
Verifiable Secret Redistribution for Threshold Sharing Schemes

Abstract
We present a new protocol for the verifiable redistribution of secrets from (m,n) to (m′,n′) access

structures for threshold sharing schemes. Our protocol enables the addition or removal of shareholders
and also guards against mobile adversaries that cause permanent damage. We observe that existing
protocols either cannot be readily extended to allow redistribution between different access structures,
or have vulnerabilities that allow faulty old shareholders to corrupt the shares of new shareholders. Our
primary contribution is that, in our protocol, new shareholders can verify the validity of their shares after
redistribution between different access structures.
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1 Introduction

Threshold sharing schemes provide fundamental building blocks for the safeguarding of secrets and secure
distributed computation. Since its invention, many enhancements to threshold schemes have been proposed.
Proactive secret sharing (PSS) schemes [FGMY97a, FGMY97b, GJKR96, HJJ+97, Rab98], for example,
provide enhanced protection against mobile adversaries [OY91] by updating the shares periodically in a dis-
tributed fashion. In general, PSS schemes retain the same shareholders and access structure across updates.
A more general proactive problem is the redistribution of shares between different (possibly disjoint) sets
of shareholders and different access structures, hereafter referred to as secret redistribution. Secret redistri-
bution has been studied by Desmedt and Jajodia [DJ97] and Frankel et al. [FGMY97a]. In this paper, we
identify weaknesses in previous work, and propose a new protocol that performs verifiable secret redistribu-
tion (VSR) between different shareholders and access structures. We prove the security of our scheme with
an information-theoretic security proof.

The development of our new protocol is motivated by work on a secure, distributed storage system
[XXX] that stores shares of files (or long-term encryption keys) on a distributed set of servers. For system
management and security purposes (such as load balancing or server compromises), the system needs to
generate new shares and invalidate old shares. In general, the ability to redistribute shares of secrets between
different sets of shareholders is useful for a wide range of applications. Consider the following examples:

Multiparty signature schemes: Business organizations may use digital signature schemes to sign legal
documents they exchange with counterparties. Such schemes are typically asymmetric: an organi-
zation generates signatures with a private key known only to itself, and the counterparties verify
signatures with a corresponding public key. To prevent a single rogue agent from signing documents
without proper authorization, the organization may require multiple agents to generate signatures with
a multiparty signature scheme [FGMY97a, FGMY97b, GJKR96, HJJ+97, Rab98] that distributes
shares of the private key to the agents. Over time, the organization will need to give shares of the
private key to agents who join, and invalidate the shares of agents who leave. Changing the private
key each time agents join or leave would require revocation of the well-known public key. A better
solution would be to redistribute shares of the private key in a way that invalidates old shares and
obviates the need for public key revocation.
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Distributed key servers: Recent distributed storage systems, such as CFS [DKK+01], FarSite [BDET00],
PASIS [WBS+00, WBP+01] and PAST [RD01], use disk space on (potentially) untrusted storage
devices to store data. Clients may encrypt data before handing it off to the storage system. One way
for clients to store their encryption keys is to employ threshold sharing schemes to distribute shares
of the keys to a set of key servers. Of course, since clients must store keys for as long as they store the
encrypted data, a mobile adversary may have a large window of opportunity to compromise multiple
key servers, and thus obtain enough shares to reconstruct the keys. To counter the adversary, the
uncompromised key servers could periodically redistribute shares of the keys to new, uncompromised
servers. The adversary would then need to restart the process of compromising servers, assuming that
old shares cannot be combined with new shares to reconstruct the secret.

Both of these applications must support dynamic shareholder membership, and protect secrets from
mobile adversaries. In the multiparty signature system, agents may join or leave the organization, while
in the storage system, key servers may be added or removed for maintenance or security purposes. It may
also be advantageous to change the threshold value of the underlying sharing scheme to accommodate new
policies. In both applications, the system needs to retain the original secrets when generating new shares
and invalidating old shares. More importantly, to prevent faulty old shareholders from corrupting the shares
of new shareholders, new shareholders must be able to verify the validity of their shares after redistribution
(i.e., that their shares can be used to reconstruct the secret).

Desmedt and Jajodia propose a protocol to redistribute secret shares between different (possibly disjoint)
sets of shareholders with different access structures [DJ97]. They postulate that a straightforward extension
of their protocol with a verifiable secret sharing (VSS) scheme allows them to tolerate faulty old sharehold-
ers and verify the validity of new shares. We show that such a naı̈ve extension fails, since it still allows
faulty old shareholders to corrupt the shares of new shareholders.

Frankel et al. propose a proactive threshold sharing scheme for RSA [FGMY97a] that uses a poly-
to-sum redistribution from a polynomial sharing scheme to an additive sharing scheme, and a sum-to-poly
redistribution from the additive scheme back to a polynomial scheme. They suggest that changes in threshold
value and number of shareholders can be accommodated in the poly-to-sum redistribution. However, their
scheme relies on public information distributed in the preceding round to verify the validity of new shares. If
secret redistribution is performed among the same set of shareholders, verification can be achieved because
all shareholders retain the information from the preceding round. However, if redistribution is performed
to new shareholders who do not possess the necessary public information, faulty old shareholders could
corrupt redistribution. We will discuss this point further in Section 4.

