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Abstract. Off-chain protocols (or so-called Layer 2) are heralded as a
scaling solution for cryptocurrencies. One prominent approach is called
a state channel which allows a group of parties to transact amongst
themselves and the global blockchain is only used as a last resort to self-
enforce any disputed transactions. To evaluate state channels as a scaling
solution, we provide a proof of concept implementation for a two-player
battleship game. Typically it is considered unreasonable to play via the
blockchain which we confirm as a single game costs between $16.27 and
$24.05, but it is perceived as an ideal application for a state channel.
We explore the minimal modifications required to deploy the battleship
game as a state channel and propose a new state channel construction,
Kitsune, which combines features from existing constructions. While in
the optimistic case we demonstrate the battleship game can be played
efficiently in a state channel, the requirement for all parties to collec-
tively authorise new transactions in the state channel introduces new
economic and time-based attacks that if exploited renders the game as
unreasonable to play.

1 Introduction

Since 2009, we have witnessed the rise of cryptocurrencies as the market capi-
talisation for all cryptocurrencies peaked to $1 trillion US dollars in December
2017. While Bitcoin [32] was the first cryptocurrency designed to support finan-
cial transactions, another promiment cryptocurrency called Ethereum [39] has
emerged for executing programs called smart contracts. The promise of smart
contracts is to support the execution of applications without human oversight
or a central operator. Some applications proposed include decentralised (and
non-custodial) token exchanges [27], publicly verifiable gambling games with-
out dealers [19], auctions for digital goods without auctioneers [4], boardroom
electronic voting wthout tallying authorities [30], etc.



Cryptocurrencies do not yet scale. Bitcoin can support approximately 7 trans-
actions per second and Ethereum can support around 13 transactions per second.
The lack of scalability is one of the primary hurdles preventing global adoption
of cryptocurrencies as the network’s transaction fee typically become unafford-
able for most users whenever the transaction throughput ceiling is reached (i.e.
the average fee in Bitcoin reached $20 in December 2017). The community is
pursuing three approaches to scale the network which include new blockchain
protocols, sharding the blockchain and off-chain protocols. New blockchain pro-
tocols can strictly increase the network’s throughput [36,14,37], whereas sharding
can be used to distribute transactions into processing areas such that peers only
validate transactions that interest them [24,1,26]. However there is a tradeoff
between increasing the network’s transaction throughput to support a larger
userbase in terms of affordable fees, and the number of validators with the nec-
essary computational resources to validate every transaction [29,20,7].

An alternative scaling approach consists of off-chain solutions to reduce the
number of transactions processed by the blockchain. It lets a group of parties de-
posit coins in the blockchain for use within an off-chain application. Afterwards
all parties can transact amongst themselves without interacting with the global
network and the deposited coins are re-distributed depending on the applica-
tion’s outcome. Two proposals include an alternative blockchain (i.e. a sidechain)
or a channel. A sidechain has block producers (i.e. miners or a single operator) for
deciding the order of transactions and users who publish transactions for inclu-
sion. There are several sidechain protocols [2,10] which bootstrap from Bitcoin
(including a live network by RSK [21]), whereas Plasma[33] and NOCUST[23]
are non-custodial sidechains which bootstrap from Ethereum for financial trans-
actions. While sidechains are a promising off-chain solution, they still require a
blockchain protocol which has a transaction throughput ceiling.

On the other hand, a channel can be considered an n of n consensus pro-
tocol as all parties collectively authorise the state of an application amongst
themselves. There is no blockchain protocol and all parties typically only store
the most recently authorised state of the application. Channels first emerged
in Bitcoin to support one-way payments between two parties [38,9], but has
since evolved in Bitcoin towards the development of an off-chain payment net-
work [34] by several companies including Blockstream, LND and ACINQ. At
the same time, several proposals [31,28,11,12,6,25,5] collectively extend the ca-
pability of a channel to support a group of parties to execute a smart contract
(i.e. a program) amongst themselves as opposed to simply payments. A state
channel promises instant finality for every transaction and no transaction fees as
there is no operator to reward. Channels are also self-enforcing as each party is
protected against a full collusion of all other parties and in terms of scalability
the throughput is only restricted by the network latency between the parties.
The Ethereum Foundation has donated over $2.7m [15,16,17] and the Ethereum
Community Fund has donated $275k [18] to further explore state channels as
a scaling solution. As well, companies have raised substantial capital to deploy
channels including Raiden at $33m [22], FunFair at $26m [19]



In this paper, we present an empirical evaluation in the form of a case study
for a single-application state channel which must be a viable scaling option
before a network of state channels is conceivable. To aid this evaluation we have
designed a two-player battleship game as a smart contract. An application like
battleship is not typically considered viable to execute via the blockchain due
to the quantity of transactions required and in our experiment we confirm this
perception as the financial cost is between $16.27 and $24.05. However, state
channels are perceived as a potential scaling solution to allow applications like
battleship to be executed over the blockchain. Our contributions are as follows:

– We explore the minimal modifications required to deploy a single-application
smart contract as a state channel and propose a template of modifications
that can be adopted by others deploying state channels.

– We present a new state channel construction, Kitsune, which is application-
agonostic, supports n parties and allows the channel to be turned off such
that the application’s progress can continue via the blockchain. This com-
bines the constructions from [31], [28], [11], [7].

– We provide a proof of concept implementation to evaluate deploying appli-
cations within a state channel. This experiment highlights the worst-case
scenario of state channels and how it potentially renders applications like
battleship as unreasonable to deploy within a state channel.

2 Background

In this section, we provide background information about Ethereum, smart con-
tracts and how the concept of a channel has evolved.

2.1 Ethereum and smart contracts

All parties are responsible for generating their own pseudonymous account which
is simply a public-private key pair. If the account is associated with the network’s
native currency (i.e. ether), then the party can digitally sign transactions to send
coins to other parties or they can interact with global programs called smart
contracts. All transactions are recorded and ordered in an append-only public
ledger called the blockchain. A group of financially invested users called miners
are responsible for updating the blockchain with a new block of transactions via
a proof of work competition. If the block is accepted into the longest and heaviest
blockchain, then it is eventually considered the winner and in return the miner
of this winning block is rewarded with newly minted coins.

