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Abstract. Decentralized ledger-based cryptocurrencies such as Bitcoin provide a means
to construct payment systems without requiring a trusted bank, yet the anonymity of
Bitcoin is proved to be far from enough. Zerocash is the first full-fledged anonymouse dig-
ital currency based on the blockchain technology, using zk-SNARK as the zero-knowledge
module for the privacy preserving. Zerocash solves the privacy problem but also brings
some other issues, including insufficient scalability as in Bitcoin. Meanwhile, Lightning
network proves to be a nice solution to solve the scalability problem in Bitcoin. However,
to employ the idea of lightning network in Zerocash is a great challenge due to the lack
of programmability of Zerocash. We modify the Zerocash scheme to implement multisig-
nature scheme and the lock time mechanism without compromising the privacy guarantee
provided by Zerocash. With these two mechanisms, we present the construction of micro-
payment system Z-Channel on the basis of Zerocash. The Z-Channel system effectively
solves the scalability and instant payment problems in Zerocash.
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1 Introduction

Decentralized ledger-based cryptocurrencies such as Bitcoin [16] provide a means to
construct payment systems without requiring a trusted bank. It was believed that Bitcoin
is an anonymous digital currency which contains no information concerned with the
personal identity of users. Unfortunately, the anonymity of Bitcoin is proved to be easily
compromised [18]. Any user can analyze the transaction graph, values and dates in the
ledger to possibly link Bitcoin addresses with real world identity. To break such linkability
in Bitcoin, one can store his Bitcoin into a mix, which is a trusted central party aiming at
mixing Bitcoins from different users and gives different coins back to them after sufficient
amount of coins are mixed together. However, the delay in redeeming the coins and the
trust to a central party can still be unacceptable to some users with strong motivation
to hide information.

Much work has been done to implement a decentralized version of mix in the digital
currency, such as TumbleBit [9], CoinSwap [14], CoinParty [24] and CoinShuffle[19] which
is based on the work of CoinJoin [13]. Additionally, a lot of altcoins have been developed,
including Zerocoin [15], BlindCoin [22] and its predecessor Mixcoin [3] and Pinocchio coin
[4], etc.

Zerocash [20], which is based on Zerocoin, is the first full-fledged privacy preserv-
ing digital currency based on the blockchain technology, using zk-SNARK as the zero-
knowledge module for the privacy protection. Zerocash is an instantiation of the Dis-
tributed Anonymous Payment (DAP) scheme. Compared with Zerocoin, zero-knowledge



proofs in Zerocash transactions are much more succinct and faster to verify, and direct
payments are supported from coins to coins with arbitrary domination. Furthermore, the
underlying zk-SNARK proof mechanism is flexible enough to support various additional
policies. For example, it supports the scenario where a user is required to prove that he
paid proper taxes on all transactions without even revealing the amount of taxes paid
[7].

However, Zerocash still suffers scalability and performance problems like Bitcoin. In
fact, the size of Zerocash transactions are larger and the time to verify zk-SNARK proof
is significantly longer than verifying a Bitcoin transaction, which makes the scalability
problem in Zerocash even worse than in Bitcoin. Meanwhile, many approaches have been
proposed to solve the scalability problem of Bitcoin, such as changing the blocksize [1].
A most popular class of solutions are based on the idea of micropayment channel which
supports high-frequency instant off-chain payments. Among them the Lightning network
[17] proves to be on of the most promising. By transactions conducted securely off-chain
using Bitcoin scripting, Lightning network enables Bitcoin to scale to billions of users
without custodial risk or blockchain centralization.

Although Lightning network is promising in improving the scalability of ledger-based
cryptocurrencies, transplanting the idea of Lightning network to Zerocash is a great
challenge. The bidirectional micropayment channel employed in Lightning network makes
heavy use of the scripting feature of Bitcoin, which Zerocash is particularly in lack of.
Specifically, the micropayment channel relies on the features of multisignature and lock
time mechanism. These features can be easily implemented by Bitcoin scripting language,
but nontrivial to be embedded into Zerocash without compromising the privacy. In
Zerocash, to allow the zk-SNARK module to verify transaction, the verification program
has to be implemented into a circuit which is inputed in zk-SNARK at startup of the
ledger. It is difficult to construct a general purpose circuit for a script language, which is
almost equivalent to designing a computer chip. Such circuits will be significantly large
in size and the resulting zero-knowledge proof would be intractable.

Related work. Decentralized cryptocurrency has been drawing much attention since
Bitcoin was proposed in 2008. So far many digital currencies have been devised fol-
lowing this new trend such as [5, 10]. Efforts have been devoted to improving known
cryptocurrencies or designing new schemes by analyzing the security and performance
of Bitcoin [6, 12], proposing various consensus schemes suitable for different scenarios or
improving existing consensus protocols to make them more powerful and applicable [21,
10], enhancing the scalability and efficiency of Bitcoin [23, 5], presenting mechanisms for
privacy preserving of digital currencies [11, 22], etc.

Our contribution. In this work we address the above problems by the following con-
tributions:

1. We present ideas to implement multisignature scheme in Zerocash. This multisigna-
ture scheme allows the following application of Zerocash: two or more parties need to
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share an address, in the sense that a coin in the shared address can only be spent by
cooperation of all parties. Others could verify that the public keys were committed
in the coin by the zero-knowledge proof and that the signatures are valid by public
signature scheme. Meanwhile, the privacy is still protected, which means others could
not get any more information apart from the validity of the transaction.

2. We manage to implement the lock time mechanism in Zerocash, which allows to check
whether the lock time of the input coin is effective or not, but reveals no information
about the lock time length or create time of the input coin.

3. We give the definition of security of our modified scheme according to that of Zerocash
in [20]. We prove that our scheme is secure under this definition. In addition, we find
a weakness in the security model in [20], which we fix in our scheme.

4. We make use of the above mentioned mechanisms to transplant the lightning network
micropayment channel into Zerocash, and develop Z-Channel. Z-Channel provides
privacy protection and the instant off-chain payment features. Compared with Ze-
rocash, Z-Channel significantly enhances the scalability, allowing a great number of
users to perform high-frequency transactions off-chain in day-to-day routine, and the
payment is made nearly instantly. Meanwhile, the Z-Channels are established and
terminated with strong privacy guarantee.

Paper organization. The remainder of the paper is organized as follows. Section 2
introduces the preliminaries needed for our work. Section 3 improves the Zerocash scheme
by embedding the multisignature and lock time mechanisms and gives the security proofs
for the improved scheme. In Sect.4, we present the construction of Z-Channel based on
our newly proposed scheme. Finally, Sect.5 concludes this paper.

2 Preliminaries

2.1 Background on zk-SNARKs

A zk-SNARK (Succinct Non-interactive ARgument of Knowledge) is a triple of algo-
rithms (KeyGen, Prove, Verify).

Let C denote a circuit verifying an NP language LC which takes as input an instance
x and witness w, and outputs b indicating if w is a valid witness for x.

The algorithm KeyGen takes C as input and outputs a proving key pk and a verifi-
cation key vk.

The algorithm Prove takes as input a instance of the NP problem x and a witness
w, as well as pk, and generates a non-interactive proof π for the statement x ∈ LC .

The algorithm Verify takes as input the instance x and the proof π, as well as vk,
and outputs b indicating if he is convinced that x ∈ LC .

A zk-SNARK is correct if the honest prover can convince the verifier. It has the
quality of proof of knowledge if the verifier accepting a proof implies the prover knowing
the witness. It has the quality of perfect zero knowledge if there exists a simulator which
generates the same results for any instance x ∈ LC without knowing witness w.

The work of Zerocash is based on a zk-SNARK implementation proposed in [2].
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2.2 Zerocash DAP Scheme

The decentralized anonymous payment scheme (DAP scheme) is a full-fledged anonymous
mechanism based on ledger based currency system. A DAP scheme is a tuple of six
algorithms (Setup, CreateAddress, Mint, Pour, VerifyTransaction, Receive).

The algorithm Setup takes as input a security parameter λ and outputs public pa-
rameters pp.

The algorithm CreateAddress outputs a newly generated address key pair (addrpk,
addrsk).

The algorithm Mint takes as input a value v and the destination address, and out-
puts a coin c and a mint transaction txMint. A mint transaction consumes currency of
the basecoin and outputs to a commitment. The transaction will be accepted only if the
basecoin part of the transaction is valid and the commitment is correctly computed. The
coin consists of the coin value and some secret values (for example, trapdoors for gener-
ating the commitment) and the destination address for the coin. The mint transaction
reveals the value but nothing else of the coin.

The algorithm Pour takes as input two input coins, secrets for the input coins, two
destination addresses and other infomration, and outputs two new coins and a pour
transaction txPour. A zero-knowledge proof πPOUR is appended to txPour to prove the
validity of this transaction, i.e. the validity of the input coins and the balance of this
transaction, etc. The transaction reveals the unique serial numbers of the input coins
to prevent double spending. To prove the existence of the input coins on the ledger, all
the commitments on the ledger are maintained in a Merkle-tree, and Pour additionally
takes as inputs a Merkle root rt in the Merkle-tree history, and the paths from the
commitments to rt.

