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Abstract
How can we trust results computed by a third party, or the integrity
of data stored by such a party? This is a classic question in sys-
tems security, and it is particularly relevant in the context of cloud
computing.

Various solutions have been proposed that make assump-
tions about the class of computations, the failure modes of the
performing computer, etc. However, deep results in theoretical
computer science—interactive proofs, probabilistically checkable
proofs (PCPs) coupled with cryptographic commitments, etc.—tell
us that a fully general solution exists that makes no assumptions
about the third party: the local computer can check the correct-
ness of a remotely executed computation by inspecting a proof re-
turned by the third party. The rub is practicality: if implemented
naively, the theory would be preposterously expensive (e.g., tril-
lions of CPU-years or more to verify simple computations).

Over the last several years, a number of projects have reduced
this theory to near-practice in the context of implemented systems;
we call this field proof-based verifiable computation. The pace of
progress has been rapid, and there have been many exciting de-
velopments. This paper covers the high-level problem, the theory
that solves the problem in principle, the work required to bring
this theory to near-practicality, the various projects in the area, and
open questions. Many of these questions cut across multiple sub-
disciplines of computer science: complexity theory, cryptography,
systems, parallel programming, and programming languages.

1 INTRODUCTION
In this setup, a single reliable PC can monitor the oper-
ation of a herd of supercomputers working with possibly
extremely powerful but unreliable software and untested
hardware.
—Babai, Fortnow, Levin, and Szegedy, 1991 [6]

How can a single PC check a herd of supercomputers with unreli-
able software and untested hardware? This classic problem is par-
ticularly relevant today, as much computation is now outsourced: it
is performed by machines that are rented, remote, or both.

For example, service providers (SPs) now offer storage, compu-
tation, managed desktops, and more;1,2,3 this general arrangement
is known as cloud computing, and it allows relatively weak devices
(phones, tablets, laptops, PCs) to offload work (storage, image pro-
cessing, video encoding, etc.) to banks of machines controlled by
someone else. A close cousin of this arrangement is massive cluster
computing; here, SPs and others perform computations on terabytes
of data, distributed over tens of thousands of machines (a routine

1Amazon Web Services, http://aws.amazon.com
2Windows Azure, http://www.windowsazure.com
3http://www.vmware.com/products/desktop-virtualization

example is a computation whose input is the contents of the Web
and whose output is the number of occurrences of every English
word [16]). SPs themselves run many such computations daily, and
in our “Big Data” era, they will only become more common. An-
other variation of third-party computing—as we term any situation
in which one computer performs a task on behalf of another—is
peer-to-peer computing, in which unknown peers provide compu-
tation and storage for each other.

The promise of third-party computation is enormous. A single
graduate student (in biology, say) with a particularly intensive anal-
ysis (of genome data, say) can now rent a hundred computers for
twelve hours at a total cost of less than $200.4 Or consider that many
companies now delegate their Web sites to SPs, who can automat-
ically replicate applications to meet demand. Without SPs, these
examples would require the company (or the graduate student’s ad-
visor) to buy hundreds of physical machines or more when the de-
mand spikes . . . and then sell them back the next day.

With this promise, however, comes risk: many things can (and
do) go wrong in third-party computing scenarios. In cloud com-
puting, one must worry about bugs, misconfigurations, operator er-
ror, natural disasters, malice, correlated manufacturing defects, and
more [29]. This raises a central question: How can we ever trust
results computed by a third-party, or the integrity of data stored by
such a party?

A common answer is to replicate computations [1, 12, 13, 30].
However, replication assumes that failures are uncorrelated, which
may not be a valid assumption. For one thing, the hardware and
software platforms in cloud and cluster computing are often homo-
geneous. Moreover, replication cannot help if the failure is faulty
logic. Another answer is auditing—checking the responses in a
small sample—but this assumes that incorrect outputs, if they occur,
are relatively frequent. Still other solutions involve trusted hard-
ware [35] or attestation [33], but these mechanisms require a chain
of trust that may not exist.

But what if the third party could return its results along with a
proof that the results had been computed correctly? And what if
the proof were inexpensive to check, compared to the cost of re-
doing the computation? Then few assumptions would be needed
about the kinds of faults that occurred in the cloud: either the proof
would check or it wouldn’t. We call this vision proof-based verifi-
able computation, and the question now becomes: Can this vision
be realized for a wide class of computations?

In principle, deep results in theoretical computer science tell
us that the answer is “yes”. From complexity theory, interactive
proofs (IPs) [5, 22, 27, 40] and probabilistically checkable proofs
(PCPs) [3, 4] (coupled with cryptographic commitments [26] in the
context of arguments [10]) show how one entity (usually called a
verifier) can be convinced by another (usually called a prover) of

4Amazon Web Services, http://aws.amazon.com
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a given mathematical assertion. In the context of verifiable com-
putation, the assertion is that a given computation was carried out
correctly. In fact, one of the most acclaimed results in complexity
theory, the PCP theorem [3, 4] (together with refinements [23]), im-
plies that such an assertion can be checked by inspecting only three
bits in a suitably encoded proof! And although the modern signifi-
cance of the PCP theorem lies elsewhere, this line of research was
motivated in part by checking computations efficiently; indeed, the
paper quoted in the epigraph [6] was one of the seminal works that
led to the PCP theorem.