Conceptually, a smart contract can be viewed as a trusted third party with
public state. It has a unique address on the network, it is instantiated based on
the code supplied at the time of its creation, and all execution can be modelled as
a state machine. Every transaction executes a command in the smart contract
and this transitions the state such that statei+1 = transition(statei, cmd). It is
considered a trusted third party as all parties must replicate the program’s entire



execution in order to verify the blockchain and join the network. This mass-
replication self-enforces a smart contract’s correct execution and also implies
that all data for the smart contract must be publicly accessible. Finally all
computation by a smart contract is measured using a metric called gas and the
sender of a transaction sets a desired gas price. The amount of gas used by
a contract invocation multiplied by the gas price sets the transaction fee for
incentivising a miner to include this transaction in their block.

2.2 Evolution of channel constructions

We present a high-level overview of a channel before exploring the evolution of
channel constructions from Bitcoin for financial transactions to Ethereum for
executing arbitary smart contracts.

High level overview A channel lets n parties agree, via unanimous consent, to
new states that could be published to the blockchain. As a result parties can
transact amongst themselves instead of interacting via the global network. To
set up, each party in the group must lock coins in the underlying blockchain
for the channel. Afterwards all parties collectively execute state transitions and
exchange signatures to authorise every new state (i.e. the balance of all parties,
the state of a smart contract, etc). If a single party does not co-operate to
authorise a valid state transition, then the underlying blockchain is trusted to
resolve disputed transactions and self-enforce the state transition. In the case
of Bitcoin, the blockchain gurantees the safety of coins for the online parties,
whereas in the case of a smart contract in Ethereum it also guarantees liveness
such that an application will always progress and eventually terminate.

Payment channels in Bitcoin Spilman proposed replace by incentive which is
the first state replacement technique for a channel. It is designed for one-way
payments from a sender to receiver [38]. The sender submits a deposit to open
the channel and this deposit can be redeemed if one of the following two condi-
tions are satisified. Either the channel’s expiry time is reached and the sender
is refunded their coins, or both parties authorise the payment. Every payment
signed by the sender increments the coins owed to the receiver and decrements
the coins owed to the sender. The receiver must close the channel before its
expiry time by signing and publishing the payment that pays them the most
coins. To support bi-directional payments, Decker proposed replace by time lock
which decrements the channel’s expiry time whenever the payment direction
changes [9]. However both state replacement techniques require an expiry time
which restricts the total number of transactions that can occur. Poon and Dryja
proposed a third state replacement technique called replace by revocation for
Lightning Channels [34]. It requires both parties to authorise each other’s copy
of the new state before sharing secrets to revoke the previously authorised state.
It also introduced the concept of a dispute process which lets one party publish a
fully authorised state to close the channel and the blockchain provides fixed dis-
pute period for the counterparty to prove the published state is invalid. If fraud



is proven, then the broadcaster is penalised and the counterparty is rewarded all
coins in the channel. After the dispute period has expired, both parties are sent
their respective coins according to the final state accepted by the blockchain.

Payment channels in Ethereum Raiden proposed the first payment channel con-
struction for Ethereum which is effectively a pair of replace by incentive channels
[35]. Every payment increments the total coins owed to the counterparty and
closing the channel requires each party to publish the final payment received.
Afterwards the smart contract computes each party’s balance using the offset
from the total coins owed to both parties. Unlike in Bitcoin, this construction
has no expiry time and does not restrict the total number of payments within
the channel, but it is still restricted to two parties and the channel’s state only
considers the balance of both parties.

State channels in Ethereum Both Sprites and Perun independently proposed a
new state replacement technique called replace-by-version [31,11]. While Sprites
proposed a two-party payment channel, it also introduced a state channel con-
struction to support n parties and arbitrary applications. Briefly, one party is
responsible for proposing a command to transition the state. All parties com-
pute the state transition and increment a version number for the new state. It is
only considered authorised after each party has received a signature for the new
state from every other party in the channel. If one party does not co-operate,
then any party can use the signed command (or issue their own command) to
self-enforce the state transition via the blockchain using a dispute process. To
dispute, one party submits a state, its version and a list of signatures to prove
this state was authorised by every party to a smart contract on the blockchain.
Next the party can trigger the dispute process and the blockchain provides a
fixed time for all parties to submit signed commands. After the dispute period
the smart contract executes the submitted commands and transitions to the
new state (and increments its version). Any party can cancel the dispute during
this fixed time period by submitting an authorised state with a a more recent
version. Pisa modified this state channel construction such that a commitment
(i.e. hash) of the new state is signed instead of the plaintext state. As a result,
it proposed the first application-agnostic state channel smart contract.

Multiple-application state channels Perun and Counterfactual channel construc-
tions are designed for two parties and have extended the concept of a state
channel in two ways [11,6] First, they proposed the state within a channel can
be organised in a hierarchy to support multiple-applications and the dispute
process for one application does not impact other applications in the channel.
Second, they proposed virtual channels which allow two parties without a direct
and established channel to connect with each other using a network of channels.
This requires all channels along the route to lock up collateral while the virtual
channel is open. Unlike Sprites, both constructions proposed the dispute process
should be used to determine the final state and not to self-enforce a state tran-



sition directly. This allows the channel to be turned off for a single application
and for all future state transitions to be executed via the blockchain.

3 State Channel Construction

We propose a new state channel smart contract SC and an application tem-
plate for a smart contract AC to support state channels. The new state channel
construction Kitsune relies on the dispute process model from Sprites/PISA to
support n parties and to allow the state channel contract to be application-
agnostic. However the dispute process is used to determine the final authorised
state as proposed by Perun/Counterfactual. This allows the state channel to
be turned off and for the application’s execution to continue via the blockchain.
Our template highlights the minimal modifications required for an application to
support state channels and provides a mechanism to lock/unlock the application
into a state channel upon approval of all parties.

