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Abstract—This paper presents TumbleBit, a new uni-
directional unlinkable payment hub that is fully com-
patible with today’s Bitcoin protocol. TumbleBit allows
parties to make fast, anonymous, off-blockchain payments
through an untrusted intermediary called the Tumbler.
TumbleBit’s anonymity properties are similar to classic
Chaumian eCash: no one, not even the Tumbler, can link
a payment from its payer to its payee. Every payment
made via TumbleBit is backed by bitcoins, and comes with
a guarantee that Tumbler can neither violate anonymity,
nor steal bitcoins, nor “print money” by issuing payments
to itself. We prove the security of TumbleBit using the
real/ideal world paradigm and the random oracle model.
Security follows from the standard RSA assumption and
ECDSA unforgeability. We implement TumbleBit, mix
payments from 800 users and show that TumbleBit’s off-
blockchain payments can complete in seconds.

I. INTRODUCTION

One reason for Bitcoin’s initial popularity was the
perception of anonymity. Today, however, the sheen of
anonymity has all but worn off, dulled by a stream of
academic papers [37], [49], and a blockchain surveil-
lance industry [31], [26], that have demonstrated weak-
nesses in Bitcoin’s anonymity properties. As a result,
a new market of anonymity-enhancing services has
emerged [43], [22], [39], [1]; for instance, 1 million
USD in bitcoins are funneled through JoinMarket each
month [43]. These services promise to mix bitcoins
from a set of payers (aka, input Bitcoin addresses A)
to a set of payees (aka, output bitcoin addresses B) in a
manner that makes it difficult to determine which payer
transferred bitcoins to which payee.

To deliver on this promise, anonymity must also
be provided in the face of the anonymity-enhancing
service itself—if the service knows exactly which payer
is paying which payee, then a compromise of the service
leads to a total loss of anonymity. Compromise of
anonymity-enhancing technologies is not unknown. In
2016, for example, researchers found more than 100 Tor
nodes snooping on their users [45]. Moreover, users of
mix services must also contend with the potential risk
of “exit scams”, where an established business takes in
new payments but stops providing services. Exit scams
have been known to occur in the Bitcoin world. In 2015,
a Darknet Marketplace stole 11.7M dollars worth of
escrowed customer bitcoins [51], while btcmixers.com
mentions eight different scam mix services. Thus, it is

Ph
as

e 
1:

 
E

sc
ro

w
Ph

as
e 

2:
Pa

ym
en

t

Alice Tumbler Bob

Ph
as

e 
3:

C
as

h-
ou

t

{
{
{

Puzzle-Promise
      Protocol

Escrow Transaction Escrow Transaction

RSA-Puzzle-Solver
         Protocol

Cash-out Transaction Cash-out Transaction

Z

=Blind(   ) Z

Z

Z

Unblind(   )=ϵ

1 BTC from A to B

3 BTC 3 BTC

2 BTC 2 BTC1 BTC 1 BTC

ϵ ϵ
ϵ

= Dec   (   ) ϵ c σ

(c,   )Z

Fig. 1. Overview of the TumbleBit protocol.

crucial that anonymity-enhancing services be designed
in a manner that prevents bitcoin theft.

TumbleBit: An unlinkable payment hub. We present
TumbleBit1, a unidirectional unlinkable payment hub
that uses an untrusted intermediary, the Tumbler T ,
to enhance anonymity. Every payment made via Tum-
bleBit is backed by bitcoins. We use cryptographic
techniques to guarantee Tumbler T can neither violate
anonymity, nor steal bitcoins, nor “print money” by
issuing payments to itself. TumbleBit allows a payer
Alice A to send fast off-blockchain payments (of de-
nomination one bitcoin) to a set of payees (B1, ...,BQ)
of her choice. Because payments are performed off
the blockchain, TumbleBit also serves to scale the
volume and velocity of bitcoin-backed payments. Today,
on-blockchain bitcoin transactions suffer a latency of
≈ 10 minutes. Meanwhile, TumbleBit payments are
sent off-blockchain, via the Tumbler T , and complete
in seconds. (Our implementation completed a payment
in 1.2 seconds, on average, when T was in New York
and A and B were in Boston.)

TumbleBit Overview. TumbleBit replaces on-
blockchain payments with off-blockchain puzzle solv-
ing, where Alice A pays Bob B by providing B with the
solution to a puzzle. The puzzle z is generated through
interaction between B and T , and solved through an
interaction between A and T . Each time a puzzle is
solved, 1 bitcoin is transferred from Alice A to the
Tumbler T and finally on to Bob B.

1 Proof-of-concept implementation of TumbleBit as a classic tum-
bler: https://github.com/BUSEC/TumbleBit/

btcmixers.com
https://github.com/BUSEC/TumbleBit/


The protocol proceeds in three phases; see Figure 1.
In the on-blockchain Escrow Phase, each payer Alice
A opens a payment channel with the Tumbler T by
escrowing Q bitcoins on the blockchain. Each payee
Bob B also opens a channel with T . This involves
(1) T escrowing Q bitcoins on the blockchain, and
(2) B and T engaging in a puzzle-promise protocol
that generates up to Q puzzles for B. During the off-
blockchain Payment Phase, each payer Alice A makes
up to Q off-blockchain payments to any set of payees.
To make a payment, A interacts with T to learn the
solution to a puzzle B provided. Finally, the Cash-
Out Phase closes all payment channels. Each payee B
uses his Q′ solved puzzles (aka, TumbleBit payments)
to create an on-blockchain transaction that claims Q′
bitcoins from T ’s escrow. Each payer A also closes
her escrow with T , recovering bitcoins not used in a
payment.

Anonymity properties. TumbleBit provides unlinkabil-
ity: Given the set of escrow transactions and the set of
cash-out transactions, we define a valid configuration
as a set of payments that explains the transfer of funds
from Escrow to Cash-Out. Unlinkability ensures that
even the Tumbler T cannot distinguish the true config-
uration (i.e., the set of payments actually sent during
the Payment Phase) from any other valid configuration.

TumbleBit is therefore similar to classic Chaumian
eCash [16]. With Chaumian eCash, a payee A first
withdraws an eCash coin in exchange for money (e.g.,
USD) at an intermediary Bank, then uses the coin to
pay a payee B. Finally B redeems the eCash coin to the
Bank in exchange for money. Unlinkability ensures that
no party, not even the Bank can link the withdrawal of
an eCash coin to the redemption of that coin. TumbleBit
also provides unlinkability, with Tumbler T playing the
role of the Chaumian Bank. However, while Tumbler
T need not be trusted, the Chaumian Bank is trusted to
not (1) “print money” (i.e., issue eCash to itself) or (2)
steal money (i.e., refuse to exchange eCash coins for
money).

TumbleBit: Also a classic tumbler. TumbleBit can also
be used as a classic Bitcoin tumbler, mixing together the
transfer of one bitcoin from each of ℵ distinct payers
(Alice A) to ℵ distinct payees (Bob B). In this mode,
TumbleBit is run as in Figure 1 with the payment phase
shrunk to 30 seconds, so the protocol runs in epochs
that require two blocks added to the blockchain. As a
classic tumbler, TumbleBit provides k-anonymity within
an epoch—no one, not even the Tumbler T , can link
one of the k transfers that were successfully completed
during the epoch to a specific pair of payer and payee
(A,B).

RSA-puzzle solving. At the core of TumbleBit is our
new “RSA puzzle solver” protocol that may be of
independent interest. This protocol allows Alice A to
pay one bitcoin to T in fair exchange2 for an RSA
exponentiation of a “puzzle” value z under T ’s secret

key. Fair exchange prevents a cheating T from claiming
A’s bitcoin without solving the puzzle. Our protocol
is interesting because it is fast—solving 2048-bit RSA
puzzles faster than [36]’s fair-exchange protocol for
solving 16x16 Sudoku puzzles (Section VIII))—and
because it supports RSA. The use of RSA means that
blinding can be used to break the link between the
user providing the puzzle (i.e., Bob B) and the user
requesting its solution (e.g., payer Alice A).

Cryptographic protocols. TumbleBit is realized by
interleaving the RSA-puzzle-solver protocol with an-
other fair-exchange puzzle-promise protocol. We for-
mally prove that each protocol is a fair exchange.
Our proofs use the real/ideal paradigm in the random
oracle model (ROM) and security relies on the standard
RSA assumption and the unforgeability of ECDSA
signatures.

A. TumbleBit Features

Bitcoin compatibility. TumbleBit is fully compatible
with today’s Bitcoin protocol. To do this, we developed
(off-blockchain) cryptographic protocols that work with
the very limited set of (on-blockchain) instructions
provided by today’s Bitcoin scripts. Bitcoin scripts can
only be used to perform two cryptographic operations:
(1) validate the preimage of a hash, or (2) validate an
ECDSA signature on a Bitcoin transaction. The limited
functionality of Bitcoin scripts is likely here to stay;
indeed, the recent “DAO” theft [3] has highlighted the
inherent security risks of Ethereum’s more complex
scripting functionalities.

No coordination. In contrast to earlier work [34], [50],
if Alice A wants to pay Bob B, she need not interact
with any other TumbleBit users. Instead, A and B need
only interact with the Tumbler and each other. This
lack of coordination between TumbleBit users makes
it possible to scale our system. Our implementation has
been used to tumble payments from 800 users.

