ [e, q). For the soundness, note that in
each round c = 0, V is convinced that the same αk is concealed in both Wi and
Si (i = 1, 2). Because the choice of c is independent of P, in each round c = 1,
with the probability of 1/2 the verifier is convinced that the commitments Wi, Si

conceal the same secret αi. Also in the same round c = 1, V is convinced that
wpWi, wNSi conceal the same value x + αi ∈ [e, q − e). Commitments wNSi is
computed in ZN , thus x + αi = αi + xN or x = xN . In the other hand, wpWi

is computed in Zp, thus x + αi = xp + αi mod q. Moreover xp < q, αi ≤ e, thus
xp + αi < p + e. Therefore, x + αi ∈ [e, p − e) if and only if x + αi = xp + αi

or x = xp. This shows that V is convinced xp = xN with the probability of 1/2
in each round c = 1. With l rounds run in parallel, the verifier is convinced that
wp, wN conceal the same secret with the probability of roughly 1−2l/2, assuming
c is chosen over the toss of a coin.

In the protocol, the view of the verifier is the same as in the range-check
protocol. Thus it is zero-knowledge. Formal proof can easily be constructed with
a standard simulator.

Using the range check protocol and equality protocol with an unknown group
order, we can construct the modulo gate and the equality protocol respectively
as follows:
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Equality Protocol

Given: wi = commiti(xi, ri) and wj = commitj(xj , rj). Here commiti and
commitj are commitments computed in Zpi

, Zpj
respectively.

Prove: xi = xj

Protocol

1. P and V agree upon a RSA modulo N that is larger than both pi, pj . In
computational zero-knowledge model, N is set by a trusted third party. The
factoring of N should not be known to P.

2. P computes wN = commitN (x, rN ) (x = xi = xj) and sends wN to V.
3. P runs two instances of equality protocol with an unknown group order to

prove that the secrets concealed in wi,wN and wj , wN are respectively the
same.

4. V accepts the proof if and only if V is convinced in step (3).

Modulo Gate Protocol

Given: wi = commiti(xi, ri) and wj = commitj(xj , rj) and a number t. commiti

and commitj are defined as for the equality protocol.
Prove: xi = xj mod t

Protocol

(without the loss of generality, let us assume that xi ≥ xj)

1. P and V agree upon a RSA modulo N as for equality protocol.
2. P then computes sk = commitN (xk, ρk) (k = i, j), s = commitN (d, ρ) (d =

(xi − xj)/t) and sends si, sj , s to V.
3. P runs two instances of the equality protocol with unknown group order to

prove the equality of the secrets concealed in wk, sk (k = i, j).
4. P then runs an instance of the range-check protocol to prove that the secret

concealed in s is in [0, qi/t).
5. V accepts the proof if and only if si = sjs

t mod N .

3.4 Polynomial Related Protocols

Polynomial related protocols demonstrate addition and multiplication relations.
Addition and multiplication with a constant factor relations are proven by simply
choosing the commitments corresponding to the input(s) and the output of the
gate according to the relation. In an addition gate, let w1 = commit(x1, r1),w2 =
commit(x2, r2) and w3 = commit(x3, r3) be the commitments respectively repre-
senting the two inputs and the output of the gate. As the commitment scheme
is homomorphic, thus by choosing r3 = r1 + r2 the prover has already proved
the addition relation for the gate. The verifier can verify the correctness of the
proof by checking w3 = w1w2 mod p. Similarly, in the case of the multiplication
gate with a constant factor c, the prover chooses r3 = cr1 mod q. The verifier
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can verify the relation with the check w3 = wc
1 mod p. It is straightforward to

see that both demonstrations are sound, complete and zero-knowledge.
The remaining is a protocol to demonstrate the relation for multiplication

gate with both inputs are secret inputs. It is given as follows:

Multiplication Gate Protocol

Given: w1 = commit(x1, r1), w2 = commit(x2, r2) and w3 = commit(x3, r3) that
respectively correspond to the two inputs and the output of the gate.
Prove: x3 = x1x2 mod q

Protocol:

1. P chooses α, β ∈R Zi+1, sends W3 = wα
2 hβ and W2 = gαhβ mod p to V.

2. Upon receiving W3, W2, V issues a challenge c ∈R Zq to P.
3. P computes the responses u = α − cx1, v3 = β − c(r3 − r2x1) and v2 =

β − cr1 mod q, then sends u, v3, v2 to V.
4. V accepts the proof if and only if W3 = wc

3w
u
2 hv3 and W2 = wc

1g
uhv2 mod p.