3.1 Overview of the State Channel

An overview of the state channel contract is presented in Figure 2 and the appli-
cation template is presented in Figure 1. Briefly, all parties must approve to lock
the application using AC.lock. This disables the application contract’s function-
ality and instantiates the state channel contract. The application’s execution
continues off-chain as all parties collectively sign the hash of every new state
alongside an incremented version. The channel can be co-operatively turned off
using SC.close, or any party can trigger the dispute process using SC.trigger. This
dispute process provides a fixed time period for all parties to publish the state
hash with the largest version using SC.setstatehash. After the dispute process
has expired, any party can resolve the dispute using SC.resolve which turns off
the channel and keeps a copy of the state hash with the largest version. The
application can be unlocked by submitting the entire state in plaintext using
AC.unlock. This hashes the submitted state, fetches the final state hash from
the state channel contract using SC.getstatehash, and compares both hashes. If
satisified, the full state is stored and all functionality in the application contract
is re-enabled to permit executing it via the blockchain.

3.2 State channel contract

We provide an overview of the state channel contract for Kitsune before discussing
how to instantiate it, how parties collectively authorise new states off-chain and
how the dispute process is used to confirm the final state hash.

Overview of the state channel contract Figure 2 presents an overview of the
state channel contract. The state channel can be in one of three states which are
status := {ON,DISPUTE,OFF}. All parties can collectively authorise new states
for the application when the state channel is set as status := ON. Any party can



trigger a dispute which sets the state as status := DISPUTE and this provides
a fixed time period for all parties to submit an authorised state hash (and its
corresponding version). Once the dispute is resolved or if the channel is closed
co-operatively, then the state is set to status := OFF and this determines the
final state hash for the application. If the channel is closed due to the dispute
process, then a dispute record is stored which includes the starting time and
finishing time for the dispute tstart, tend and the final version i.

Creating the channel The application contract AC is responsible for instantiating
the state channel contract with the list of participants P1, ...,Pn and the dispute
timer ∆dispute. The state channel is set as status := ON and the application
contract’s functionality is disabled.

Authorising off-chain state hashes A command cmd is a function call within the
application contract. Any party P can select a command cmd and propose a new
state transition statei+1 := transition(statei, cmd). The new state is hashed with a
blinding nonce4 hstatei+1 := H(statei+1, ri+1) and signed σP := Sign(hstatei+1, i+
1). To complete the state transition, the party sends cmd, hstatei+1, statei+1, ri+1

and σP to all other parties for their approval. All other parties in the channel
verify the state transition before authorising it. To verify, each party re-computes
the transition state′i+1 := transition(statei, cmd) and state hash hstate′i+1 :=
H(state′i+1, ri+1). Then each party verifies the signature VerifySig(P, (hstate′i+1, i+
1), σP) and that the version is the largest received so far. If satisfied, each party
signs the state hash σk := Sign(hstatei+1, i + 1,SC,AC) and sends this signature
to all other parties. A new state hash is only considered valid when each party
has received a signature from every other party. If one party does not receive all
signatures by a local time-out, then this party can trigger the dispute process to
turn off the channel, unlock the application and continue its execution via the
blockchain.

Dispute process Any party can trigger the dispute process using SC.trigger. This
self-enforces the dispute time period tstart := tnow, tend := tnow + ∆dispute and sets
status := DISPUTE. All parties can submit the latest state hash, its version and
the list of signatures to prove it was authorised using SC.setstatehash. The state
channel contract SC only stores hstatei if it is signed by all parties and it has the
largest version i received so far. After the dispute period has expired, any party
can resolve it using SC.resolve. This sets status := OFF, stores a dispute record
(tstart, tend, i) and allows the application contract AC to fetch the final state hash
hstatei.

Co-operative close All parties can sign σP := SignP(′close′, hstatei, i,SC) and
submit it to the state channel using SC.close. This stores the state hash hstatei,
its version i and sets status := OFF. No dispute is recorded in the contract.

4 The blinding nonce is used for state privacy if resolving disputes is outsourced to an
accountable third party as proposed by Pisa [28]



3.3 Application Contract Template

We present an application template that can be applied to easily add state
channel support to an existing smart contract. It demonstrates how to lock all
functionality in the application for use in the state channel and how to unlock all
functionality to permit the application’s execution to continue via the blockchain.

Overview of template. Figure 1 presents an overview of the application contract
template. After modifications, the application contract must explicitly record a
list of participants P1, ...,Pn, a dispute timer ∆dispute, whether the state channel
has been instantiated instantiated := {YES,NO} and if so it also stores the state
channel’s address SC. All functions within the application require a new pre-
condition to check whether the state channel is instantiated and should only
permit execution if instantiated = NO. Finally the application must include two
new functions AC.lock that instantiates the state channel upon approval of all
parties and AC.unlock that verifies a copy of the full state before re-enabling the
application.

Lock application contract All parties must agree to create the state channel
by signing (ON,AC,∆dispute, lockno), where ON signals turning on the channel,
lockno is an incremented counter to ensure freshness of the signed message and
∆dispute is the fixed time period for the dispute process. Any party can call AC.lock
with the list of signatures ΣP , ∆dispute and lockno to turn on the state channel.
The application contract AC verifies all signatures and that lockno represents
the largest counter received so far. If satisfied, AC sets instantiated := YES and
this disables all functionality within the application. Next AC creates the state
channel contract SC which sets the list of participants P1, ...,Pn and the dispute
timer ∆dispute. Finally AC stores the state channel address SC.

Unlock application contract After the dispute process has concluded in SC, one
party must send state′i , r

′
i using AC.unlock before the functionality can be re-

enabled. The application contract verifies that state′i indeed represents the final
state by computing hstate′i := H(state′i , r

′
i ), fetching the final state hash hstatei

from SC using SC.getstatehash and checking hstate′i = hstatei. If satisfied, AC
stores state′i and re-enables all functionality by setting instantiated := NO. Of
course, if there is no activity within the state channel, then the state channel
contract’s dispute process can expiry without a submitted hstatei. In this case,
the application contract verifies the state channel returns ∅ and re-enables all
functionality without modifying the existing state.

4 Battleship within a State Channel

We provide a high-level overview of the game battleship before proposing how
to implement it as a smart contract. A security analysis for the game is included
in Appendix B. We present how to convert the battleship game to support state
channels using the template in Section 3.3.



4.1 Overview of Battleship

Battleship is a two-player game where each player has a list of ships that are
placed on a 10x10 private board. Each ship must be marked in a straight line
either horizontally or vertically. Our protocol only relies on a commitment to
every player’s ship and the signed messages exchanged between both parties in
order to minimise long-term storage (and the associated gas-cost). An extension
to this game is presented in Appendix A which includes a commitment for every
cell on the board.