Our key observations are that:

• PSS schemes cannot be readily extended to allow “updates” between different sets of shareholders
with different access structures. Thus, these schemes cannot accommodate the permanent addition or
removal of shareholders.

• Redistribution protocols have vulnerabilities that allow faulty old shareholders to corrupt redistribu-
tion and cause new shareholders to generate invalid shares.

• For verification purposes, old shareholders in a secret redistibution protocol must pass additional
information to new shareholders. This information can be a commitment to the original secret, or
commitments to the shares of all old shareholders.

• Pinpoint identification and elimination of faulty old shareholders are not immediately possible if re-
distribution is to occur between two disjoint sets of shareholders. In the worst case, for redistribution
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Figure 1: Initial threshold scheme distribution of a secret k with an (m,n) access structure, followed by redistribution
to an (m′,n′) access structure. The INITIAL phase of our VSR protocol guarantees that the shares s1 ... sn are valid.
The REDIST phase of our protocol guarantees that the shares s′1 ... s′n′ are valid. The dashed (dotted) lines represent a
client contacting servers holding s1 ... sm (s′1 ... s′m′ ). We can execute REDIST an arbitrary number of times.
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restarts are required to eliminate faulty

shareholders and complete redistribution.

We present a new verifiable secret redistribution protocol for Shamir’s threshold sharing scheme [Sha79]
in which we redistribute secrets from an (m,n) to (m′,n′) access structure. We base our protocol on Desmedt
and Jajodia’s redistribution protocol, in which new shareholders generate shares from subshares of old
shares. We extend their protocol to enable new shareholders to verify the validity of the shares they generate.
We prove that the new shareholders can generate valid new shares if they can both verify the validity of the
old shares and that of the subshares. We also prove that an adversary who obtains less than m old shares
and less than m′ new shares cannot reconstruct the secret.

We summarize the operation of our VSR protocol in Figure 1. Returning to our example applications,
suppose that we have distributed shares of a key, k, to n shareholders, as shown in the INITIAL phase. A
counterparty wishing to obtain the signature for a document, or a client wishing to retrieve an encryption key,
can do so by contacting m of the n shareholders (the dashed lines). When agents join or leave, or when key
servers are added or taken offline, our VSR protocol redistributes k to a new set of shareholders, as shown
in the REDIST phases. Upon the completion of redistribution, a client can perform the same distributed
operations by contacting m′ of the n′ new servers (the dotted lines). The applications can execute the
REDIST phase as often as necessary to ensure the security and availability of the shared secrets.

2 Related work

Blakley and Shamir invented threshold sharing schemes independently [Bla79, Sha79]. In Blakley’s scheme,
the intersection of m of n vector spaces yields a one-dimensional vector that corresponds to the secret. In
Shamir’s scheme, the interpolation of an m−1 degree polynomial through m of n points yields a constant
term in the polynomial that corresponds to the secret. Desmedt surveys other sharing schemes [Des97].

Chor et al. present a VSS scheme in which the dealer and shareholders perform an interactive secure
distributed computation [CGMA85]. Benaloh [Ben87], Gennaro and Micali [GJKR96, GM95], Goldreich et
al. [GMW87], and Rabin and Ben-Or [Rab94, RBO89] propose schemes in which the dealer and sharehold-
ers participate in an interactive zero-knowledge proof of validity; the scheme of Gennaro and Micali, and
that of Rabin and Ben-Or, is information-theoretically secure. Feldman and Pedersen [Fel87, Ped91] present
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VSS schemes in which the dealer broadcasts a non-interactive zero-knowledge proof to the shareholders.
Beth et al. [BKO93] present a VSS scheme for monotone access structures based on finite geometries. Our
VSR protocol differs from previous VSS schemes in that the multiple “dealers” of the new shares (the old
shareholders) do not have the secret, and must use other information to generate a proof for the new share-
holders. Also, each new shareholder verifies the validity of the subshares distributed by the old shareholders,
and verifies the validity of the shares used by the old shareholders to generate the subshares.

Frankel et al. [FGMY97b, FMY99, FMY01] and Rabin [Rab98] propose threshold PSS schemes in
which each shareholder periodically distributes a subshare of its share to all the other members. Each
shareholder then combines the subshares to generate a new share. A drawback of these protocols is that
the shareholders rely on commitments received during the initial distribution of the secret to verify the
validity of the new shares, and thus one cannot redistribute between disjoint sets of shareholders. Also, the
commitments depend on (m,n), and thus one cannot redistribute between different access structures.

Desmedt and Jajodia present a secret redistribution protocol that does not require the intermediate re-
construction of the original secret [DJ97]. We present the details of their protocol in Section 3.2. Their
protocol allows redistribution between different (possibly disjoint) sets of shareholders with different access
structures. Unfortunately, a faulty old shareholder can undetectably distribute “subshares” of some random
value instead of subshares of a valid old share, and thus cause new shareholders to generate invalid shares.

