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Abstract

We present cryptocurrency-based lottery protocols that do not require any collateral from the players.
Previous protocols for this task required a security deposit that is O(N2) times larger than the bet
amount, where N is the number of players.

Our protocols are based on a tournament bracket construction, and require only O(logN) rounds.
Our lottery protocols thus represent a significant improvement, both because they allow players with
little money to participate, and because of the time value of money.

The Ethereum-based implementation of our lottery is highly efficient. The Bitcoin implementation
requires an O(2N ) off-chain setup phase, which demonstrates that the expressive power of the scripting
language can have important implications. We also describe a minimal modification to the Bitcoin
protocol that would eliminate the exponential blowup.

1 Introduction

The “N -player commitment lottery” provides a useful test-case for the expressive power of cryptocurrencies.
The rules are simple: each of the N players contributes a quantity of money (say B1) into a pot, and one of
the players is selected at random to receive the entire reward of BN .

This lottery game can be desirable as application on its own, but is also studied independently as a
useful “leader election” primitive for building randomized distributed systems [1]. Cryptographic protocols
for this task based on “commitments” are well-known in the research literature. Though there are many
ways of implementing a lottery (such as by using a randomness beacon to draw a random number), a secure
implementation of the commitment-based approach is the one with the least reliance on trust assumptions.
This is because it can guarantee that an honest player will win the pot with essentially 1/N probability,
regardless of external factors and the behavior of the other players.

The commitment-based approach can be thought of as relying on a hash function and a public bulletin
board. A simple protocol can specify that each party Pi commits to a random value Xi by hashing it (i.e.,
hi = hash(Xi)) and posting this hash hi on the bulletin board. After all the commitments are collected, the
parties reveal their Xi values and the winner is determined by combining them, e.g., as (

∑
iXi) mod N .

For such a protocol to be secure against malicious or rational coalitions, it should handle aborts in a way
that ensures that the expected reward of an honest player is never negative.

Cryptocurrencies like Bitcoin and Ethereum provide a natural platform for implementing such lottery
protocols, since they can serve both as the public bulletin board and as a way of collecting the initial money
deposits and executing the payout procedure. Several works have shown constructions of cryptocurrency-
based lotteries with varying performance tradeoffs (e.g., number of rounds vs total message complexity).

In this work we primarily focus on minimizing the “collateral cost” of commitment-based lottery protocols.
So far, in order to guarantee fairness, prior known protocols [4, 9] require each player to deposit a significant
amount of money up front, in addition to the B1 bet itself), which may be forfeited in the case that that
player deviates from the protocol. Previous solutions for Bitcoin-based lotteries have required a fairly steep
collateral deposit: one that is O(N2) times larger than the bet amount, per player. Even though honest
players are guaranteed to get their collateral back at the end, this requirement imposes an “opportunity
cost” since the collateral is encumbered for the duration of the protocol; put another way, parties may not
be able to afford to borrow the needed collateral.
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In this paper we show novel protocols for reducing the collateral costs of N -player lotteries, in both
Bitcoin (post-SegWit) and in Ethereum, that are the first not to require any collateral deposits whatsoever.
Our protocol is based on two components: a) a collateral-free implementation of the simple case of a 2-
player lottery, and b) a binary-tree tournament constructed from instances of the 2-player lottery. Both of
our Bitcoin and Ethereum protocols require zero collateral and O(logN) rounds.

A surprising outcome of our work is thus that it points to a new separation between the expressive
capability of the scripting systems in Bitcoin and Ethereum. Although fair lotteries have been a well-known
demonstration of Bitcoin’s versatility, our best Bitcoin-based protocol is significantly more expensive in terms
of off-chain setup (i.e., it requires an off-chain setup phase with O(2N ) signed transactions). Furthermore, the
zero-collateral lottery is straightforward to implement in Ethereum’s smart contract language, which easily
expresses state machines that users update by sending transactions, whereas the Bitcoin version requires an
unwieldy and indirect way of representing the state machine. Our comprehensive evaluation (Table 2) shows
that the collateral requirement is sensitive to the choice of language design, and thus may continue to serve
as a useful expressiveness benchmark. In the Appendix, we propose a minimal modification to Bitcoin that
would close the performance gap.

1.1 Background

The Blockchain Model of computation Our focus in this paper will be mostly concerned with ways in
which Bitcoin [32] and Ethereum [40], two leading cryptocurrencies, differ. However, both systems are based
on the Nakamoto “blockchain” protocol, and share mostly the same essential functionality as we review now.
The underlying blockchain protocol can be thought of as a globally-ordered broadcast primitive, which can
be configured for general purpose applications just by interpreting the contents of that log. In Bitcoin, the
log is interpreted as a ledger of transactions that move quantities of money from one pseudonymous account
to another. In Ethereum, the log is interpreted as a sequence of input commands to processes called “smart
contracts” residing in a virtual operating system. Both systems provide some means of user programmability,
allowing the flow of virtual money to be be constrained by fragments of code in a scripting language.

Ethereum provides a programming language resembling an actor-based process calculus — each “smart
contract” process is defined as a behavior that reacts to each an input and potentially modifies a local state
or sends messages to other processes. Although this language is fairly general, the environment is well-known
to be error prone [30, 15]. In principle, the language is Turing complete, however execution times are limited
by transaction fees, called “gas”, which are charged by the instruction. In contrast, the Bitcoin scripting
language is mainly focused on signature verification, and can express a policy for accepting or rejecting a
transaction, but cannot alter the effect of that transaction if accepted. A significant number of research
papers have explored the possibility of building applications on top of cryptocurrencies, either by modifying
the protocol [28, 7, 12], or by using Bitcoin’s [21, 37] or Ethereum’s [15] existing scripting languages. A goal
of our work is to better understand how the design of each language affects its usefulness by focusing on a
particular task, the N-player lottery.