The algorithm VerifyTransaction takes as input the public parameters pp and a
transaction txMint or txPour as well as a ledger, and outputs a bit b indicating if this
transaction is valid to be appended on the ledger.

The algorithm Receive takes as input a pair of address keys (addrpk, addrsk) and a
ledger, and outputs all unspent coins paid to the given address.

2.3 Micropayment Channel in Lightning Network

Micropayment channel allows two parties to make payments to each other without pub-
lishing Bitcoin transactions on the ledger.

To start a channel, the two parties first publish a funding transaction consuming their
own Bitcoins and outputing to a shared address, which can be spent only by providing
both signatures of the two parties.

Before they sign the funding transactions, they agree on a commitment transaction
redeeming their Bitcoins from the funding transaction. After both of them receive the
signature of the commitment transaction from the other, they sign the funding transac-
tion and publish it on the ledger.

Each time when a payment is made, they agree on a new version of commitment
transaction which redistributes the funding Bitcoins.
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To prevent a malicious party from publishing an early version of commitment transac-
tion, each time a new commitment transaction is agreed on, each party signs a revocable
transaction as a penalty to ensure that he will not try to publish the previous com-
mitment transaction. The revocable transaction allows the other party to get all the
Bitcoins in the channel once this party publishes an earlier commitment transaction.

3 Implement Functions in Zerocash Without Script

Zerocash lacks programmability by nature [11]. To support micropayment channel in
Zerocash, two key functionalities must be implemented: multisignature and lock time.
We present the modification to the original Zerocash procedures to support these two
functionalities.

3.1 Modification to Zerocash Scheme

In this subsection, we present our modifications to the original DAP scheme step by
step, and finally obtain a new scheme supporting multisignature scheme and lock time
mechanism.

Step 1: Commit a public key in the coin. In Zerocash, a coin consists of a commit-
ment cm and some secret information necessary for spending this coin. The commitment
involves the following information: the destination address addrpk, the value v and a
random string ρ which is used by the payee to compute sequence number sn which is the
unique identifier of the coin. To spend the coin, the sequence number sn is revealed to
prevent double-spending, other information are kept secret, and a zero-knowledge proof
πPOUR is needed to prove that the revealed sn is valid.

We modify this by committing a new piece of information, a public key pk into the
commitment. Since zk-SNARK only supports fixed length input [2], in order to allow
pk to be of arbitrary length, thus supporting arbitrary public key schemes, we commit
the hash of pk, denoted by hpk instead of the original public key. To spend the coin,
in addition to the zero-knowledge proof πPOUR, the payer has to provide a signature σ
which can be verified by pk.

If the signature verification is carried out in zero-knowledge proof, however, the
verification algorithm has to be coded in the circuit, which is fairly complex and would
enlarge the circuit significantly. So we decide that the verification is done directly by
public signature scheme. That is to say, the payer of this coin must publish the public
key together in the transaction to allow verifiers to verify the signature. To prevent
malicious users from modifying the public key, we add an additional statement for the
zero-knowledge proof to prove that the hash of this public key is the hpk committed in
the input coin.

Note that the anonymity is compromised by the revealed public key, since the payer
would immediately perceive when the payee spends the coin, by identifying the public
key published in the transaction. To solve this problem, we must require that the payer
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does not know pk itself, but a commitment pkcm which is generated by the payee with
a random trapdoor u with input hpk. Therefore, before the payer can send a coin to the
payee, the payee has to generate a fresh pkcm randomly and sends to the payer together
with the address public key. When the payee spends the coin, he proves that the hash of
the revealed pk is committed into the coin with the trapdoor. The payer cannot connect
the revealed public key to the public key commitment he put into the coin previously.

Step 2: Commit a public key list. Next, we replace the one public key pk by a list
of public keys pklist. We still denote the hash of this list by hpk, and the commitment
of hpk by pkcm. To spend the coin, the payee has to publish the public key list and an
index k specifying which public key to use, as well as the corresponding signature which
could be verified by the specified public key.

In this step, the coin can be spent by a user knowing the some private key corre-
sponding to any of the (one or more) public keys in the list.

Step 3: Distributed generation of public key and signature. If the public key
is one of a multisignature scheme, a valid pour transaction can be generated only by
cooperation of more than one parties.

Specifically, we require the scheme to support the following operations:

1. Distributed key generation. Multiple parties cooperate to generate a pair of
public/private keys pk and sk. After the protocol is done, pk is known by all the
parties, while sk is invisible to every one. Each party holds a share ski of the private
key.

2. Distributed signature generation. Given a message M , the parties holding the
pieces ski of the private key cooperate to generate a signature σ on M . Specifically,
each party generates a piece σi of the signature alone and broadcasts it to other
parties. Anyone obtaining all the pieces can recover the signature σ. This signature
can be verified by pk and is indistinguishable from the signatures directly signed by
sk.

Step 4: Commit a lock time in coin. In this step, we commit a time T into the
coin, and try to design a mechanism such that the coin cannot be spent before time T
has passed since the coin is on ledger. We hope this verification about time is done with
privacy, i.e. the verifier does not even know the timestamp of the input coin or the length
of the lock time. We also hope to allow a user to hold a transaction for a while before
publishing it. In this situation the commitment must be unaffected by the timestamp.
These requirements make enabling such lock time in Zerocash particularly tricky.

To link the timestamp with this coin without affecting the coin commitment, we
consider making use of the public information related to the input coin. The one we
consider is the Merkle-tree root rt, which is used to prove the existence of the input coin
commitment. Denote by rti the Merkle-tree root formed by the previous i commitments
on the ledger. We define the timestamp of rti to be that of cmi, the i’th commitment on
the ledger.
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To spend a coin with commitment cmi published at time ti with lock time tlock, the
payer randomly select rtj in the root history such that j > i and tj + tlock < t where t
is the current time, and in the zero-knowledge proof proves that:

Given current timestamp t and root rt, I know tlock such that

1. tlock is correctly committed in cm, and

2. tlock + rt.time ≤ t.

Step 5: Different lock time for different party. The multisignature scheme and
lock time could be combined to allow different lock times for different signatures.

Instead of committing a single tlock into the coin, we commit a lock time list tlist.
Then we let the index k indicating which public key to use specifies the lock time
simultaneously. The related zero-knowledge proof statement then becomes:

Given current timestamp t, root rt and index k, I know tlist such that

1. tlist is correctly committed in cm, and

2. tlist[k] + rt.time ≤ t.

3.2 Algorithms

A DAP’ scheme is a tuple of polynomial-time algorithms (Setup, CreateAddress,
CreatePKCM, Mint’, Pour’, VerifyTransaction’, Receive’) with the following syntax.

We first present the cryptographic algorithms utilized subsequently.

– Keyed pseudorandom functions PRFaddr for generating addresses, PRFsn for serial
numbers and PRFpk for binding public keys with addresses.

– Information hiding trapdoor commitment COMM.

– Fixed-input-length collision resistent hash function CRH and flexible-input-length
hash function Hash.

– Zero-knowledge module zk-SNARK (KeyGen, Prove, Verify), where KeyGen gener-
ates a pair of proving key pkPOUR and verification key vkPOUR, Prove generates
a zero-knowledge proof πPOUR for an NP statement and Verify checks if a zero-
knowledge proof is correct.

– Public signature scheme (Gsig,Ksig,Ssig,Vsig), where Gsig is for public parameter
generation, Ksig is the key generation algorithm, Ssig is the signing algorithm and
Vsig is the verification algorithm.

– Distributed public encryption scheme (Gdst,Kdst,Sdst,Vdst) is defined similarly, but
the algorithms can be executed distributedly by more than one parties.

– Public encryption scheme (Genc,Kenc, Eenc,Denc), where Genc is for public parameter
generation, Kenc is the key generation algorithm, Eenc is the encryption algorithm
and Denc is the decryption algorithm.

The definitions of the algorithms for the new DAP’ scheme is quite similar to the
original DAP scheme in [20], we present the full definitions here for completeness.
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System setup. The algorithm Setup generates a set of public parameters.

– Input: security parameter λ

– Output: public parameters pp

The Setup algorithm is executed by a trusted party only once at the startup of the
ledger, and made public to all parties. Afterwards, no trusted party is needed.

To generate the public parameters, first invoke KeyGen algorithm to generate (pkPOUR,
vkPOUR), then invoke algorithms Gsig, Genc and Gdst to obtain the public parameters for
the public signature schemes and the public encryption scheme.

Create address. The algorithm CreateAddress generates a new pair of address key
pair.

– Input: public parameters pp

– Output: address key pair (addrpk, addrsk)

Each user may execute CreateAddress algorithm arbitrary number of times. The
address public key addrpk is used by other parites to send him coins.

To generate the key pair, first sample a random string ask and compute apk =
PRFaddrask

(0). Then, invoke Kenc algorithm to generate a pair of public/private key pairs
(pkenc, skenc). Finally, output addrpk = (apk, pkenc) and addrsk = (ask, skenc).

Create public key commitment. The algorithm CreatePKCM generates a commit-
ment for a public key list pklist.