Frankel et al. propose a proactive threshold sharing scheme for RSA private keys [FGMY97a]. The
protocol uses a poly-to-sum redistribution from an (m,n) to (m,m) sharing scheme, and a sum-to-poly re-
distribution back to an (m,n) scheme. During redistribution, each old shareholder broadcasts a commitment
to its share, which new shareholders use to verify the validity of their generated share. Unfortunately, during
redistribution to a disjoint set of shareholders, it is not enough for the old shareholders to broadcast the com-
mitment to their respective shares, since a faulty shareholder can broadcast a random “commitment.” There
are two potential remedies for this problem. One is for the old shareholders to broadcast a commitment to
the original secret, which can be used to verify the consistency of commitments to shares. The alternative is
for each old shareholder to keep and broadcast all share commitments. We opt for the former in our protocol
because it is both space and time efficient.

Other researchers present secret redistribution protocols that do not involve the physical redistribution
of shares. Blakley et al. consider threshold schemes that disenroll (remove) shareholders from the access
structure with broadcast messages [BBCM92]; the new shareholders are a subset of the old ones. Cachin
proposes a secret sharing scheme that enrolls (adds) shareholders in the access structure after the initial shar-
ing [Cac95]; the new shareholders are a superset of the old ones. Blundo et al. presents a scheme in which
the dealer uses broadcast messages to activate different, possibly disjoint, authorized subsets [BCSV96].
Blundo’s scheme requires shareholders to have a share regardless of whether or not they are in the active
authorized subset, in contrast to Desmedt and Jajodia’s scheme. Our VSR protocol alters the access structure
by physical redistribution of shares, and allows new shareholders to verify that they have valid shares.

Ostrovsky and Yung introduce the concept of mobile adversaries [OY91] that corrupt participants in
a distributed protocol at a constant rate. Canetti and Herzberg use mobile adversaries to motivate their
development of a distributed proactive pseudorandom number generator [CH94]. Herzberg et al. [HJKY95,
HJJ+97] propose a PSS scheme for Shamir’s sharing scheme [Sha79] in which each shareholder periodically
distributes update shares to all other shareholders. Zhou, Schneider, and van Renesse propose a PSS scheme
for asynchronous, wide-area networks, and employ it in an on-line certification authority [ZSvR00]. Our
VSR protocol, unlike these PSS schemes, can redistribute shares to arbitrary access structures. However,
we assume that there exist reliable broadcast channels among all participants and private channels between
every pair of participants in our protocol, which Zhou et al. avoid in their asynchronous protocol.

We note that our VSR protocol, in contrast to the earlier threshold PSS schemes, can guard against
mobile adversaries that cause permanent damage (i.e., that cannot be undone with a reboot operation). Of
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course, we still require that at any given point of time, the number of faulty shareholders in the current set
of shareholders is less than the threshold value.

3 Cryptographic building blocks

In this section, we outline the cryptographic protocols that form the building blocks for our VSR protocol.
We first recap Shamir’s threshold sharing scheme [Sha79], and then summarize Desmedt and Jajodia’s secret
redistribution protocol [DJ97] and Feldman’s VSS scheme [Fel87].

3.1 Shamir’s threshold sharing scheme

Shamir’s threshold sharing scheme is based on polynomial interpolation [Sha79]. A secret k is in Zp, where
p is prime and p > n; shares of k are also in Zp. Authorized subsets, A, of the set of shareholders, P , are in

the access structure A(m,n)
P , where |P | = n and |A| = m.

To distribute k to the access structure, A(m,n)
P , we select an m−1 degree polynomial a(x) with constant

term k and random coefficients a1 ... am−1 ∈ Zp, and generate shares si for each shareholder i ∈ P :

si = a(i) = k + a1i+ . . . + am−1i
m−1 (1)

To reconstruct k, we retrieve m pairs (i, si) from i ∈ A, and compute k by Lagrange interpolation:

k =
∑

i∈A

bisi where bi =
∏

j∈A\{i}

j

(j − i)
(2)

3.2 Desmedt and Jajodia’s secret redistribution protocol

Desmedt and Jajodia present a protocol for the redistribution of shares of secrets distributed with threshold
sharing schemes, which does not require the intermediate reconstruction of the secret [DJ97]. We present a
specialization of their protocol for Shamir’s scheme in Appendix B. Suppose we have distributed a secret

k to the access structure A(m,n)
P , and wish to redistribute k to the new access structure A(m′,n′)

P ′ . To achieve

this, we select an authorized subset A ∈ A
(m,n)
P . Each shareholder i ∈ A uses Shamir’s scheme to distribute

subshares ŝij of its share si to A(m′,n′)
P ′ . Each new shareholder j ∈ P ′ receives ŝij from each i, and generates

a new share s′j by Lagrange interpolation:

s′j =
∑

i∈A

biŝij where bi =
∏

x∈A\{i}

x

(x− i)
(3)

3.3 Feldman’s VSS scheme

Feldman presents a VSS scheme for shareholders of a secret to verify the validity of their shares [Fel87].
We present a specialization for Shamir’s scheme in Appendix C. Herzberg et al. present a similar treatment
[HJKY95].