However, for decades these approaches to verifiable computa-
tion were purely theoretical. Interactive protocols were prohibitive
(exponential-time) for the prover and did not appear to save the ver-
ifier work. The proofs arising from the PCP theorem were so long
and complicated that it would have taken trillions of years to gen-
erate and check them, and more storage bits than there are atoms in
the universe to hold them.

Five years ago, proof-based verifiable computation reemerged in
the theory literature [17, 21, 25]. Motivated by the rise of cloud
computing, this work specifically emphasized the need to save the
verifier work. Ishai et al. [25] explained how to use very simple
PCP constructions and a novel cryptographic commitment to ver-
ify general-purpose computations; Goldwasser et al., in their Mug-
gles work [21], used a complexity-theoretic interactive proof sys-
tem that applied to computations expressed as certain kinds of cir-
cuits; and a couple of years later, Gentry’s breakthrough protocol
for fully homomorphic encryption (FHE) [19, 20] led to a line of
work (GGP) on non-interactive protocols for general-purpose com-
putations [14, 17]. These developments were exciting, but, as with
the earlier work, implementations were thought to be out of the
question. So the theory continued to remain theory—until recently.

The last few years have seen a number of projects overturn the
conventional wisdom about the hopeless impracticality of proof-
based verifiable computation. These projects have aimed squarely at
building real systems based on the theory mentioned above, specifi-
cally the PCP theorem and Muggles (FHE-based protocols still un-
fortunately seem too expensive). The improvements over the naive
theoretical protocols are dramatic; it is not uncommon in this area to
read about factor-of-a-trillion speedups. The projects take different
approaches, but broadly speaking, they apply both refinements of
the theory and systems techniques. Some of the projects include a
full pipeline: a programmer specifies a computation in a high-level
language, and then a compiler (a) transforms the computation to the
formalism that the verification machinery uses and (b) outputs exe-
cutables that implement the verifier and prover. This pipeline makes
achieving verifiability no harder for the programmer than writing
his or her code in the first place.

The goal of this paper is to survey this blossoming area of re-
search. This is an exciting time for work on verifiable computation:
while none of the works mentioned above is practical enough for
its inventors to raise venture capital for a startup, they merit be-
ing referred to as “systems”. Moreover, many of the open problems
cut across sub-disciplines of computer science: parallel computing,
programming languages, systems engineering, complexity theory
and cryptography. The pace of progress has been rapid, and we be-
lieve that real applications of these techniques to cloud computing
will appear in the next few years.

We begin with an overview of the underlying technology, then
describe progress in the area, and then articulate some of the open
questions.

But before following this outline, we note that we are focused on

solutions that provide integrity for general-purpose computations
and that can in principle save work for the verifier. In particular,
this means that we do not treat the exciting work on efficient imple-
mentations of secure multi-party protocols [24]. Similarly, we do
not discuss the FHE-based approaches descending from GGP [17],
since FHE is still impractical. This choice of scope is to make this
paper manageable and because none of these algorithms is practical
for large problems in the normal sense.

We also exclude a vast body of domain-specific solutions (e.g.,
Freivalds’s algorithm for matrix multiplication). Indeed, part of the
appeal of the theoretical machinery that we turn to now is that it
applies to all polynomial-time computations.

2 THE GENERAL APPROACH

We now review the problem that proof-based verifiable computa-
tion is solving, together with some of the theory that has been de-
veloped to solve it.

The problem statement, and some observations about it
One machine, a verifier, specifies a computation f and input x to
a prover. The prover computes an output y and returns it to the
verifier. If y = f (x), then a correct prover should be able to convince
the verifier of y’s correctness, either by answering some questions
or by providing a certificate of correctness. Otherwise, the verifier
should reject y with high probability.

In any protocol that solves this problem, we desire three things.
First, the protocol should be cheaper for the verifier than computing
f (x) locally. Second, we do not want to make any assumptions that
the prover follows the protocol. Third, f should be general; later, we
will have to make some compromises about the class of functions
represented by f , but for now, f should be seen as encompassing all
C programs that terminate.

Some observations about this setup are in order. To begin with,
we are willing to accept some overhead for the prover, as we expect
assurance to have a price. Another point is that our requirements
contrast with common practices in computer security. In computer
security, we often try to reason about what incorrect behavior looks
like (think of spam detection, for instance). Here, however, we will
not reason about every possible failure by the prover. Instead, the
solutions will specify correct behavior and will ensure that anything
other than this behavior is visible as such.

A framework for solving the problem in theory
We now describe a solution to the above problem. Our discussion
will be somewhat informal.

The framework is depicted in Figure 1. Because Boolean cir-
cuits (networks of AND, OR, NOT gates) work naturally with the
verification machinery, the first step is for the verifier and prover
to transform the computation to such a circuit. This transformation
is possible (in principle) because any of our computations f is nat-
urally modeled by a Turing Machine (TM), and meanwhile a TM
can be “unrolled” into a Boolean circuit that is not much larger than
the number of steps in the computation. (This result is similar to
the famous Cook-Levin theorem; see, for instance, the Arora-Barak
text [2, Thm 6.6, Thm 6.18].) Essentially, the circuit contains sep-
arate gates for each step in the computation, and for each of these
steps, the relevant gates compute the TM’s transition function.