Performance. We have implemented our TumbleBit
system in C++ and python, using LibreSSL as our
cryptographic library. We have tumbled payments from
800 payers to 800 payees; the relevant transactions are
visible on the blockchain. (See Section VIII-C).Our
protocol requires 327 KB of data on the wire, and
0.6 seconds of computation on a single CPU. Thus,
performance in classic tumbler mode is limited only
by the time it takes for two blocks to be confirmed
on the blockchain and the time it takes for transactions
to be confirmed; currently, this takes ≈ 20 minutes.
Meanwhile, off-blockchain payments can complete in
seconds (Section VIII).

2True fair exchange is impossible in the standard model [46]
and thus alternatives have been proposed, such as gradual release
mechanisms, optimistic models, or use of a trusted third party. We
follow prior works that use Bitcoin for fair exchange [5], [29], [30]
and treat the blockchain as a trusted public ledger. Other works use
the term Contingent Payment or Atomic Swaps [33], [6].



Scheme Prevents Theft Anonymous Resists DoS Resists Sybils Minimum Mixing Time Bitcoin Compatible No Coordination?
Coinjoin [34] X small set × × 1 block X ×
Coinshuffle [50], [41] X small set × × 1 block X × (p2p network)
Coinparty [56] 2/3 users honest X some1 X (fees) 2 blocks X ×
XIM [12] X X X X (fees) hours X × (uses blockchain)
Mixcoin [14] TTP accountable × (TTP) X X (fees) 2 blocks X X
Blindcoin [55] TTP accountable X X X (fees) 2 blocks X X
CoinSwap [35] X × (TTP)2 X X (fees) 2 blocks X X
BSC [25] X X X X (fees) 3 blocks × X
TumbleBit X X X X (fees) 2 blocks X X

TABLE I. A COMPARISON OF BITCOIN TUMBLER SERVICES. TTP STANDS FOR TRUSTED THIRD PARTY. WE COUNT MINIMUM MIXING
TIME BY THE MINIMUM NUMBER OF BITCOIN BLOCKS. ANY MIXING SERVICE INHERENTLY REQUIRES AT LEAST ONE BLOCK.
1COINPARTY COULD ACHIEVE SOME DOS RESISTANCE BY FORCING PARTIES TO SOLVE PUZZLES BEFORE PARTICIPATING.

B. Related Work

TumbleBit is related to work proposing new anony-
mous cryptocurrencies (e.g., Zerocash [40], [9] or Mon-
ero [2]). While this research direction is very promising,
it has yet to be widely adopted by users and it is unclear
whether these can be scalable solutions. TumbleBit is
an anonymity service for Bitcoin’s existing user base.

Off-blockchain payments. When used as an unlinkable
payment hub, TumbleBit is related to off-blockchain mi-
cropayment channel networks, notably Duplex Micro-
payment Channels [17] and the Lightning Network [47].
These systems also allow for Bitcoin-backed fast off-
blockchain payments. Payments are sent via paths of
intermediaries that have pre-established pairwise escrow
transactions on the blockchain. TumbleBit (concep-
tually) does the same. However, while TumbleBit’s
intermediary (the Tumbler T ) cannot link a payment
from A to B, the intermediaries in a micropayment
channel network can link payments from A to B, thus
we achieve much stronger anonymity.

[25] proposes a protocol that adds anonymity to
micropayment channel networks. While [25] requires
scripting functionalities that are not currently supported
by Bitcoin, TumbleBit is fully compatible with Bitcoin.
Moreover, while [25] does not provide an implementa-
tion, TumbleBit has been implemented (Section VIII).
Finally, [25] requires both AliceA and Bob B to interact
with the Tumbler T as part of every off-blockchain
payment. Thus, there is a risk that the Tumbler could
correlate the timing of its interactions with A and B
in order to link their payment. Meanwhile, TumbleBit
eliminates this timing side channel by only requiring
interaction between A and T (and A and B) during an
off-blockchain payment (see Figure 1).

Finally, TumbleBit is also related to concurrent
work proposing Bolt [23], an off-blockchain unlinkable
payments channel. But while TumbleBit is fully im-
plemented and compatible with Bitcoin, Bolt has not
been implemented and employs complex scripting func-
tionalities that are not available in Bitcoin. Moreover,
Bolt’s anonymity follows because it is backed by an
anonymous cryptocurrency (e.g., zerocash [9]).

Bitcoin Tumblers. Prior work on classic Bitcoin
Tumblers is summarized in Table I-A. Blindcoin [55],
and its predecessor Mixcoin [14], use a trusted third

party (TTP) to mix Bitcoin addresses. However, this
third party can steal users’ bitcoins; theft is detected
but not prevented. In Mixcoin, the TTP can also vi-
olate anonymity. CoinSwap [35] is a fair-exchange
mixer that allows two parties to anonymously send
bitcoins through an intermediary. Fair exchange pre-
vents the CoinSwap intermediary from stealing funds.
Unlike TumbleBit, however, CoinSwap does not provide
anonymity against even an honest-but-curious interme-
diary. Coinparty [56] is another decentralized solution,
but it is secure only if 2/3 of the users are honest.

CoinShuffle [50] and CoinShuffle++[41] build on
CoinJoin [34] to provide a decentralized tumbler that
prevents bitcoin theft. Their anonymity properties are
analyzed in [38]. CoinShuffle and CoinJoin perform
their mix in a single transaction, making them particu-
larly vulnerable to DoS attacks where a user joins the
mix and then aborts, disrupting the protocol for all other
users. Decentralization also makes it easy for an attacker
to create many Sybils and trick Alice A into mixing
with them in order to deanonymize her payments [13],
[54]. Moreover, Bitcoin’s maximum transaction size
(100KB) limits these systems to 538 users per mix.
Also, because these systems are decentralized, mix users
interact via a peer-to-peer network in order to identify
each other and mix payments. This need for coordi-
nation between users causes communication to grow
quadratically [12], [13], limiting scalability; neither [50]
nor [41] performs a mix with more than 50 users.
TumbleBit sidesteps these scalability limitations by not
requiring coordination between mix users.

XIM [12] builds on fair-exchange mixers like [7].
XIM prevents bitcoin theft, and uses fees to resist DoS
and Sybil attacks—users must pay to participate in a
mix, raising the bar for attackers that disrupt the proto-
col by joining the mix and then aborting. We use fees in
TumbleBit as well. Also, an abort by a single XIM user
does not disrupt the mix for others. TumbleBit also has
this property. One of XIM’s key innovations is a method
for finding parties to participate in a mix. However, this
adds several hours to the protocol, because users must
advertise themselves as mix partners on the blockchain.
TumbleBit is faster; a tumble requires only two blocks
on the blockchain.

When used as a classic tumbler, TumbleBit and [25]
shares the same fair-exchange properties and anonymity



properties. However, unlike TumbleBit, [25] is not com-
patible with Bitcoin and does not provide an implemen-
tation. Also, [25] requires three blocks to be confirmed
on the blockchain, while TumbleBit requires two.

II. BITCOIN SCRIPTS AND SMART CONTACTS

In designing TumbleBit, our key challenge was
ensuring compatibility with today’s Bitcoin protocol.
We therefore start by reviewing Bitcoin transactions and
Bitcoin’s non-Turing-complete language Script.

Transactions. A Bitcoin user Alice A is identified by
her bitcoin address (which is a public ECDSA key),
and her bitcoins are “stored” in transactions. A single
transaction can have multiple outputs and multiple in-
puts. Bitcoins are transferred by sending the bitcoins
held in the output of one transaction to the input of a
different transaction. The blockchain exists to provide a
public record of all valid transfers. The bitcoins held
in a transaction output can only be transferred to a
single transaction input. A transaction input T3 double-
spends a transaction input T2 when both T2 and T3
point to (i.e., attempt to transfer bitcoins from) the
same transaction output T1. The security of the Bitcoin
protocol implies that double-spending transactions will
not be confirmed on the blockchain. Transactions also
include a transaction fee that is paid to the Bitcoin miner
that confirms the transaction on the blockchain. Higher
fees are paid for larger transactions. Indeed, fees for
confirming transactions on the blockchain are typically
expressed as “Satoshi-per-byte” of the transaction.

Scripts. Each transaction uses Script to determine
the conditions under which the bitcoins held in that
transaction can be moved to another transaction. We
build “smart contracts” from the following transactions:

Transaction Toffer: One party A offers to pay bitcoins
to any party that can sign a transaction that meets some
condition C. The Toffer transaction is signed by A.

Transaction Tfulfill: This transaction points to Toffer,
meets the condition C stipulated in Toffer, and contains
the public key of the party B receiving the bitcoins.

Toffer is posted to the blockchain first. When Tfulfill
is confirmed by the blockchain, the bitcoins in Tfulfill
flow from the party signing transaction Toffer to the
party signing Tfulfill. Bitcoin scripts support two types
of conditions that involve cryptographic operations:

Hashing condition: The condition C stipulated in
Toffer is: “Tfulfill must contain the preimage of value
y computed under the hash function H .” Then, Tfulfill
collects the offered bitcoin by including a value x such
that H(x) = y. (We use the OP_RIPEMD160 opcode
so that H is the RIPEMD-160 hash function.)

Signing condition: The condition C stipulated in Toffer
is: “Tfulfill must be digitally signed by a signature that
verifies under public key PK .” Then, Tfulfill fulfills
this condition if it is validly signed under PK . The

signing condition is highly restrictive: (1) today’s Bit-
coin protocol requires the signature to be ECDSA over
the Secp256k1 elliptic curve [48]—no other elliptic
curves or types of signatures are supported, and (2)
the condition specifically requires Tfulfill itself to be
signed. Thus, one could not use the signing condi-
tion to build a contract whose condition requires an
arbitrary message m to be signed by PK .3 (Tum-
bleBit uses the OP_CHECKSIG opcode, which re-
quires verification of a single signature, and the “2-of-2
multisignature” template ‘OP_2 key1 key2 OP_2
OP_CHECKMULTISIG’ which requires verification of a
signature under key1 AND a signature under key24.)