– Input:

• public parameters pp

• integer K > 0

– Output:

• K public/private key pairs

• tuple (pklist, u, pkcm)

For complete anonymity, each time a payer tries to generate a coin (with Mint’ or
Pour’ algorithm introduced later) for the payee, the payee invokes CreatePKCM algorithm
to generate a fresh public key commitment pkcm and sends the pkcm to the payer.

To generate pkcm, invoke Kdst algorithm to generate and output K public/private key
pairs. Assemble these K public keys into a list pklist and compute hpk := Hash(pklist).
Randomly sample a commitment trapdoor u and compute pkcm := COMMu(hpk). Output
the tuple (pklist, u, pkcm).

For privacy, each generated pkcm must be used only once. It is recommended that
a user stores the output tuples (pklist, u, pkcm) in a table PKCM. When receiving a coin
from the ledger (as described in Receive’ algorithm), check that the pkcm is in table
PKCM, and delete it from the table after the coin using this pkcm is spent.
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Mint coin. The Mint’ algorithm generates a coin and a mint transaction.

– Input:

• public parameter pp

• coin value v

• destination address addrpk
• public key list commitment pkcm

• lock time array tlist

– Output:

• coin c

• mint transaction txMint

The Mint algorithm in Zerocash is invoked to generate a Mint transaction which
spends unspent output in basecoin and outputs to a commitment. We present the mod-
ified Mint’ algorithm to further commit the hash of public key list pklist and the cor-
responding lock-time list tlist into the commitment.

The details of the Mint’ algorithm are presented in Alg.1.

Algorithm 1: Mint’ Algorithm

Parse addrpk as apk, pkenc;
Randomly sample a PRFsn seed ρ;
Randomly sample three COMM trapdoors r, s, t;
Compute m := COMMr(apk‖ρ);
Compute H := CRH(pkcm‖tlist);
Compute k := COMMs(H‖m);
Compute cm := COMMt(v‖k);
Set c := (addrpk, v, ρ, r, s, t, cm, tlist, pkcm);
Set txMint := (cm, v, ∗) where ∗ := (k, t);
Output c and txMint.

Pour algorithm. The Pour’ algorithm transfers values from two input coins into
two new coins, and optionally reveal part of the input value. Pouring allows parties
to subdivide coins, merge coins or transfer ownership. Pour’ generates two coins and a
pour transaction.

– Input:

• public parameter pp

• the Merkle roots rt1 and rt2
• old coins cold1 and cold2

• old addresses secret keys addroldsk,1 and addroldsk,2
• path path1 and path2 from commitments to roots rt1 and rt2 respectively

• old public key lists and trapdoors (pkcmold1 , pklistold1 , u1) and (pkcmold2 ,
pklistold2 , u2)
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• old lock time array tlistold1 , tlistold2

• public key indices k1, k2
• secret key sk for pklistoldi [ki]
• new values vnew1 , vnew2

• new addresses public keys addrnewpk,1, addrnewpk,2

• new public key list commitments pkcmnew1 , pkcmnew2

• new lock time array tlistnew1 , tlistnew2

• public value vpub
• transaction info info

– Output:
• coins c1, c2
• pour transaction txPour

We modify the original Pour algorithm to Pour’ to publish the public key lists pklist
previously committed in the input coins, and (if one of the pklist is nonempty) append
the index of which public key to use, and the corresponding signatures.

To allow parties to sign a pour transaction long time before the transaction is pub-
lished on ledger, we specify that the signature of the distributed signature scheme only
applies to the most significant part which we call the kernel of the pour information.
Specifically, we define the kernel to be Ker = (cmnew1 , cmnew2 , snold1 , snold2 ).

The details of the Pour’ algorithm are presented in Alg.2.

Verify Transaction Algorithm. The VerifyTransaction’ algorithm outputs a bit
b indicating if a given transaction is valid on a ledger.

– Input:
• public parameters pp

• mint/pour transaction tx
• ledger L

– Output: bit b indicating if the transaction is valid

We modify the original VerifyTransaction algorithm to VerifyTransaction’ to
verify the zero-knowledge proof for the new NP statement, and additionally verify the
signatures on the kernel of the pour transaction.

The details of VerifyTransaction’ algorithm are presented in Alg.3.

Receive Algorithm. The Receive’ algorithm scans the ledger and outputs coins on
the ledger belonging to a given address public key.

– Input:
• public parameters pp

• recipient address key pair (addrpk, addrsk)
• public key commitment tuple set PKCM
• ledger L

– Output: set of received coins
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Algorithm 2: Pour’ Algorithm

for i ∈ {1, 2} do
Parse coldi as (addroldpk,i, v

old
i , ρoldi , roldi , soldi , toldi , cmoldi , tlistoldi , pkcmoldi );

Compute hold
pk,i = Hash(pklistoldi ) for i = 1, 2;

Verify that pkcmoldi = COMMuold
i

(hold
pk,i) for i = 1, 2;

Parse addroldsk,i as ask,i, skenc,i;

Compute snoldi := PRFsn
aold
sk,i

(ρoldi );

Parse addrnew
pk,i as (anew

pk,i , pk
new
enc,i);

Randomly sample a PRFsn seed ρnew
i ;

Randomly sample three COMM trapdoors rnew
i , snew

i , tnew
i ;

Compute mnew
i := COMMrnew

i
(anew

pk,i‖ρnew
i );

Compute Hnew
i := CRH(pkcmnew

i ‖tlistnew
i );

Compute knew
i := COMMsnew

i
(Hnew

i ‖mnew
i );

Compute cmnew
i := COMMtnew

i
(vnew

i ‖knew
i );

Set cnew
i := (addrnew

pk,i , vnew
i , ρnew

i , rnew
i , snew

i , tnew
i , cmnew

i , tlistnew
i , pkcmnew

i );
Set Ci := Eenc(pk

new
enc,i, (vnew

i , ρnew
i , rnew

i , snew
i , tnew

i , tlistnew
i , pkcmnew

i ));

end
Obtain timestamp from info;
Generate (pksig, sksig) := Ksig(ppsig);

Compute hsig := CRH(pksig);

Compute hi := PRF
pk

aold
sk,i

((i− 1)‖hsig) for i = 1, 2;

Set x := (rt1, rt2, snold1 , snold2 , hold
pk,1, hold

pk,2, cmnew
1 , cmnew

2 , vpub, hsig, h1, h2, k1, k2, timestamp);

Set a := (path1, path2, cold1 , cold2 , addroldsk,1, addroldsk,2, cnew
1 , cnew

2 , pkcmnew
1 , pkcmnew

2 , uold
1 , uold

2 );
Compute πPOUR := Prove(pkPOUR,x,a);

Set M := (x,πPOUR,info,C1,C2,pklistold1 ,pklistold2 );
Compute σ := Ssig(sksig,M);

Set Ker := (cmnew
1 , cmnew

2 , snold1 , snold2 );
for i ∈ {1, 2} do

if IsEmpty (pklistoldi ) then
Set σi =⊥;

else
Compute σi = Sdst(ski,Ker)

end

end

Set txPour := (rt1, rt2, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, info, ∗), where ∗ := (pksig, h1, h2,

πPOUR, C1, C2, σ, σ1, σ2, pklistold1 , pklistold2 , k1, k2);
Output cnew

1 , cnew
2 , txPour;

We modify the original Receive algorithm to Receive’ to additionally check if the
public key commitment pkcm is one previously generated by CreatePKCM and never used
before.

The details of the Receive’ algorithm are presented in Alg.4.

The NP Statement. Finally, we modify the NP statement POUR to be proved by the
zk-SNARK module to add a claim that the public key list pklist and the lock times tlist
have been correctly committed, and that the lock times have run out. Following is the
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Algorithm 3: Verify’ Algorithm

if tx is of type txMint then
Parse txMint as (cm, v, ∗) and ∗ as (k, t);
Set cm′ := COMMt(v‖k);
Output b := 1 if cm = cm′, else output b := 0.

else

Parse txPour as (rt1, rt2, snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, info, ∗) and ∗ as (pksig, h1, h2,

πPOUR, C1, C2, σ, σ1, σ2, pklist1, pklist2, k1, k2);

If snold1 or snold2 appears on L or snold1 = snold2 , output b := 0 and exit;
If the Merkle tree root rt1 or rt2 does not appear on L, output b := 0 and exit;
Compute hsig := CRH(pksig);

Compute hold
pk,i := Hash(pklisti) for i ∈ {1, 2};

Set x := (rt1, rt2, snold1 , snold2 , hold
pk,1, hold

pk,2, cmnew
1 , cmnew

2 , vpub, hsig, h1, h2, k1, k2,
timestamp);

Set M := (x, πPOUR, info, C1, C2, pklistold1 , pklistold2 );
If Vsig(pksig,M, σ) = 0 output b := 0 and exit;

If Verify(vkPOUR,x, πPOUR) = 0 output b := 0 and exit;

