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Bob tosses a coin. Alice wins if she guesses right.

Alice hashes her choice: H(“tails” + long random)

before giving to Bob.

She can’t lie - she can’t make up any random string

that gives the same hash with “heads”.

Bob calls “heads” (he can’t know what Alice chose,

so can’t get an advantage).

This way Alice lost in a fair game. 3/38



Commitments - 2

Our toy example illustrated the two key properties

of a commitment scheme:

• Binding - Alice can’t go back on her word

(hash function properties)

• Hiding - Bob can’t know Alice’s choice from

the commitment (randomized)
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Commitments - 2

Our toy example illustrated the two key properties

of a commitment scheme:

• Binding - Alice can’t go back on her word

(hash function properties)

• Hiding - Bob can’t know Alice’s choice from

the commitment (randomized)

Can get the same effect using Elliptic Curve points,

or numbers ∈ ZN , instead of hash functions. Add

randomness and use hardness of (elliptic curve)

discrete log. 4/38



Pedersen commitment

Cx = rH + xG

x is the message we commit to, r is the

randomness, C is the commitment, G is the elliptic

curve “generator” point.
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Pedersen commitment

Cx = rH + xG

x is the message we commit to, r is the

randomness, C is the commitment, G is the elliptic

curve “generator” point.

But what the heck is H?

“Nothing Up My Sleeve” numbers.

But what happens to hiding and binding if

something is up my sleeve?

5/38
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NUMS and Binding

Suppose Alice knows h s.t. H = hG , and she

committed Cx = rH + xG

Now she wants to cheat and pretend she committed

to y not x

Sets

Cx = yG+rH+(x−y)G = yG+
(
r + (x − y)h−1

)
H

Pedersen commitments suffer from non-perfect

binding as shown; but are perfectly hiding for the

same reason.
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Imperfection

• Perfect hiding and Perfect binding are

incompatible

• Best we can do? One perfect, one

computational

• Pedersen are perfect hiding (see previous slide)

• If you want perfect binding, cannot use

compression (function not injective)
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Pedersen commitment miscellany

Pedersen commitments are homomorphic - I can

give you a commitment to 2 and to 3 and the sum

of the commitments is a commitment to 5. Very

useful! But not here.
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of the commitments is a commitment to 5. Very

useful! But not here.

CxA+xB = (rA + rB)H + (xA + xB)G

Keeping perfect hiding, you can extend to

commitment to a tuple with multiple NUMS

basepoints:

Cx = rH + x1G1 + x2G2 + . . . xnGn
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Zero Knowledge Proof of Knowledge

We can use a commitment scheme as a way to

prove knowledge of a secret, without revealing it.

(Notice in the telephone game, we revealed it at the

end).
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Sigma protocol
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Sigma protocol

Game setup: Alice has x s.t. P = xG , Bob has only

P

Choose k ← $, send R = kG =⇒

⇐= Choose e ← $

Calculate s = k + e × x =⇒

Game ends with Bob verifying sG? = R + eP
10/38



Sigma protocol - reasoning

Would it work without the first step?
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Sigma protocol - reasoning

Would it work without the first step? No, because

e × x doesn’t blind x to knower of e. k needed for

blinding.

Would it work without the second step? (e) No;

“key subtraction attack”:

sG? = R + P = (R ′ − P) + P = k ′G

So: k protects Alice, e protects Bob; but extra

interaction step → Alice “wins” the game without

even opening the commitment!

11/38



Schnorr protocol and signature

The generic form is:
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Schnorr protocol and signature

The generic form is:

(Prover P): Commitment =⇒
⇐= Challenge (Verifier V )

(Prover P): Response =⇒
The description of a “Sigma protocol” in the

previous was exactly the “Schnorr’s Identity

Protocol” - a method of proving knowledge of a

private key corresponding to a public key P in the

discrete log setting. This is all very nice but . . . is it

really secure?
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ZKPOK - Definitions

A Zero Knowledge Proof of Knowledge must have 3

characteristics:

Completeness

If I know the secret, I can provide a valid proof

Soundness

If I don’t know the secret, I can’t.

Zero-Knowledgeness

My proof reveals nothing other than the single bit

of information that I know the secret.
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Soundness

If the Verifier V cheats, can he extract the secret?

Here “cheats” can only mean: cheats with a Prover

P that executes as normal; we create different

Provers in different universes to find out.
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Soundness

If the Verifier V cheats, can he extract the secret?

Here “cheats” can only mean: cheats with a Prover

P that executes as normal; we create different

Provers in different universes to find out.

Yes, you read that right ,
P commits; V branches the Universe and challenges

in both; P responds in both.
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Soundness - 2
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Soundness - 2

x = s1−s2
e1−e2

15/38



Soundness - 2

x = s1−s2
e1−e2

Works due to k-reuse. The cheating verifier is called

an Extractor.
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Zero-Knowledgeness (HVZK)

The opposite task: if the Prover P cheats, can he convince the

Verifier V ? “Simulator”: he provides a transcript of the sigma

protocol (R, e, s) that verifies correctly, without knowing x .