As is typical for modelling cryptocurrencies [18, 33, 34, 29, 24, 23], we assume that the underlying
synchronicity of the communication network is such that transactions submitted to the blockchain system
are accepted within a bounded time and that timestamp information available to the smart contract is
approximately synchronized.

Transaction Malleability and SegWit. Our Bitcoin transaction construction relies on an upgrade to
Bitcoin, called “Segregated Witness” (SegWit) [3, 17], which addresses a well-known problem of “transac-
tion malleability” [5, 14]. At the time of this writing, SegWit has been developed, tested, and is pending
deployment as a “soft-fork” upgrade.

In the current most commonly used version of the Bitcoin protocol, signature-scripts are considered to be
part of the transaction-ID (TXID). This fact has the following unfortunate implication: given one signature-
script for a transaction Tx, it is easy to construct different, but equally valid, signature-scripts. One may,
for example, append an OP NULL op code (which is simply skipped over, having no effect on transaction
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validation), resulting in a different signature script and therefore a different TXID. The ability to see a
transaction Tx and derive a distinct transaction Tx′ with a distinct TXID is called “transaction malleabil-
ity.” The transaction malleability problem is well-known, and prevents a variety of useful applications of
Bitcoin script programs (smart contracts) based on transaction scaffoldings. Essentially, the transactions in a
scaffolding construction are linked to each other by reference to their TXIDs; transaction malleability means
that an attacker could direct their coins “outside” the scaffolding by crafting transactions with malleated
TXIDs.

The SegWit upgrade eliminates transaction malleability by removing the signature script from the body
of the transaction, and thus the TXID does not depend directly on the signature script. To verify a Seg-
Wit transaction, a node therefore needs not just the transaction itself, but also the signature script (the
“witness”).

Our transactions also rely on a recently-added script instruction (as of version 0.11.2 [39]), called
CHECKLOCKTIMEVERIFY, which is used to specify a minimum time before which an output cannot be spent.

1.2 Related Work

Andrychowicz et al. [4] developed fair lotteries on top of the Bitcoin scripting language. However, to achieve
the notion of fair lottery, they require the participants to place an additional security deposit of O(N2)
coins, along with their actual bet of 1 coin each. Remarkably, [4] is a constant-round protocol, though it
requires O(N2) on-chain transactions in total. Bentov and Kumaresan presented an alternative lottery [9],
that requires O(N) on-chain transactions but O(N) rounds, and still O(N2) collateral. In these, the entire
collateral must be held in deposit for maximum duration of the protocol. Hence, if we consider the measure
rounds × collateral as the time-value cost of participation in the lottery (per player), then [4] has O(N2)
time-value cost, [9] has O(N3) time-value cost, and our lotteries have O(logN) time-value cost.

In Ethereum, Delmolino et al. implemented 2-player commitment-based lotteries [15]. Our 2-player
Ethereum lottery functions similar to theirs, though the extension to N players with zero collateral is first
described in our work.

Concurrently and indepedently of our work, Bartoletti and Zunino developed a Bitcoin lottery protocol [6]
which shares the same underlying insight as ours (i.e., theirs is also based on a binary tournament tree
comprising 2-player lottery instances). However, our Bitcoin-based protocol has several differences compared
to theirs: first, their protocol relies on an additional new custom opcode, whereas our relies only on the
pending SegWit upgrade; second, their lottery requires a constant O(1) collateral, whereas as ours requires
zero; third, their lottery protocol is secure against a rational adversary, whereas ours considers the case of
a fully malicious adversary. However, the tradeoff of working within the constraints of Bitcoin(+SegWit) is
that we require an exponential amount of off-chain work, whereas theirs requires only O(N2). In Section 7,
we also propose an alternative opcode, MULTIINPUT, that results in a simpler lottery. In Table 2 we compare
between these aforementioned lotteries and our lottery protocols.

As an alternative to commitment-based lotteries, one may rely on a PoW-based beacon. That is, the
lottery can use the hash of the blocks themselves as a public randomness source. The rationale is that it is
difficult to influence this hash value, other than by discarding mining work (and thus foregoing the mining
reward) [2, 11, 35, 25, 8]. A secure implementation of this approach should prevent the winner from spending
her prize before a significant number of PoW confirmations occur, as otherwise a chain reorganization will
invalidate every transaction that depends on the prize (similarly to the coinbase transaction in Bitcoin).
While the beacon approach is indeed popular in Ethereum lotteries[15, 26], the GHOST [38] variant of
Ethereum makes it significantly easier to influence the identifier of the puzzle. If the miner of the last block
does not like the outcome of the lottery, she can withhold her block temporarily, so that it later can be
included as an “uncle block” which earns 80% of the original block reward. This way, a miner can influence
the beacon without forfeiting the entire block reward. A more secure beacon would derive the output from
multiple blocks [8], possibly including such uncle blocks.
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2 Overview of our N-Player Commitment Lottery Protocol

Though we present multiple variations of a lottery protocol in different cryptocurrency platforms, we evaluate
their security properties in a common framework, which we describe informally below. We then explain the
common high-level structure of our protocols.

Security properties of a Lottery. We consider a standard network model concerning a set of N players,
some of which may be “corrupted” and controlled by an adversary. We assume the network includes a
“blockchain,” which keeps track of amount of digital currency (denoted with B) owned by each player.

A protocol that implements the N-party coin-flip lottery should satisfy the following security properties:

• (Ideal case.) If all parties are honest, then each party earns B(−1) with probability 1− 1
N , and earns

B(N − 1) with probability 1
N .

• (Terminates in finite time.) If any party is honest, then the protocol completes by some time parameter
T final, after which all payouts have been completed.

• (Commit/Abort decision is made even sooner.) Our protocols guarantee that by a shorter time,
T commit, either the protocol has either “aborted” or “committed”. If the protocol has “aborted”, then
each honest party immediately receives a net payout of 0 (i.e., any deposited money is returned by
time T commit).