Thus, from now on, we will talk only about the circuit C that
represents our computation f (Figure 1, step 1). Consistent with the
problem statement above, the verifier supplies the input x, and the
prover executes the circuit C on input x and claims the output is y. In
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Figure 1—Framework in which a verifier can verify that, for a computation f and desired input x, the prover’s purported output y is correct. There are
four steps. Step À: the verifier and prover compile f , which is expressed in a high-level language (for example, the C programming language), into
a Boolean circuit, C. Step Á: the prover executes the computation, obtaining a transcript for the execution of C on x. Step Â: the prover encodes the
transcript, to make it suitable for efficient querying by the verifier. Step Ã: the verifier probabilistically queries the encoded transcript; the structure
of this step varies among the protocols (for example, in some of the works [8, 32], explicit queries are established before the protocol begins, and this
step requires sending only the prover’s responses).

performing this step, the prover is expected to obtain a valid tran-
script for {C, x, y} (Figure 1, step 2). A transcript is an assignment
of values to the circuit wires; in a valid transcript for {C, x, y}, the
values assigned to the input wires are those of x, the intermediate
values correspond to the correct operation of each gate in C, and the
values assigned to the output wires are y. Notice that if the claimed
output is incorrect—that is, if y 6= f (x)—then a valid transcript for
{C, x, y} simply does not exist.

Therefore, if the prover could establish that a valid transcript ex-
ists for {C, x, y}, this would convince the verifier of the correctness
of the execution. Of course, there is a simple proof that a valid tran-
script exists: the transcript itself. However, the verifier can check
the transcript only by examining all of it, which would be as much
work as having executed f in the first place.

Instead, the prover will encode the transcript (Figure 1, step 3)
into a much longer string, in such a way that different transcripts
produce encodings that are different in almost all of their positions.
Moreover, the verifier will be able to detect a transcript’s validity by
inspecting a small number of randomly-chosen locations in the en-
coded string, and then applying efficient tests to the contents found
at those locations. The powerful machinery of PCPs, for example,
allows exactly this (see Sidebars 1 and 2; page 9).

However, we still have a problem. The verifier cannot get its
hands on the entire encoded transcript; it’s longer—astronomically
longer, in some cases—than the plain transcript, so reading in the
whole thing would again require too much work from the verifier.
Furthermore, we don’t want the prover to have to write out the
whole encoded transcript: that would also be too much work, much
of it wasteful, since the verifier looks at only small pieces of the en-
coding. And unfortunately, we cannot have the verifier just ask the
prover point-blank what the encoding holds at particular locations,
as the element of surprise is crucial for the protocols to work. That
is, in these protocols, if the verifier’s queries are known in advance,
then the prover can easily arrange its answers to fool the verifier.

As a result, the verifier has to issue its queries about the encod-
ing carefully (Figure 1, step 4). The literature describes three tech-
niques for this purpose. We summarize them immediately below
and discuss their relative merits in the next section.

• Use the power of interaction. One set of protocols proceeds in
rounds: the verifier queries the prover about the contents of the
encoding at a particular location, the prover responds, the verifier
makes another query, the prover responds, etc. Just as a lawyer’s
questions of a witness are intended to restrict the answers that

the witness can give to the next question, until a lying witness
is caught in a contradiction, the prover’s answers in each round
about what the encoding holds limit the space of valid answers in
the next round. This continues until the last round, at which point
a prover that has answered perfidiously at any point—by answer-
ing based on an invalid transcript or by giving answers that are
untethered to any transcript—simply has no valid answers. This
approach relies on interactive proof protocols [5, 22, 27, 40],
most notably the Muggles protocol [21], which was refined and
implemented [15, 41–43].

• Extract a commitment. These protocols proceed in two rounds.
The verifier first requires the prover to commit to the full con-
tents of the encoded transcript. The commitment relies on stan-
dard cryptographic primitives, and we call the committed-to con-
tents a proof. In the second round, the verifier generates a set of
queries—locations in the proof that the verifier is interested in—
and then asks the prover what values the proof contains at those
locations; the prover is obligated to respond in a way that is con-
sistent with the commitment. To generate queries and validate
their responses, the verifier uses PCPs (they enable the kind of
probabilistic checking that is described in Sidebar 2). This ap-
proach was outlined in theory by Kilian [26], building on the
work of the PCP theorem [3, 4]. Later work by Ishai et al. [25]
(IKO) gave a drastic simplification, in which the prover does not
need to materialize the full proof. IKO led to a series of refine-
ments, and implementation in a system [36–39, 43].

• Hide the queries. Instead of extracting a commitment and then
revealing its queries, the verifier pre-encrypts its queries—as
above, the queries describe locations where the verifier wants
to inspect an eventual proof, and as above, these locations are
chosen by PCP machinery—and sends this description to the
prover in advance of their interaction. Then, during the verifi-
cation phase, the verifier and prover use sophisticated cryptog-
raphy to achieve the following: the prover answers the queries
without being able to tell which locations in the proof are be-
ing queried, and the verifier recovers the prover’s answers. With
the prover’s answers in hand, the verifier uses PCP machinery to
check the answers, as in the commitment-based protocols. The
approach is described in theory in [9, 18] and has been refined
and implemented [8, 32].