To set up the game, both parties exchange a commitment to their list of ships
and the counterparty must submit it using BS.select. Afterwards both players
can signal to begin the game using BS.begingame, otherwise they can quit using
BS.gameover. In the turn-based gameplay, the player selects a cell to shoot using
BS.attackcell and the counterparty must open the cell within a fixed challenge
period. To open, the counterparty reveals if the cell is occupied by water or a ship
piece using BS.opencell. If this shot sinks a full ship, then the counterparty must
reveal the full ship (i.e. instead of the cell’s opening) using BS.sunk. The player
ican take another turn if their shot was successful. At the end, the winner must
reveal their board and every ship’s location to the loser using BS.openships. The
loser has a fixed challenge period to prove if the winner’s board was incorrectly
set up or if the winner cheated during the game using a proof of fraud. A player
can call BS.gameover after the challenge period has expired to finish the game.

4.2 Battleship Contract

We present each phase of the game, how to establish the contract, the turn-
based gameplay and finally how the loser is provided an opportunity to prove
the winner cheated.

Game Phases There are six phases SETUP,ATTACK,REVEAL,WIN,FRAUD,
GAMEOVER. The SETUP phase is responsible for ensuring both players select a
single list of ships to begin the game. Game play transitions between ATTACK
and REVEAL as both players take a turn at shooting the counterparty’s ships.
The game transitions to WIN when one player wins the game and it will transition
to FRAUD once the winner has opened all ship locations. This provides the loser
a fixed time period to submit a proof of fraud that the winner’s board is not
well-formed or that the winner did not honestly reveal a cell during the game.
Otherwise, the contract transitions to GAMEOVER and the winner can claim
their winnings.

Contract establishment The contract is established with the address of both
players P1,P2 and the challenge timer ∆challenge. Both parties can deposit coins
during SETUP phase before placing their bets.

Prepare list of ships A ship hash is denoted as hship := H(x, y, x′, y′, r, round,P,AC)
where x, y represents its starting co-ordinate, x′, y′ represents its finishing co-
ordinate. Each party P computes and signs a list of ships:



ΣN
1 := SignP(((k1, hship1), ..., (kn, hshipn)),P, round,AC)

Each ship in the list is denoted as (k, hship), where k is the length for that par-
ticular ship. This is sent to the counterparty who must submit it using BS.select
and reserve the ships for the game.5 Both players can notify the contract to begin
the game using BS.begingame or one party can signal their desire to quit using
BS.gameover. Finally the game round is incremented regardless if it continues or
not.

Game-play The contract maintains a counter move which is incremented after
each player’s turn. In the ATTACK phase, the player P challenges the counter-
party to open a cell x, y by signing:

σshot
P := SignP(x, y,move, round,AC)

This message is submitted using BS.attackcell. It transitions the game phase
to REVEAL and sets a fixed challenge period tchallenge := tnow + ∆challenge for the
counterparty’s response. The counterparty signs one of two messages depending
on whether a ship was sunk:

σhit
P := SignP(x, y, b,move, round,AC)

σsunk
P := SignP(x, y, x′, y′, r, hship,move, round,AC)

The counterparty is responsible for submitting either signed message. The
first message declares if the cell is marked with water (b = 0) or a ship location
(b = 1). It is submitted using BS.opencell. The second message declares the
shot sank a ship and requires the counterparty to open the corresponding ship
commitment hship to BS.sunk. Each party must keep a copy of every signed
message6 as it can later be used to prove fraud which we discuss in Section 4.4.
The game transitions to WIN if one player has declared all their ships sunk.

End of game After one player has lost the game (or if the contract has de-
tected cheating by the loser as illustrated in Section 4.3), the winner must open
their remaining ship commitments using BS.openships. This contract transitions
to FRAUD which provides a fixed challenge period for the loser to submit a
proof of fraud. After this time period, the winner can redeem their reward using
BS.gameover and the game transitions to GAMEOVER. Of course, if both parties
have cheated, then the winnings are simply burnt.

4.3 Checking for Fraud

We present integrity checks the contract can perform throughout the game to
verify that either party has not cheated. These checks are performed whenever
a player calls BS.attackcell,BS.sunk,BS.opencell and BS.openships.

5 In Appendix A.2 we present a cut-and-choose protocol to allow the counterparty
probabilistic verify the board is well-formed.

6 Every signed message is emitted by the contract and thus it is easily fetchable.



Exceeded maximum number of moves The contract maintains three counters.
The first move keeps track of the number of actions taken by bother players. If
move exceeds the number of possible moves in the game for both players, then
the contract can confirm that both players have cheated as an honest player will
have declared all their ships as sunk before the limit for move is exceeded. In this
case, both players are set as cheating and the game transitions to GAMEOVER
without a winner. Both hitsi and wateri keeps track of each player’s attack on
the counterparty’s board. If hitsi exceeds the number of ship positions on the
board or wateri exceeds the possible number of water cells, then the counterparty
was dishonest about their cell opening. In this case, the counterparty is marked
as cheated, the game transitions to WIN and the winner must open their ships.

Players only play using valid cells All cells must be within the permitted range
0 <= x < 10 and 0 <= y < 10 for any signed message received.

A ship was not placed horizontally or vertically The contract can check whether
an opened ship was placed on the board horizontally or vertically. To verify, it
checks that every location for a ship either has the same x or y co-ordinate,
and that x or y is incremented (or decremented) strictly by one for every ship
location. It also checks the ship’s length which is established during set up.

4.4 Proof of Fraud

To alleviate the need to validate the entire game within the smart contract
environment (and incurring unreasonable gas costs), the protocol is designed to
let each player validate the game and submit a proof of fraud if the counterparty
has cheated. In the following we present the fraud proofs that can be verified by
the contract.

Player has shot the same cell twice The contract cannot independently verify
if a player has shot the same cell twice as it does not store the opening of
cells. Instead the counterparty can submit the two signed shots σshot

P , σshot′

P , the
corresponding move,move′ counters and the cell x, y using BS.attacksamecell.
The contract verifies if the signatures are valid (and from the same party), both
shots are for the same cell, and move 6= move′. This proof of fraud can be
submitted to the contract at any point during the game.