This is an instance of Chaum-Pedersen[8] proof of equality of discrete logarithms.
Here the protocol proves the equality of the discrete logarithm of w3 to the base
w2, and of w1 to g in respective representation of w3 to [w2, h] and of w1 to [g, h].
This shows that the discrete logarithm of w3 to g in the representation of w3 to
[g, h] is the product of the discrete logarithms of w1, w2 to g in the respective
representations of w1, w2 both to [g, h], i.e., x3 = x1x2.

3.5 Exponentiation Related Protocols

Exponentiation related protocols demonstrate the relations between commit-
ments corresponding to exponentiation gates. In an exponentiation gate, the
exponent is not computed in the same finite field as the base. However, in order
to maintain the algebraic relation the value of the base has to be in the multi-
plicative group of order k over Zq if the exponent is computed in Zk (k = pt for
some t in the general setting). Here the exponentiation is calculated in Zq.

For clarity, we denote the commitments computed in Zq and Zp respectively
as commitp and commitq. Secrets committed in commitp and commitq are com-
puted in Zq and Zk respectively. Similar indices are also used for g, h. Note that
for the two different exponentiation gates computed with the same finite field
Zq, it is perfectly legal to have two different values of k in our model.

The base in an exponentiation gate can either be a (public) constant or a
secret concealed in a commitment. There is a different protocol for each case.

Exponentiation Gate with Constant Base Protocol

Given: a constant b, commitments wk = commitq(xk, rk) and wq = commitp

(xq, rq)
Prove: xq = bxk mod q
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Protocol (run in parallel, l rounds)

1. P chooses αk, βk ∈R Zk, βq ∈R Zq. αq = bαk mod q, sends Wk = commitq

(αk, βk) and Wq = commitp(αq, βq) to V.
2. V then challenges P with c ∈R [0, 1]
3. P returns to V the responses uk, vk, vq computed as uk = αk − cxk, vk =

βk − crk mod k and vq = βq − crq mod q

4. V is convinced if and only if Wk = wc
kguk

q hvk
q and Wq = wc

qg
bu

k
p h

vq
p .

This is a variant of Stadler’s protocol[25] to prove the knowledge of double di-
screte logarithm. Here the protocol is given for the commitment in the form of
w = gxhr instead of w = gx. Both of these forms are instances of the represen-
tation problem of w to a set of bases (e.g. g, h in the former and g in the latter).
The security of the representation problem is equivalent to that of the discrete
logarithm problem[2].

Exponentiation Gate Protocol

Given: w1 = commitp(x1, r1), w2 = commitq(x2, r2) and w3 = commitp(x3, r3)
that correspond to the base, exponent and the output of the gate.
Prove: x3 = xx2

1 mod q

Protocol ( run in parallel, l rounds)

1. P chooses α, β ∈R Zk, forms u1 = g
hα

q
p and u2 = g

hβ
q

p and sends u1, u2 to V.
2. V challenges P a bit c ∈R [0, 1].
3. If c = 0, P sends to V: α, β. Otherwise P sends to V: v1 = x1h

α
q and

v2 = xx2
1 hβ

q mod q.
4. V (with the help of P) processes as follows:

a) If c = 0, V checks the correctness of u1, u2 with α and β
b) If c = 1, P runs two instances of multiplication protocol to prove v1 (resp.

v2) is the product of secrets concealed in u1 and w1 (u2 and w3). P also
runs the sub-protocol to prove that the same secret x2 is concealed in
both w2 and v2 = commit(x2, β−x2α). Here commit(x, r) = vx

1hr
q mod q

is a commitment scheme computed in Zq. This scheme is legitimate since
the discrete logarithm of v1 to h is unknown and they are both in the
multiplicative group Gk of order k in Zq.