• (Stochastically Dominant Payoff.) If the protocol has committed (rather than aborted), then each
party receives a payoff distribution P ′ (by the time T final), a payoff distribution P ′ that stochastically
dominates Pideal. Stochastic dominance is a natural relation that guarantees. For value $X, you are at
least as likely in P ′ as you are in Pideal to receive a payoff of $X or more.

• (Minimal Collateral.) Although the above properties constrain the net payout offered to each party,
the protocol may require parties to deposit additional money up front (as a collateral deposit), which
honest parties are guaranteed to receive back.

The properties above are only required to hold except for negligible probability. Particularly, the protocol
relies on cryptography with a security parameter 1λ, and so “negligible probability” here means a negligible
function of λ, i.e., negl(λ).

The 2-party commitment-based lottery. In a two player commitment-based lottery, the two players,
Alice and Bob, commit to a random value a and b respectively. After both commitments are registered, then
the players open their commitments. The revealed values are combined to determine a pseudorandom bit
(e.g., by XOR mod 2), such that if either player chooses a random value then the output is truly random. If,
instead, either player fails to commit, or fails to reveal their committed value, then that player is punished
(i.e., that player automatically forfeits) the tournament.

Typically, the commitment is implemented using a hash function. A couple of caveats bear mentioning.
First, the hash function should not be directly applied to a string in a small value space (e.g., a 2-party
lottery implemented according to “Rock-Paper-Scissors” rules). If the search space is small, the “hiding”
property is not achieved, since an attacker could brute force to learn the committed value. Second, to prevent
“replay” attacks, the committed value can require some prefix. This would prevent Alice from replaying
Bob’s commitment, in which case Alice always wins since the XOR’d decommitments produce 0.

From 2-Player to N-Player using a Lottery Tournament. To form a lottery for an arbitrary number
of players, the 2-player lottery can be composed in a binary-tree tournament structure. Assume (for now)
that the number of players, N, is a power of two. In the first level of the tournament (level `, 0), each pair
of players 2i and 2i + 1 is pitted against each other in N/2 initial instances of the 2-player lottery, called
matches (match`,i). Next, the winners of each level-0 lottery are pitted against each other, again in pairs.
The process continues, until the final level ` = log2N , which determines the overall winner. See Fig. 4 for
an illustration.
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Security of the Lottery Tournament. An honest participant in the tournament protocol will win the
BN pot with at least 1

N − negl(λ) probability, where λ is the security parameter, satisfying the stochastic
dominance property. This is because the honest player participates in up to logN competitions, and wins
each of these competitions with at least 1

2 −negl(λ) probability. This is because an honest player will reveal
a decommitment to a fresh secret, and will proceed to the next round of the tournament either because the
decommitment of the competing player loses, or because the competing player timed out (cf. Fig. 5 for the
Bitcoin lottery and getWinner in Fig. 1 for the Ethereum lottery). The success probability of the honest
party is adjusted by a negligible negl(λ) amount, due to the possibility that a malicious player could break
the hiding or binding properties of the commitment scheme.

As with the blockchain-based protocol, the tournament protocol needs to be secure against history-
reversal attacks. For example, if two malicious players P1, P2 compete and P2 wins, and then in the next
2-party lottery between P2 and an honest player P3 it turns out that the decommitment of P3 wins against
P2 but would have lost against P1, then P1, P2 must not be allowed to reverse to blockchain history so that
P1 wins their competition. For this, the timeout values (using CHECKLOCKTIMEVERIFY in the Bitcoin variant)
of the tournament transactions are set according to a confidence parameter τ . For example, τ = 6 implies a
security level of 6 PoW confirmation.

3 Lottery in the Ethereum Model

In this section we describe an implementation of a commitment-based lottery in Ethereum, following the
high-level plan described previously.

Implementing the 2-party logic in an Ethereum smart contract. The implementation of our two-
player lottery component, shown in Fig. 1, is written in Ethereum’s high-level “Serpent” programming
language. A Serpent program consists of data declarations and top-level functions. If no explicit type
annotation is given, data fields are assumed to be of the default 256-bit signed integer type. Users interact
interact with a smart contract by publishing a transaction containing a procedure call, including the address
of the contract, the name of the function to invoke, and arguments to pass. When a user creates a transaction,
they must pay a “gas” fee, which roughly corresponds to the computational cost (e.g., storage plus number
of opcodes) of executing the smart contract code.

Like many Ethereum smart contracts, our lottery contract is structured as a time-based state machine,
where hardcoded deadlines indicating the transition time between states (expressed as a number of blocks,
read from the block.number register). Within the time interval from T0 to T1 (which is a parameter τ),
the two participants in the 2-party lottery must submit their commitments, and within T1 to T2 they must
open their commitments. After T2, the winner is determined, based on the opened values; if one player fails
to complete their duty, then the other player wins by default.

Our implementation includes initialization routines for configuring each of the declared data fields. We
omit the code listing for these routines for brevity, but explain the main idea here. The parties that play in
the two-player contract can be specified in one of three ways. First, if the addresses for players Alice and
Bob are initialized to a non-zero value, then then those are the players that will participate in the game (in
this case, lines 16-21 in Fig. 1 will have no effect). Alternatively, the players can be determined at runtime,
by querying a method of another contract (either left, right, or deposit), as explained shortly.

The players interact with the 2-party contract through the commit and open methods. The commit

method stores the player’s commitment in the persistent storage array, self.commitments, which is indexed
by each player address. The player’s address is implicitly passed as an argument, the msg.sender register,
which always refers the party that invoked this method. In order to prevent replay attacks, the player’s
public key is required as a prefix of the opened value (See line 28 in Fig. 1).