Set Ker := (cmnew
1 , cmnew

2 , snold1 , snold2 );
for i ∈ {1, 2} do

If NotEmpty (pklisti) and Vdst(pklisti[ki],Ker, σi) = 0 output b := 0 and exit;
end
Output b := 1;

end

Algorithm 4: Receive’ Algorithm

Parse addrpk as (apk, pkenc), addrsk as (ask, skenc);
for each Pour transaction txPour on L do

Parse txPour as (rt1, rt2, sn1, sn2, cm1, cm2, vpub, info, ∗);
for each i ∈ {1, 2} do

Compute (v, ρ, r, s, t, tlist, pkcm) := Denc(skenc,Ci);
if Denc does not output ⊥ then

Verify that cmi = COMMt(v‖COMMs(H‖COMMr(apk‖ρ)))
where H = CRH(pkcm‖tlist);
Check that pkcm is in PKCM and never appears in other coins, if so, output
c := (addrpk, v, ρ, r, s, t, cmi, tlist, pkcm);

end

end

end

detail of the modified NP statement POUR for the zero-knowledge proof. Given

x = (rt1, rt2, sn
old
1 , snold2 , holdpk,1, h

old
pk,2, cm

new
1 , cmnew2 , vpub, hsig, h1, h2, k1, k2, timestamp),

where holdpk,i = Hash(pklistoldi ), for i ∈ {1, 2}, I know

a = (path1, path2, c
old
1 , cold2 , addroldsk,1, addr

old
sk,2, c

new
1 , cnew2 , pkcmnew1 , pkcmnew2 , uold1 , uold2 ),

such that:
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1. For each i ∈ {1, 2}:
(a) The pathi is a valid authentication path for leaf cmoldi with respect to root rti, in

a CRH-based Merkle tree.

(b) The private key addroldsk,i matches the public address of addroldpk,i.

(c) The serial number snoldi is computed correctly, i.e. snoldi = PRFsn
aoldsk,i

(ρoldi ).

(d) The coin coldi is well formed, i.e.
cmoldi = COMMtoldi

(voldi ‖COMMsoldi
(H‖COMMroldi

(aoldpk,i‖ρoldi )))

where H = CRH(COMMuoldi
(holdpk,i)‖tlistoldi ).

(e) The coin cnewi is well formed, i.e.
cmnewi =
COMMtnew

i
(vnewi ‖COMMsnew

i
(H‖COMMrnew

i
(anewpk,i ‖ρnewi )))

where H = CRH(pkcmnewi ‖tlistnewi ).

(f) The address secret key ties hsig to hi, i.e.

hi = PRF
pk

aoldsk,i

((i− 1)‖hsig).
(g) The lock time is up, i.e.

time(rti) + tlistoldi [ki] ≤ timestamp.
2. Balance is preserved: vnew1 + vnew2 + vpub = vold1 + vold2

3.3 Instantiation

To instantiate the new DAP’ scheme, we need to consider the instantiation of the fol-
lowing components and procedures:

1. The public key list;

2. The lock time list;

3. The cryptographic algorithms:

– The hash functions CRH and Hash.

– The committing procedures COMMs, COMMt and COMMu.

– The pseudorandom functions.

– The distributed key generation and distributed signature generation schemes.

– The public signature scheme and public encryption scheme.

For simplicity, we leave the instantiation of pseudorandom functions, public signature
scheme and public encryption scheme unmodified. We mention here that in Zerocash the
public signature scheme takes ECDSA and the public encryption scheme is ECIES.

For instantiation of the distributed key generation and distribuetd signature gener-
ation sheme, we adopt the threshold Schnorr signature scheme using JF-DKG [8], and
take the elliptic curve version of the schnorr signature scheme.

We follow the instantiation of Zerocash and take the compression function of SHA256
as CRH, which compresses 512 bits into 256 bits. And the flexible-input-length hash
function Hash takes SHA256 directly.

The lock time list is fixed to 256 bits. We use 32 bits to store each lock time by
seconds, allowing 8 lock times to be committed in the coin, which is sufficient in most
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cases. The index indicating which public key and lock time to use starts from 0. The
size of public key list, however, is unbounded. we encode this list by the Distinguished
Encoding Rules (DER). For nine or more public keys, the corresponding lock time is
default to zero for index larger than 7.

We instantiate COMMs by applying CRH twice on s,H and m: COMMs(H‖m) := CRH (CRH
(H ‖s) ‖m). COMMt is instantiated in the same way as the second commitment in Zerocash:
COMMt( v‖k) := CRH(k ‖0192 ‖v). Note that t is actually ignored in this instantiation,
because k already provides enough randomness. Finally COMMu is instantiated directly
by: COMMu(hpk) := CRH(hpk‖u).

3.4 Completeness and Security

The completeness is defined similar to that in [20] by the experiment INCOMP. The
security is similarly defined by ledger indistinguishability, transaction non-malleability
and balance, which are defined by modifications of the experiments L-IND, TR-NM and
BAL respectively.

Definition 1. We say that a DAP’ scheme Π = (Setup, CreateAddress, Mint’, Pour’,
VerifyTransaction’, Receive’) is complete, if no polynomial-size adversary A wins
INCOMP with more than negligible probability.

Definition 2. We say that a DAP’ scheme Π = (Setup, CreateAddress, Mint’, Pour’,
VerifyTransaction’, Receive’) is secure, if it is secure under experiment L-IND,
TR-NM and BAL.

In the INCOMP experiment, an adversary A sends the challenger C a ledger L and two
coins cold1 , cold2 , and parameters needed to spend the coins. The challenger C tries to spend
the two coins and gets a pour transaction txPour. The adversary A wins if the L is a valid
ledger, the parameters are valid with respect to L, the transaction txPour is consistent to
the parameters, but txPour cannot be verified on the ledger. The completeness requires
that A wins with negligible probability.

In the L-IND experiment, the challenger C samples a random bit b establishes two
oracles ODAP0 and ODAP1 , each of which maintains a DAP’ scheme on a ledger L0 and L1

respectively. In each step the adversary is presented with the two ledgers Lb and Lb−1
and issues a pair of queries (Q,Q′) to the challenger, which will be forwarded to the
oracles ODAP0 and ODAP1 respectively. The queries Q and Q′ satisfy public consistency
that they matches in type and reveals the same information to A. Finally, A outputs a
guess b′ and wins when b′ = b. The ledger indistinguishability requires that the advantage
of A is negligible.

In the TR-NM experiment, A interacts with one DAP’ scheme oracle and then outputs
a pour transaction tx′Pour, and wins if there is a pour transaction txPour 6= tx′Pour on the
ledger such that txPour reveals the same serial number of tx′Pour and that if tx′Pour takes
the place of txPour the ledger is still valid. The transaction non-malleability requires that
A wins with negligible probability.
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In the BAL experiment, A interacts with one DAP’ scheme oracle and wins the game
if the total value he can spend or has spent is greater than the value he has minted or
received. The balance requires that A wins with negligible probability.

For the definitions of security under the above experiments, refer to Appendix A.
Regarding the experiments L-IND, TR-NM and BAL, we design them similarly to those in
[20], and the major modifications are listed below.

Modifications to the experiments L-IND, TR-NM and BAL.

1. Assume that ODAP maintains three tables PKCM, OLDPKCM and PK. We add a new
kind of query CreatePKCM as follows:

– Q = (CreatePKCM, addrpk,K)

(a) Invoke CreatePKCM (pp,K) to obtain the tuple (pklist, u, pkcm) and a set of
K key pairs.

(b) Store (pklist, u, pkcm) in table PKCM.
(c) Store the K keypairs in table.
(d) Output pkcm.

2. We modify the queries Mint, Pour as follows:

– For each addroldpk,i, the adversary provides an index ki to indicate which public key
and lock time to use to unlock the coin.

– The index ki in Q and Q′ must be the same for each input coin, and the selected
lock time must be less than current time.

– The number of public keys committed in pkcm1 and pkcm2 must be the same.

– For addrpk in Mint query or each addrnewpk,i in Pour query, the adversary provides
a public key commitment pkcmnewi and a lock time list tlistnewi .

– If the address is in ADDR,ODAP checks that pkcmnewi is in PKCM and not in OLDPKCM,
and aborts if the check fails.

– If the address is not in ADDR, ODAP checks that pkcmnewi is not in either PKCM or
OLDPKCM, and aborts if the check fails.

– If the Mint or Pour query is successful, ODAP removes all pkcmnew mentioned
from PKCM and stores the tuple (addrpk, pkcm, u, pklist) in OLDPKCM.

– For Pour query, O looks up the table OLDPKCM to find the tuple (addroldpk,i, pkcm
old
i ,

uoldi , pklistoldi ) for each addroldpk,i, include pklistoldi in the pour transaction txPour.

Then O checks that tlistoldi [ki] is less than current time, aborts if check fails.
Then O signs the transaction with the corresponding secret key of pklistoldi [ki]
(looked up from PK) and include the signature in txPour.

3. We remove the Receive query in the original definition of ODAP for the following
reasons:

– The Receive query does not model a proper attacking scenario in real life. In
fact, this query allows the adversary to identify the coins belonging to an address
for which the adversary does not hold the secret key, which is unreasonable in
real life.