The approaches summarized above depend on a richly varied set
of tools, ranging from complexity-theoretic techniques that do not
use more than high-school mathematics, to complexity-theoretic
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applicable	  computa-ons	  

setup	  costs	   regular	   straightline	   	  pure	   stateful,	  RAM	   general	  loops	  

none	  (fast	  prover)	   Thaler	  

none	   CMT	  

low	   Allspice	  

medium	   Pepper	   Ginger	   Zaatar	   Pantry	  

high	   Pinocchio	   Pantry	  

very	  high	   BCGTV	   BCGTV	  

Figure 2—Design space of implemented systems for proof-based veri-
fiable computation; there is a three-way trade-off among performance,
expressiveness, and functionality. Higher in the figure means better per-
formance (and less cryptography), and rightward means better expres-
siveness; higher-and-to-the-right is therefore better. The shaded systems
achieve zero-knowledge, non-interactivity, etc.

techniques based on abstract algebra, to advanced cryptography, to
combinations thereof.

3 PROGRESS: IMPLEMENTED SYSTEMS

The three techniques described above are elegant and powerful,
but as we indicated earlier, naive implementations would result in
preposterous costs. The research projects that refined and imple-
mented these techniques have applied theoretical innovations and
serious systems work to achieve near practical performance. There
has been a lot of recent activity in this area; in this section, we first
explain the structure of the design space, then survey the various
efforts, and finally explore their performance (in doing this, we will
illustrate what “near practical” means).

We restrict our attention to implemented systems with published
experimental results. By “system”, we mean code (preferably pub-
lically released) that takes some kind of representation of a compu-
tation and produces executables for the verifier and the prover that
run on stock hardware. Ideally, this code is a compiler toolchain,
and the representation is a program in a high-level language.

The landscape
As depicted in Figure 2, we organize the design space in terms
of a three-way trade-off among performance, expressiveness, and
functionality. By performance, we mean whether the verifier has a
setup cost and, if so, what that cost is; by expressiveness, we mean
the class of the computations that the system can handle; and by
functionality, we mean whether the works provide properties like
zero-knowledge (allowing the prover a measure of privacy) and
non-interactivity (setup costs amortize indefinitely). We now walk
through the various systems.

CMT, Allspice, and Thaler. One line of work uses “the power of
interaction”; it starts from Muggles [21], the interactive proof pro-
tocol mentioned in the previous two sections. CMT [15, 42] exploits
an algebraic insight to save orders of magnitude, versus a naive im-
plementation of Muggles.

For circuits to which CMT applies, performance is very good
(in part because Muggles and CMT do not require cryptographic
assumptions). In fact, recent refinements by Thaler [41] provide a
prover that is optimal for certain classes of computations: the costs
are only a constant factor (roughly 10, which is exceptionally low
overhead in this research area) over the cost of executing the com-
putation locally. Moreover, CMT can be applied in (and was origi-
nally designed for) a streaming model of computation, in which the
verifier processes and discards input as it comes in.

However, CMT’s expressiveness is limited, as it imposes require-
ments on the circuit’s geometry: the circuit must have structurally
similar parallel blocks. Of course, not all computations can be ex-
pressed in that form.

Allspice [43] partially relaxes these limitations, under the amor-
tization model of the works that we describe next. (That is, Allspice
requires a setup phase, but its cost is far cheaper than the setup
phases in the works below.)

Pepper, Ginger, and Zaatar. Another line of work refines the “ex-
tract a commitment” technique (referred to in the theory literature
as an “efficient argument” [10, 26]). Pepper [38] and Ginger [39]
strengthened the commitment primitive of IKO and adapted the pro-
tocol to efficiently support “batching”, as described shortly. In ad-
dition, both systems represent computations not as circuits but as
arithmetic constraints (essentially, a set of equations over a finite
field); a valid transcript of the computation corresponds to a so-
lution to the equations, enabling a more concise representation in
many cases.

The aforementioned refinements drastically reduce costs for ver-
ifier and prover. The protocols leverage batching—multiple in-
stances of the same computation, on different inputs—to amortize
setup costs for the verifier. These setup costs are proportional to
running one instance of the computation (and the constant of pro-
portionality is high).

Pepper requires describing constraints manually. Ginger comes
with a compiler that targets a larger class of computations. Still,
Pepper and Ginger work only with straight-line computations that
have repeated structure, and they require special-purpose PCP en-
codings.

Zaatar [37] removes these restrictions. Zaatar retains the struc-
ture of Pepper and Ginger but incorporates a new PCP, using
GGPR’s algebraic representation of computations [18]; this PCP
applies to pure computations (no side effects). As a result, Zaatar
achieves the performance of Pepper and Ginger but on a much
larger class of computations.