Script supports composing conditions under
“IF” and “ELSE”. Script also supports time-locking
(OP_CHECKLOCKTIMEVERIFY opcode [53]), where
Toffer also stipulates that Tfulfill has a timelock to a time
window tw . This allows the party that posted Tfulfill to
reclaim their bitcoin if Tfulfill is not spent and tw has
passed. Section VIII-A details the scripts used in our
implementation. See also Appendix I.

2-of-2 escrow. TumbleBit relies heavily on the
commonly-used 2-of-2 escrow smart contract. Suppose
that Alice A wants to put Q bitcoin in escrow to
be redeemed under the condition C2of2: “the fulfilling
transaction includes two signatures: one under public
key PK 1 AND one under PK 2.”

To do so, A first creates a multisig address
PK (1,2) for the keys PK 1 and PK 2 using the Bit-
coin createmultisig command. Then, A posts an
escrow transaction Tescr on the blockchain that sends
Q bitcoin to this new multisig address PK (1,2). The
Tescr transaction is essentially a Toffer transaction that
requires the fulfilling transaction to meet condition
C2of2. We call the fulfilling transaction Tcash the cash-
out transaction. Given that A doesn’t control both PK 1

and PK 2 (i.e., doesn’t know the corresponding secret
keys), we also timelock the Tescr transaction for a time
window tw . Thus, if a valid Tcash is not confirmed by
the blockchain within time window tw , the escrowed
bitcoins can be reclaimed by A. Therefore, A’s bitcoins
are escrowed until either (1) the time window expires
and A reclaims her bitcoins or (2) a valid Tcash is
confirmed. TumbleBit uses 2-of-2 escrow to establish
pairwise payment channels, per Figure 1.

III. TUMBLEBIT: AN UNLINKABLE PAYMENT HUB

Our goal is to allow a payer, Alice A, to unlinkably
send 1 bitcoin to a payee, Bob B. Naturally, if Alice
A signed a regular Bitcoin transaction indicating that
AddrA pays 1 bitcoin to AddrB , then the blockchain
would record a link between Alice A and Bob B

3This is why [25] is not Bitcoin-compatible. [25] requires a blind
signature to be computed over an arbitrary message. Also, ECDSA-
Secp256k1 does not support blind signatures.

4Unlike cryptographic multisignatures, a Bitcoin 2-of-2 multisig-
nature is a tuple of two distinct signatures and not a joint signature.



and anonymity could be harmed using the techniques
of [37], [49], [11]. Instead, TumbleBit funnels payments
from multiple payer-payee pairs through the Tumbler T ,
using cryptographic techniques to ensure that no one,
not even T , can link a payment to its corresponding
payer A and payee B.

A. Overview of TumbleBit’s Phases

We overview TumbleBit’s phases under the assump-
tion that Bob B receives a single payment of value
1 bitcoin. TumbleBit’s Anonymity properties require
all payments made in the system to have the same
denomination; we use 1 bitcoin for simplicity.

Appendix A shows how Bob can receive multiple
payments of denomination 1 bitcoin each. TumbleBit
has three phases (Fig 1). Off-blockchain TumbleBit pay-
ments take place during the middle so called Payment
Phase, which can last for hours or even days. Mean-
while, the first Escrow Phase sets up payment channels,
and the last Cash-Out Phase closes them down; these
two phases require on-blockchain transactions. All users
of TumbleBit know exactly when each phase begins and
ends. One simple way to coordinate is to use block
height; for instance, if the payment phase lasts for 1
day (i.e., ≈ 144 blocks) then the Escrow Phase could
be when block height is divisible by 144, and the Cash-
Out Phase could be when blockheight+1 is divisible by
144.

1: Escrow Phase. Every Alice A that wants to send
payments (and Bob B that wants to receive payments)
during the upcoming Payment Phase runs the escrow
phase with T . The escrow phase has two parts:

(a) Payee B asks the Tumbler T to setup a payment
channel. T escrows 1 bitcoin on the blockchain via
a 2-of-2 escrow transaction (Section II) denoted as
Tescr(T ,B) stipulating that 1 bitcoin can be claimed by
any transaction signed by both T and B. Tescr(T ,B) is
timelocked to time window tw2, after which T can
reclaim its bitcoin. Similarly, the payeer A escrows 1
bitcoin in a 2-of-2 escrow with T denoted as Tescr(A,T ),
timelocked for time window tw1 such that tw1 < tw2.
Upon conclusion of the puzzle-promise protocol both
the escrows are established by confirming Tescr(A,T ),
Tescr(T ,B) on Bitcoin’s blockchain.

(b) Bob B obtains a puzzle z through an off-
blockchain cryptographic protocol with T which we call
the puzzle-promise protocol. Conceptually, the output of
this protocol is a promise by T to pay 1 bitcoin to B
in exchange for the solution to a puzzle z. The puzzle
z is just an RSA encryption of a value ε

z = fRSA(ε, pk , N) = εpk mod N (1)

where pk is the TumbleBit RSA public key of the Tum-
bler T . “Solving the puzzle” is equivalent to decrypting
z and thus obtaining its “solution” ε. Meanwhile, the

“promise” c is a symmetric encryption under key ε

c = Encε(σ)

where σ is the Tumbler’s ECDSA-Secp256k1 signature
on the transaction Tcash(T ,B) which transfers the bitcoin
escrowed in Tescr(T ,B) from T to B. (We use ECDSA-
Secp256k1 for compatibility with the Bitcoin protocol.)
Thus, the solution to a puzzle z enables B to claim 1
bitcoin from T . To prevent misbehavior by the Tumbler
T , our puzzle-promise protocol requires T to provide a
proof that the puzzle solution ε is indeed the key which
decrypt the promise ciphertext c. The details of this
protocol, and its security guarantees, are in Section VI.

2: Payment Phase. Once AliceA indicates she is ready
to pay Bob B, Bob B chooses a random blinding factor
r ∈ Z∗N and blinds the puzzle to

z = rpkz mod N. (2)

Blinding ensures that no one, not even T , can link the
original puzzle z to its blinded version z. Bob B then
sends z to A. Next, A solves the blinded puzzle z via
by interacting with T . This puzzle-solver protocol is a
fair exchange that ensures that A transfers 1 bitcoin to
T iff T gives a valid solution to the puzzle z. Finally,
Alice A sends the solution to the blinded puzzle ε back
to Bob B. Bob unblinds ε to obtain the solution

ε = ε/r mod N

and accepts Alice’s payment if the solution is valid, i.e.,
εpk = z mod N .

3: Cash-Out Phase. Bob B uses the puzzle solution ε
to decrypt the ciphertext c. From the result B can create
a transaction Tcash(T ,B) that is signed by both T and B.
Bob B posts Tcash(T ,B) to the blockchain to receive 1
bitcoin from T .

Our protocol crucially relies on the algebraic prop-
erties of RSA, and RSA blinding. To make sure that the
Tumbler is using a valid RSA public key pk , TumbleBit
also has an one-time setup phase:

0: Setup. Tumbler T announces its RSA public key
pk and Bitcoin address AddrT , together with a non-
interactive zero-knowledge proof of knowledge π5 of
the corresponding RSA secret key sk . Every user of
TumbleBit validates pk using π.

B. Overview of Alice’s Interaction with the Tumbler

We now focus on the puzzle-solving protocol be-
tween A and the Tumbler T to show how TumbleBit
allows A to make many off-blockchain payments via
only two on-blockchain transactions (aiding scalability).

During the Escrow Phase, Alice opens a payment
channel with the Tumbler T by escrowing Q bitcoins in

5Such a proof could be provided using the GQ identification pro-
tocol [24] made non-interactive using the Fiat-Shamir heuristic [19]
in the random oracle model.



transaction Tescr(A,T ) on the blockchain. Each escrowed
bitcoin can be used to pay T for the solution to one
puzzle. Next, during the off-blockchain Payment Phase,
A makes off-blockchain payments to j ≤ Q payees.
Finally, during the Cash-Out Phase, Alice A pays the
Tumbler T by posting a transaction Tcash(A,T )(j) that
reflects the new allocation of bitcoins; namely, that T
holds j bitcoins, while A holds Q − i bitcoins. The
details of Alice A’s interaction with T , which are based
on a technique used in micropayment channels [44, p.
86], are as follows:

1: Escrow Phase. Alice A posts a 2-of-2 escrow
transaction Tescr(A,T ) to the blockchain that escrows Q
of Alice’s bitcoins. If no valid transaction Tcash(A,T ) is
posted before time window tw1, then all Q escrowed
bitcoins can be reclaimed by A.

2: Payment Phase. Alice A uses her escrowed bit-
coins to perform off-blockchain payments to the Tum-
ble T . For each payment, A and T engage in an
off-blockchain puzzle-solver protocol as described in
Sections V-B,V-D. Once the puzzle is solved, Alice
signs and gives to T a new transaction Tcash(A,T )(i).
Tcash(A,T )(i) points to Tescr(A,T ) and reflects the new
balance between A and T (namely that T holds i
bitcoins while A holds Q − i bitcoins). T collects a
new Tcash(A,T )(i) from A for each payment. If Alice
refuses to sign Tcash(A,T )(i), then the Tumbler refuses
to help Alice solve further puzzles. Importantly, each
Tcash(A,T )(i) for i = 1...j (for j < Q) is signed only
by Alice A but not by T , and is not posted to the
blockchain. Moreover, each Tcash(A,T )(i) points to the
same 2-of-2 escrow transaction Tescr(A,T ). At the end
of the Payment Phase, A has made j payments, and
the Tumbler T has transaction Tcash(A,T )(j), signed by
Alice A, reflecting a balance of j bitcoins for T and
Q− j bitcoins for T .