16/38



Zero-Knowledgeness (HVZK)

The opposite task: if the Prover P cheats, can he convince the

Verifier V ? “Simulator”: he provides a transcript of the sigma

protocol (R, e, s) that verifies correctly, without knowing x .

This requires getting e from V and then rewinding, and cheating

by making a new R (see below) that will verify with the given e

and a random s.

This requires assuming “Honest Verifier” — the Verifier does not

make his challenge choice in any way dependent on the

commitment R.

16/38



Zero-Knowledgeness (HVZK)

The opposite task: if the Prover P cheats, can he convince the

Verifier V ? “Simulator”: he provides a transcript of the sigma

protocol (R, e, s) that verifies correctly, without knowing x .

This requires getting e from V and then rewinding, and cheating

by making a new R (see below) that will verify with the given e

and a random s.

This requires assuming “Honest Verifier” — the Verifier does not

make his challenge choice in any way dependent on the

commitment R.

e, s ← $, R = sG − eP

16/38



Zero-Knowledgeness (HVZK)

The opposite task: if the Prover P cheats, can he convince the

Verifier V ? “Simulator”: he provides a transcript of the sigma

protocol (R, e, s) that verifies correctly, without knowing x .

This requires getting e from V and then rewinding, and cheating

by making a new R (see below) that will verify with the given e

and a random s.

This requires assuming “Honest Verifier” — the Verifier does not

make his challenge choice in any way dependent on the

commitment R.

e, s ← $, R = sG − eP

This “proves” that zero information is conveyed, if the distribution

of fake transcripts is indistinguishable from the distribution of

genuine ones.
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Fiat-Shamir transform

• To make the protocol non-interactive, make use

of a “random oracle” (the ideal to which a

cryptographic hash function aspires)

• Hash the transcript up to that point (means R ,

but . . . )

• Schnorr signature on message m therefore

becomes: s = r + H(m|P |R)x (we include m to

go from Ident. Prot. → signature scheme).

• Hash one-wayness enforces ordering of steps in

absence of Verifier enforcement

• But - random oracle and zero knowledgeness?
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ZK with RO

Remember the “Simulator” effectively controls the

Verifier’s environment.

So the Simulator gets to cheat and “program” the

random oracle (outside Verifier’s env).

Choose s, e ← $; program RO to output e when

input is sG − eP ; give (R , s) to V.

18/38



Reduction to ECDLP

• So far we just assumed that finding x given only

P = xG is impossible, but it’s “hard”.

• “Elliptic Curve Discrete Logarithm Problem”

• It can be shown that: if an attacker can extract

the private key from a Schnorr signature, they

can also solve the ECDLP
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Reduction to ECDLP - 2

Assume we have an adversary “program” that is

able to impersonate the holder of x with success

probability ε:
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Reduction to ECDLP - 2

Assume we have an adversary “program” that is

able to impersonate the holder of x with success

probability ε:

Adversary Challenger

k ← $, send R = kG =⇒
⇐= e1 ← $

REWIND one step =⇒
⇐= e2 ← $

P(success) ' ε2; success =⇒ extract discrete log

x .
20/38



Digital signature security

• Previous slide(s) only discuss security of scheme against a

“total break” - that is to say, the exposure of the private key

from the signature.

• But there is also security against forgery; in particular we’d

like security against existential forgery under chosen

message attack

• In English - no matter how many signatures you get me to

output for a bunch of messages you maliciously choose, you

can’t create your own new signature on a new message

without my key.
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No strong security:

V : s−1 (H(m)G + rP) |x ? = r

r is x-coord; there are two points (Q,−Q) with

same x-coordinate. So (r ,−s) verifies if (r , s) does.

This is “intrinsic malleability” (see BIP66).

Security reduction (see previous) to ECDLP.

Dodgy at best? See e.g. Vaudenay “The Security of

DSA and ECDSA”.

No linearity (especially over nonces due to funky use

of x-coordinate).
22/38



Leveraging linearity

• The Schnorr signature s = k + ex is linear in

both the nonce (k) and the key (x)

• Let’s add signatures on a message m to make a

joint signature (I AND you sign):

• sAB = sA + sB = kA + kB + e(xA + xB)

• e is shared; must commit to both nonces like

e = H(RA + RB |PA + PB |m)

• Insecure! But manner of insecurity requires

thinking about interaction
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• sAB = sA + sB = kA + kB + e(xA + xB)

• e is shared; must commit to both nonces like
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Aggregation schemes

If keys P produced ephemerally, open to direct key

subtraction attack; last player can delete everyone

else’s key; disaster for multisig:
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Aggregation schemes

If keys P produced ephemerally, open to direct key

subtraction attack; last player can delete everyone

else’s key; disaster for multisig:

Pattack = P∗ − ΣPi where attacker knows privkey of

P∗.