Pinocchio. Pinocchio [32] instantiates the approach of hiding the
queries (Pinocchio is what is known as a SNARG and a SNARK).
Pinocchio not only uses the PCP at the core of GGPR [18] (as does
Zaatar) but also implements GGPR’s sophisticated cryptography.5

A key benefit to the cryptography is that because queries are
hidden, they can be reused. The result is a protocol with mini-
mal interaction (after a per-computation setup phase, the verifier
sends only an instance’s input to the prover) and thus qualitatively
better amortization behavior. Specifically, Pinocchio amortizes per-
computation setup costs over all future instances of a given compu-
tation; by contrast, recall that Zaatar and Allspice amortize their
per-computation costs only over a batch. The cryptography also
buys zero-knowledge and public verifiability; the latter means that
anyone (not just a particular verifier) can check a proof, provided
that the party who generated the queries is trusted.

The cryptography brings some expense relative to Zaatar (in the
prover’s costs and the verifier’s setup costs), though heroic opti-
mizations have resulted in surprisingly small overhead. Pinoccho’s
compiler initiated the use of C syntax in this area, and its underlying
computational model is the same as Ginger’s and Zaatar’s [37, 39].

Although the systems described above have made tremendous
progress, they have done so within a computational model that is
5Our perspective here [9, 37] is that GGPR can be understood as so-
phisticated cryptography layered atop an ingeniously concise linear
PCP [3, 25], and that the two components are separable.
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not reflective of real-world computations. First, these systems re-
quire loop bound bounds to be known at compile time. Second,
they do not support indirect memory references, ruling out RAM
and thus general-purpose programming. Third, these systems do not
support external state: the verifier has to handle all inputs and out-
puts, ruling out MapReduce, queries against remote databases, etc.
The next two projects address subsets of these issues.

BCGTV. In the context of a query-hiding approach, BCGTV [8]
compiles programs to an innovative circuit representation [7]. This
representation verifies the transition function of a simple processor
(called TinyRAM). As a result, BCGTV’s approach is truly general-
purpose: it supports all of C (including data-dependent looping and
RAM), not just a subset. BCGTV combines its circuit representa-
tion with a “backend” that is much like Pinocchio’s (applying in-
sights from [9, 18, 37]). And much like Pinocchio, BCGTV uses
sophisticated cryptography (with the accompanying costs and ben-
efits) and has per-computation setup costs that must amortize.

Unfortunately, BCGTV’s generality comes at a cost: its circuit
representation is often orders of magnitude larger than the repre-
sentation in Pinocchio and Zaatar, leading to orders of magnitude
worse performance.

Pantry. Pantry [11] extends the computational model of Zaatar and
Pinocchio, and works with both systems. Pantry provides a general-
purpose approach to state, which yields a RAM abstraction, ver-
ifiable MapReduce, verifiable queries on remote databases, and—
using Pinocchio’s zero-knowledge variant—computations that keep
the prover’s state private. Currently, Pantry is the only system for
verifiable computation that handles computations for which the ver-
ifier does not have all of the input. In Pantry’s technique—which
was known to folklore, though not previously realized—the veri-
fier’s explicit input includes a digest (for example, a Merkle hash)
of the full input or state, and the prover is obliged to work over state
that matches this digest.

Under Pantry, every operation against state compiles into the
evaluation of a cryptographic hash function. Since hash functions
are comparatively expensive to compute, a memory access is tens
of thousands of times more costly than, for example, a basic arith-
metic operation. However, compared to BCGTV, Pantry performs
better for all but the most memory-intensive programs.

A brief look at performance
We want to understand performance differences among the systems.
However, these distinctions are overshadowed by the general nature
of costs in this area. Thus, these general costs will be our central
concern. We will answer three questions:

1. How do the verifier’s variable (per-instance) costs compare to
local, native execution? In some (but not all) cases, an alterna-
tive to verifiable outsourcing is local execution.

2. What are the verifier’s setup costs, and how do they amortize?
Recall that in many of the systems, the setup costs are signifi-
cant and are paid for only over multiple instances of the same
computation (same logic, same input sizes).

3. What is the prover’s overhead?

We will focus only on CPU costs. On the one hand, this focus is
conservative: it rules out cases when verifiable outsourcing is moti-
vated. Specifically, if local execution is not viable as an alternative
(for instance, if downloading the computation’s input incurs pro-
hibitive network cost), then the hypothetical CPU cost of local ex-
ecution is irrelevant as a baseline. On the other hand, CPU costs
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the various systems, applied to 150×150 matrix multiplication of 32-
bit numbers. The first baseline, of 5 ms, is the CPU time to execute this
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provide a good sense of the overall expense of the protocols. (For
evaluations that take additional resources into account, see [11].)

In performing this evaluation, we include all systems in this
area with published experimental results as of July 2013.6 The data
that we present are from re-implementations, by members of our
research group at UT, of the various systems, and match or ex-
ceed their published results. All experiments are run on the same
hardware platform (Intel Xeon E5-2680 processor, 2.7Ghz, 32GB
RAM), with the prover on one machine and the verifier on an-
other. We perform three runs per experiment; the experimental vari-
ation is minor, so we simply report the average. Our benchmarks
are 150×150 matrix multiplication (of 32-bit quantities) and PAM
clustering of 20 vectors, each of dimension 128.