3: Cash-Out Phase. The Tumbler T claims its bit-
coins from Tescr(A,T ) by signing Tcash(A,T )(j) and
posting it to the blockchain. This fulfills the condi-
tion in Tcash(A,T ), which stipulated that the escrowed
coins be claimed by a transaction signed by both A
and T . (Notice that all the Tcash(A,T )(i) point to the
same escrow transaction Tescr(A,T ). The blockchain
will therefore only confirm one of these transactions;
otherwise, double spending would occur. Rationally,
the Tumbler T always prefers to confirm Tcash(A,T )(j)
since it transfers the maximum number of bitcoins to
T .) Because Tcash(A,T )(j) is the only transaction signed
by the Tumbler T , a cheating Alice cannot steal bitcoins
by posting a transaction that allocates fewer than j
bitcoins to the Tumbler T .

Remark: Scaling Bitcoin. A similar (but more elaborate)
technique can be applied between B and T so that only
two on-blockchain transactions suffice for Bob B to
receive an arbitrary number of off-blockchain payments.
Details are in Appendix A. Given that each party uses
two on-blockchain transactions to send/receive multiple

offline payments, Tumblebit helps Bitcoin scale.

C. TumbleBit’s Security Properties

Our threat model assumes that payers (Alice A),
payees (Bob B) and Tumbler T are all mutually distrust-
ful. The payment system should satisfy the following
security properties:

Unlinkability. Assume the Tumbler T does not collude
with other users. The view of the T consists of (1) the
set of escrow transactions established between (a) each
payer Aj and the Tumbler (Aj

escrow,ai−→ T ) and (b) the
Tumbler and each payee Bi (T escrow,bi−→ Bi), (2) the set of
puzzle-solver protocols completed with each payer Aj
during the Payment Phase, and (3) the set of cashout
transactions made by each payer Aj and each payee Bi
during the Cash-Out Phase. An interaction graph is a
mapping of payments from payers A = A1, . . . ,Aκ
to payees. An interaction graph is compatible if it
explains the view of the Tumbler T . Then, unlinka-
bility requires that compatible interaction graph which
is equally likely; anonymity therefore depends on the
number of compatible interaction graphs. A high-level
proof of how TumbleBit achieves unlinkability is in
Section VII.

Balance. The system should not be exploited to print
new money or steal money, even when parties collude.
As in [23], we call this property balance, which at high-
level establishes that no party should be able to cash-
out more bitcoins than what is dictated by the payments
that were successfully completed in the off-blockchain
Payment Phase. We discuss how our system satisfies
balance in Section VII.

DoS and Sybil protection. TumbleBit uses transaction
fees to resist DoS and Sybil attacks. Every Bitcoin
transaction can include a transaction fee that is paid
to the Bitcoin miner who confirms the transaction on
the blockchain as an incentive to confirm transactions.
However, because the Tumbler T does not trust Alice
A and Bob B, T should not be expected to pay fees
on the transactions posted during the Escrow Phase. To
this end, when Alice A establishes a payment channel
with T , she pays for both the Q escrowed in transaction
Tescr(A,T ) and for its transaction fees. Meanwhile, when
the Tumbler T and Bob B establish a payment channel,
the Q escrowed bitcoins in Tescr(T ,B) are paid in the
Tumbler T , but the transaction fees are paid by Bob B
(Section III-A). Per [12], fees raise the cost of an DoS
attack where B starts and aborts many parallel sessions,
locking T ’s bitcoins in escrow transactions. This simi-
larly provides Sybil resistance, making it expensive for
an adversary to harm anonymity by tricking a user into
entering a run of TumbleBit where all other users are
Sybils under the adversary’s control.



IV. TUMBLEBIT: ALSO A CLASSIC TUMBLER.

We can also operate TumbleBit as classic Bitcoin
Tumbler. As a classic Tumbler, TumbleBit operates in
epoches, each of which (roughly) requires two blocks
to be confirmed on the blockchain (≈ 20 mins). During
each epoch, there are exactly ℵ distinct bitcoin addresses
making payments (payers) and ℵ bitcoin addresses
receiving payments (payees). Each payment is of de-
nomination 1 bitcoin, and the mapping from payers to
payees is a bijection. During one epoch, the protocol
itself is identical to that in Section III with the following
changes: (1) the duration of the Payment Phase shrinks
to seconds (rather than hours or days); (2) each payment
channel escrows exactly Q = 1 bitcoin; and (3) every
payee Bob B receives payments at an ephemeral bitcoin
address AddrB chosen freshly for the epoch.

A. Anonymity Properties

As a classic tumbler, TumbleBit has the same bal-
ance property, but stronger anonymity: k-anonymity
within an epoch [25], [12]. Specifically, while the
blockchain reveals which payers and payees participated
in an epoch, no one (not even the Tumbler T ) can
tell which payer paid which payee during that specific
epoch. Thus, if k payments successfully completed
during an epoch, the anonymity set is of size k. (This
stronger property follows directly from our unlinkability
definition (Section III-C): there are k compatible inter-
action graphs because the interaction graph is bijection.)

Recovery from anonymity failures. It’s not always the
case that k = ℵ. The exact anonymity level achieved
in an epoch can be established only after its Cash-Out
Phase. For instance, anonymity is reduced to k = ℵ−1
if T aborts an payment made by payer Aj . We deal
with this by requiring B to uses an ephemeral Bitcoin
address AddrB in each epoch. Consider first a malicious
Tumbler T that behaves itself during the Escrow Phase
of some epoch, but then refuses to help some payer A
solve a puzzle during the Payment Phase. The payment
from A to its payee B will fail. As such, the payee
B will not be able to claim a bitcoin from T during
the Cash-Out Phase. It follows that the Tumbler can
trivially link A and B by identifying the payee that
failed to cash out. To recover from this, we follow [25]
and require B to discard his ephemeral address and
never use it again if T aborts the protocol. Note that
both B loses nothing in this case, since no funds have
been transferred from T to B. Also, A loses nothing,
since by the fair-exchange property of the puzzle-solver
protocol (Theorem 1) T only obtains a bitcoin from A
if it cooperated in solving the puzzle.

Let us now consider a non-aborting epoch with
a small anonymity set. If B is comfortable with the
size of his anonymity set, he can use standard Bitcoin
transactions to move the bitcoin from his ephemeral
address to his long-lived Bitcoin address. Otherwise,
if he thinks that the anonymity set is too small, B

can remix, i.e., choose a new fresh ephemeral address
Addr ′B and rerun the protocol where his old ephemeral
address AddrB pays his new ephemeral address Addr ′B .
Remixing can continue until B is happy with the size
of his anonymity set, and he transfers his funds to his
long-lived address.

Remark: Intersection attacks. While this notion of k-
anonymity is commonly used in Bitcoin tumblers (e.g.,
[12], [25]), it does suffer from the following weakness.
Any adversary that observes the transactions posted to
the blockchain within one epoch can learn which payers
and payees participated in that epoch. Then, this infor-
mation can be correlated to de-anonymize users across
epochs (e.g., using frequency analysis or techniques
used to break k-anonymity [20]). These ‘intersection at-
tacks’ follow because k-anonymity is composed across
epochs; see also [12], [38] for discussion.

DoS and Sybil Attacks. We once again use fees to resist
DoS and Sybil attacks. Alice again pays for both the Q
escrowed in transaction Tescr(A,T ) and for its transaction
fees. However, we run into a problem if we want Bob
B to pay the fee on the escrow transaction Tescr(T ,B).
Because Bob B uses a freshly-chosen Bitcoin address
AddrB , that is not linked to any prior transaction on
the blockchain, AddrB cannot hold any bitcoins. Thus,
Bob B will have to pay the Tumbler T out of band.
The anonymous fee vouchers described in [25] provide
one way to address this, which also has the additional
feature that payers A cover all fees. An anonymous fee
voucher is a blind signature σ that T provides to A
in exchange for a small out-of-band payment; A could
pre-purchase these vouchers in bulk, before she begins
participating in TumbleBit. Then, when A is ready to
participate, she unblinds σ to σ and provides it to B
who passes it along to T . The protocol begins once T
is sure that it was paid for its efforts.

V. A FAIR EXCHANGE FOR RSA PUZZLE SOLVING

We now explain how to realize a Bitcoin-compatible
fair-exchange where Alice A pays Tumbler T one
bitcoin iff the T provides a valid solution to an RSA
puzzle. The Tumbler T has an RSA secret key sk and
the corresponding public key pk and RSA modulus N
are public. The RSA puzzle y is provided by Alice, and
its solution is an RSA secret-key exponentiation

e = f−1RSA(y, sk , N) = ysk mod N (3)

The puzzle solution is essentially an RSA decryption or
RSA signing operation.

This protocol is at the heart of TumbleBit’s Payment
Phase. However, we also think that this protocol is
of independent interest, since there is also a growing
interest in techniques that can fairly exchange a bitcoin
for the solution to a computational “puzzle”. We there-
fore start by surveying the literature in Section V-A. In
Section V-B we present our RSA-puzzle-solver protocol



as a stand-alone protocol that requires two blocks to
be confirmed on the blockchain. Our protocol is fast—
solving 2048-bit RSA puzzles faster than [36]’s protocol
for solving 16x16 Sudoku puzzles (Section VIII)). Also,
the use of RSA means that our protocol supports solving
blinded puzzles (see equation (2), and thus can be used
to create an unlinkable payment scheme. Section V-D
shows how our protocol is integrated into TumbleBit’s
off-blockchain Payment Phase. Implementation results
are in Table II of Section VIII-B.