15



– The Receive query compromises the ledger indistinguishability. We devise the
following attack to the L-IND game making use of the information provided by
Receive query. First, the adversary A issues two pairs of CreateAddress queries
to receive two address public keys, for simplicity we denote the two addresses by
Alice and Bob respectively. Then, A issues a pair of Mint queries to generate a
coin for Alice in both ledgers. Next, A issues a pair of Pour queries (Q,Q′) to
the challenger. In Q A specifies that Alice pays her coin to Bob, while in Q′ Alice
pays the coin to herself. Finally, A issues a pair of Receive queries on Alice, and
obtains the lists of coin commitments for the ledgers respectively. The oracle that
returns an empty commitment list is the one maintaining ledger L0. Thus A wins
L-IND game with 100 percent probability.

4. We modify the Insert query as follows:

– For each output coin, check that the pkcm in the coin is stored in PKCM, abort if
not so; remove the corresponding tuple from PKCM and add to OLDPKCM.

The following theorem claims that our construction of DAP’ scheme is complete and
secure under the above definitions.

Theorem 1. The tuple (Setup, CreateAddress, Mint’, Pour’, VerifyTransaction’,
Receive’) is a complete and secure DAP’ scheme.

The proof is similar to that of Theorem 4.1 in [20]. Here we only present the modifications
to the original one. For the complete proof refer to Appendix B.

1. Modify the simulation experiment. The simulated experiment asim proceed as
in [20], except for the following modification:

(a) Answering CreatePKCM queries. To answer Q, C behaves as in L-IND, except
for the following modification: after obtaining (pklist, u, pkcm), C replaces pkcm

with a random string of the appropriate length; then, C stores the tuple in PKCM

and returns pkcm to A. Afterwards, C does the same for Q′.

(b) Answering Mint queries. Compute k = COMMs(τ) for a random string τ of the
suitable length, instead of k = COMMs(H‖m). Afterwards, C does the same for Q′.

Remark 1. There is no need to modify the Pour queries except for the modifica-
tions mentioned in [20], which already discard the information of pkcm and tlist
in the commitment cmnewi and ciphertext Cnew

i . For each addroldpk,i the simulated
oracle puts the original pklist looked up from OLDPKCM in txPour. It makes no
difference to replace it by a newly generated one, since the one stored in the table
is independent from the randomly string replacing pkcmoldi .

2. Difference between asim and hybrid experiment a3. Let qCP be the total
number of CreatePKCM queries issued by A. In addition to those described in [20]
appendix D.1, we additionally let the experiment asim modifies a3 in the following
ways:

– Each time A issues a CreatePKCM query, the commitment pkcm is substituted
with a random string of suitable length.
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– Each time A issues a Mint query, the commitment k in txMint is substituted with
a commitment to a random input.

Then we modify the Lemma D.3 in [20] appendix D.1 as follows:∣∣∣Advasim −Adva3

∣∣∣ ≤ (qM + 4 · qP + qCP) ·AdvCOMM

3.5 Efficiency Analysis of DAP’ Scheme

The time of signature verification is negligible compared with that of the zero-knowledge
proof. Moreover, the NP statement POUR in our scheme is similar to that in Zerocash, and
by the succinctness of the zk-SNARK, it is reasonable to estimate that the generation
and verification time for the zero-knowledge proof is comparable to that of Zerocash.
Therefore, our new scheme is almost as efficient as the orginal DAP scheme.

4 Z-Channel

With above mechanisms, we can now implement a micropayment system in Zerocash,
which is a transplant of the idea of lightning network [17] to Zerocash. This will signifi-
cantly improve the scalability and the instant payment capability of Zerocash, allowing
numberous payments conducted and confirmed off-chain in short periods of time.

The algorithms mentioned in this section are executed together by parties P1 and
P2. Before we present the definition of the algorithms, we clarify some concepts and
denotions used in the algorithms.

– Signing on a piece of information: for simplicity, we use the verb “sign” to
represent both the operation of generating the signature piece or the entire signature,
when the context is clear.

– Shared address (addrpk, addrsk): during the lifetime of a Z-Channel, all the coins
involved in the channel are targeted at one shared address addrpk. The secret key
addrsk and all the “secret” trapdoors are shared between the parties, except the
private keys (or shares) of the distributed signature scheme.

– Kernel of a Pour transaction: a structure indicating the inputs and outputs of a
pour transaction. Recall that in the previous section we define the kernel of a pour
transaction as the tuple (cmnew1 , cmnew2 , snold1 , snold2 ). For simplicity and clarity we
denote such kernel by Ker(cold1 , cold2 )→ (cnew1 , cnew2 ), and if any of the coins is empty
(exists as a placeholder), we directly omit it in the denotion. Since all trapdoors are
public between parties, any party holding a pour kernel signed by the other party can
easily generate the full Pour transaction. For simplicity we express this procedure by
saying extending a pour kernel.

– Similarly, denote by Pour(cold1 , cold2 ) → (cnew1 , cnew2 ) a pour transaction consuming
cold1 and cold2 and outputing cnew1 and cnew2 .
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4.1 Establish Z-Channel

The algorithm EstablishChannel establishes a Z-Channel between the two parties P1

and P2 executing this algorithm.

– Initially, two parties P1 and P2 wish to establish a micropayment channel, and agree
to put v1 and v2 value of Zerocash into the channel respectively.

– After the algorithm is finished,
• two funding transactions txfund,1 and txfund,2 are published on ledger, outputing

coins cfund,1 and cfund,2 respectively
• a share transaction txPour,share = Pour(cfund,1, cfund,2)→ (cshare)
• for i ∈ {1, 2} (let j = 3− i), party Pi holds a terminating pour kernel Ker(cshare)
→ (credeem,i, credeem,j) signed by Pj

We present the details of EstablishChannel as follows.

– Let T be the penalty time.

1. The parties agree on a shared address addrpk and addrsk; then they run distributed
Kenc algorithm to generate shared public keys pkshare1,2 , pkterm1,2 and corresponding pri-

vate keys skshare1,2 , skterm1,2 ; after that, each party Pi invokes Kenc privately to generate

public/private key pairs pk
fund
i , pktermi and sk

fund
i , pktermi .

2. Each party Pi invokes Mint’ or Pour’ to generate the fund coin cfund,i and the

funding transaction txfund,i, where the pklist is (pkfundi ), and tlist is (0).
3. Each party Pi publishes txfund,i on the ledger, and sends cfund,i to Pj ; on receiving

cj from the Pj , checks that cj is a valid coin, the pklist, tlist, apk, vj are correctly
committed in it, and txfund,j publishes the same commitment as cfund,j; if any of the
checks fails, redeems cfund,i immediately and aborts.

4. If both txfund,1 and txfund,2 are correctly published, they agree on a pour kernel
Ker(cfund,i, cfund,j)→ (cshare) with pklist = (pkshare1,2 ) and tlist = (0) in cshare.

5. Each party Pi generates and signs (with share of skshare1,2 ) a pour kernel Ker(cshare)→
(credeem,i, credeem,j) with pklisti = (pktermi ), tlisti = (0) for credeem,i, pklistj =
(pktermj , pkterm1,2 ), tlistj = (T, 0) for credeem,j and the values of the coins are vi and
vj respectively, and sends the kernel with the signature piece to Pj , along with the
trapdoors used to generate the commitment; on receiving the pour kernel from Pj ,
checks that the kernel has been generated as expected and the signature piece is
valid, if not, redeems the fund coin and aborts immediately.

6. Each party Pi signs Ker(cfund,i, cfund,j) → (cshare) and sends Pj the signature; on
receiving the signature piece from the other, one of the parties extends the kernel to
pour transaction txPour,share and publishes it on the ledger.

4.2 Make Payments in Z-Channel

The algorithm Pay updates the terminating pour kernels to redistribute the redeem
values.
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– At the beginning of this algorithm,
• a share transaction txPour,share = Pour(cfund,1, cfund,2)→ (cshare)
• for i ∈ {1, 2} party Pi holds a terminating pour kernel Ker(cshare) → (coldredeem,i,

coldredeem,j) signed by Pj
– After the algorithm is finished,
• for i ∈ {1, 2}, party Pi holds an updated terminating pour kernel Ker(cshare)→

(cnewredeem,i, c
new
redeem,j) signed by Pj

• for i ∈ {1, 2}, party Pi holds a penalty pour kernel Ker(coldredeem,j) → (ci) signed
by Pj

Each time one party tries to pay another, they agree on a new distribution of the
shared coin, vnewi and vnewj . Then they try to generate new terminating pour kernel with
the updated distribution. After that, each party signs a pernalty pour kernel for another
to prevent any of them from trying to publish outdated terminating pour kernel. The
detail is as follows.

– The two parties agrees on the update values vnewi , vnewj .

1. The parties run distrbuted Kenc algorithm to generate shared public/private key
pair pkterm,new1,2 and sk

term,new
1,2 ; then each party Pi invokes Kenc privately to generate

public/private key pairs pk
term,new
i , pkpeni and sk

term,new
i , skpeni .