Figure 3 depicts per-instance verification costs, for matrix multi-
plication, compared to two baselines. The first baseline is an op-
timized local implementation of the standard O(m3) algorithm,
which costs 5 ms, and which beats all of the systems.7 The sec-
ond baseline is an implementation of the algorithm using a multi-
precision library; this models the case that local computation needs
complete precision.

We evaluate setup costs by asking about the cross-over point:
how many instances of a computation are required to amortize the
setup cost in the sense that the verifier spends fewer CPU cycles on
outsourcing versus executing locally? Figure 4 plots total cost lines
and cross-over points, versus the second baseline above.

To evaluate prover overhead, Figure 5 normalizes the prover’s
cost to the baseline of native execution.

Summary and discussion. The verifier is practical if its computa-
tion is amenable to one of the less expensive (but more restricted)
protocols, or if there are a large number of instances of the compu-
tation that will be run (on different inputs). And with computations
over remote state, we are not obliged to make the verifier faster than
local computation because it would be difficult—or impossible, if

6In particular, we do not include Thaler [41], BCGTV [8], or
Pantry [11]. Thaler does not affect the verifier but results in a vastly
faster prover; earlier, we gave a sense of BCGTV’s comparative costs
for the computations evaluated here; and Pantry’s innovations do not
apply to these computations.

7The systems that report verification costs as beating local execution
choose very expensive baselines for local computation [32, 37–39].
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Figure 4—Total costs and cross-over points (extrapolated), for
150×150 matrix multiplication. The slope of each line is the per-
instance cost (depicted in Figure 3); the y-intercepts are equal to the
setup costs and equal 0 for local and CMT; and the cross-over point
for a system is the point on the x-axis at which that system’s total
cost line crosses the “local” line. The cross-over points for the general-
purpose schemes (Zaatar and Pinocchio) are in the tens of thousands;
the special-purpose approaches do far better, but they do not apply to all
computations. While Zaatar’s cross-over point is somewhat better than
Pinocchio’s, Pinocchio’s amortization regime is superior, as noted ear-
lier: once Pinocchio passes its cross-over point, its setup cost for that
computation is forever paid for, whereas Zaatar, Ginger, and Allspice
incur the cost for each batch.

the remote state is private—for the verifier to perform the computa-
tion itself (such applications are evaluated elsewhere [11]).

The prover, of course, has terrible overhead: several orders of
magnitude (though as noted previously, this still represents tremen-
dous progress versus the prior costs). The prover’s practicality thus
depends on your ability to construct appropriate scenarios. Maybe
you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you don’t care about costs. More prosaically, there is a
scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [11] is therefore
an encouraging application.

4 OPEN QUESTIONS AND NEXT STEPS

The biggest issue in this research area is performance, and the
biggest performance issue is the prover’s overhead. Of course, the
verifier’s costs are quantitatively higher than we would like. And
qualitatively, we would ideally be able to eliminate the verifier’s
setup phase in the context of a practical or near-practical protocol.

The computational model is also a critical area of focus. Only
BCGTV [8] handles data-dependent loops, and only BCGTV and
Pantry [11] handle computations that work with RAM. Unfortu-
nately, BCGTV adds high overhead to the circuit representation for
every operation in the given computation; Pantry, on the other hand,
adds even higher overhead to its constraint representation but only
to operations that interact with state. While improving the overhead
of either representation would be worthwhile, a more general re-
search direction is to move beyond the circuit and constraint model.

The above issues are likely to be addressed by refining the-
ory. But there are also questions in systems and programming lan-
guages. For instance, can we develop programming languages that
are well-tailored to the circuit or constraint formalism? We might
also be able to co-design the language, computational model, and
verification machinery: many of the protocols naturally work with
parallel computations, and the current verification machinery is
already amenable to a parallel implementation. Another systems
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Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are enormous. Thaler’s approach [41]
would do far better for matrix multiplication but (like CMT and All-
spice) would not apply to PAM clustering.

question is to develop a realistic database application, which re-
quires concurrency, access control, relational structures, etc. More
generally, an important test for this area—so far unmet—is to run
experiments at realistic scale.

Other research directions involve changing the model and goals.
What is achievable, if we are willing to relax our requirement of “no
assumptions about the prover other than cryptographic ones”? For
instance, multiprover protocols can potentially reduce expense rel-
ative to single-prover protocols; the cost is the assumption of an ad-
ditional (possibly misbehaving) prover that does not communicate
with the first one. In fact, if we are willing to assume that at least
one of the two provers computes correctly, a truly practical solution
is available today [12]. Another interesting direction concerns pri-
vacy requirements. By leveraging Pinocchio [32], Pantry [11] has
experimented with simple applications that hide the prover’s state
from the verifier, but there is far more work to be done here, and
many other notions of privacy that are worth providing.

5 REFLECTIONS AND PREDICTIONS

To finish up our coverage of this area, we reflect on its past and
present, and make predictions about its future.

It is worth recalling that the intellectual foundations of this re-
search area really had nothing to do with practice: the aim was to
prove profound theoretical results about computational complexity,
with no attention to concrete performance. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this arti-
cle have not only built systems from this theory but also performed
experimental evaluations that terminate in our lifetimes (in fact, be-
fore publication deadlines).