A. Approaches from the Literature

Contingent payments. Maxwell described a proto-
col for “zero-knowledge contingent payments” (ZKCP)
[33]. The scheme in [33] swaps one bitcoin from Alice
A in exchange for having T compute any agreed-upon
function f on an input of A’s choosing. The idea is as
follows. After T computes the result f(y) on Alice’s
input y, it encrypts the result under a randomly chosen
key k to obtain a ciphertext c, and hashes the encryption
key to obtain h = H(k). T then sends Alice A the
ciphertext c and hash h along with a zero-knowledge
(ZK) proof that they were formed correctly. (This proof
must been done in zero knowledge, because T should
not reveal k of f(y) to A before being paid with
A’s bitcoin.) After A verifies the proof, A posts a
transaction Tpuzzle offering one bitcoin under condition:
“Tsolve must contain the hash preimage of h”. T claims
the bitcoin by posting a transaction Tsolve containing k.
Now A can use k to decrypt c to obtain her desired
output f(y). This realizes a fair exchange because the
offered bitcoin reverts back to A if T fails to post a
valid Tsolve in a timely manner.

The limitations of using ZKCP in this setting arise
due to the inefficiency of the instantiations of ZK proofs.
Two main approaches exist:

ZKCP via ZK-Snarks. Recently, [36] showed how to
instantiate the ZK proofs used in this protocol with ZK-
Snarks [10]. The function f was a 16x16 Sudoku puzzle
and the resulting protocol was run and completed within
20 seconds. We could use this approach in our setting by
(1) letting f be f−1RSA, an RSA decryption/signature, and
(2) using [36]’s ZK-snark but replacing the verification
of the Sudoku puzzle with an RSA verification fRSA.
One disadvantage of this approach is that RSA verifi-
cation within a ZK-Snark is likely to be slower than
Sudoku puzzle verification because state-of-the-art ZK-
Snarks operate in prime order fields of (roughly) 254
bits. Since a 2048-bit RSA verification deals with 2048-
bit numbers, each such number has to be split up and
expressed as an array of smaller ones, making arithmetic
operations far more complicated [18]. In any case, our
protocol for RSA exponentiation is faster than [36]’s
protocol for 16x16 Sudoku puzzles (Section VIII).
Also, ZK-Snarks are only secure under less standard
cryptographic assumptions. Meanwhile, our protocol’s
security follows from the standard RSA assumption (in
the random oracle model).

ZKCP via Garbled Circuits. As an alternative to ZK-
Snarks, one could use more generic ZK proofs based
on zero-knowledge garbled circuits (GC) as shown
in [27]. While GC-based ZK proofs work reasonably
well for evaluating hash functions, they are computa-
tionally heavier for modular exponentiations (like RSA
verification) because the latter do not have a short
Boolean-circuit representation [28].

Incentivizing correct computation. [29] proposed a
different approach that also uses GCs. Two parties use
GCs to compute an arbitrary function g(a, b) without
revealing their respective inputs a and b. [29]’s protocol
has the added feature that if one party aborts before
the output is revealed, the other party is automatically
compensated with bitcoins. To use this protocol in our
setting, the function g should be f−1RSA, input a is the
RSA secret key sk of T , and b becomes the input y
chosen by A. Then, if T aborts the protocol before
A learns the output, the bitcoin offered by A can be
reclaimed by A. Again, however, the efficiency of this
approach is limited by the computational overhead of
performing modular exponentiations inside a GC.

Our protocol sidesteps these issues by avoiding ZK
proofs and GCs altogether.

B. Our (Stand-Alone) RSA-Puzzle-Solver Protocol

The following stand-alone protocol description as-
sumes Alice A wants to transfer 1 bitcoin in exchange
for one puzzle solution. We show how the protocol is
modified to support the transfer of up to Q bitcoins for
Q puzzle solutions (where each solution is worth one
bitcoin) in Section V-D.

The core idea is similar to that of contingent pay-
ments: Tumbler T solves Alice’s A’s puzzle y by
computing the solution ysk mod N , then encrypts the
solution under a randomly chosen key k to obtain a
ciphertext c, hashes the key k under bitcoin’s hash as
h = H(k) and finally, provides (c, h) to Alice. Alice A
prepares Tpuzzle offering one bitcoin in exchange for the
preimage of h. Tumbler T earns the bitcoin by posting
a transaction Tsolve that contains k, the preimage of h,
and thus fulfills the condition in Tpuzzle and claims a
bitcoin for T . Alice A learns k from Tsolve, and uses k
to decrypt c and obtain the solution to her puzzle.

Our challenge is to find a mechanism that allows A
to validate that c is the encryption of the correct value,
without using ZK proofs. We do so by applying the
cut-and-choose technique and exploiting the blinding
properties of RSA. (We follow the blueprint of Lindell’s
recent work [32]. Roughly, a malicious party can only
cheat if all of the “opened” values are correct and all
of the “hidden” ones are incorrect. This allows us to
use fewer values in order to more efficiently achieve a
better security level.)

Thus, instead of asking T to provide just one (c, h)
pair, T will be asked to provide n+m pairs (Step 3).



Public input: (pk , N ).
π proves validity of pk in a one-time-only setup phase.

Alice A Tumbler T
Input: Puzzle y Secret input: sk

1. Prepare Real Puzzles R
For i ∈ [m], pick ri ∈ Z∗N
di ← y · (ri)pk mod N

2. Prepare Fake Values F
For i ∈ [n], pick ρi ∈ Z∗N
δi ← (ρi)

pk mod N

3. Mix Sets.
Randomly permute 4. Evaluation
{d1 . . . dm, δ1 . . . δn} For i = 1 . . .m+ n

to {β1 . . . βm+n}
β1...βm+n−−−−−−→ Evaluate βi: si = βsk

i mod N
Let R be the indices of the di Encrypt the result si:
Let F be the indices of the δi – Choose random ki ∈ {0, 1}λ1

– ci = Hprg(ki)⊕ si
Commit to the keys: hi = H(ki)

c1,...,cm+n←−−−−−−−
h1,...,hm+n←−−−−−−−

5. Identify Fake Set F
F,ρi ∀i∈F−−−−−−→ 6. Check Fake Set F

For all i ∈ F :
Verify βi = (ρi)

pk mod N ,
If yes, reveal ki ∀i ∈ [F ].

7. Check Fake Set F Else abort.
For all i ∈ F , ki ∀i∈F←−−−−−

Verify that hi = H(ki)
Decrypt si = Hprg(ki)⊕ ci
Verify (si)

pk = (ρi) mod N
Abort if any check fails.

8. Post transaction Tpuzzle

Tpuzzle offers 1 bitcoin within timewindow tw1

under condition “the fulfilling transaction is
signed by T and has preimages of hj ∀j ∈ R”.

9. Check βj unblind to y ∀j ∈ R
y, rj∀j∈R−−−−−−−→ For all j ∈ R

Verify βj = y · (rj)pk mod N
If not, abort.

10. Post transaction Tsolve
Tsolve contains kj∀j ∈ R

11. Obtain Puzzle Solution
For j ∈ R:

Learn ki from Tsolve
Decrypt cj to sj = Hprg(kj)⊕ cj
If sj is s.t. (sj)

pk = βj mod N ,
Obtain solution sj/rj mod N
which is ysk .

Fig. 2. RSA puzzle solving protocol. H and Hprg are modeled as random oracles. In our implementation, H is RIPEMD-160, and Hprg is
ChaCha20 with a 128-bit key, so that λ1 = 128.



Then, we use cut and choose: A asks T to “open” n
of these pairs, by revealing the randomly-chosen keys
ki’s used to create each of the n pairs (Step 7). For
a malicious T to successfully cheat A, it would have
to correctly identify all the n “challenge” pairs and
form them properly (so it does not get caught cheating),
while at the same time malforming all the m unopened
pairs (so it can claim a bitcoin from A without actually
providing a puzzle solution in return). Since T cannot
predict which pairs A asks it to open, T can only cheat
with very low probability 1/

(
m+n
n

)
.

However, we have a problem. Why should T agree
to open any of the (c, h) values that it produced? If A
received the opening of a correctly formed (c, h) pair,
she would be able to obtain a puzzle solution without
paying a bitcoin. As such, we introduce the notion of
“fake values”. Specifically, the n (c, h)-pairs that A asks
T to open will open to “fake values” rather than “real”
puzzles. Before T agrees to open them (Step 7), A must
prove that these n values are indeed fake (Step 6).

We also need to ensure that T cannot distinguish
“real puzzles” from “fake values”. We solve this prob-
lem using RSA blinding. The real puzzle y is blinded
m times with different RSA-blinding factors (Step 1),
while the n fake values are RSA-blinded as well (Step
2). Finally, real and fake values are randomly permuted
(Step 3) before they are sent over to T . Once Alice
confirms the correctness of the opened “fake” (c, h)
values (Step 7), she signs a transaction Tpuzzle offering
one bitcoin for the keys k that open all of the m “real”
(c, h) values (Step 8).