5. V accepts the proof if V is convinced at every step.

The Sub-protocol

Given: w2 = gx2
q hr2

q and v2 = vx2
1 hr

q mod q
Prove: w2, v2 are commitments of the same value x2

Process:

1. P chooses α, ρw, ρv ∈ Zk, sends w = gα
q hρw

q and v = vα
1 hρv

q mod q to V.
2. V challenges P a number c ∈R Zk.
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3. P responses with u = α − cx2, rw = ρw − cr2 and rv = ρv − cr mod q.
4. V accepts the proof if and only if w = wc

2g
u
q hrw

q and v = vc
2v

u
1 hrv

q hold.

This sub-protocol is an instance of Chaum-Pedersen’s proof of equality of di-
screte logarithms. It proves that the discrete logarithm part of w to gq in the
representation of w to the base [gq, hq] equals the discrete logarithm part of v
to v1 in the representation of v to [v1, hq]. Note hq is chosen such that loghq

(v1)
is not known.

Security Proof
The completeness comes straight from the inspection of the protocol. For

the soundness, note that in each round c = 0, the verifier is convinced with
the probability of 1 that P knows the double discrete logarithm of both u1, u2.
Because c is chosen by V over the toss of a coin, in each round c = 1 V is
convinced with probability of 1/2 that P knows the discrete logarithm α, β of
both u1 = ghα

p and u2 = ghβ

p .
The two instances of the multiplication protocol convince V that v1 (resp.

v2) is the product of the secrets committed in w1 and u1 (w3 and u2), i.e., v1 =
x1 loggp

u1 = x1h
α and v2 = x3 loggp

u2 = x3h
β . Since the discrete logarithm of

x1 to h is not known, v2 is a commitment of logx1
x3.

The sub-protocol then proves that the secrets concealed in both v2 and w2
are the same. This means V is convinced that x2 equals the discrete logarithm
of x3 to x1 or x3 = xx2

1 mod q with the probability of 1/2(1− 2l) for each round
(c = 1). After l rounds, V is convinced with the probability of roughly 1 − 2l/2

that x3 = xx2
1 , assuming c is chosen uniformly as either 1 or 0.

In each round for c = 0, the verifier learns nothing about the secrets because
all information shown by the prover, is independent of w1, w2, w3. In each round
for c = 1, P executes an instance of equality protocol and two instances of
multiplication protocol. The multiplication protocol and the sub-protocol are
zero-knowledge and reveals no useful information to the verifier. All instances
are independent of others. The rest of verifier’s view is v2, v1. As α, β are chosen
at random, v1 = x1h

α and v2 = xx2
1 hβ are witness-indistinguishable. Thus at no

stage, the verifier learns any useful information about the secrets.

3.6 Discussion

This construction is unconditionally hiding and computational interactive ho-
nest-verifier zero-knowledge. Non-interactive zero-knowledge is achieved by for-
ming the challenge c as the hash value of information sent to V by P. Uncondi-
tionally binding, in which the computational power of the prover is not limited,
is achieved by applying the technique of [9]. Honest-verifier can also be loosen
by standard techniques[12].

With some slight modification, similar building blocks can be built in RSA
setting[3] for any mode of proofs. The technique of [15] can be used to construct
our building blocks for multiplication, addition, modulo gate for the commit-
ments computed in multiplicative groups of finite fields with unknown group
order(s). Moreover, if the secret is a single value, i.e., there is no descendant
gate(s) of the corresponding gate, exponentiation gates with constant base can
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also be demonstrated for such commitments. It is possible to add boolean relati-
ons to our general circuit using the construction of [3]. Especially AND relation
can be shown at no extra cost. Other arithmetic relations, such that div, mod
with secret modulus, can be achieved with similar techniques.