The application of Feldman’s VSS scheme to Shamir’s scheme takes advantage of the homomorphic
properties of exponentiation, and of the assumption that the computation of discrete logs in a finite field is
intractable. Suppose we have field Zp and ring Z

∗
r , such that p and r are prime and r = pq + 1 (where q

is a non-negative integer), and suppose we have a generator g for Z
∗
r . We first use Shamir’s scheme with

polynomial a(x) to distribute a secret k ∈ Zp to the access structure A(m,n)
P . Then, in addition to sending
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Verifiable Secret Redistribution protocol for Shamir’s sharing scheme:
INITIAL: To distribute a secret k ∈

�
p to the access structure A(m,n)

P :

1. Use the polynomial a(i) = k+a1i+. . .+am−1i
m−1 to compute the shares si of k, and send si to the corresponding

i ∈ P over private channels.

2. Use generator g to compute gk, ga1 . . . gam−1 , and send them to all i ∈ P over the broadcast channel.

3. For each i ∈ P , verify that:

g
si = g

k

m−1�
l=1

(gal)il

If the condition holds, i broadcasts a “commit” message. Otherwise, i broadcasts an “abort” message.

4. If all i ∈ P agree to commit, each i stores si and gk. Otherwise, they abort the protocol.

REDIST: To redistribute k ∈
�

p from an A(m,n)
P to A(m′,n′)

P ′ access structure, using the authorized subset A ∈ A
(m,n)
P :

1. For each i ∈ A, use the polynomial a′i(j) = si + a′i1j + . . . + a′i(m′−1)j
m′−1 to compute the subshares ŝij of si,

and send ŝij to the corresponding j ∈ P ′ over private channels.

2. For each i ∈ A, use g to compute gsi , ga′i1 . . . g
a′

i(m′
−1) , and send them and gk to all j ∈ P ′ over the broadcast

channel.

3. For each j ∈ P ′, verify that:

∀i ∈ A : g
ŝij = g

si

m′−1�
l=1

(ga′il)jl

and:

g
k =

�
i∈A

(gsi)bi where bi =
�

l∈A\{i}

l

(l − i)

If the conditions hold, j broadcasts a “commit” message. Otherwise, j broadcasts an “abort” message.

4. If all j ∈ P ′ agree to commit, each j generates a new share s′j :

s
′
j = �

i∈A

biŝij where bi =
�

l∈A\{i}

l

(l − i)

and stores s′j and gk. Otherwise, they abort the protocol.

Figure 2: Protocol for the verifiable redistribution of shares of a secret from an A(m,n)
P to A(m′,n′)

P ′ access structure,
for Shamir’s threshold sharing scheme.

the shares si ∈ Zp to shareholders i ∈ P , we broadcast commitments to k and the coefficients a1 ... am−1

of a(x) of the form gk and ga
1 ... gam−1 . Each i may then verify that si is a valid share of k:

gsi = gk(ga1 )i . . . (gam−1)i
m−1

(4)

which is the exponentiation of a(x) (Equation (1)). Assuming that the computation of discrete logs is
intractable, no i can learn k or a1 ... am−1 from the commitments.

4 The VSR protocol

We present our verifiable secret redistribution protocol for secrets distributed with Shamir’s scheme. The
protocol receives shares of a secret distributed to the access structure A(m,n)

P , and outputs shares of the secret

6



distributed to a new access structure A(m′,n′)
P ′ . We assume that the computation of discrete logs in a finite field

is intractable, and that there exist reliable broadcast channels among all participants and private channels
between every pair of participants. We also assume that there are at least m non-faulty old shareholders, at
most m−1 faulty old shareholders, and n′ non-faulty new shareholders.

In the initial distribution phase (INITIAL in Figure 2), the dealer of secret k distributes shares s i to each
shareholder i ∈ P with the polynomial a(i) (INITIAL step 1). The dealer also broadcasts commitments gk

and ga1 ... gam−1 , which each i uses to verify the validity of si (Equation (4), INITIAL steps 2 and 3). If
verification passes, i stores si and gk (INITIAL step 4).

In the redistribution phase (REDIST in Figure 2), each i in an authorized subset A ∈ A
(m,n)
P uses

Shamir’s scheme (with the polynomial a′i(j)) to distribute subshares ŝij of its share si to A(m′,n′)
P ′ (REDIST

step 1). Each shareholder j ∈ P ′ receives ŝij from each i, and generates a new share s′j (Equation (3),
REDIST step 4). We may redistribute k an arbitrary number of times before we reconstruct it.