Assembling a Tournament Tree. For assembling the two-player Ethereum lottery into a multi-player
tournament, we need to ensure that the two players in each match are determined at runtime, based on the
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1 data alice:addr

2 data bob:addr

3 data openings[]:uint256

4 data commits[]:uint256

5 data T0

6 data T1

7 data T2

8 data isFirstLevel

9 data index

10 data deposit:addr

11 data left:addr

12 data right:addr

13
14 def commit(c:uint256):

15 assert(self.T0 < block.number < self.T1)

16 if self.isFirstLevel:

17 if self.alice == 0: self.alice = self.deposit.getPlayer(2*self.index)

18 if self.bob == 0: self.bob = self.deposit.getPlayer(2*self.index+1)

19 else:

20 if self.alice == 0: self.alice = self.left .getWinner()

21 if self.bob == 0: self.bob = self.right.getWinner()

22 assert(self.alice == msg.sender or self.bob == msg.sender)

23 self.commits[msg.sender] = c

24 log(type=Commit, msg.sender, c)

25
26 def open(s:uint256):

27 assert(self.T1 < block.number < self.T2)

28 assert(sha3([msg.sender, s], items=2) == self.commits[msg.sender])

29 self.openings[msg.sender] = s

30
31 def getWinner():

32 assert(self.T2 < block.number)

33
34 # Timed out before T1

35 if self.commits[self.alice] == 0: return(self.bob:uint256)

36 if self.commits[self.bob ] == 0: return(self.alice:uint256)

37
38 # Timed out before T2

39 if self.openings[self.alice] == 0: return(self.bob:uint256)

40 if self.openings[self.bob ] == 0: return(self.alice:uint256)

41
42 # Ordinary case

43 x = (self.openings[self.alice] xor self.openings[self.bob])

44 if mod(x, 2) == 0: return(self.alice)

45 else: return(self.bob)

Figure 1: Implementation of the 2-Player lottery in Ethereum. From the time period T0 to T1, players may
place commitments. In the next phase, from time T1 to T2, players may open their commitments. After
T2, the getWinner method determines the winner, accounting for any timeouts. The players Alice and Bob
can either be represented by hardcoded addresses, or else they can be dynamically determined (after time
T0) by querying the getWinner method of the left and right subcontracts.
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1 def buildTree(players, T Commit):

2 contracts = {}

3 contracts[0] = {}

4 for i in range(N/2):

5 contracts[0][i] = 2PContract(firstLevel=True, index=i,

6 T0=TCommit)

7
8 for L in range(1,log2(N)):

9 contracts[L] = {}

10 for i in range(2**(levels - 1 - L)):

11 contracts[L][i] = 2PContract(left=contracts[L-1][2*i].address,

12 right=contracts[L-1][2*i+1].address,

13 T0 = TCommit + 2*τ*L)

Figure 2: Python code for assembling an Ethereum N-Player Lottery tournament.

1 data players[]:addr

2 data n_players

3 data N

4 data complete

5 data deposits[]

6 data finaltournament:addr

7 data T − Commit)
8 data T Final)

9
10 def getPlayers(i):

11 return self.players[i]

12
13 def deposit():

14 assert(msg.value == 1)

15 assert(self.n_players <= self.N)

16 assert(self.deposits[msg.sender] == 0)

17 assert(block.number <= T Commit)

18 self.players[self.n_players] = msg.sender

19 self.n_players += 1

20 self.deposits[msg.sender] = 1

21 if contract.balance >= N:

22 self.complete = 1

23
24 def withdraw():

25 if !self.complete:

26 assert(block.number >= T Commit)

27 assert(self.deposits[msg.sender] == 1)

28 self.deposits[msg.sender] = 0

29 send(msg.sender, 1)

30 else:

31 assert(block.number >= T Final)

32 assert(finaltournament.getWinner() == msg.sender)

33 send(msg.sender, contract.balance)

Figure 3: Serpent code for the “master contract” that accepts deposits and execute payments for the players
in an N-player lottery. The master contract also refunds partial deposits in case of an abort before the
lottery begins.
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2-Player Lottery Smart 
Contracts (Fig 1.)

Master
Smart 
Contract
 (Fig 3.)

Figure 4: Illustration of the system of Ethereum smart contracts composing a tournament tree. The python
code in Fig. 2 can be executed by any party in order to initialize the structure of contracts depicted here.

winners of matches in the previous level (indicated by the left and right data fields). The approach we
take in Fig. 2 is simply to construct all the tournaments at once, and to initialize the contracts in level `+ 1
with the addresses of the contracts at level `. An overall illustration of the contracts tree is given in Fig. 4.

Implementing the deposit and payout mechanism. In order to accept monetary deposits, and to
determine the players in the first level ` = 0 lotteries, we construct on a separate “master contract,” listed
in Fig. 3. Before making any deposit, each player checks that the system of 2-player lotteries is correctly
formed, i.e. that the lottery each level is configured with a correct deadline times and references the correct
lottery contract in the previous level. Finally, the players each make a transaction that deposits money
into the lottery contract. If more than N parties submit transactions concurrently, all but the first N are
canceled with no effect.

Security and Performance Analysis. First consider the two-party contract, Fig. 1, assuming that the
party addresses alice and bob have been hardcoded. The getWinner method can only be called after
time T0, and afterwards can it can only take one value (since the fields it depends on, self.commits and
self.openings cannot be modified after T2). If either of the parties alice and bob is honest, then they must
call commit method before time T1 and open before T2, with a randomly chosen opening value. Because of
the abort-handling conditions (lines 34-40), an honest party is either chosen as the winner by default, or else
determined by the opening values of both players. In the case that the openings are both revealed, then an
honest party wins the lottery with at least 1

2 − negl(λ) probability, where λ is the security parameter, due
to the binding and hiding properties of the commitment scheme.

To assemble a tournament, some party must initialize a system of smart contracts. Python code for
creating these contracts in shown in Fig. 2. In the tournament construction, the party addresses are deter-
mined at runtime rather than hardcoded. If both parties who are supposed to play in a 2-player lottery fail
to invoke the commit method, then it is possible that these will both be set to a null value, in which case
getWinner will return a null value for the winner. Regardless, in the tournament construction, if an honest
party wins a lottery in level ` by time T2, then they will be considered a player by time T0 in a lottery at
the level `+ 1.