Now, we have another problem. What if Alice
cheated, so that each of the “real” (c, h) values opened
to a the solution to a different puzzle? This would not be
fair to T , since A should pay for each solved puzzle. We
solve this problem in Step 9: once A posts Tpuzzle, she
proves to T that all m “real” values open to the same
puzzle y. This is done by revealing the RSA-blinding
factors used to blind the puzzle y. Once T verifies this,
T agrees to post Tsolve which reveals m of the k values
that open “real” (c, h) pairs (Step 10). A is guaranteed
a valid solution to puzzle y as long as at least one of
the real (c, h) pairs is validly formed (Step 11).

C. Fair Exchange

Fair exchange exchange entails the following: (1) Fair-
ness for T : After one execution of the protocol A will
learn the correct solution ysk mod N to at most one
puzzle y of her choice. (2) Fairness for A: T will earn
1 bitcoin iff A obtains a correct solution.

To prove that our protocol satisfies these requirements,
we use the real-ideal paradigm [21]. We call the ideal
functionality Ffair-RSA and present it in Appendix C.
Ffair-RSA acts like a trusted party between A and T .
Ffair-RSA receives a puzzle-solving request of the form
(y, 1 bitcoin) from A, and forwards the request to T . If

T agrees to solve the puzzle y for A, then T receives 1
bitcoin while A receives the puzzle solution. Otherwise,
if T refuses, A will get 1 bitcoin back, and T gets
nothing. Fairness for T is captured because A can
request a puzzle solution only if she sends 1 bitcoin to
Ffair-RSA. Fairness for B is captured because T receives
1 bitcoin only if he agrees to reveal the puzzle solution.
The proof of the following is in Appendix E:

Theorem 1: Let λ be the security parameter, m,n
be statistical security parameters, let N > 2λ. Let π be a
publicly verifiable zero-knowledge proof of knowledge
in the random oracle model. If the RSA assumption
holds in Z∗N , and if functions Hprg, H are independent
random oracles, there exists a negligible function ν,
such that protocol in Figure 2 securely realizes Ffair-RSA
in the random oracle model with the following security
guarantees. The security for T is 1−ν(λ) while security
for A is 1− 1

(m+n
n )
− ν(λ).

D. Solving Many Puzzles

To integrate the protocol in Figure 2 into TumbleBit,
we have to deal with three problems. First, if TumbleBit
is to scale Bitcoin as discussed in Section III-B, Alice
A needs to be able to use only two on-blockchain
transactions Tescr(A,T ) and Tcash(A,T ) to pay for the
solution of an arbitrary number of Q puzzles during the
Payment Phase (where each solution is worth 1 bitcoin);
the protocol in Figure 2 only allows for the solution
to a single puzzle. Second, recall from Section III-B
that the puzzle-solving protocol should occur entirely
off-blockchain; the protocol in Figure 2 uses two on-
blockchain transactions Tpuzzle and Tsolve. Third, the
Tsolve transactions are quite longer than a typical fulfill-
ing transaction (since they contain m hash preimages)
which means that they require higher transaction fees.
We describe how we deal with these issues.

Escrow Phase. Before puzzle solving begins, Alice
posts a 2-of-2 escrow transaction Tescr(A,T ) to the
blockchain that escrows Q bitcoins, (per Section III-B).
Tescr(A,T ) is timelocked to time window tw1, and
stipulates that the escrowed bitcoins can be transferred
to a transaction signed by both A and T .

Payment Phase. Alice can solve up to Q puzzles,
paying one bitcoin for each solution. Tumbler T keeps
a counter of how many puzzles it has solved for Alice,
making sure that the counter does not exceed Q. When
Alice wants to have her ith puzzle solved, she runs the
protocol in Figure 2 with the following modifications
after Step 8 (so that it runs entirely off-blockchain):

(1) Transaction Tpuzzle from Figure 2 now points to
the escrow transaction; Tpuzzle changes the balance so
that T holds i bitcoin and Alice A holds Q− i bitcoins.
Tpuzzle still stipulates the same condition as shown in
Figure 2: “the fulfilling transaction is signed by T and
has preimages of hj∀j ∈ R.”



(2) Because the Payment Phase is off-blockchain,
transaction Tpuzzle is not posted to the blockchain.
Instead, Alice A forms and signs transaction Tpuzzle and
sends it to the Tumbler T . Importantly, Tumbler T does
not sign or post this transaction yet. (Note that if Tpuzzle
was signed by T and confirmed on the blockchain, then
the bitcoins in Tescr(A,T ) would be transferred to Tpuzzle.
However these bitcoins would remain locked in Tpuzzle
until the blockchain confirmed a transaction fulfilling
the condition stipulated in Tpuzzle.)

(3) Instead of revealing the preimages kj∀j ∈ R in
an on-blockchain transaction Tsolve as in Figure 2, the
Tumbler T just sends the preimages directly to Alice.

(4) Finally, Alice A checks that the preimages open
a valid puzzle solution. If so, Alice signs a regular cash-
out transaction Tcash(A,T ) (per Section III-B). Tcash(A,T )

points to the escrow transaction Tescr(A,T ) and reflects
the new balance between A and T .

At the end of the ith payment, the Tumbler T should
have two new signed transactions from Alice: Tpuzzle(i)
and Tcash(A,T )(i), each reflecting the (same) balance of
bitcoins between T (holding i bitcoins) and A (holding
Q−i bitcoins). However, Alice A already has her puzzle
solution at this point (step (4) modification above). What
if she refuses to sign Tcash(A,T )(i)?

In this case, the Tumbler immediately begins to
cash out, even without waiting for the Cash-Out Phase.
Specifically, Tumbler T holds transaction Tpuzzle(i),
signed by A, which reflects a correct balance of i
bitcoins to T and Q − i bitcoins to A. Thus, T signs
Tpuzzle(i) and posts it to the blockchain. Then, T claims
the bitcoins locked in Tpuzzle(i) by signing and posting
transaction Tsolve. As in Figure 2, Tsolve fulfills Tpuzzle
by containing the m preimages kj∀j ∈ R. The bitcoin
in Tescr(A,T ) will be transferred to Tpuzzle and then to
Tsolve and thus to the Tumbler T . The only harm done
is that T posts two longer transactions Tpuzzle,Tsolve
(instead of just Tcash(A,T )), which require higher fees
to be confirmed on the blockchain. (Indeed, this is why
we have introduced the Tcash(A,T )(i) transaction.)

Cash-Out Phase. Alice has j puzzle solutions once
the the Payment Phase is over and the Cash-Out Phase
begins. If the Tumbler T has a transaction Tcash(A,T )(j)
signed by Alice, the Tumbler T just signs and post this
transaction to the blockchain, claiming its j bitcoins.

While we have described this protocol in the context
of TumbleBit, it also stands alone as a fair-exchange
protocol that uses only two on-blockchain transactions
solve an arbitrary number of RSA puzzles. We im-
plement this protocol and evaluate its performance in
Table II and Section VIII-B.

VI. PUZZLE-PROMISE PROTOCOL

We present the puzzle-promise protocol run be-
tween B and T in the Escrow Phase. Recall from

Section III-A, that the goal of this protocol is to
provide Bob B with a puzzle-promise pair (c, z). The
“promise” c is an encryption (under key ε) of the
Tumbler’s ECDSA-Secp256k1 signature σ on the trans-
action Tcash(T ,B) which transfers the bitcoin escrowed
in Tcash(T ,B) from T to B. Meanwhile the RSA-puzzle
z hides the encryption key ε per equation (1).

If Tumbler T just sent a pair (c, z) to Bob, then
Bob has no guarantee that the promise c is actually
encrypting the correct signature, or that z is actually
hiding the correct encryption key. On the other hand, T
cannot just reveal the signature σ directly, because Bob
could use σ to claim the bitcoin escrowed in Tescr(T ,B)
without actually being paid (off-blockchain) by Alice A
during TumbleBit’s Payment Phase.

To solve this problem, we again use a Lindell-
style [32] cut-and-choose technique: we ask T to com-
pute many puzzle-promise pairs (ci, zi), and have B
test that some of the pairs are computed correctly. As
in Section V-B, we use “fake” transactions (that will
be “opened” and used only to check if the other party
has cheated) and “real” transactions (that remain “un-
opened” and result in correctly-formed puzzle-promise
pairs). Cut-and-choose guarantees that Bob B knows
that at least one of the unopened pairs is correct formed.
However, how does Bob B know which puzzle zi is
correctly formed? Importantly, Bob can only choose
one puzzle zi that he will ask Alice A to solve during
TumbleBit’s Payment Phase (Section III-A). To deal
with this, we introduce an RSA quotient-chain technique
that ties together all puzzles zi so that solving one
puzzle zj1 gives the solution to all other puzzles.

In this section, we assume that B wishes to obtain
only a single payment of denomination 1 bitcoin; the
protocol as described in Figure 3 and Section VI-A
suffices to run TumbleBit as a classic tumbler. We
discuss its security properties in Section VI-B and
implementation in Section VIII-B. In Appendix A and
Figure 5, we show how to modify this protocol so
that it allows B to receive arbitrary number of Q
off-blockchain payments using only two on-blockchain
transactions.

A. Protocol Walk Through

B prepares µ distinct “real” transactions and η
“fake” transactions, hides them by hashing them with
H ′ (Step 2-3), permutes them (Step 4), and finally sends
them to T as β1, ..., βm+n. In Step 5, T signs each βi
to create an ECDSA-Secp256k1 signature σi. Each σi is
then hidden inside an promise ci which can decrypted
with key εi. Finally, T hides each εi (the encryption
keys) in an RSA puzzle zi per equation (1). As each εi is
uniformly chosen at random, puzzle zi computationally
hides its solution εi, under the RSA assumption 6

6Since we model hash functions as random oracles we can prove
εi is computationally hidden when the hash of εi encrypts σi to ci.