“Derandomisation”: Constructions like

sG = R + H(Pagg|R |m)Pagg

Maintain ability to validate using only the aggregate

key while being safe from key subtraction.

See Musig paper https://eprint.iacr.org/2018/068

for details.
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Aggregation schemes - 2

• Bellare-Neven (cleaner security proof but

requires all keys for verification)

• Musig requires only one aggregated key for

verification

• Per-input aggregation, per-transaction

aggregation, per-block aggregation(?)

•
https://lists.linuxfoundation.org/pipermail/bitcoin-

dev/2018-May/015951.html
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Aggregation schemes - 3

Good summary of key facts at

https://blockstream.com/2018/01/23/musig-key-

aggregation-schnorr-signatures.html
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CoinSwap

• Break history of coins using atomicity of: spend

a coin ↔ reveal a secret

• “Atomic Cross Chain Swap” (see HTLC) not

useful for privacy

• Maxwell 2013 CoinSwap (updated) but slow and

interactive

• Schnorr + scriptless scripts (Poelstra); better

overall features
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CoinSwap in 2017

• With segwit; without Schnorr; without taproot

• “CoinSwapCS” (proof of concept):
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Adaptor signatures - 1

• Embed a secret in the nonce; from

s = k + H(m|R |P)x to

s = k + t + H(m|R + T |P)x

• Share T as “hash” of secret

• Give s ′ = k + H(m|R + T |P)x as incomplete

adaptor signature

• Verifiable; you know it’ll be a valid sig if you get

preimage of T
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Adaptor signatures - 2

A new way to swap a coin for a secret:

30/38



Adaptor sigs - 3

1. Prepare: swap keys (Musig etc.), swap txids,

swap backouts

2. Pay in (locktime asymmetry as per earlier

CoinSwap), confirm

3. Do 22AS as above; swap Rs, Alice has T

4. There are 2 adaptor sigs with same T
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Adaptor sigs - 4

5. When Alice claims her coins, the sig reveals t

and Bob completes

6. More details at

https://joinmarket.me/blog/blog/flipping-the-

scriptless-script-on-schnorr/

7. Huge advantage in deniability: any sig could be

adaptor; Schnorr musig is 1 key
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Adaptor sig in ECDSA

Recent work Malavolta et al

https://eprint.iacr.org/2018/472
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Adaptor sig in ECDSA

Recent work Malavolta et al

https://eprint.iacr.org/2018/472

Aggregated signature in ECDSA

Use Paillier’s additive homomorphism

(E (A) + E (B) = E (A + B))

2-party computation → single ECDSA signature 2

of 2

We can recreate adaptor signatures in the above

model
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Adaptor sig in ECDSA - 2

Original note at

https://lists.linuxfoundation.org/pipermail/lightning-

dev/2018-April/001221.html

1. Share keys, nonce points P ,R , Alice sends

encrypted privkey E (xA)

2. ECDH shared nonce R = kAkBG ; x-coord r

3. Bob: E (k−1
B H), xBrk

−1
B E (xA), add under enc

4. Alice: k−1
A

(
k−1
B (H + xAxBr)

)
= s
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Adaptor sigs in ECDSA - 3

Previous slide - interactive 2 of 2 multisig for

ECDSA with 1 published key – cool!
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Adaptor sigs in ECDSA - 3

Previous slide - interactive 2 of 2 multisig for

ECDSA with 1 published key – cool!

Although it did miss tech. details - don’t do that!

How to add in adaptor (T?)

Bob tweaks his RB = kBG to R∗B = kBtG

Needs to send PoDLE

35/38



Adaptor sigs in ECDSA - 4

Next, sends encryption as before with kB , so

E (adaptor) = E (s ′)
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Next, sends encryption as before with kB , so

E (adaptor) = E (s ′)

Alice decrypts and verifies s ′

Alice returns s ′′ = s ′ × k−1
A

Bob publishes (r , s) where s = s ′′ × t−1

Alice gets t = s ′′ × s−1 from on-chain sig
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Other interesting things

• Ring signatures - si = ki + H(Ri−1| . . .)xi
• AND and ORs of Sigma Protocols

• General ZKP systems - zkSNARKs,

Bulletproofs, others

• Blinded Schnorr signatures
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Thank you

Contact info:

waxwing (freenode IRC, reddit)

@waxwing (twitter)

https://github.com/AdamISZ

A blog: https://joinmarket.me/blog/blog (email in

/about-me)

gpg: 4668 9728 A9F6 4B39 1FA8 71B7 B3AE 09F1

E9A3 197A
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