In the first level, the players in the lottery are determined by reference to the “Master contract” (see
Fig. 3). This guarantees that at time TCommit, either getPlayers contains N addresses including any
honest party who deposited money, or else every party that deposited can immediately withdraw their coins.
Otherwise, the payment can be withdrawn after time T Final = O(logN) according to the winner of the final

8



tournament. The overall tournament is illustrated in the Appendix (see Fig. 4).
The asymptotic performance of the Ethereum lottery is summarized in Table 2. The Ethereum lottery

does not require any collateral beyond the bet. Each transaction (i.e., invocation of commit, open, deposit,
or withdraw) requires a constant size, requiring only a single signature from one party. Asymptotically, our
Ethereum-based lottery achieves the best performance by each metric.

Gas Costs in Ethereum. An implementation of the Ethereum tournament is available at https://

github.com/amiller/zero-collateral-lottery. The implementation consists of Serpent code for the
2-party lottery, as well a pyethereum simulation that constructs and implements the private code for each
player.

We ran experiments to determine the gas costs of our protocol, i.e. transaction fees. Gas costs in
Ethereum are determined by several factors. First, there is a fixed mapping for each instruction to “gas units,”
as defined in the Ethereum “yellow paper” reference document [40]. Second, miners enforce a minimum Ether
price per gas unit, which today is approximately 2.5E-8 Ether per gas unit. Finally, the market price of
Ethereum today is approximately $10 per Ether. Putting these together allows us to express the actual
cost of our smart contract in dollars. In Table 1, we show the worst-case costs for each step of the 2-player
lottery implementation (Fig. 1). Initialization is most expensive, though must only be performed once. Each
operation is independent of the number of parties N , however several of the operations must be performed
O(N) times. In total, the cost of a lottery is −3.6 + 12.7N cents, e.g., an 8 player lottery would cost about
a dollar in transaction fees today.

Table 1: Gas Costs for the N-Player Lottery in Ethereum (Figs. 1,2,3)
Transaction Gas (USD) # required

Initialize Master 300012 7.5 cents 1
Initialize 2-Player 181539 4.5 cents N − 1

Deposit 67270 1.6 cents N
Commit 89812 2.2 cents 2(N − 1)

Open 45706 1.1 cents 2(N − 1)

4 Lottery in the Bitcoin Model

We present here a variant of the tournament protocol that can be implemented in Bitcoin (once the SegWit
upgrade becomes operational). The only aspect of SegWit that our protocol relies upon is the use of NTXID
instead of TXID to reference transaction inputs. In general, this feature enables smart contracts, in the
sense of having multiple prepared transactions such that some of them may become valid in dependence on
they way that a chain of prior transactions branched [27, 5].

In the particular case of the lottery, this technique can be regarded as simulating covenants [31]. That is,
every prepared transaction requires the signatures of all the players (and possibly some additional witness),
and all players sign these prepared transactions before the on-chain protocols starts. Thus, if there is a
single honest player then each transaction can be spent only via the prepared transactions that were already
signed in advance.

Transaction Scaffolding . Our protocol consists of a transaction construction, as illustrated in Fig. 6.
The protocol begins with a setup-phase, where the parties assemble a “scaffold” of partially-filled out (but
still incomplete) Bitcoin transactions that depend on one-another. The main phase of the protocol begins
after all of the parties have signed each incomplete transaction in the scaffold. Once signed, the transactions
are still not complete. During the protocol, parties take turns revealing secret information (previously
committed-to in the scaffolding). The secret information, combined with each set of signatures, completes
the “witness” portion of the transaction, enabling it to be committed in the blockchain.
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We now describe the transaction structures we need and conventions for composing them.

The N-N Master Key. Before the protocol begins its main phase, we require that each transaction in the
scaffolding must be signed by every one of the N players. We can implement this constraint in Bitcoin script
using the fragment [CHECKMULTISIGVERIFY{N}{N}{pubkeys}], which can be satisfied only by providing all
the required signatures. However, this results in an on-chain cost of O(λN) per transaction. In Appendix 6
we describe how to reduce this cost using threshold or aggregatable signatures; the performance of these
extensions are reflected in the “Lottery w/ Threshold” row in Table 2.

Connecting Inputs to Outputs. Each transaction input in Bitcoin consists of a reference to an output of
a previous transaction, for example: Tx2.inputLeft = Tx1.output. These references are concretely represented
as the hash of the previous transaction and the index of the output (in case the transaction has multiple
outputs to disambiguate).

We construct the overall transaction scaffold by assembling groups of incomplete transactions called
“kernels.” Our two-player lottery shown in Fig. 5 is based on a kernel of two transactions, Tx1 and Tx2.
The Tx1 transaction must be committed before the beginning of the lottery, T0, and relies on an input each
corresponding to the two players. This transaction contains a commitment to a value from the left player
(Alice).

There are three possible outcomes from the lottery, represented by the red boxes. In the first case, if
Alice fails to open her commitment, then Bob can spend the Tx1 output, winning by default. Otherwise,
Alice must spend Tx1 by T1 by revealing her commitment and completing Tx2. Once Tx2 is committed, we
coalesce the cases where Bob aborts versus when Bob loses fairly. Since Bob moves last, if he realizes that
a ⊕ b = 0 mod 2 and hence he cannot win, he simply does not post any transaction, and the coin can be
spent by any (pre-signed) transaction after time T2. Otherwise, if Bob can win, then the transaction can
also be spent by a transaction that reveals his commitment.