For the new shareholders to verify that their shares of the secret are valid after redistribution, we require
that two conditions, SHARES-VALID and SUBSHARES-VALID, hold. When all i ∈ A redistribute si to each
j ∈ P ′, all sj are valid shares of k if

SHARES-VALID:
k =

∑

i∈A bisi

SUBSHARES-VALID:
∀i ∈ A,A′ ∈ A

(m′,n′)
P ′ : si =

∑

j∈A′ b′j ŝij

We define a NEW-SHARES-VALID condition, which holds if new shareholders have valid shares of the
secret. We prove in Section 4.5 that NEW-SHARES-VALID holds if SHARES-VALID and SUBSHARES-VALID

hold. The definition of NEW-SHARES-VALID follows from Equation (2) for a secret distributed to A(m′,n′)
P ′ :

NEW-SHARES-VALID:
∀A′ ∈ A

(m′,n′)
P ′ : k =

∑

j∈A′ b′js
′
j

We use Feldman’s VSS scheme [Fel87] to verify that SUBSHARES-VALID holds. Each i ∈ A broadcasts
commitments to its share and the coefficients of a′i(j) (gsi and gai1 ... gai(m−1) ), which each j uses to verify
the validity of ŝij (REDIST step 2).

To allow the new shareholders to verify that SHARES-VALID holds, which together with SUBSHARES-
VALID verifies that NEW-SHARES-VALID holds, the old shareholders in our protocol broadcast a commit-
ment to the original secret. Each i ∈ A therefore stores gk (received during INITIAL) and later broadcasts
it to all j ∈ P ′. Recall that each j receives gsi from each i to verify that SUBSHARES-VALID holds. Once
each j receives gk, it verifies that si is a valid share of k:

gk =
∏

i∈A

gbisi (5)

Equation (5) follows from Equation (2) and the homomorphic properties of exponentiation. Assuming that
the computation of discrete logs is intractable, no j can learn k from gk.

4.1 Discussion

The key insight in our VSR protocol is that a naı̈ve extension of Desmedt and Jajodia’s protocol with
Feldman’s VSS scheme [DJ97, Fel87] does not in itself allow the new shareholders to verify that NEW-
SHARES-VALID holds. The difficulty arises because the VSS scheme only verifies that SUBSHARES-VALID
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holds, which in the absence of SHARES-VALID is insufficient to verify that NEW-SHARES-VALID holds.
Although Desmedt and Jajodia claim that the linear properties of their protocol and the VSS scheme ensure
that each new shareholder j generates valid shares, they implicitly assume that each shareholder i ∈ A
distributes subshares of valid share si. The VSS scheme only allows i to prove that it distributed valid
subshares of some value. However, i may have distributed “subshares” of some random value instead of
subshares of si. The same difficulty exists if one extends Desmedt and Jajodia’s protocol with Pedersen’s
VSS scheme [Ped91] in the same simple manner.

Our insight also applies to the proactive scheme presented by Frankel et al. [FGMY97a]. Their veri-
fication checks ensure that both SUBSHARES-VALID and SHARES-VALID hold during redistribution to the
same set of shareholders. However, during redistribution to new shareholders, their checks only ensure that
SUBSHARES-VALID holds. Their “proper secret” check does not ensure that SHARES-VALID holds because
it relies on a “witness” (gsiL

2
in their paper) computed from information distributed in the preceding round.

A faulty shareholder can thus distribute spurious information to the new shareholders and ultimately cause
them to accept a false witness value.

To allow new shareholders to verify that both SHARES-VALID and SUBSHARES-VALID hold, which are
sufficient to guarantee that NEW-SHARES-VALID holds, additional information tying the shares back to the
original secret must be passed to the new shareholders. In our protocol, this information is the commitment
to the original secret, gk. Each old shareholder participating in the redistribution broadcasts gk to the new
shareholders. Then gk is used to check that SHARES-VALID holds (Equation (5)).

We could augment Frankel’s PSS scheme in the same way. Each old shareholder could pass a commit-
ment to the original private key, gd, to the new shareholders, who then verify that

gd ≡ gP
∏

i∈Λ

gsizi,Λ (mod n)

holds, where si are shares, and P , zi,Λ are publicly computable (see page 5 of their paper).
As an alternative to broadcasting the commitment to the original secret, gk , each shareholder could

retain and broadcast the commitments to all shares, gs1 ... gsm . This would also allow new shareholders to
verify that SHARES-VALID holds. Any discrepancy in the commitment values would indicate the presence
of faulty shareholders. We choose to use gk for efficiency reasons.

4.2 Detecting faulty shareholders

During redistribution from an A(m,n)
P to A(m′,n′)

P ′ access structure with our VSR protocol, we assume that
at least m of the n shareholders in P and all n′ of the shareholders in P ′ are non-faulty, and that up to
m−1 shareholders in P may be faulty. We denote faulty shareholders, and the values they distribute, with
over-bars. A non-faulty shareholder i ∈ P distributes valid subshares ŝij of its share si to all shareholders
j ∈ P ′ and broadcasts gk corresponding to secret k ∈ Zp. A faulty shareholder i ∈ P may distribute invalid
subshares ŝij or broadcast gk not corresponding to k.