Counterparty was dishonest about a cell opening The counterparty has marked
a cell (x, y) as water, but an opened hship states it is a ship location. To prove
fraud, the player submits the ship identifier hship, the disputed cell x, y and the
signed opening of the cell σhit

P using BS.declarednothit. The contract can verify
if this cell opening was signed by the counterparty as b = 0 and the ship hship
claims to be at x, y. On the other hand, the counterparty may also mark a cell as
a ship location, but no ships are at that location. This proof of fraud is similar
as the player submits the disputed cell location x, y alongside its signed opening
σhit
P using BS.declarednotwater. The contract is satisified if it cannot find a ship

at that location. Both proofs can only be submitted during FRAUD.



Two ships claim to be at the same cell The cheater has used the same cell for
two or more ships. The index for both ships and the cell x, y must be submitted
to the contract using BS.celltwoships. The contract looks up the co-ordinates for
each ship and checks if it claims to be at the same location x, y. This proof is
applicable during FRAUD after all ships are opened by the winner.

Ship was not declared as sunk The counterparty did not declare a ship as sunk.
All signed cell openings σhit

P,1, ..., σ
hit
P,k and the ship identifier hship must be sub-

mitted to the contract using BS.declarednotsunk. This allows the contract to
verify that every ship location was opened and this implies the counterparty did
not declare the ship as sunk as the final opening should be σsunk

P . This proof is
applicable during FRAUD after all ships are opened by the winner.

Challenge period has expired The contract relies on a global clock (i.e. block
timestamp or block height) for the challenge period ∆challenge. If a player does
not respond within this time period, then the counterparty can notify the con-
tract using BS.expiredchallenge and the counterparty is set as the winner if the
challenge period has expired.

4.5 Modifications for a State Channel

We present how to modify the battleship contract before deployment in order to
support state channels. This tracks whether a state channel was instantiated, the
lock/unlock functionality to instantiate the state channel, a new pre-condition
for every function in the game and how to handle functionality with side-effects
in the off-chain contract.

Applying the application template The application contract stores the dispute
timer and a counter instance to track the number of times the state channel
is turned on. It sets instantiated := NO and both players P1,P2 for use by
the state channel. The pre-condition discard if instantiated = YES is included
in every function except BS.unlock. If the pre-condition is satisfied, then all
future transactions that interact with this function will fail. This disables all
functionality within the application contract if it is locked and the state channel
is turned on.

Lock and unlock functions The lock function BS.lock requires a signature from
both parties P1,P2 to authorise creating the state channel which is denoted as
σlock
P := SignP(′lock′, chanctr, round,BS). Once the state channel is turned on,

the battleship contract sets instantiated := YES, it creates a new state channel
contract SC with the list of participants P1,P2 and the dispute timer ∆dispute.
The unlock function BS.unlock allows any party to submit the final game statei
alongside the nonce r after the dispute proces is resolved in the state channel
contract. The battleship contract verifies if it corresponds to the final state hash
accepted by the state channel contract using H(state, r) == SC.getstatehash. If
successful, the full state is stored and the flag instantiated is set as NO. This
re-enables all functionality in the battleship contract.



Off-chain contract and identifying side-effects Our experiment requires each
player to deploy an off-chain version of the battleship contract to a local blockchain
to replicate (and verify) the execution of all state transitions. We highlight a side-
effect is when a state update relies on an environmental variable or interaction
with another contract which may not persist when the contract is re-activated
on the blockchain. Some examples in Ethereum include the environment vari-
ables msg, block, tx, and transfering coins to another contract. We discuss fur-
ther in Section 6 how our experiment handles computing the contract’s address
address(this), the global clock block.timestamp or block.blockhash and the trans-
action sender msg.sender. All other functions with side-effects should be deleted
or disabled in the off-chain contract which for battleship includes the auxillery
functions BS.deposit and BS.withdraw. The off-chain contract can also include a
new BS.getstate to return the full state and the corresponding hstate, i.

5 Proof of Concept Implementation

We present a proof of concept implementation for our battleship game within a
state channel.7 The experiment was performed on a private Ethereum network8

and the gas costs for our proposed modifications are presented in Table 1.
Our experiment involves three contracts which includes the unmodified bat-

tleship contract (Step 1), the battleship contract after applying the application
template (Step 15) and the state channel contract (Step 16). Deploying both the
modified and unmodified battleship contract highlights the cost for modifying an
application contract to support a state channel is approximately 1 million gas.
A single game of battleship (Steps 4-9) via the blockchain costs $16.27 (approx
20 million gas) where each player takes 65 shots9. In the worst case, the game
requires one player to take 99 shots, and the counterparty to take 100 shots.
This worst-case costs $24.05 (approx 30 million gas) to finish the game. Locking
the battleship game, creating the state channel, performing the dispute process
costs and unlocking the battleship game costs $1.56 (approx 1 million gas). The
cost for each fraud proof is presented in Steps 11-14 and only one fraud proof is
required per game to prove the counterparty has cheated.

In terms of authorising new states within the channel, one party is respon-
sible for proposing the state transition and the counterparty is responsible for
verifying the state transition before both parties authorise the new state. We
executed the attack phase 100 times to evaluate the time it takes to authorise
a new state in the channel. After the party has chosen a cell to attack, it takes
approximately 300.5 ms to compute the signed attack message, to create and
execute the transaction in their local blockchain and to sign the final state hash.
The counterparty takes approximately 296.75 ms to verify the signed message,
execute the transaction in their local blockchain, verify and sign the final state
hash and finally send the signed new state to the party.