Tx: Alice and Bob bail in

Require N-N multisig
If T1 < Block:

ok
If Block < T1:

Reveal a, such that A = H(a)

Tx: Alice reveals the value a

Require N-N multisig
If T1 < Block < T2:

Reveal b, such that B = H(b)
Reveal a, such that A = H(a)
Assert (a^b) == 1 mod 2

If T2 < Block < T3:
ok

Reveal a where  A = H(a)Left Input

Time T0 Time T1 Time T2 Time T3

Outcome 3:
Alice wins (Bob aborts)

Outcome 1:
Bob Wins (Alice aborts)

Tx: Alice and Bob bail in

If T1 < Block < T2:
$(Output Template B}

If Block < T1:
Reveal a, such that A = H(a)

Tx: Alice reveals the value a

If T1 < Block < T2:
Reveal b, such that B = H(b)
Assert (a^b) % 2 == 1
${Output Template B}

If T2 < Block < T3:
${Output Template A}

Reveal a where  A = H(a)

{scriptSig}

Tx: Case where Alice wins

${ScriptSig Template A}

Tx: Cases where Bob wins

Reveal b where B = H(b)
${ScriptSig Template B}

Tx: Alice and Bob bail in

If T1 < Block < T2:
$(Output Template B}

If Block < T1:
Reveal a, such that A = H(a)

Outcome 2:
Bob Wins

Reveal a, b, s.t. 
A = H(a) and B = H(b) and 
a^b == 1 mod 2

Alice

Bob
Right Input

Figure 5: The 2-Player Lottery contract implemented using Bitcoin (with SegWit) transaction scripts. The
contract requires two transaction inputs, one each for the left and right players, and can result in one of three
possible outcomes. This is used as a “Kernel” to compose a tournament tree implementing an N -Player
Lottery.

The Bitcoin rules prevent committing any transaction that “double spends” (i.e., refers to a transaction
output that has already been spent once before). Thus although our scaffolding contains multiple transactions
that spend a common output, only one member of this set can be committed at runtime. Thus the three
outcomes in each 2-party lottery are exclusive.

Assembling the N-Player Tournament. To construct a tournament out of the 2-player lottery described
above, we need to overcome an inconvenient restriction in the Bitcoin transaction format, as we explain below.

Its natural to describe a tournament as a collection of 2N “matches,” where the players in each match
are determined by the winners of the matches at the previous level (i.e., Match`,i is the ith game of the
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... ...

Payout 
Transactions

Deposit 
Transaction

Level 0 Level (log2N)-1

Match0,0

Figure 6: Illustration of the Tournament, implemented in Bitcoin. The tournament consists of of 2N − 1
matches. Each match consists of a set of kernels, one kernel for each combination of outcomes of the two
matches leading into it in the tournament. The number of kernels in each match at level ` is #Kernels(`) = 9`.

tournament at level `, where ` ranges from 0 to log2N , and i ranges from 0 to 2`). In the Ethereum lottery
described in Section 3, we simply create one smart contract per match, and determine the players at runtime.

This approach does not work directly in Bitcoin. The problem is that each Bitcoin transaction needs
to be constructed and signed, including transaction input references, before it can be signed. We end up
needing one transaction for each combination of outcomes leading up to a match, rather than one per match.

We illustrate with an example. Consider a 4 party tournament. For the ` = 1 level, the inputs clearly
depend on the winners of the i = 0 and i = 1 matches at level ` = 0. However, each of these tournaments
results in one of 2 possible transaction outputs being committed onto the blockchain. Furthermore, one of
the outputs may be spent in one of two possible ways, one where Alice wins and another where Bob wins.
Since the transactions in a Kernel must explicitly identify the inputs they can spend, there are a total of 3 x 3
possible combinations. The best we can do is to create a signed transaction for each of these 9 possibilities.

To extrapolate from this example to the general case, we essentially need to include a stack of kernels to
represent each match. For a match in level `+ 1, we need 9 kernels for each pairwise combination of kernels
in the two preceding matches in level `. Ultimately, this requires a scaffolding with an exponential O(2N )
number of transactions, even though only a linear O(N) number need to be committed on the blockchain.

We define the number of kernels, #Kernels`,i, necessary for each match in the tournament Match`,i,
according to the following recurrence relation. #Kernels0,i = 1, and #Kernels`+1,i = (3 · #Kernels`,2i)(3 ·
#Kernels`,2i+1). If we assume N is a power of 2, then this recurrence relation is easily solved as #Kernels`,i =
9`. This definition, #Kernels, leads directly to the asymptotic analysis of our protocol.

In Appendix 5, we provide an inductive definition for constructing each transaction in the scaffold,
including the correct assignment of inputs to output references. We illustrate the construction in Fig. 6,
using the graphical notation of a solid white sheet to represent a kernel, with internal transactions represented
by small white squares, outputs represented by pink dashed squares, and input references represented by
blue dashed squares.
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Implementing deposits and payouts. We now describe the process by which players commit their
deposits and receive the payout. First, the players must agree to play, and have agreed on an assignment of
a player number to each identity. Each player i generates a fresh keypair (ski, pki) of secret and public keys,
and her player ID is the public key pki. From the player IDs, they can construct an N-N threshold signature
address, called the master as described earlier. Next, the players create a transaction that commits 1 unit
of BTC from each player. To ensure fairness, this can be done in two ways.