2. Each party Pi generates and signs (with share of skshare1,2 ) a pour kernel Ker(cshare)→
(cnewredeem,i, c

new
redeem,j) with pklisti = (pktermi ), tlisti = (0) for cnewredeem,i, pklistj =

(pktermj , pkterm1,2 ), tlistj = (T, 0) for cnewredeem,j and the values of the coins are vnewi and
vnewj respectively, and sends the kernel with the signature piece to Pj , along with
the trapdoors used to generate the commitment; on receiving the pour kernel from
Pj , checks that the kernel has been generated as expected and the signature piece is
valid, if not, terminates the channel (by extending Ker(cshare)→ (coldredeem,i, c

old
redeem,j)

and publishing the result pour transaction) and aborts immediately.
3. Each party Pi generates and signs (with share of skterm1,2 ) a pour kernel Ker(credeem,i)
→ (cj) with pklist = (pktermj ) and tlist = (0) for cj , and sends the kernel with the
signature piece to Pj ; on receiving the pour kernel from Pj , checks that the kernel
has been generated as expected and the signature piece is valid, if not, terminates
the channel and aborts immediately.

4.3 Terminate Z-Channel

The algorithm Terminate terminates the channel by publishing one terminating trans-
action for this channel on ledger.

– At the beginning of this algorithm,
• a share transaction txPour,share = Pour(cfund,1, cfund,2)→ (cshare)
• for i ∈ {1, 2} party Pi holds a terminating pour kernel Ker(cshare) → (credeem,i,

credeem,j) signed by Pj
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– After this algorithm is finished,
• a terminating transaction txPour,term = Pour(cshare) → (credeem,1, credeem,2) is

published on ledger
• two pour transactions are published on ledger consuming credeem,1 and credeem,2

After terminating transaction is published, party P1 and P2 can redeem the Zero-
cash from credeem,1 and credeem,2 respectively, by another pour transaction to their own
addresses. The one who takes the action to terminate the channel, however, has to wait
time T before redeeming the coin. If the terminating transaction is an outdated one, the
other party has time T to extend and publish the penalty transaction to take away both
of the redeem coins. The detail of Terminate is as follows.

– One of the parties (assume Pi) decides to terminate the channel.

1. Pi extends Ker(cshare) → (credeem,i, credeem,j) to terminating transaction txPour,term
and publishes it.

2. Pj invokes Pour’ algorithm to pour credeem,j to his own account.
3. Pj checks if txPour,term is the most updated, if not, Pj extends and publishes the

penalty kernel Ker(credeem,i)→ (cj).
4. If the check succeeds, and Pj agrees to help Pi to redeem his coin:

(a) Pi sends Ker(credeem,i)→ (ci) to Pj .
(b) Pj signs this kernel by his share of skterm1,2 corresponding to this terminating

transaction, and sends the signature back to Pi.
(c) Pi extends and publishes the kernel.

5. If the check succeeds, and Pj disagree to help Pi:
(a) Pi waits for time T .
(b) Pi invokes Pour’ algorithm to pour credeem,i to his own account.

5 Conclusion and Future Work

Our work aimed at improving the scalability and efficiency of Zerocash while maintaining
the privacy. We modified the original DAP scheme for Zerocash to support more features
which are essential in implementing micropayment channel. Our modification enabled
Zerocash to support shared address by a group of parties. Specifically, a user can generate
a coin which can be spent only by cooperation of all the group members, while in the view
of others the coin and the transaction spending it look the same as normal transactions
issued by a single user. Our new scheme also made it possible to lock a coin by a specific
period of time. The verifiers can check whether the input coin of a transaction is unlocked
or not, while information about the timestamp of the input coin and lock time are well
protected. Moreover, a coin can be locked with different lock time for different parties,
this feature permits various kinds of applications.

We then transplanted the idea of Lightning network to develop a micropayment
channel Z-Channel. Compared with the micropayment channel in Lightning network, the
identities of the parties and the amount of coins involved in the channels are kept secret.
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Furthermore, others cannot perceive even the existence of the channel by observing
the ledger. Compared with the original Zerocash, Z-Channel significantly improves the
scalability and the instant payment capability. As a matter of fact, Z-Channel allows
numberous payments conducted and confirmed off-chain in short periods of time.

It is intriguing (though challenging) to transplant the idea of Hashed Timelock Con-
tract (HTLC) in Lightning network to Z-Channel to form a more scalable network.
Another direction worth considering is to connect the public keys by logic relations
AND and OR in our modified Zerocash scheme. The applications and security of such
schemes remain to be explored and analyzed.
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A Definition of Security

We define the completeness, ledger indistinguishability, transaction non-malleability and
balance in a way similar to definitions B.1, C.1 C.2 and C.3 in [20].

Definition 3. We say that a DAP’ scheme Π = (Setup, CreateAddress, Mint’, Pour’,
VerifyTransaction’, Receive’) is complete, if for every poly(λ)-size adversary A and
sufficiently large λ, AdvINCOMP

Π,A (λ) < negl(λ), where AdvINCOMP
Π,A (λ) := 2· Pr[INCOMP

(Π,A, λ) = 1]− 1 is A’s advantage in the INCOMP experiment.

Definition 4. We say that a DAP’ scheme Π = (Setup, CreateAddress, Mint’, Pour’,
VerifyTransaction’, Receive’) is L-IND secure, if for every poly(λ)-size adversary A
and sufficiently large λ, AdvL-IND

Π,A (λ) < negl(λ), where AdvL-IND
Π,A (λ) := 2 · Pr[L-IND(

Π,A, λ) = 1]− 1 is A’s advantage in the L-IND experiment.

Definition 5. We say that a DAP’ scheme Π = (Setup, CreateAddress, Mint’, Pour’,
VerifyTransaction’, Receive’) is TR-NM secure, if for every poly(λ)-size adversary A
and sufficiently large λ, AdvTR-NM

Π,A (λ) < negl(λ), where AdvTR-NM
Π,A (λ) := 2 · Pr[TR-NM

(Π,A, λ) = 1]− 1 is A’s advantage in the TR-NM experiment.

Definition 6. We say that a DAP’ scheme Π = (Setup, CreateAddress, Mint’, Pour’,
VerifyTransaction’, Receive’) is BAL secure, if for every poly(λ)-size adversary A and
sufficiently large λ, AdvBAL

Π,A (λ) < negl(λ), where AdvBAL
Π,A (λ) := 2 · Pr[BAL (Π,A, λ) =

1]− 1 is A’s advantage in the BAL experiment.

In each of the experiments, one or more oracles of the DAP scheme ODAP receives
queries and output answers. A challenger C interacts with an adversary A, forwards the
queries from A to ODAP and the answers back to A, and performs sanity checks. We
modify the mechanism of the original ODAP in [20] to suit our new DAP’ scheme. Below,
we first describe how this new oracle ODAP works.

The oracle ODAP is initialized by a list of public parameters pp and maintains state.
Internally, ODAP stores the following:

(i) L, a ledger;
(ii) ADDR, a set of address key pairs;
(iii) COIN, a set of coins;
(iv) PK, a set of public/private key pairs;
(v) PKCM, a set of tuples of (pklist, u, pkcm);
(vi) OLDPKCM, a set of tuples of (addrpk, pkcm, u, pklist).

Initially, L, ADDR, COIN, PK, PKCM, OLDPKCM start out empty. The oracle ODAP accepts
various types of queries, and each type of query modifes L, ADDR, COIN, PK, PKCM, OLDPKCM
in different ways and outputs differently. We now describe each type of query Q.

– Q = (CreateAddress)

1. Compute (addrpk, addrsk) := CreateAddress (pp).
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2. Add the address key pair (addrpk, addrsk) to ADDR.
3. Output the address public key addrpk.

Other internal storages apart from ADDR stay unchanged.
– Q = (CreatePKCM,addrpk,K)

1. Randomly sample u.
2. Randomly sample a public key list pklist (with secret key list being sklist) of

size K.
3. Compute pkcm = COMMu(Hash(pklist)).
4. Store (pklist, u, pkcm) in table PKCM.
5. Store (pklist[i], sklist[i]) in table PK for i ∈ {1, ...,K}.
6. Output pkcm.

Other internal storages apart from PK, PKCM stay unchanged.
– Q = (Mint, v, addrpk, pkcm, tlist)

1. Compute (c, txMint) := Mint (pp, v, addrpk, tlist).
2. Add the coin c to COIN.
3. If addrpk is in ADDR, find tuple (pklist, u, pkcm) in table PKCM, aborts if cannot

find, then removes the tuple from PKCM and stores (addrpk, pkcm, u, pklist) in
OLDPKCM;

4. If addrpk is not in ADDR, but pkcm can be found in PKCM or OLDPKCM, aborts;
5. Add the mint transaction txMint to L.
6. Output ⊥.