Next, B needs to check that the η “fake” (ci, zi)
pairs are correctly formed by T (Step 8). To do this,
B needs T to provide the solutions εi to the puzzles
zi in fake pairs. T reveals these solutions only after
B has proved that the η pairs really are fake (Step 7).
Once this check is done, B knows that T can cheat with
probability less than 1/

(
µ+η
η

)
.

Now we need our new trick. We want to ensure that
if at least one of the “real” (ci, zi) pairs opens to a valid
ECDSA-Secp256k1 signature σi, then just one puzzle
solution εi with i ∈ R, can be used to open this pair.
(We need this because B must decide which puzzle zi
to give to the payer A for decryption without knowing
which pair (ci, zi) is validly formed.) We solve this by
having T provide B with µ− 1 quotients (Step 9).

q2 =
εj2
εj1
, , . . . , qµ =

εjµ
εjµ−1

mod N

where {j1, . . . , jµ} = R are the indices for the “real”
values. This solves our problem since knowledge of
ε = εj1 allows B to recover of all other εji , since

εji = ε1 · q2·, . . . , ·qi

On the flip side, what if B obtains more than one valid
ECDSA-Secp256k1 signatures by opening the (ci, zi)
pairs? Fortunately, however, we don’t need to worry
about this. The escrow transaction Tescr(T ,B) offers 1
bitcoin in exchange for a ECDSA-Secp256k1 signature
under an ephemeral key PK eph

T used only once during
this protocol execution with this specific payee B. Thus,
even if B gets many signatures, only one can be used
to form the cash-out transaction Tcash(T ,B) that redeems
the bitcoin escrowed in Tescr(T ,B).

B. Security Properties

We again capture the security requirements of the
puzzle-promise protocol using real-ideal paradigm [21].
The ideal functionality Fpromise-sign is presented in Ap-
pendix D. Fpromise-sign is designed to guarantee the
following properties: (1) Fairness for T : Bob B learns
nothing except signatures on fake transactions. (2) Fair-
ness for B: If T agrees to complete the protocol, then
Bob B obtains at least one puzzle-promise pair. To do
this, Fpromise-sign acts a trusted party between B and
T . Bob B sends the “real” and “fake” transactions to
Fpromise-sign. Fpromise-sign has access to an oracle that can
compute the Tumbler’s T signatures on any messages.
(This provides property (2).) Then, if Tumbler T says it
agrees, then Fpromise-sign provides Bob B with signatures
on each “fake” transaction only. (This provides property
(1).) The proof of the following is in in Appendix F:

Theorem 2: Let λ be the security parameter. If
RSA trapdoor function is hard in Z∗N , if H,H ′, Hshk

are independent random oracles, if ECDSA is strong
existentially unforgeable signature scheme, then the
puzzle-promise protocol in Figure 3 securely realizes

the Fpromise-sign functionality. The security for T is
1− ν(λ) while security for B is 1− 1

(µ+ηη )
− ν(λ).

VII. TUMBLEBIT SECURITY

We discuss TumbleBit’s unlinkability and balance
properties. See Section III-C for DoS/Sybil resistance.

A. Unlinkability

Unlinkability is defined in Section III-C. The prop-
erty must hold against a malicious T ∗ that does not
collude with other users. We show that all interaction
graphs G compatible with T ∗’s view are equally likely.
The view of T ∗ consists of (1) the escrow transactions
and puzzle-promise protocols played with B1, . . . ,Bι
from the Escrow Phase; (2) the puzzle-solver proto-
cols played in the Payment Phase with A1, . . . ,Aκ;
(3) the cash-out transactions in the Cash-Out Phase.
Recall from Section III-C that a compatible interaction
graph G is a mapping between players A1, . . . ,Aκ and
B1, . . . ,Bι that can explain the escrow and cash-out
transactions performed by Aj’s and Bi’s.

First, note that all TumbleBit payments have the
same denomination (1 bitcoin). Thus, T ∗ cannot learn
anything by correlating the values in the transactions.
Next, recall from Section III-A, that all users of Tum-
bleBit coordinate on phases and epochs. Escrow trans-
actions are posted at the same time, during the Escrow
Phase only. All Tescr(T ,B) cash-out transactions are
posted during the Cash-Out Phase only. All payments
made from Ai and Bj occur during the Payment Phase
only, and payments involve no direct interaction be-
tween T and B. This rules out timing attacks where the
Tumbler purposely delays or speeds up its interaction
with some payer Aj , with the goal of distinguishing
some behavior at the intended payee Bi. Even if the
Tumbler T ∗ decides to cash-out with Aj before the
Payment Phase completes (as is done in Section V-D
when Aj misbehaves), all the Bi still cash out at the
same time, during the Cash-Out Phase.

Next, observe that transcripts of the puzzle-
promise and puzzle-solver protocols are information-
theoretically unlinkable. This follows because the puz-
zle z used by any Aj in the puzzle-solver protocol is
equally likely to be the blinding of any of the puzzles z
that appear in the puzzle-promise protocols played with
any Bi (see Section III-A, equation (2)).

Finally, we assume secure channels, so that T ∗
cannot eavesdrop on communication between Aj’s and
Bi’s, and that T ∗ cannot use network information to cor-
relate Aj’s and Bi’s (by e.g., observing that they share
the same IP address). Then, the above two observations
imply that all interaction graphs, compatible with the
view of T ∗, are equally likely.



Public input: (pk , N,PK eph
T , π).

Tumbler T chooses fresh ephemeral ECDSA-Secp256k1 key, i.e., bitcoin address (SK eph
T ,PK eph

T ).
π proves validity of pk in a one-time-only setup phase.

Bob B Tumbler T . Secret input: sk

1. Set up Tescr(T ,B)
Sign but do not post transaction Tescr(T ,B)
timelocked for tw2 offering one bitcoin
under the condition: “the fulfilling transaction
must be signed under key PK eph

T and
2. Prepare µ Real Unsigned Tcash(T ,B). under key PKB.”

For i ∈ 1, . . . , µ:
Tescr(T ,B)←−−−−−−

Choose random pad ρi ← {0, 1}λ
Set Tcash(T ,B)

i = CashOutTFormat||ρi
hti = H ′(Tfulfill

i).

3. Prepare Fake Set.
For i ∈ 1, . . . , η:

Choose random pad ri ← {0, 1}λ
fti = H ′(FakeFormat||ri).

4. Mix Sets.
Randomly permute
{ft1, ..., ftη, ht1, ..., htµ}

to obtain {β1, ...βµ+η}
Let R be the indices of the hti
Let F be the indices of the fti

β1...βµ+η−−−−−−→
Choose salt ∈ {0, 1}λ
Compute: hR = H(salt||R)

hF = H(salt||F ) 5. Evaluation.
hR,hF−−−−→ For i = 1, . . . , µ+ η:

ECDSA sign βi to get σi = Sig(SK eph
T , βi)

Randomly choose εi ∈ ZN .
Create promise ci = Hshk(εi)⊕ σi
Create puzzle zi=fRSA(εi, pk , N)

(c1,z1),...(cµ+η,zµ+η)←−−−−−−−−−−−−−− i.e., zi = (εi)
pk mod N

6. Identify Fake Set.
R,F−−→

ri ∀i∈F−−−−−→
salt−−→ 7. Check Fake Set.

Check hR = H(salt||R) and hF = H(salt||F )
For all i ∈ F :

8. Check Fake Set. verify βi = H ′(FakeFormat||ri).
For all i ∈ F εi ∀i∈F←−−−−− Abort if any check fails
- Validate that εi < N
- Validate RSA puzzle zi = (εi)

pk mod N
- Validate promise ci:

(a) Decrypt σi = Hprg(εi)⊕ ci
(b) Verify σi, i.e.,
ECDSA-Ver(PK eph

T , H ′(fti), σi) = 1 9. Prepare Quotients.
Abort if any check fails For R = {j1, ..., jµ}:

q2,...,qµ←−−−−− set q2 =
εj2
εj1
, ..., qµ =

εjµ
εjµ−1

10. Quotient Test.
For R = {j1, ..., jµ} check equalities:
zj2 = zj1 · (q2)pk mod N
...
zjµ = zjµ−1 · (qµ)pk mod N

Abort if any check fails 11. Post transaction Tescr(T ,B) on blockchain

12. Begin Payment Phase.
Set z = zj1 . Send z̄ = z · (r)pk to Payer A

Fig. 3. Puzzle-promise protocol when Q = 1. (sk , (pk , N)) are the RSA keys for the tumbler T . (Sig, ECDSA-Ver) is an ECDSA-
Secp256k1 signature scheme. We model H,H′ and Hshk as random oracles. In our implementation, H is HMAC-SHA256 (keyed with salt)
. H′ is ‘Hash256’, i.e., SHA-256 cascaded with itself, which is the hash function used in Bitcoin’s “hash-and-sign” paradigm with ECDSA-
Secp256k1. Hshk is SHA-512. CashOutTFormat is shorthand for the unsigned portion of a transaction that fulfills Tescr(T ,B). The protocol
appends a random pad to CashOutTFormat. FakeFormat is a distinguishable string known to all parties.



B. Balance

The definition of balance was discussed, at high-
level, in Section III-C. We analyze balance in two cases.