So that’s the encouraging news. The sobering news, of course,
is that these systems are basically toys. Part of the reason we are
willing to label them near-practical is painful experience with what
the theory used to cost. Still, these systems are arguably useful in
some scenarios. For example, in a high-assurance regime, we might
be willing to pay a lot to know that a remotely deployed machine is
executing correctly. As another example, if we are in the streaming
context, the verifier may not have space to perform a computation,
in which case we could use CMT [15] to check that the outputs
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are correct, particularly if we use Thaler’s recent refinements [41]
to make the prover truly low overhead. Finally, data parallel cloud
computations (like MapReduce jobs) perfectly match the regimes
in which the general-purpose schemes perform well: abundant CPU
cycles for the prover, and many instances of the same computation
with different inputs.

Beyond this, we predict that in the near future, real systems
will use proof-based verification for cloud computations. Indeed,
the gap separating the performance of the current research pro-
totypes and plausible deployment in the cloud is a few orders of
magnitude—which is certainly daunting, but, given the current pace
of improvement, it could conceivably be bridged in a few years.

More speculatively, if this research area succeeds in making the
machinery truly low overhead, the effects will go far beyond veri-
fying cloud computations: we will have new ways of building sys-
tems. In any situation in which one module performs a task for an-
other, the delegating module will be able to check the answers. This
could apply at the micro level (if the CPU had a way to check the
results of the GPU, then this could potentially turn up hardware er-
rors) and the macro level (distributed systems could be built under
very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [28, 31, 34, 44]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run algorithms that were
previously “paper-only”. Whatever the cause, proof-based verifi-
able computation is an excellent example of this tendency: not only
does it compose theoretical refinements with systems techniques, it
also raises research questions in other sub-disciplines of Computer
Science. This cross-pollination is the best news of all.
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J. Kubiatowicz, and D. Song. PHANTOM: Practical oblivious
computation in a secure processor. In ACM CCS, 2013.

[29] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish. Depot: Cloud storage with minimal trust. ACM
Trans. on Comp. Sys., 29(4), Dec. 2011.

[30] D. Malkhi and M. Reiter. Byzantine quorum systems.
Distributed Computing, 11(4):203–213, Oct. 1998. (Prelim.
version STOC 1997).

[31] A. Narayan and A. Haeberlen. DJoin: Differentially private join
queries over distributed databases. In OSDI, 2012.

[32] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE Symposium on
Security and Privacy, May 2013.

[33] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust in
Modern Computers. Springer, 2011.

7



[34] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting confidentiality with
encrypted query processing. In SOSP, 2011.

[35] A.-R. Sadeghi, T. Schneider, and M. Winandy. Token-based
cloud computing: secure outsourcing of data and arbitrary
computations with lower latency. In TRUST, June 2010.

[36] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and
unconditional verification of remote computations. In HotOS,
2011.

[37] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and
M. Walfish. Resolving the conflict between generality and
plausibility in verified computation. In EuroSys, Apr. 2013.

[38] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making
argument systems for outsourced computation practical
(sometimes). In NDSS, 2012.

[39] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish. Taking proof-based verified computation a few steps
closer to practicality. In USENIX Security, 2012.

[40] A. Shamir. IP = PSPACE. J. of the ACM, 39(4):869–877, 1992.
[41] J. Thaler. Time-optimal interactive proofs for circuit evaluation.

In CRYPTO, Aug. 2013.
[42] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister.

Verifiable computation with massively parallel interactive proofs.
In USENIX HotCloud Workshop, 2012.

[43] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid
architecture for interactive verifiable computation. In IEEE
Symposium on Security and Privacy, May 2013.

[44] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson.
Dissent in numbers: Making strong anonymity scale. In OSDI,
2012.

8



This sidebar will demonstrate a connection between program execu-
tion and polynomials. As a warmup, consider an AND gate, with two
(binary) inputs, z1, z2. One can represent its execution as a function:

AND(z1, z2) = z1 · z2.

Here, the function AND behaves exactly as the gate would: it evaluates
to 1 if z1 and z2 are both 1, and it evaluates to 0 in the other three cases.
Now, consider this function of three variables:

fAND(z1, z2, z3) = z3 − AND(z1, z2)

= z3 − z1 · z2

Observe that fAND(z1, z2, z3) evaluates to 0 when, and only when, z3
equals the AND of z1 and z2. For example, fAND(1, 1, 1) = 0 and
fAND(0, 1, 0) = 0 (both of these cases correspond to correct compu-
tation by an AND gate), but fAND(0, 1, 1) 6= 0.

We can do the same thing with an OR gate:

fOR(z1, z2, z3) = z3 − z1 − z2 + z1 · z2.

For example, fOR(0, 0, 0) = 0, fOR(1, 1, 1) = 0, and fOR(0, 1, 0) 6= 0.
In all of these cases, the function is determining whether its third
argument (z3) does in fact represent the OR of its first two arguments
(z1 and z2). Finally, we can do this with a NOT gate:

fNOT(z1, z2) = 1− z1 + z2.