1. The players create a single unsigned atomic transaction whose inputs are their 1 BTC deposits and
whose outputs will be the leaves of the tournament tree. After all the other transaction for the next
levels of the tournament are signed, the players will finally also sign this atomic transaction. Recall
that due to the use of NTXIDs in segwit, the unique transaction IDs for these N outputs will remain
the same after the atomic transaction is signed, and therefore the next transactions can depend on
these NTXIDs. The drawback of this approach is that it imposes a limit on the maximal number of
players N that can participate in the lottery, since a fee for a very large transaction will be excessively
high.1

2. Each player commits to the blockchain a deposit transaction that spends 1 BTC into a leaf of the
tournament tree. However, two additional conditions need to hold. First, this deposit transaction uses
CHECKLOCKTIMEVERIFY to allow the player to receive her money back after a long enough time in the
future (after the first round of the tournament has completed), so that malicious players who refuse to
sign all the next transactions of the tournament will not damage an honest player. Second, the output
of the deposit transaction can be spent only if a preimage x̂ such that X̂ = hash(x̂) is revealed, where
X̂ is hardcoded. Prior to creating the deposit transactions, the players will execute a secure MPC
where the input of each player is a random secret xi, and the output is hash(x1⊕x2⊕· · ·⊕xN ). After
the deposits are committed on the blockchain and all the rest of tournament transactions are already
signed, the players will reveal their secrets xi values. Since Bitcoin transactions are public, when any
deposit is spent into a leaf of the tournament tree, the preimage x̂ = x1⊕x2⊕· · ·⊕xN becomes known,
which implies fairness.

If the initial deposits phase is successful (i.e., before time T0), then the parties next assemble and sign the
entire set of transactions according to the construction defined in the Appendix. Finally, after receiving all
of the N-N signatures for each transaction, the parties sign the atomic commit transaction described above
(or reveal their MPC secrets, depending on which above option is taken).

5 Detailed description of the Bitcoin Tournament

To finish out the formal description of the protocol, we need to describe how the inputs and outputs of the
transactions are hooked up, and how the transactions are configured. There are three output transactions
in each kernel, TxA, TxB, and TxB, each of these transactions has a single output. We know that there
since there are #Kernels`,i kernels associated with each match, we add another index j, to the Kernels for
each configuration. To describe the connection relation between the inputs of each kernel to the output of
other kernels, we essentially need to unpack the index j to identify the corresponding input kernels, and
the particular transaction in each kernel. Expressing this packing relationship is a bit tedious, and prone to
off-by-one error. Recall that j ranges from 0 to #Kernels(`+1, i) = (3·#Kernels(`, 2i))(3·#Kernels(`, 2i+1)).
Thus we first unpack j into components

IndexLeft(`+ 1, i, j) = j/(3 ·#Kernels(`, 2i+ 1))

IndexRight(`+ 1, i, j) = j mod (3 ·#Kernels(`, 2i+ 1))

1The practical limit for N can still be good enough, see e.g. a transaction with 412 outputs: https://bitcoinchain.com/

block_explorer/block/283873/.
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so that IndexLeft identifies the index of the left input kernel and transaction, and IndexRight determines the
index of the right. These indexes are then unpacked as a kernel index, in the range 0 to #Kernels(`, 2i+0, 1),
and a Tx index, in the range 0 to 3.

IndexLeftKernel(`, i, j) = IndexLeft(`, i, j)/3

IndexRightKernel(`, i, j) = IndexRight(`, i, j)/3

IndexLeftTx(`, i, j) = IndexLeft(`, i, j) mod 3

IndexRightTx(`, i, j) = IndexRight(`, i, j) mod 3

This allows us to assemble the input and output connections for each of the kernels.

Kernel`+1,i,j .Tx0.inputLeft = Kernel`,2i,IndexLeftKernel(`,i,j).Tx[IndexLeftTx(`, i, j)].output

Kernel`,i,j .Tx0.inputRight = Kernel`,2i+1,IndexRightKernel(`,i,j).Tx[IndexRightTx(`, i, j)].output

Kernel0,i,0.Tx0.inputLeft = DepositTx.output[2i]

Kernel0,i,0.Tx0.inputRight = DepositTx.outputs[2i+ 1]

Each Kernel must also be instantiated with a random string known to each of the two players. Although
the winning players in each match are determined at runtime, through the execution of the protocol, the
index of each Kernel already indicates a particular set of inputs associated with a particular path through
the tournament, so we can define define the Player for each kernel with the following.

Winner(`, i, 3 ∗ j + 0) = Kernel`,i,j .LeftPlayer

Winner(`, i, 3 ∗ j + 1) = Kernel`,i,j .RightPlayer

Winner(`, i, 3 ∗ j + 2) = Kernel`,i,j .LeftPlayer

Kernel0,i,0.LeftPlayer = Player2i

Kernel(0, i, 0).RightPlayer = Player2i+ 1

Kernel`+1,i,j .LeftPlayer = Winner(IndexLeft(`, i, j))

Kernel`+1,i,j .RightPlayer = Winner(IndexRight(`, i, j))

To avoid “replay” attacks in which a malicious players picks the same commitment hash as an honest
player so that the XOR’d decommitments will be 0, an honest player should refuse sign the initial deposit
transaction (cf. Section 4) in the case that there exist two equal commitment hashes in the transactions of
the tournament tree.

6 Reduced cost with Aggregatable or Threshold Signatures

To improve on our multisig-based Bitcoin lottery protocol, we can apply two approaches. The first is to use
the Bitcoin-compatible threshold signatures of Goldfeder et al. [19], although initially distributed the keys
to each party requires either a complex multiparty setup procedure with zero-knowledge proofs, or else a
trusted dealer. An alternative approach is to make use of the planned support for Schnorr signatures in
Bitcoin [16], as this implies an off-chain signature-aggregation protocol whose complexity is on par with the
standard Bitcoin CHECKMULTISIGVERIFY opcode, see [10] for details. In our analysis (Table 2), we include a
row “Lottery w/ Threshold” that accounts for the improved on-chain cost when either of these approaches
is taken.

13



Table 2: Performance Comparison of all Cryptocurrency Lottery Schemes. All values are worst-case. Off-
chain bytes are per party.