The internal storage ADDR stay unchanged.
– Q = (Pour, idxold1 , idxold2 , addroldpk,1, addr

old
pk,2, k1, k2, info, vnew1 , vnew2 , addrnewpk,1,

addrnewpk,2, pkcmnew1 , pkcmnew2 , tlistnew1 , tlistnew2 , vpub)

1. Let timestamp be the current time.
2. For each i ∈ {1, 2}:

(a) Let cmoldi be the idxoldi -th coin commitment in L.
(b) Let txi be the mint/pour transaction in L that contains cmoldi .
(c) Let coldi be the first coin in COIN with coin commitment cmoldi .
(d) Let pkcmoldi be the public key commitment stored in coldi .
(e) Let (pklistoldi , uoldi , pkcmoldi ) be the first tuple in OLDPKCM with public key com-

mitment pkcmoldi .
(f) Let (addroldpk,i,addr

old
sk,i) be the first key pair in ADDR with addroldpk,i being coldi ’s

address.
(g) Let (pklist[ki],ski) be the first key pair in PK with pklist[ki] being the public

key.
(h) Let tlisti be the lock time stored in coldi .
(i) Let rti be the a randomly selected root in the Merkle tree root history later

than cmoldi in L such that rti.time+ tlisti[ki] < timestamp.
(j) Compute pathi, the authentication path from cmoldi to rti.
(k) If addrnewpk,i is in ADDR, checks that pkcmnewi is in PKCM and not in OLDPKCM, and

aborts if the check fails. Let (pklistnewi , unewi , pkcmnewi ) be the tuple found
in PKCM. Remove pkcmnewi from PKCM and stores (addrnewpk,i , pkcmnewi , unewi ,
pklistnewi ) in OLDPKCM.
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(l) If addrnewpk,i is not in ADDR, checks that pkcmnewi is not in either PKCM or OLDPKCM,
and aborts if the check fails.

3. Compute (cnew1 , cnew2 , txPour) := Pour (pp, rt1, rt2, cold1 , cold2 , addroldsk,1, addr
old
sk,2,

path1, path2, pklist
old
1 , pklistold2 , uold1 , uold2 , tlistold1 , tlistold2 , k1, k2, sk1, sk2, v

new
1 ,

vnew2 , addrnewpk,1, addrnewpk,2, vpub, pkcm
new
1 , pkcmnew2 , tlistnew1 , tlistnew2 , info).

4. Verify that VerifyTransaction (pp, txPour, L) outputs 1.

5. Add the coin cnew1 to COIN.

6. Add the coin cnew2 to COIN.

7. Add the pour transaction txPour to L.

8. Output ⊥.

If any of the above operations fail, the output is ⊥ (and L, ADDR, COIN, PK, PKCM,
OLDPKCM remain unchanged).

– Q = (Insert, tx)

1. Verify that VerifyTransaction (pp, tx, L) outputs 1. (Else, abort.)

2. Add the mint/pour transaction tx to L.

3. Run Receive’ for all addresses addrpk in ADDR;

4. For each output coin from Receive’

(a) Let pkcm be the public key commitment stored in it.
(b) Let (pklist, u, pkcm) be the first tuple in PKCM with the public key commitment

pkcm (if not exists, aborts).
(c) Remove this tuple from PKCM;
(d) Add (addrpk, pkcm, u, pklist) to OLDPKCM.

5. Output ⊥.

The address set ADDR stays unchanged.

With the above described oracle ODAP , the definitions of ledger indistinguishability,
transaction non-malleability and balance are defined by three games respectively: L-IND,
TR-NM and BAL. We now describe the above mentioned L-IND experiment. The other
experiments TR-NM and BAL are similar to the original ones, refer to [20] for the details.

Given a DAP’ scheme Π, adversary A, and security parameter λ, the (probabilistic)
experiment L-IND (Π,A, λ) consists of a series of interactions betweenA and a challenger
C. At the end of this experiment, C outputs a bit in {0, 1} indicating whether A succeeds.

At the start of the experiment, C samples b ∈ {0, 1} at random, samples pp ←Setup

(1λ), and sends pp to A; using pp, C initializes two DAP’ oracles ODAP0 and ODAP1 .

Now A and C start interaction in steps. In each step, C provides to A two ledgers
(LLeft, LRight), where LLeft := Lb is the current ledger in ODAPb and LRight := L1−b the
ledger in ODAP1−b ; then A sends to C a pair of queries (Q, Q′), which must be of the same
type of query. C acts differently on differnt types of queries, as follows:

– If the query is of type Insert, C forwards Q to ODAPb , and Q′ to ODAP1−b . If the
inserted query is a Pour query with one of the target address addrpk in ADDR, the
public key commitment pkcm committed in the coin must not be one generated by
CreatePKCM previously.

24



– For the other query types, C ensures that Q, Q′ are publicly consistent, and then
forwards Q to ODAP0 , and Q′ to ODAP1 ; assume the two oracle answer (a0, a1), C
forwards to A (ab, a1−b).

At the end, A sends C a guess b′ ∈ {0, 1}. If b = b′, C outputs 1; else, C outputs 0.

Public consistency. As mentioned above, the pairs of queries A sends C must be of
the same type and publicly consistent. We now define the public consistency. If Q, Q′ are
of type CreateAddress, the queries are automatically public consistent; further more,
we require that in this case the address generated in both oracles are identity. If they
are of type CreatePKCM, the queries are automatically public consistent. If they are of
type Mint, then the minted value v in Q must equal the value in Q′. Finally, if they are
Pour query, we require the following restrictions.

First, each of Q, Q′ must be well-formed:

(i) the coins cold1 , cold2 corresponding to the coin commitments (reference by the two
indices idxold1 , idxold2 ) in Q must appear in the coin table COIN, similar requirement
for Q′;

(ii) the coins cold1 , cold2 referenced in Q must be unspent, similar requirement for Q′;
(iii) the address public keys addrpk,1 and addrpk,2 in Q must match those in cold1 , cold2 ,

similar requirement for Q′;
(iv) the balance equations must hold;
(v) the lock times of the old coins must be up;

(vi) the public key commitments pkcmi must be one generated by PKCM previously and
never used in previous queries and each must be unique in these queries Q and Q′.

Furthermore, Q, Q′ must be consistent with respect to public information and A’s
view:

(i) the public values in Q and Q′ must equal;
(ii) for each i ∈ {1, 2}, the number K of public keys committed in pkcmi in Q and Q′

must equal;
(iii) for each i ∈ {1, 2}, if the i-th recipient addresses in Q is not in ADDR, then vnewi in

Q and Q′ must equal (vice versa for Q′);
(iv) for each i ∈ {1, 2}, the i-th public key index ki in Q must equal the corresponding

index in Q′ (vice versa for Q′);
(v) for each i ∈ {1, 2}, if the i-th index in Q references a coin commitment in a

transaction from a previously posted Insert query, then the corresponding index
in Q′ must also reference a coin commitment in a transaction posted in Insert

query; additionally, voldi in Q and Q′ must equal (vice versa for Q′).
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B Proof of Security

Here we present the complete proof of Theorem 1. The proofs to transaction non-
malleability and balance are trivially similar to the ones in [20], we omit them here.
For proof of ledger indistingsuishability, we construct a simulation asim in which the
adversary A interacts with a challenger C, as in the L-IND experiment. However asim

modifies the L-IND experiment in a critical way: all answers sent by C to A are indepen-
dent from the bit b, so the advantage of A’s in asim is 0. Then we show that AdvL-IND

Π,A (λ)
is only negligibly larger than A’s advantage in asim.

B.1 The simulation experiment.

The simulation asim works as follows. First, C samples b ∈ {0, 1} and pp ←Setup

(1λ), with the following modifications: the zk-SNARK keys are generated by (pkPOUR,
vkPOUR, trap)← Sim(1λ, CPOUR), instead of the usual way. Then, C sends pp to A, and
initializes two DAP’ oracles ODAP0 and ODAP1 .

Afterwards, asim proceeds in steps and at each step C present A two ledgers (LLeft,
LRight), where LLeft := Lb is the current ledger in ODAPb and LRight := L1−b the ledger
in ODAP1−b ; then A sends to C a message (Q, Q′), which consist of two queries of the same
type. The requirement to these two queries is the same to that in L-IND. The reaction
of challenger C is different from that in L-IND, as described as follows:

– Answering CreateAddress queries. In this case, Q = Q′ = CreateAddress. To
answer Q, C behaves as in L-IND, except for the following modification: after obtain-
ing (addrpk, addrsk)←CreateAddress (pp), C replaces apk in addrpk with a random
string of the appropriate length; then, C stores (addrpk,addrsk) in ADDR and returns
addrpk to A. Afterwards, C does the same for Q′.

– Answering CreatePKCM queries. In this case, Q = Q′ = CreatePKCM. To answer
Q, C behaves as in L-IND, except for the following modification: after obtaining
(pklist, u, pkcm), C replaces pkcm with a random string of the appropriate length;
then, C stores the tuple in PKCM and returns pkcm to A. Afterwards, C does the same
for Q′.

– Answering Mint queries. In this case, Q = (Mint, v, addrpk) and Q′ = (Mint, v,
addr′pk). To answer Q, C behaves as in L-IND, except for the following modification:
Compute k = COMMs(τ) for a random string τ of the suitable length, instead of
k = COMMs(H‖m). Afterwards, C does the same for Q′.