7 Anonymous code: https://www.dropbox.com/s/o5s5k662h9lqlk4/Battleship.zip?dl=0
8 This private network mimics the gas cost of Ethereum’s production network.
9 This number of shots is based on the better than random algorithm in. [8]



Step Purpose Gas Cost $$

Battleship Game

1 Create BattleshipCon without State Channel 10,020,170 7.97
2 Deposit (BS.deposit) 44,247 0.04
3 Place bet (BS.placebet) 34,687 0.03
4 Select counterparty’s ships (BS.select) 422,894 0.34
5a Ready to play (BS.begingame) 47,651 0.04
5b Do not play (BS.quitgame) 388,805 0.31
6 Attack (BS.attackcell) 69,260 0.06
7a Reveal cell (BS.opencell) 73,252 0.06
7b Reveal ship (BS.sunk) 111,372 0.09
8 Open ships (BS.openships) 159,748 0.13
9 Finish game (BS.finish) 275,521 0.22
10 Withdraw (BS.withdraw) 36,674 0.03
11 Fraud: Ships at same cell (BS.celltwoships) 280,766 0.22
12 Fraud: Declared not hit (BS.declarednothit) 284,261 0.23
13 Fraud: Declared not miss (BS.declarednothit) 284,654 0.23
14 Fraud: Declared not sunk (BS.declarednotsunk) 312,481 0.25
15 Fraud: Attack same cell (BS.attacksamecell) 100,861 0.08
16 Challenge period expired (BS.expiredchallenge) 75,349 0.06

State Channel

17 Create BattleshipCon with State Channel 13,607,0695 10.83
18 Lock (BS.lock) 991,617 0.79
19 Trigger dispute (SC.trigger) 84,106 0.07
20 Set state hash (SC.setstatehash) 70,035 0.06
21 Resolve (SC.resolve) 89,745 0.07
21 Co-operative turnoff (SC.close) 90,354 0.07
22a Unlock (BS.unlock) 725,508 0.6
22b Unlock (No Activity) (BS.unlock) 51,454 0.04

Aggregated Statistics

Turn state channel on and off 1,961,011 1.56
Average case for game 20,451,633 16.27
Worst case for game 30,237,372 24.05

Table 1: Costs of running the battleship game within the state channel. We have
approximated the cost in USD ($) using the conversion rate of 1 ether = $306
and the gas price of 2.6 Gwei which are the real world costs in September 2018.



6 Discussion and Future Work

Funfair dilemma There is a chicken-and-egg problem on whether state channels
should create and destroy applications off-chain, or if the state channel should
first require an application to already exist on the blockchain. Perun and Coun-
terfactual advocate for the former to minimise the up front cost of creating the
channel, whereas Funfair are pursing the latter to minimise cost of resolving
a dispute as only the application’s state is kept off-chain. Fundamentally both
approaches have a different trust assumption on the likelihood one party will
trigger a dispute and whether the financial cost to resolve a dispute can interfere
with the application. This dilemma can be summed up in a single question:

If the player is about to win a $10 bet, but the counterparty has stopped
responding in the channel, then is it worthwhile for the player to turn off the
channel, complete the dispute process, re-activate the application and win the

bet via the blockchain if this process costs $100?

To evaluate this dilemma, our case study highlights that it costs $1.56 to
resolve the dispute and submit the full game state to the contract. But this
does not consider the financial cost for both players to finish the game via the
blockchain, the time required to finish the game, or the increased financial cost
when the network’s transaction fee spikes due to congestion.

Let’s consider the worst-case where both players set up the game with an ex-
pectation to play it within the state channel, but afterwards one player triggers a
dispute to turn off the channel and the game must be finished via the blockchain.
There is a financial cost on average between $16.27 to $24.05 to play the entire
game and every move requires a reasonable challenge period to provide time for
transactions to be accepted into the blockchain. For example, if each player is
provided up to 5 minutes per move and the game requires 200 tranasctions to
complete, then the game may take several hours (i.e. 16 hours) to complete. It
is likely some players will simply forfeit their deposit (and bet) to quit the game
early. Finally if the network’s transaction fee spikes due to blockchain congestion
as it did on the 6th January 2018 to 95,788,574,583 wei10 [13], then resolving
the dispute costs $57.58 and the game play is between $599 and $886.

Thus state channels must strictly be viewed as an optimistic scaling solution
as all parties are trusted to cooperate. If this trust is broken (i.e. one party stops
cooperating), then the time and financial cost incurred implies that applications
are ultimately restricted by the underlying blockchain’s throughput. Future work
must consider whether incentives can be aligned to encourage parties not to abort
and continue the application’s execution within the state channel.

Handling side-effects and self-enforcing timers Without modifying to the local
blockchain instance, both the off-chain and on-chain battleship contracts have
different addresses. This poses problems for our fraud proofs if a message is
signed for the off-chain contract address as it will not be valid when the on-chain

10 The blockchain congestion was caused by a popular game called Cryptokitties.



contract is re-activated. To alleviate this issue, we sign two messages for the on-
chain and off-chain contract. However there is an upcoming new consensus rule
[3] to deterministically deriv the contract’s address which simplifies deploying
an off-chain contract with the same address. The battleship contract relies on
msg.sender to authenticate the immediate caller as the transaction signer. This
requires the party to sign a transaction for execution in the counterparty’s local
blockchain. We highlight that Ethereum transactions have a chain id to prevent
transactions being replayed to another blockchain. The counterparty can verify
the transaction has set chain id and it is destined for the off-chain contract
address before executing it in their local blockchain. Finally both parties no
longer share a global clock and we propose two approaches to handle time-
dependent events. First, the time tchallenge can be set by the player proposing a
new state and the counterparty must verify the proposed time is within a range
(i.e. a few minutes, or n blocks) before mutually authorising it. It must take
into account the time required to turn off the channel via the dispte process and
the time to initiate/settle the dispute such that tchallenge := tnow + ∆challenge +
∆dispute + ∆extra. An alternative approach is to set tchallenge as ⊥ for all updates
within the state channel. Instead the time tchallenge is set by battleship contract
when it is re-activated in the blockchain using BS.unlock and if the game is in a
relevant phase.

Supporting arbitration outsourcing of state channels To alleviate the security as-
sumption that all parties must remain online and synchronised with the blockchain
to watch for disputes, PISA [28] proposed that parties can hire an accountable
third party to watch the channel on their behalf. The application-agnostic de-
sign of the new state channel construction Kitsune is beneficial to PISA as the
accountable third party is only required to verify the state channel contract’s
bytecode (and not the application) before accepting a job from the customer.
As well, the accountable third party only requires a signature from every party
in the channel ΣP , the state hash hstate and the version i to resolve disputes on
the customer’s behalf.