Scheme Collateral On-Chain Off-Chain Rounds Adversary Requirements
TCommit T Final

ADMM14[4] O(N2) O(N2) — O(1) O(1) Malicious Bitcoin
BK14[9] O(N2) O(N2) — O(N) O(N) Malicious Bitcoin (+CLTV)
BZ16[6] O(1) O(N) O(N2) O(logN) O(logN) Rational Bitcoin (+Templates)

Bitcoin Lottery (Fig. 6) 0 O(N2) O(2N ) O(1) O(logN) Malicious Bitcoin (+SegWit)
Bitcoin w/ Threshold (Section 4) 0 O(N) O(2N ) O(1) O(logN) Malicious Bitcoin (+Schnorr)

Bitcoin w/ (MULTIINPUT) 0 O(N) O(N2) O(1) O(logN) Malicious Bitcoin (+MULTIINPUT)
Ethereum Lottery (Figs. 1,2,3) 0 O(N) — O(1) O(logN) Malicious Ethereum

7 MULTIINPUT Script Instruction

To avoid the exponential blowup in off-chain transactions, we propose to extend the Bitcoin scripting language
by adding the MULTIINPUT opcode. Similarly to the standard CHECKSIGVERIFY, the MULTIINPUT opcode
verifies the validity of a signature on the implicit transaction data. However, this implicit data now excludes
the pair of input NTXID and index (tx0, i0). Instead, MULTIINPUT takes a hardcoded set S = {(txj , ij)}cj=1

of such pairs, and validates that the input (tx0, i0) belongs to S. Thus, in the case that a valid signature on
the transaction is already available, any currently unspent output from S can be attached to the transaction
and thereby make it valid.

In the case of the tournament protocol, the unique outcomes of Fig. 5 across all the possible identities
of the winners can be “compressed” via MULTIINPUT into a single outcome. For example, if player P2 ∈
{P1, P2, P3, P4} wins against either of {P5, P6, P7, P8}, then there are c < 2 · 2 · 4 combinations of unique
inputs that imply that P2 won her competition in this level of the tournament, where the “2” factors
are due to the different ways to win (cf. Fig. 5), and the “4” factor corresponds to the combinations
(P2, P5), (P2, P6), (P2, P7), (P2, P8). Hence, these c unique combinations can be compressed via a MULTIINPUT

transaction, and therefore there would be only a single NTXID that corresponds to P2 winning in this level
of the tournament.

Without MULTIINPUT, the total waiting time until the Bitcoin tournament terminates is 2τ · logN , where
τ is the confidence level for irreversibility (e.g., τ = 6 block confirmations) and the factor 2 is due to the
intermediate extra transaction that is needed in Fig. 5. Therefore, with MULTIINPUT the total waiting time
until termination becomes 4τ · logN , due to the extra “compression” transactions.

Since MULTIINPUT allows for unique NTXIDs as the identities of the winners at each 2-party lottery of the
tournament, the overall amount of off-chain signed transactions is O((n2 )2 + 2 · (n4 )2 + 4 · (n8 )2 + . . .) = O(n2).

8 Discussion and Conclusion

We have presented two protocol variations of fair commitment-based lotteries, implementable in Ethereum
and in Bitcoin. Our protocols overcome the significant O(N2) “collateral cost” of prior-known lotteries,
eliminating this requirement altogether. See Table 2 for a comparison between the prior lotteries and our
lotteries. The improved lottery protocols that we presented can be deployed as applications in their own right
(i.e., for a gambling game), or as a coin-flipping primitives for leader election (e.g., as part of a proof-of-stake
protocol). We reflect on the implications of our work for the design of cryptocurrency platforms.

Collateral Costs. Based on our effort in optimizing the collateral requirements of the Bitcoin lottery,
we conjecture that the O(2N ) setup requirement cannot be overcome for zero-collateral lotteries in the
Bitcoin(+SegWit) model, and that zero-collateral lotteries are impossible in Bitcoin at the time of writing
(prior to SegWit).

In our analysis, we make a fine-grained evaluation of the collateral costs of the protocol, including both
the magnitude (measured in dollars) and the time it is encumbered (e.g., we distinguish between early release
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of collateral in the abort phase and the final phase). However, many applications, not just lotteries, also rely
on collateral deposits in order to enforce properties like fairness. We therefore recommend that collateral
costs be explicitly considered when evaluating cryptocurrency applications more generally.

Qualitative Advantages of the Ethereum Tournament over the Bitcoin Tournament. In addition
to the reduced complexity, the stateful nature of Ethereum transactions also provide resistance to denial
of service (DoS) attacks. Indeed, our Ethereum lottery tournament contracts do not rely on hardcoded
identities, and therefore any N players that join the tournament (by making a valid deposit before the initial
deposits timeout TCommit) will force the state of the lottery to become operational. The reason for this is
that each valid deposit is published on the blockchain, and thus turns irreversible via PoW. The Bitcoin
tournament of Section 4 can also be regarded as a free-for-all lottery, but it is susceptible to DoS. That is, any
set of players can agree to run the off-chain signing protocol and publish on the blockchain the tournament
transactions starting from the root, but a malicious player who would then abort instead of making the
initial deposit will cause all the other players to restart (hence, the DoS is more severe here than in CoinJoin
based mixing [36, 37, 22, 21]).

Compositionality of Ethereum vs. Bitcoin. Bitcoin and Ethereum both provide smart contract
programming interfaces. However, the philosophy between the two are markedly different. Ethereum favors
generality and expressiveness, while Bitcoin is intended to provide a small attack surface. While Bitcoin has
gradually expands the expressiveness [5, 39, 17] of its language, Ethereum begins with a “Turing complete”
language intended for general-purpose use. Many desirable functionalities, such as micropayments, joint
accounts, kickstarter-style assurance contracts, can be implemented in either language [20, 13].

A virtue of the Ethereum language design is that contracts provide a nicely composable abstraction, which
our Ethereum protocol makes use of. In fact, Ethereum’s process-based model (each contract is effectively an
independent process in the operating system) closely matches the pseudocode used in cryptography. [24, 29]
Based on this experience, we make a general recommendation that when developing a new cryptocurrency
application, one begins by first a simple model in generic Ethereum-model pseudocode, and then adapt it to
a Bitcoin-specific implementation if desired.
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