In order to check that the verification conditions hold, we require that certain information be made avail-
able to the new shareholders. In the redistribution protocol of Desmedt and Jajodia [DJ97], this information
is commitments gk, gsi , and gai1 ... gai(m−1) . In the PSS scheme of Frankel et al. [FGMY97a], this infor-
mation is the value gsiL

2
and gd. In the absence of a trusted information repository, the new members must

rely on the old shareholders to deliver this information. It is this process that proves to be problematic for
the pinpoint identification of faulty shareholders.

Consider redistribution from A
(m,n)
P to A(m′,n′)

P ′ . Assume that we start with a random authorized subset

A ∈ A
(m,n)
P , and recall that |A| = m. It is possible that some subset of the old shareholders in A (at most

m−1) are faulty, and will attempt to broadcast gk and ŝij . If the faulty shareholders conspire to broadcast
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the same gk , the new shareholders will detect the discrepancy in the m broadcast values, but cannot pinpoint
the faulty shareholders. The new shareholders cannot use majority voting since the majority of the old
shareholders in A may be faulty.

Assuming that up to m−1 shareholders may be faulty, any randomly selected authorized subset of m old
shareholders must contain at least one non-faulty shareholder. If the new shareholders detect discrepancies in
the commitments broadcast by the old shareholders, they can restart the redistribution protocol with another
authorized subset until all values are consistent and all verification conditions hold. For A(m,n)

P , the number
of times we must restart the redistribution protocol is bounded in the worst case by

(

n
m

)

−

(

n−m+ 1
m

)

=

m−1
∑

i=1

(

m
i

)(

n−m+ 1
m− i

)

(6)

which is simply the number of sets of size m containing at least one faulty shareholder.
The requirement that all n′ shareholders in P ′ are non-faulty is reasonable if we view the purpose of

our VSR protocol as one of detecting faulty behavior by shareholders in P . This is analogous to one of
the assumptions underlying Feldman’s VSS scheme in which the shareholders are implicitly trusted to store
valid shares (and reject invalid shares) of a secret.

4.3 Computational cost

The computational cost for each new shareholder of verification in our VSR protocol (REDIST Step 3 in
Figure 2) is O(mm′) multiplications and O(mm′) exponentiations, exclusive of the cost of computing the

commitments. Consider redistribution from an A(m,n)
P to A(m′,n′)

P ′ access structure. Each new shareholder

j ∈ P ′ performsm−1 multiplications (A ∈ A
(m,n)
P ; |A| = m) andm exponentiations to verify that SHARES-

VALID holds (Equation (5)), for a total cost of O(m); we do not include the (small) cost of computing the
powers of i. Each j also performs m′−1 multiplications (A′ ∈ AP ′ ; |A′| = m′) and m′−1 exponentiations
for m old shareholders i ∈ A to verify that SUBSHARES-VALID holds (Equation (4)), for a total cost of
O(mm′). Thus, the total cost for each j to verify that both conditions hold is O(mm ′) multiplications
and O(mm′) exponentiations, exclusive of the cost of computing the commitments. In the worst case, the
number of times we must restart the redistribution protocol is bounded by Equation (6).

4.4 Generalization to linear threshold sharing schemes

We can generalize our VSR protocol for application to linear threshold sharing schemes other than Shamir’s
scheme [Sha79]. Let K denote the secret set, and Si the share value set for shareholder i. Suppose we have
distributed shares of a secret k ∈ K with a linear scheme to the access structure A. k is then a linear
combination of the shares si ∈ Si of i in an authorized subset A ∈ A:

k =
∑

i∈A

ψi(si)

where ψi is a homomorphism from Si to K .
For the general case, we require a homomorphic commitment function C(x) that is hard to invert. We

also require that there exist reliable broadcast channels among all participants and private channels between
every pair of participants. We then use the general form of Feldman’s VSS scheme [Fel87] to verify that
SUBSHARES-VALID holds, and

C(k) =
∏

i∈A

C (ψi(si))

9



to verify that SHARES-VALID holds.

4.5 Proof of correctness

We prove that NEW-SHARES-VALID holds after redistribution if SHARES-VALID and SUBSHARES-VALID

hold. We also show that Equations (4) and (5) verify that SUBSHARES-VALID and SHARES-VALID hold.

Lemma 1 SUBSHARES-VALID holds if Equation (4) holds.

PROOF: Proved by Feldman [Fel87]. �

Lemma 2 SHARES-VALID holds if Equation (5) holds.

PROOF: Assume that Equation (5) holds. It then follows that SHARES-VALID holds from Equation (2) and
the homomorphic properties of exponentiation. �

Theorem 1 (VSR correctness) For the verifiable redistribution of shares of a secret from an A
(m,n)
P to

A
(m′,n′)
P ′ access structure for Shamir’s threshold sharing scheme [Sha79], for all secrets k ∈ Zp, and for

all authorized subsets A ∈ A
(m,n)
P , A′ ∈ A

(m′,n′)
P ′ , NEW-SHARES-VALID holds after redistribution of k with

the VSR protocol if SHARES-VALID and SUBSHARES-VALID hold.