Persistent race conditions The gameplay for battleship is turn-based and it
is clear which player is responsible for proposing every new state. Setting up
the game using BS.select or BS.begingame has no order and both players may
concurrently propose a state transition for the same version. In our case, both
players can use a deterministic rule to resolve the race condition (i.e. P1 proposed
state has priority) as the order of execution has no impact on the game’s outcome.
This highlights that race conditions in the underlying application are reflected
in the state channel and can result in the state channel being turned off if the
order of execution has an impact on the application’s outcome.

Limitations due to the EVM The mapping data structure in Solidity for the
Ethereum contract environment poses problems for the state channel as it cannot
simply delete all key-value pairs. If a key-value pair is set to ⊥ within the state
channel, then this over-write must also occur when the full state is sent to the



contract. Otherwise, the key-value pair will persist in the application contract
after the state channel is turned off. For example, if a party’s balance is set to
⊥ off-chain, but this isn’t reflected in the on-chain contract, then this party can
withdraw more coins than they deserve.

Applicable Applications Our experiment demonstrates that applications like bat-
tleship may not be compatible with state channels due to the risk that each party
is required to execute an unreasonable number of transactions via the blockchain
to complete an application. Furthermore, the difficulty with unanimous consent
in a state channel implies it is only useful for a small set of parties who can
remain online throughout the entire application’s execution. With the above
limitations in mind, state channels appear useful for applications with a small
number of rounds and all parties will want to repeat the application’s execution
more than once. Some applications include payments, casino games, boardroom
elections and auctions.
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A.1 Modifications to the Battleship Contract

We present how to modify the battleship contract to support the full board
extension. This requires modifying how the game is prepared, how a cell opening
during the game play is verified by the contract and how the full board is opened
at the game’s end.

Prepare boards Our extension requires each party to compute an entire board
to accompany a list of ships. The board is a list of cell hashes such that hcell1,1,
..., hcelln,n where n, n is the final grid co-ordinate. A cell hash is H(b, r, round,P,AC),
where b is a flag indicating if it is occupied by water b := 0 or a ship location
b := 1, and r is the nonce. The party signs the list of ships and the board cells:

σ := SignP(((k1, hship1), ..., (kn, hshipn)), (hcell1, ..., hcelln),P, round,AC)

The contract stores every cell hash in the contract for future use. Each party
is responsible for reserving the list of ships and the board on behalf of their
counterparty using BS.select. All remaining N − 1 list of ships and their corre-
sponding boards must be opened and reviewed by the counterparty. If satisified,
each party notifies the contract to begin the game using BS.begingame or they
can quit using BS.gameover.

Game-play Our extension requires modifying how a player responds to an at-
tacked cell:

σhit
P := SignP(x, y, b, rcell,move, round,AC)

σsunk
P := SignP(x, y, x′, y′, rcell, rship, hship,move, round,AC)

Both the hit and sunk messages include the nonce rcell. This lets the contract
open hcellx,y and confirm that the supplied b matches the commitment during
the setup. The opening can be stored by the contract, otherwise each party must
keep a copy of every signed message11 for future fraud proofs as presented in
Section 4.4.

A.2 Changes to Fraud Detection

We present the additional fraud detection that is performed by the contract and
the player due to the extension.

Cut-and-choose protocol To set up the game, both parties participate in a cut-
and-choose protocol to provide a probabilistic guarantee that the counterparty’s
board is well-formed. Each player commits, signs and sends the counterparty
N boards (i.e. list of ship and cell commitments). The counterparty reserves
one board for the game using BS.select. Once selected, each player reveals the

11 Every signed message is emitted by the contract and thus it is easily fetchable.



remaining N − 1 boards to the counterparty who verifies the boards are well-
formed. If both parties are satisified, then they can signal to begin the game using
BS.begingame, otherwise they can quit using BS.gameover. While this provides a
probabilistic guarantee the board is correctly set up, it does not let each player
place the ships on their board which may remove an element of the game.

Integrity checks As presented in Section 4.3 the contract checks all signed mes-
sages received to self-enforce the game’s correct execution. Our extension requires
the contract to check every cell opening with the stored cell hash hcell.

Proof of fraud If we assume the board is well-formed upon set up, then the party
cannot be dishonest about their cell opening during the game. The fraud proofs
BS.declarednothit or BS.declarednotwater are still required as the board used in
the game can be invalid and the contract must verify that the cell opening
does not correspond to a ship opening. There is no change to the fraud proof
except that the cell nonces are submitted to the contract alongside the signed
cell openings.

B Security Analysis for Battleship Game

We provide a brief security analysis for the battleship game and demonstrate
how the fraud proofs can be used to self-enforce the game’s correct execution.
This includes how the contract can detect if a board is not well-formed, how it
self-enforces a player to attack a valid cell and how to ensure the corresponding
cell is honestly opened. Finally we highlight the contract forfeits any payout if
both players are caught cheating.

B.1 Detecting an Invalid Board

The cut-and-choose protocol presented in Appendix A.2 lets each player select
one of the counterparty’s committed boards at random for use in the game and
afterwards review the remaining N −1 boards before deciding to play the game.
This provides a probabilistic guarantee the selected board is well-formed, but it
is not a mandatory step the contract can self-enforce. Both players may decide to
only send a single board commitment to each other so they can manually place
the ships. This provides an opportunity for one (or both) players to construct
an invalid board and we highlight how the contract can detect it.

Overlapping ships The board is invalid if one cell is used for more than one ship.
The fraud proof BS.celltwoships can be used to prove that ships are overlapping,
but it requires the ship openings to be revealed. There is no guarantee the
counterparty will reveal both ship openings during the game, but the winner
is always required to open all ships and thus the loser is always provided an
opportunity to provide this fraud proof to the contract.



Ship is not horizontal or vertical All ships must be placed horizontally or verti-
cally on the board, and it must be in a straight line. No fraud proof is required
as the contract is responsible for checking every ship opening. We outline in
Section 4.3 how the contract checks that a ship was placed on a list of valid cells
and how it can check if the ship is placed horizontally or vertically.