4 Zero-Knowledge Proof of Possession of Digital
Signatures

Zero-knowledge proof of possession of digital signatures can be constructed if
the underlying signature scheme is in L. It is done by first forming an arithmetic
circuit corresponding to the underlying signature scheme and then using the
general technique to realize zero-knowledge proofs.

Signature schemes that do not require hash functions can easily be shown
to be members of L. They include RSA, ElGamal[13], DSS[18] and Nyberg-
Rueppel[20] signature schemes. Let f() be the signature function, m be the
message and S be the signature. The function f() takes S as its input and
outputs m or some isomorphic value of m under some one-way function. In RSA,
P proves the knowledge of S = s: f(s) = m for f(x) = xd and d is the public
key. In ElGamal signature, P proves the knowledge of S = (r, s): f(r, s) = gm

for f(α, β) = yααβ mod p and y is the public key. In Nyberg-Rueppel signature,
P proves the knowledge of S = (r, s): f(r, s) = m for f(α, β) = gα mod qyββ.
See the appendix for detailed circuit constructions of these signature schemes

4.1 Comparison to Previous Works

RSA-based signatures can be proven in zero-knowledge without modulo related
nor exponentiation related protocols. Our construction achieves virtually the
same efficiency as those presented in [5,15].

Kilian and Petrank gave the only zero-knowledge proof of possession of
discrete-logarithm based digital signatures in [17]. Their protocol is specifically
designed for ElGamal signature scheme, while ours are applicable for many sig-
nature schemes. Nevertheless, with the security parameter l, Kilian and Petrank
protocol requires O(l2) rounds. No protocol in our overall construction requi-
res more than O(l) rounds. All (sub) protocols are independent and thus can
be done in parallel. Therefore the overall complexity of our protocol to prove
the possession of digital signatures is O(l). This is an improvement of the order
O(l) over Kilian-Petrank protocol. Recently Camenisch and Michels[4] propo-
sed a new general construction that can prove any arithmetic relation. But in
proving possession of digital signatures, their proposal requires a minimum of
O(l) rounds and is no better efficient than Kilian-Petrank protocol. It is still
highly desirable to construct protocols with O(1) rounds. This is achieved if cut-
and-choose is eliminated in modulo and exponentiation related protocols. Such
solutions are unfortunately not found yet.
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4.2 Applications

Our zero-knowledge proofs of possession of digital signatures have many appli-
cations. An obvious application is identity-escrow. Here identity certificates can
be of any mentioned signature schemes. The identity escrow then consists of two
parts. One is the zero-knowledge proof of possession of a valid identity certificate,
i.e., a signature. The other is the ciphertext of some information that uniquely
identify the certificate under some trusted authority public key. Similarly, our
proof can realize fix-size group signature schemes. So far, fix-size groups signa-
tures exist only for RSA-based group certificates. Those group signatures are
non-interactive proofs of possession of RSA signatures. Our construction allows
group signatures to be constructed with group certificates being any mentioned
signature.

Another significant application is fair-exchange of digital signatures. The
standard method requires the encryption of the digital signatures under some
trusted authority public keys. The sender then proves the validity of the cipher-
text to the receiver. This is proposed by Asokan, Shoup and Waidner[1]. In their
protocols, only “half” of the signature is encrypted and proven in zero-knowledge,
the other half is shown directly to the receiver. It could be undesirable if the
sender is required to be anonymous/unlinkable when the exchange fails. Our
technique facilitates complete hiding. It is done by encrypting every part of the
signature under the trusted authority public key. Each ciphertext is then con-
sidered as a unconditionally binding commitment. Then the sender proves in
zero-knowledge that the corresponding plaintext is a valid signature of a specific
message. The whole signature is not revealed unless the exchange succeeds.
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A Soundness Proof for Protocol in Section 2.2

To prove the soundness of the protocol proposed in section 2.2, we make three
assumptions:

1. The circuit is constructed correctly from the function Fi() with the cheating
probability of 0. This is plausible as such construction is public and Fi() is
public.