– Answering Pour queries. In this case, Q and Q′ both have the form (Pour,
idxold1 , idxold2 , addroldpk,1, addr

old
pk,2, k1, k2, info, vnew1 , vnew2 , addrnewpk,1, addrnewpk,2, pkcmnew1 ,

pkcmnew2 , tlistnew1 , tlistnew2 , vpub). To answer Q, C modifies in the following ways:
1. For each j ∈ {1, 2}:

(a) Uniformly sample random snoldj .

(b) Randomly sample a list of pairs of public/private keys pklistj , compute holdpk,j
:= Hash( pklistj).

(c) If addrnewpk,j is in ADDR:
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i. sample a coin commitment cmnewj on a random input;
ii. run Kenc(ppenc)→ (pkenc, skenc) and compute Cnew

j := Eenc(pkenc, r) for
a random r of suitable length.

(d) Otherwise, calculate (cmnewj , Cnew
j ) as in the Pour algorithm.

2. Set h1 and h2 to be random strings of suitable length.
3. Compute all other values as in the Pour algorithm.
4. The pour proof is computed as πPOUR:=Sim(trap, x), where x := (rt1, rt2, sn

old
1 ,

snold2 , holdpk,1, h
old
pk,2, cm

new
1 , cmnew2 , vpub, hsig, h1, h2, k1, k2, timestamp).

Afterwards, C does the same for Q′.
– Answering Insert queries. In this case, Q = (Insert, tx) and Q = (Insert, tx′).

The answer to each query proceeds as in the L-IND experiment.

In each of the above cases, the response to A is computed independently of the bit
b. Thus, when A outputs a guess b′, it must be the case that Pr[b = b′] = 1/2, i.e., A’s
advantage in asim is 0.

B.2 Indistinguishability from Real Experiment

We construct a sequence of hybrid experiments (areal, a1, a2, a3, asim), in each of these
experiments a challenger C conducts a different modification of the L-IND experiment.
We define areal to be the original L-IND experiment, and asim to be the simulation
described above. Given experiment a, we define Adva to be the absolute value of the
difference between the L-IND advantage of A in a and that in areal. Also, let

– qCA be the number of CreateAddress queries issued by A,
– qCP be the number of CreatePKCM queries issued by A.
– qP be the number of Pour queries issued by A,
– qM be the number of Mint queries issued by A,

Finally, define AdvEnc to be A’s advantage in Enc’s IND-CCA and IK-CCA experi-
ments, AdvPRF to be A’s advantage in distinguishing the pseudorandom function PRF

from a random one, and AdvCOMM to be A’s advantage against the hiding property of
COMM.

We now describe each of the hybrid experiments.

– Experiment a1. The experiment a1 modifies areal by simulating the zk-SNARKs.
More precisely, we modify areal so that C simulates each zk-SNARK proof, as fol-
lows. At the beginning of the experiment, instead of invoking KeyGen (1λ, CPOUR),
C invokes Sim(1λ, CPOUR) and obtains (pkPOUR, vkPOUR, trap). At each subsequent
invocation of the Pour algorithm, C computes πPOUR ←Sim(trap, x), without using
any witnesses, instead of using Prove. Since the zk-SNARK system is perfect zero
knowledge, the distribution of the simulated πPOUR is identical to that of the proofs
computed in areal. Hence Adva1 = 0.

– Experiment a2. The experiment a2 modifies a1 by replacing the ciphertexts in a pour
transaction by encryptions of random strings. Each time A issues a Pour query where
one of (addrnewpk,1, addrnewpk,2) is in ADDR, the ciphertexts Cnew

1 , Cnew
2 are generated as

follows:
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1. (pknewenc , sk
new
enc )← Kenc(ppenc);

2. for each j ∈ {1, 2}, Cnew
j := Eenc(pknewenc , j, r) where r is a message randomly and

uniformly sampled from plaintext space.
By Lemma 1,

∣∣Adva2 −Adva1
∣∣ ≤ 4 · qP ·AdvEnc.

– Experiment a3. The experiment a3 modifies a2 by replacing all PRF-generated values
with random strings:
• each time A issues a CreateAddress query, the value apk within the returned

addrpk is substituted with a random string of the same length;
• each time A issues a Pour query, each of the serial numbers snold1 , snold2 in txPour

is substituted with a random string of the same length, and h1 and h2 with
random strings of the same length.

By Lemma 2,
∣∣Adva3 −Adva2

∣∣ ≤ qCA ·AdvPRF

– Experiment asim. The experiment asim is already described above. For comparison,
we explain how it differs from a3: all the commitments are replaced with commit-
ments to random inputs:
• each time A issues a CreatePKCM query, the commitment pkcm is substituted with

a random string of suitable length; and
• each time A issues a Mint query, the coin commitment cm in txMint is substituted

with a commitment to a random input; and
• each time A issues a Pour query, for each j ∈ {1, 2}, if the output address addrnewpk,j

is in ADDR, cmnewj is substituted with a commitment to a random input.

By Lemma 3,
∣∣Advasim −Adva3

∣∣ ≤ (qM + 4 · qP + qCP) ·AdvCOMM

By summing over A’s advantages in the hybrid experiments, we can bound A’s
advantage in areal by

AdvL-IND
Π,A (λ) ≤ 4 · qP ·AdvEnc + qCA ·AdvPRF + (qM + 4 · qP + qCP) ·AdvCOMM

which is negligible in λ. This concludes the proof of ledger indistinguishability.
Below, we sketch proofs for the lemmas used above.

Lemma 1. Let AdvEnc be the maximum of: A’s advantage in the IND-CCA experi-
ment against the encryption scheme Enc, and A’s advantage in the IK-CCA experiment
against the encryption scheme Enc. Then after qP Pour queries,

∣∣Adva2 −Adva1
∣∣ ≤

4 · qP ·AdvEnc.

The proof of Lemma 1 is exactly the same to the proof of Lemma D.1 in [20], so we
omit it here.

Lemma 2. Let AdvPRF be A’s advantage in distinguishing the pseudorandom function
PRF from a random function. Then, after qCA CreateAddress queries,∣∣Adva3 −Adva2

∣∣ ≤ qCA ·AdvPRF.

Proof sketch. We first constuct a hybrid H, intermediate between a2 and a3, in
which we replace all values computed by the first oracle-generated key ask with random
strings. On receiving A’s first CreateAddress query, replace the public address addrpk =
(apk, pkenc) with addrpk = (τ , pkenc) where τ is a random string of the appropriate length.
On each subsequent Pour query txPour, for each i ∈ 1, 2, if addroldpk,i = addrpk then:
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1. replace snoldi with a random string of appropriate length;
2. replace each of h1, h2 with a random string of appropriate length;
3. simulate the zk-SNARK proof πPOUR.

We now argue that A’s advantage in H is at most AdvPRF more than in a2. Let ask
be the secret key generated by the oracle in the first CreateAddress query. In a2 (as in
areal):

– apk := PRFaddrask
(0);

– for each i ∈ {1, 2}, sni := PRFsnaskρ) for a random ρ;

– for each i ∈ {1, 2}, hi := PRF
pk
ask(i‖hsig) and hsig is unique.

Now let O be an oracle that implements either PRFask or a random function. We show
that if A distinguishes H from a2 with probability ε, we can construct a distinguisher for
the two implementations of O. In fact, when O implements PRFask , the distribution of
the experiment is identical to that of a2; when O is a random function, the distribution
is identical to H. Therefore, A’s advantage is at most AdvPRF.

Finally, by the hybrid argument, we extend to all qCA oracle-generated addresses;
then, A’s advantage gain from a2 to a3 is at most qCA · AdvPRF. The final hybrid is
equal to a3, we obtain that

∣∣Adva3 −Adva2
∣∣ ≤ qCA ·AdvPRF.

Lemma 3. Let AdvCOMM be A’s advantage against the hiding property of COMM. After
qM Mint queries, qP Pour queries and qCP CreatePKCM queries,

∣∣Advasim −Adva3
∣∣ ≤

(qM + 4 · qP + qCP) ·AdvCOMM.

Proof sketch. We only provide a short sketch, because the structure of the argument
is similar to the one used to prove Lemma 2 above.

For the first Mint or Pour query, replace the “internal” commitment k := COMMs(
H ‖ m) with a COMMs(τ) where τ is a random string of appropriate length. Since ρ is
random, A’s advantage in distinguishing this modified experiment from a2 is at most
AdvCOMM. Then, if we modify all qM Mint queries and all qP Pour queries, by replacing
the qM + 2 · qP internal commitments with random strings, we can bound A’s advantage
by (qM + 2 · qP) ·AdvCOMM.

Next, similarly, replace the coin commitment in the first Pour with a commitment
to a random value, then A’s advantage in distinguishing this modified experiment from
the above one is at most AdvCOMM. Then, we modify all qP Pour queries, by replacing
the 2 · qP output coin commitments with random strings, we can update the bound to
A’s advantage to (qM + 2 · qP) ·AdvCOMM.

Finally, we modify the qCP CreatePKCM commitments to replace the resulting qCP

public key commitments by a random string of appropriate length, we obtain the exper-
iment asim and get that

∣∣Advasim −Adva3
∣∣ ≤ (qM + 4 · qP + qCP) ·AdvCOMM.
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