The intent of this warmup is to communicate that the correct exe-
cution of a gate can be encoded in whether some function evaluates
to 0. Such a function is known as an arithmetization of the gate.

Now, we extend the idea to a line L(t) over a dummy variable, t:

L(t) = (z3 − z1 · z2) · t.

This line is parameterized by z1, z2, and z3: depending on their values,
L(t) becomes different lines. A crucial fact is that this line is the 0-
line (that is, it covers the horizontal axis, or equivalently, evaluates to
0 for all values of t) if and only if z3 is the AND of z1 and z2. This
is because the y-intercept of L(t) is always 0, and the slope of L(t) is
given by the function fAND. Indeed, if (z1, z2, z3) = (1, 1, 0), which
corresponds to an incorrect computation of AND, then L(t) = t, a
line that crosses the horizontal axis only once. On the other hand, if
(z1, z2, z3) = (0, 1, 0), which corresponds to a correct computation of
AND, then L(t) = 0 · t, which is 0 for all values of t.

We can generalize this idea to higher order polynomials (a line is
just a degree-1 polynomial). Consider the following degree-2 polyno-
mial, or parabola, Q(t) in the variable t:

Q(t) = [z1 · z2 (1− z3) + z3 (1− z1 · z2)] t2 + (z3 − z1 · z2) · t.

As with L(t), the parabola Q(t) is parameterized by z1, z2, and z3:
they determine the coefficients. And as with L(t), this parabola is the
0 parabola (all coefficients are 0, causing the parabola to evaluate to
0 for all values of t) if and only if z3 is the AND of z1 and z2. For
example, if (z1, z2, z3) = (1, 1, 0), which is an incorrect computation
of AND, then Q(t) = t2 − t, which crosses the horizontal axis only
at t=0 and t=1. On the other hand, if (z1, z2, z3) = (0, 1, 0), which is
a correct computation of AND, then Q(t) = 0 · t2 + 0 · t, which of
course is 0 for all values of t.

Summarizing, L(t) (resp., Q(t)) is the 0-line (resp., 0-parabola)
when and only when z3 = AND(z1, z2). This concept is powerful,
for if there is an efficient way to check whether a polynomial is 0,
then there is now an efficient check of whether a circuit was executed
correctly (here, we have generalized to circuit from gate). And there
are indeed such checks of polynomials, as described in Sidebar 2.

Sidebar 1: Encoding a circuit’s execution in a polynomial.

This sidebar explains the idea behind a fast probabilistic checks of a
transcript’s validity. As noted in the text, computations are expressed
as Boolean circuits. As an example, consider the following computa-
tion, where x1 and x2 are bits:

if (x1 != x2) { y = 1 } else { y = 0 }

This computation could be represented by a single XOR gate; for
illustration, we represent it in terms of AND, OR, NOT:

AND

AND
OR

NOT

NOT

x1
x2 y

z1

z2

z3

z4

To establish the correctness of the output y, the prover must argue
that it has a valid transcript (see text) for this circuit. The verifier, of
course, cannot receive the transcript, since that would take as much
time as (and more memory than) the computation.

Instead the two parties encode the computation as a polynomial
Q(t) over a dummy variable t. Sidebar 1 gives an example of this
process for a single gate, but the idea generalizes to a full circuit. The
result is a polynomial Q(t) that evaluates to 0 for all t if and only if
each gate’s output in the transcript follows correctly from its inputs.

As with the single-gate case, the coefficients of Q(t) are given by
various combinations of x1, x2, z1, z2, z3, z4, y. Variables correspond-
ing to inputs x1, x2 and output y are hard-coded, ensuring that the
polynomial expresses a computation based on the correct inputs and
the purported outputs.

Now, the verifier wants a probabilistic and efficient check that Q(t)
is 0 everywhere (see Sidebar 1). A key fact is that if a polynomial is
not the zero polynomial, it has a bounded number of roots (consider a
parabola: it crosses the horizontal axis a maximum of two times). For
example, if we take x1=0, x2=0, y=1, which is an incorrect execution
of the above circuit, then the corresponding polynomial might look
like this:

t

Q(t)

and a polynomial corresponding to a correct program execution is
simply a horizontal line on the axis.

The check, then, is this: the verifier chooses a random value for t
(call it τ ) from a pre-existing range (for example, integers between
0 and M, for some M), evaluates Q at τ (this is inexpensive; see be-
low), and then accepts the computation as correct if Q(τ) = 0 and re-
jects otherwise. This process occasionally produces errors since even
a non-zero polynomial Q is zero sometimes (the idea here is a variant
of “a stopped clock is right twice per day”), but this event happens
rarely and is independent of the prover’s actions.

The technical machinery in the various protocols enables the veri-
fier to evaluate Q(τ) very efficiently (owing to commitment and other
ideas discussed in the text). Moreover, neither party has to explicitly
materialize the full polynomial Q.

The idea described above is at the heart of all of the approaches
discussed in this article. One might wonder: what is the encoded tran-
script here? It’s the polynomial Q, evaluated at every point in the
range of possible values for τ : {Q(0), Q(1), . . . , Q(M)}. However,
this encoding need not (and will not) ever be materialized in full.

Sidebar 2: Probabilistically checking a transcript’s validity.
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