PROOF: Assume that both SHARES-VALID and SUBSHARES-VALID hold. Then:

k =
∑

i∈A

bisi (SHARES-VALID)

=
∑

i∈A



bi
∑

j∈A′

b′j ŝij



 (SUBSHARES-VALID)

=
∑

i∈A

∑

j∈A′

bib
′

j ŝij (x(y + z) = xy + xz)

=
∑

i∈A

∑

j∈A′

b′jbiŝij (xy = yx)

=
∑

j∈A′

∑

i∈A

b′jbiŝij (x+ y = y + x)

=
∑

j∈A′

(

b′j
∑

i∈A

biŝij

)

(xy + xz = x(y + z))

=
∑

j∈A′

b′js
′

j (Equation (3))

�

Our correctness proof mirrors that for Desmedt and Jajodia’s secret redistribution protocol [DJ97].

4.6 Proof of security

We prove that an adversary cannot reconstruct a secret from a combination of shares distributed with

Shamir’s scheme to an A
(m,n)
P access structure and shares distributed to an A

(m′,n′)
P ′ access structure. In

particular, we show that an adversary who has obtained m−1 old shares and m′−1 new shares of a secret
k cannot reconstruct k (it then trivially follows that an adversary with less than m−1 old shares and less
than m′−1 new shares cannot reconstruct k). In the proof, we make use of lemmas from linear algebra
(summarized in Appendix A).
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Theorem 2 (VSR security) For the verifiable redistribution of shares of a secret from an A(m,n)
P toA(m′,n′)

P ′

access structure for Shamir’s threshold sharing scheme [Sha79], and for all secrets k ∈ Zp, the shares si of

shareholders i in any non-authorized subset A /∈ A
(m,n)
P cannot be used with the shares s′j of shareholders

j in any non-authorized subset A
′
/∈ A

(m′,n′)
P ′ to uniquely determine k.

PROOF: Assume there is a unique solution for k from the shares of shareholders in A and A
′
, where |A| =

m−1 and |A
′
| = m′−1. We show that this assumption leads to a contradiction. Suppose that we have si of

i ∈ A and s′j of j ∈ A
′
. We use Equation (1) to construct the system of equations















































1 1 · · · 1m−1 0 · · · 0
...

... · · ·
...

...
...

1 i · · · im−1
...

. . .
...

...
... · · ·

...
...

...
1 (m− 1) · · · (m− 1)

m−1
0 · · · 0

1 0 · · · 0 1 · · · 1m′
−1

1
...

...
... · · ·

...

1
...

. . .
... j · · · jm′

−1

1
...

...
... · · ·

...

1 0 · · · 0 (m′ − 1) · · · (m′ − 1)m′
−1







































































k
a1

...
am−1

a′1
...

a′m′−1

























=









































s1
...
si

...
sm−1

s′1
...
s′j
...

s′m′−1









































(7)

Let M denote the left-hand matrix in Equation (7), a the coefficient vector k, a1 ... a′m′−1, and s the
share vector. The maximum possible value for rank(M) is the number of rows (m+m ′−2, by Lemma 3 in
Appendix A), which is less than the number of values in a (m+m′−1). Also, rank(M) = rank([M|s]) since
s is a linear combination of the columns of M (by the method of share generation). Thus, we have infinitely
many solutions for a in Equation (7) (by Lemma 4 in Appendix A). We arrive at the same conclusion with

any A /∈ A
(m,n)
P such that |A| < m−1, and any A

′
/∈ A

(m′,n′)
P ′ such that |A

′
| < m′−1.

Assuming that there is a unique solution for k, we can re-write Equation (7) as















































1 · · · 1m−1 0 · · · 0
... · · ·

...
...

...

i · · · im−1
...

. . .
...

... · · ·
...

...
...

(m− 1) · · · (m− 1)
m−1

0 · · · 0

0 · · · 0 1 · · · 1m′
−1

...
...

... · · ·
...

...
. . .

... j · · · jm′
−1

...
...

... · · ·
...

0 · · · 0 (m′ − 1) · · · (m′ − 1)
m′

−1



































































a1

...
am−1

a′1
...

a′m′−1





















=









































s1 − k
...

si − k
...

sm−1 − k
s′1 − k

...
s′j − k

...
s′m′−1 − k









































(8)

Let Mk denote the left-hand matrix in Equation (8), and ak the coefficient vector a1 ... a′m′−1. Let
MUL

k
and MLR

k
denote the upper-left and lower-right square sub-matrices of Mk,
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MUL

k
=

















1 · · · 1m−1

... · · ·
...

i · · · im−1

... · · ·
...

(m− 1) · · · (m− 1)
m−1

















and MLR

k
=



















1 · · · 1m′
−1

... · · ·
...

j · · · jm′
−1

... · · ·
...

(m′ − 1) · · · (m′ − 1)
m′

−1



















We can express det(MUL

k
) as

det(MUL

k
) = 1 · · · i · · · (m− 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1m−2

... · · ·
...

i · · · im−2

... · · ·
...