2. The circuit is of polynomial size, i.e., both number of gates and leaves are
of polynomial order.

3. All the building blocks are secure and have a negligible cheating probability.

We now prove the cheating probability of the protocol ε is negligible.
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Lemma 1. For each building block, let the combined cheating probability of the
input(s) be εI , the cheating probability of the output be εO and of the protocol be
εG, The following inequality holds:

εO ≤ εI + εG

This is because for the inputs are correct for with the probability of (1 − εI).
Accordingly the cheating probability of the output when the inputs are correct,
is εO = (1 − εI)εG. Combined this with the cheating probability εI of inputs, we
have:

εO = εI + (1 − εI)εG ≤ εI + εG

Here for any probability ε, it satisfies 0 ≤ ε ≤ 1. Similarly, we can also obtain
the following lemma:

Lemma 2. Let the cheating probability of the inputs A, B be εA, εB, the combi-
ned cheating probability of the inputs be εI , the inequality holds:

εI ≤ εA + εB

As in each of our building block there are at most two inputs, the cheating
probability of the output is always no greater than the sum of all the cheating
probabilities of the inputs and the protocol itself for any stance of the building
blocks. This comes straightforward from two lemmas above.

In our circuit Fi(), the inputs of each gate are the outputs of other gates
unless they are the leaves. The final output of all the gates is Gv and all the
non-reducible inputs are U1, ..., Uu. Each gate Gi is associated with a protocol Gi

to prove the relation between the secrets concealed in the input and the output
commitments of the gate. Each leaf Lj is associated with a protocol Li proving
the knowledge of the secret concealed in the associated commitment Uj . Hence,
we have the following result:

Lemma 3. Let θi, λj, ε and ε be the cheating probability of Gi, Lj, the opening
commitment required in step 4 and the whole protocol respectively. The following
inequality holds

ε ≤ ε +
v∑

i=1

θi +
u∑

j=1

λj

From assumption (2) and (3), the cheating probability of the building blocks
are negligible, u + v are of polynomial size, thus the cheating probability of the
protocol (ε) is no greater than a polynomial order of a negligible value. That
proves the soundness of the protocol.

B Arithmetic Circuits of Digital Signature Schemes

Let f() be the signature function, m be the message. The function f() takes the
signature as it input and outputs m or some isomorphic value of m under some
one-way function. The construction of the arithmetic circuit corresponding to
f() is as follows:
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The Case of RSA Family

Function f(): f(x) = xd mod n
Verification: f(s) = m, s is the signature
Circuit construction: d = d1..dk (di ∈ [0, 1]).

f(x) :=
k∑

i=1

(fi(x))di mod n

fi(x) := (fi−1(x))2 mod n

f1(x) := x

The Case of ElGamal Digital Signature Scheme[13]

Function f(): f(α, β) = yααβ mod p (y is public key)
Verification: f(r, s) = gm, (r, s) is the signature
Circuit construction:

f(α, β) := f1(α, β)f2(α, β) mod p

f1(α, β) := yf3(α,β) mod p

f2(α, β) := f4(α, β)f5(α,β) mod p

f3(α, β) := α mod (p − 1)
f4(α, β) := α

f5(α, β) := β

The circuit construction for Digital Signature Algorithm[18] is identical to that
of ElGamal. The only difference in the circuit is that f3(α, β) is computed as
α mod q, not α mod (p − 1). Other variants of ElGamal[19] could be proven
using similar circuit.

The Case of Nyberg-Rueppel Digital Signature Scheme[20]

Function f(): f(α, β) = gα mod qyββ
Verification: f(r, s) = m, (r, s) is the signature
Circuit construction:

f(α, β) := f1(α, β)f2(α, β)f3(α, β) mod p

f1(α, β) := gf4(α,β) mod p

f2(α, β) := yf3(α,β) mod p

f3(α, β) := β mod q

f4(α, β) := α

Note that the checks 0 ≤ α < q and 0 < β < 0 are also satisfied. This is due to
their commitments are computed in respective finite fields. To prove β > 0, the
modulo protocol should use the range [1, q − 1] instead of [0, q − 1] as presented
in section 3.3.
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