Placed ships are not the correct size The board is invalid if a ship does not
occupy the correct number of cells on the board. The contract stores a list of
sizes for each ship. Each ship is represented as (k, hship) and the contract checks
that k corresponds to the expected size for the ship at this position in the list.
When the opening of hship is revealed to the contract it will check the number
of cells used by the ship corresponds to k.

Not placing a ship on the board The board is invalid if a ship is not placed on the
board. The contract requries a commitment hship for every ship before the game
can begin. If the commitment’s pre-image is not well-formed (i.e. it is ⊥ or the
ships location is not occupying valid cells), then the contract will not accept the
ship opening. Thus after the challenge period tchallenge, the contract will assume
the player has not responded with a ship opening. On the other hand, if the
ship’s location is not well-formed then the fraud proofs highlighted above can
be used.

Placing extra ships on the board The contract only accepts a fixed number of ship
commitments and thus the contract self-enforces that only the correct number
of ships are placed on the board.

B.2 Attacker during Game Play

The contract self-enforces the turn-based game play and whose turn it is to
attack. We consider how a cheater can manipulate the attack message σshot

P
that is supplied to BS.attackcell.

Preventing replay attacks The contract is responsible for tracking (and incre-
menting) two counters. The counter round is incremented for every new battle-
ship game in this contract (incuding if the game set-up is restarted) and move
is incremented for every new move within a single game. Both counters are used
to prevent replay attacks from previous battleship game or moves within this
game. All messages also include the battleship contract address BS.

Attacking an invalid cell The player must select a single cell to attack and as
outlined in Section 4.3 the battleship contract verifies the proposed cell is valid.

Attacking same cell twice In order to reduce storage, the battleship contract
does not keep track of all prevously attacked cells. In Section 4.4 we present
how the counterparty can submit two signed attack messages σshot

P , σ′shot
P to the

contract using BS.attacksamecell to demonstrate the party has tried to attack
the same cell twice.



Not attacking any cell The player can abort and not attack any cell. After the
challenge time tchallenge has expired, the contract assumes the player has aborted
and sets the counterparty as the winner.

B.3 Revealer during Game Play

After a cell is attacked, the contract requires the counterparty to open the cell
with σhit

P or declare a ship as sunk with σsunk
P .

Opening a different cell The battleship contract stores the co-ordinates x, y for
the attacked cell and it will only accept a cell (or ship) opening if it is for the
stored co-ordinate.

Dishonest about cell opening If the counterparty is not honest about the cell
opening, then the fraud proofs outlined in Section 4.3 (i.e. BS.declarednothit or
BS.declarednotwater) can be used after the cheater has won and revealed the
opening of all their ships. This is comparable to playing the game in-person as
the counterparty is not forced to reveal all ships until the game’s end. We provide
an extension in Appendix A that requires each party to provide a commitment
for every cell on the board to prevents this issue (i.e. if the board is set up
correctly), but it increases the cost to play the game. As well, we highlight in
Section 4.3 the contract keeps tracks on the number of moves played and the
game will always finish when this limit is exceeded.

Not declaring a ship as sunk If the final ship location is hit, the counterparty can
simply not declare the ship as sunk. Instead, the counterparty has to open the
attacked cell as water or a ship location. No more cells for this ship can be hit and
thus the ship cannot be opened during the game play. This requires the players
to wait until the game has finished and the cheater to be set as the winner. The
loser can provide a proof of fraud as presented in Section 4.4 to prove the ship
was never declared as sunk. We highlight the extension presented in Appendx A
cannot prevent this issue as it is not straight-forward to distinguish several cell
openings as being a single ship or several adjacent ships. While the cheater can
never win the game, they can force the counterparty to play until the game’s
end.

Not opening any cell or ship The counterparty can decide not to open any
cells (or ships) in response to an attacked cell. If there is no response by the
challenge time tchallenge, then the contract will assume the counterparty is no
longer responding and the counterparty is set as the winner.

B.4 Both players are cheating

The battleship contract should not issue any payout if it is discovered that both
players have cheated. After the contract has detected cheating by one player, it
always transitions to WIN and sets the counterparty as the winner. This requires



the counterparty to open all ships and a fixed challenge period is provided for
the cheater to submit a proof of fraud. If both players are caught as cheating,
then the contract transitions to GAMEOVER and forfeits the payout.

Template for application contract

instantiated := ⊥, state := ⊥
P := ∅,∆dispute := 0,
SC := ⊥, lockno := 0

constructor (P ′):

set P := P ′

set instantiated := NO

function example():

discard if instantiated = YES
;

function lock(∆′
dispute, ΣP):

discard if instantiated = YES
if VerifySig(P, (“instantiate”,AC, lockno), ΣP)

set instantiated := YES
set lockno := lockno + 1
set SC := StateChannel(P,∆dispute, this)

function unlock(state′, r′):

discard if instantiated = NO
if H(state′, r′) = SC.getstatehash()

instantiated := NO
state := state′

else if ⊥ = SC.getstatehash()
instantiated := NO

Fig. 1: The application contract template. The above modifications must be in-
cluded to support a state channel. It allows all functionality to be disabled when
the channel is created and re-enables all functionality after the dispute process
when provided with the full state.



State channel contract

status := ⊥
P := ∅,AC := ⊥,
hstate := ⊥, i := 0
∆dispute := 0, tnow := 0, tend := 0

constructor (P ′,∆′
dispute,AC′):

set P := P ′

set ∆dispute := ∆′
dispute

set AC := AC′

set status := ON

function triggerdispute(σk):

discard if status 6= ON
discard if P /∈ Pk

if VerifySig(Pk, (SC,AC, “dispute”), σk)
set status := DISPUTE
set tstart := tnow
set tnow + ∆dispute := tstart + ∆dispute

function setstatehash(hstate′, i′, ΣP):

discard if status = OFF
discard if i′ ≤ i
if VerifySig(P, (hstate′, i′, SC,AC), ΣP)

set hstate := hstate′

set i := i′

function resolve():

discard if status 6= DISPUTE
discard if tnow < tend
set status := OFF

function getstatehash():

discard if status 6= OFF
return hstatei

function getdispute():

discard if status 6= OFF
return (tnow, tend, i)

Fig. 2: The state channel contract for Kitsune. It is responsible for managing the
dispute process and determining the final state hash. Discard fails the transaction
execution if the pre-condition is satisfied.
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