(m− 1) · · · (m− 1)m−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Since the rightmost term for det(MUL

k
) is a non-zero Vandermonde determinant (all of its elements are

non-zero and pair-wise unique), and the factor 1· · ·i· · ·(m−1) is also non-zero, det(MUL

k
) is non-zero;

likewise, det(MLR

k
) is non-zero. Thus, det(Mk) is non-zero since it is simply the product of det(MUL

k
)

and det(MLR

k
) (by Lemma 6 in Appendix A).

If det(Mk) is non-zero, then Equation (8) has a unique solution for ak (by Lemma 5 in Appendix A).
If Equation (8) has a unique solution for ak, then Equation (7) has a unique solution for a (since we know
k). But we have already established that we have infinitely many solutions for a, and our assumption that
we have a unique solution for k has led to a contradiction. Thus, we cannot uniquely determine k with the
shares of shareholders in A and A

′
. �

5 Summary

We have presented a protocol to verifiably redistribute shares of secrets from an (m,n) to (m ′,n′) access
structure for Shamir’s threshold sharing scheme. A generalization of our protocol to linear sharing schemes
is also presented. We identified a vulnerability in Desmedt and Jajodia’s redistribution protocol and proved
that two conditions, SHARES-VALID and SUBSHARES-VALID, are sufficient to guarantee that new share-
holders have valid shares after redistribution. We also proved that an adversary cannot combine old shares
and new shares to reconstruct the secret, provided that the adversary has less than m old shares and m ′ new
shares. Our redistribution protocol can tolerate up to m−1 faulty old shareholders (provided that there are
at least m non-faulty old shareholders).

In contrast to proactive secret sharing in which redistribution occurs within the same set of shareholders,
verifiable secret redistribution achieves flexible secret management through redistribution of shares to dif-
ferent shareholders with a different access structure. We identified that additional verification information
must be passed to successive sets of shareholders. We pointed out that identification and removal of faulty
shareholders is not immediately possible if the new members must rely on the old shareholders to distribute
verification information. In the worst case, the number of times we must restart the redistribution protocol
to eliminate faulty shareholders is bounded by Equation (6).

The primary contribution of our work is that in our protocol, new shareholders can verify the validity of
their shares after redistribution from old to new access structures.

We have implemented a simple prototype of our protocol that uses Castro and Liskov’s Byzantine fault-
tolerance library for broadcast communications [CL99], and are currently incorporating the protocol into a
survivable storage system [XXX] to evaluate its performance costs.
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A Linear algebra lemmas

To complete the security proof, we require some lemmas (presented by Beaumont [Bea65] and Kostrikin
[Kos82]) for systems of u linear equations in v unknowns of the form

m11x1 + m12x2 + · · · + m1vxv = b1
m21x1 + m22x2 + · · · + m2vxv = b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
mu1x1 +mu2x2 + · · · +muvxv = b2

(9)

Let M and x denote the coefficient matrix and unknown vector

M =







m11 · · · m1v

...
. . .

...
mu1 · · · muv






, x =







x1
...
xv






, y =







y1
...
yu







let [M|y] denote the augmented matrix

[M|y] =







m11 · · · m1v y1
...

. . .
...

...
mu1 · · · muv yu







let rank(M) denote the rank of M (number of linearly independent columns in M), and let det(M) denote
the determinant of M.

Lemma 3 rank(M) = rank(MT ).

Lemma 4 (Kronecker-Capelli theorem) If (and only if) rank(M) = rank([M|y]), then Equation (9) has
a solution for x. Furthermore, if rank(M) < v, then Equation (9) has infinitely many solutions for x.

Lemma 5 (Cramer’s rule) If u = v and det(M) 6= 0, then Equation (9) has a unique solution for x.

Lemma 6 For u× u matrix A, v × v matrix B, and u× v matrix C:

det

([

A C

0 B

])

= det(A) det(B)

PROOF: Presented by Kostrikin [Kos82]. �

B Summary of Desmedt and Jajodia’s secret redistribution protocol

To redistribute a secret k, k ∈ Zp, from an A(m,n)
P to A(m′,n′)

P ′ access structure, using the authorized subset

A ∈ A
(m,n)
P :

1. For each i ∈ A, use the polynomial a′i(j) = si +a′i1j+ . . .+a′
i(m′−1)j

m′−1 to compute the subshares

ŝij of si, and send ŝij to the corresponding j ∈ P ′.

2. For each j ∈ P ′, generate a new share s′j by Lagrange interpolation:

s′j =
∑

i∈A

biŝij where bi =
∏

x∈A\{i}

x

(x− i)

bi are interpolation constants that may be precomputed.
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C Summary of Feldman’s VSS scheme

1. Use the polynomial a(i) = k + a1i+ . . . + am−1i
m−1 to compute the shares si of k, and send si to

the corresponding i ∈ P over private channels.

2. Use generator g to compute gk, ga1 . . . gam−1 , and broadcast them to all i ∈ P .

3. For each i ∈ P , verify that:

gsi = gk
m−1
∏

l=1

(gal)i
l

If the condition holds, i broadcasts a “commit” message. Otherwise, i broadcasts an “abort” message.
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