Tumbler T ∗ is corrupt. We want to show that all the
bitcoins paid to T by all Aj’s can be later claimed
by the Bi’s. (That is, a malicious T ∗ cannot refuse a
payment to Bob after being paid by Alice.) This follows
from (1) the fairness of the puzzle-promise and puzzle-
solver protocols, and (2) the timelocks on transactions
Tescr(A,T ) (timelock tw1) and Tescr(T ,B) (timelock tw2).
If Bi successfully completes the puzzle-promise proto-
col with T ∗, then fairness guarantees that Bi obtained
a correct “promise” c and puzzle z. Meanwhile, the
fairness of the puzzle-solver protocol guarantees that
each Aj obtains a correct puzzle solution in exchange
for her bitcoin. Thus, for any puzzle z solved, some Bi
can open a promise c and form the cash-out transaction
Tcash(T ,B) that allows Bi to claim one bitcoin. Moreover,
the timelocks tw1 < tw2 ensure that either (1) T ∗
solves A’s puzzle or (2) A reclaims the bitcoins in
Tescr(A,T ) (timelock tw1), before T can attempt to (3)
steal a bitcoin by reclaiming the bitcoins escrowed in
Tescr(T ,B) (timelock tw2).

CaseA∗j and B∗i are corrupt. Consider colluding payers
B∗i and payees A∗j . We show that the sum of bitcoins
cashed out by all B∗i is no more than the number of
puzzles solved by T in the Payment Phase with all A∗j .

First, the fairness of the puzzle-promise protocol
guarantees that any B∗i learns only (c, z) pairs; thus,
by the unforgeability of ECDSA signatures and the
hardness of solving RSA puzzles, B∗ cannot claim
any bitcoin at the end of the Escrow Phase. Next, the
fairness of the puzzle-solver protocol guarantees that
if T completes SPj successful puzzle-solver protocol
executions with A∗j , then A∗j gets the solution to exactly
SPj puzzles. Payees B∗i use the solved puzzles to
claim bitcoins from T . By the unforgeability of ECDSA
signatures (and assuming that the blockchain prevents
double-spending), all colluding B∗i cash-out no more
than min(

∑
j SPj , t) bitcoin in total, where t is the

total number of bitcoins escrowed by T across all B∗i .

VIII. IMPLEMENTATION

To show that TumbleBit is performant and com-
patible with Bitcoin, we implemented TumbleBit as a
classic tumbler. (That is, each payer and payee can
send/receive Q = 1 payment/epoch.) We then used
TumbleBit to mix bitcoins from 800 payers (Alice
A) to 800 payees (Bob B). We describe how our
implementation instantiates our TumbleBit protocols.
We then measure the off-blockchain performance, i.e.,
compute time, running time, and bandwidth consumed.
Finally, we describe two full-fledged on-blockchain tests
of TumbleBit.

TABLE III. AVERAGE OFF-BLOCKCHAIN RUNNING TIMES OF
TUMBLEBIT’S PHASES, IN SECONDS. (100 TRIALS)

Compute
Time

Running Time
(Boston-New York-Toronto)

Running Time
(Boston-Frankfurt-Tokyo)

Escrow 0.2052 0.3303 1.5503
Payment 0.3878 1.1352 4.3455
Cash-Out 0.0046 0.0069 0.0068

A. Protocol Instantiation

We instantiated our protocols with 2048-bit RSA.
The hash functions and signatures are instantiated as
described in the captions to Figure 2 and Figure 3.7

Choosing m and n in the puzzle-solving protocol. Per
Theorem 1, the probability that T can cheat is param-
eterized by 1/

(
m+n
m

)
where m is the number of “real”

values and n is the number of “fake” values in Figure 2.
From a security perspective, we want m and n to be
as large as possible, but in practice we are constrained
by the Bitcoin protocol. Our main constraint is that m
RIPEMD-160 hash outputs must be stored in Tpuzzle
of our puzzle-solver protocol. Bitcoin P2SH scripts
(as described below) are limited in size to 520 bytes,
which means m ≤ 21. Increasing m also increases the
transaction fees. Fortunately, n is not constrained by the
Bitcoin protocol; increasing n only means we perform
more off-blockchain RSA exponentiations. Therefore,
we chose m = 15 and n = 285 to bound T ’s
cheating probability to 2−80. (2−80 equals RIPEMD-
160’s collision probability.)

Choosing µ and η in the puzzle-promise protocol.
Theorem 2 also allows T to cheat with probability
1/
(
µ+η
µ

)
. However, this protocol has no Bitcoin-related

constraints on µ and η. Thus, we take µ = η = 42 to
achieve a security level of 2−80 while minimizing the
number of off-blockchain RSA computations performed
in Figure 3 (which is µ+ η).

Scripts. By default, Bitcoin clients and miners only
operate on transactions that fall into one of the five
standard Bitcoin transaction templates. We therefore
conform to the Pay-To-Script-Hash (P2SH) [4] tem-
plate. To format transaction Toffer (per Section II) as
a P2SH, we specify a redeem script (written in Script)
whose condition C must be met to fulfill the transaction.
This redeem script is hashed and stored in transaction
Toffer. To transfer funds out of Toffer, a transaction Tfulfill
is constructed. Tfulfill includes (1) the redeem script and
(2) a set of input values that the redeem script is run
against. To programmatically validate that Tfulfill can
fulfill Toffer, the redeem script Tfulfill is hashed, and

7There were slight difference between our protocols as described
in this paper and the implementation used in some of the tests. In
Figure 2, A reveals blinds rj∀j ∈ R to T , our implementation
instead reveals an encrypted version rpkj ∀j ∈ R. This change does
not affect performance, since A hold both rj and rpkj . Also, our
implementation omits the index hashes hR and hF from Figure 3;
these are two 256-bit hash outputs and thus should not significantly
affect performance either. We have since removed this differences
from our implementation.



TABLE II. AVERAGE PERFORMANCE OF RSA-PUZZLE-SOLVER AND CLASSIC TUMBLER, IN SECONDS. (100 TRIALS).
Compute
Time

Running Time
(Boston-New York)

RTT
(Boston-New York)

Running Time
(Boston-Tokyo)

RTT
(Boston-Tokyo) Bandwidth

RSA-puzzle-solving protocol 0.398 0.846 0.007949 4.18 0.186 269 KB
Classic Tumbler (in clear) 0.614 1.190 0.008036 5.99 0.187 326 KB
Classic Tumbler (B over Tor) 0.614 3.10 0.0875 8.37 0.273 342 KB
Classic Tumbler (Both over Tor) 0.614 6.84 0.0875 10.8 0.273 384 KB

the resulting hash value is compared to the hash value
stored in Toffer. If these match, the redeem script is run
against the input values in Tfulfill. Tfulfill fulfills Toffer if
the redeem script outputs true. All our redeem scripts
include a time-locked refund condition, that allows the
party offering Toffer to reclaim the funds after a time
window expires. To do so, the party signs and posts
a refund transaction Trefund that points to Toffer and
reclaims the funds locked in Toffer. We reproduce our
scripts in Appendix I.

B. Off-Blockchain Performance Evaluation

We evaluate the performance for a run of our proto-
cols between one payer Alice A, one payee Bob B and
the Tumbler T . We used several machines for our tests:
an EC2 t2.medium instance in Tokyo (2 Cores at 2.50
GHz and 4 GB of RAM), a MacBook Pro in Boston (2.8
GHz processor and 16 GB RAM), and Digital Ocean
nodes in New York, Toronto and Frankfurt (1 Core at
2.40 GHz and 512 MB RAM).

Puzzle-solver protocol (Table II). The total network
bandwidth consumed by our protocol was 269 Kb,
which is roughly 1/8th the size of the “average web-
page” per [52] (2212 Kb). Next, we test the total (off-
blockchain) computation time for our puzzle-solver pro-
tocol (Section V-B) by running both parties (A and T )
on the Boston machine. We test the impact of network
latency by running A in Boston and T in Tokyo, and
then with T in New York. (The average Boston-to-
Tokyo Round Trip Times (RTT) was 187 ms and the
Boston-to-New York RTT was 9 ms.) From Table II, we
see the protocol completes in < 4 seconds, with running
time dominated by network latency. Indeed, even when
A and T are very far apart, our 2048-bit RSA puzzle
solving protocol is still faster than [36]’s 16x16 Sudoku
puzzle solving protocol, which takes 20 seconds.

TumbleBit as a classic tumbler (Table II). Next,
we consider classic Tumbler mode (Section IV). We
consider a scenario where A and B use the same
machine, because Alice A wants anonymize her bitcoin
by transferring it to a fresh ephemeral bitcoin address
that she controls. Thus, we run (1) A and B in Boston
and T in Tokyo, and (2) A and B in Boston and T
in New York. To prevent the Tumbler T for linking
A and B via their IP address, we also tested with
(a) B connecting to T over Tor, and (b) both A and
B connected through Tor. Per Table II, running time
is bound by network latency, but is < 11 seconds
even with when both parties connect to Tokyo over
Tor. Connecting to New York (in clear) results in ≈ 1
second running time. Compute time is only 0.6 seconds,

again measured by running A, B and T on the Boston
machine. Thus, TumbleBit’s performance, as a classic
Tumbler, is bound by the time it takes to confirm 2
blocks on the blockchain (≈ 20 minutes).

Performance of TumbleBit’s Phases. (Table II) Next,
we break out the performance of each of TumbleBit’s
phases when Q = 1. We start by measuring compute
time by running all A, B and T on the Boston machine.
Then, we locate each party on different machines. We
first set A in Toronto, B in Boston and T in New York
and get RTTs to be 22 ms from Boston to New York, 23
ms from New York to Toronto, and 55 ms from Toronto
to Boston. Then we set A in Frankfurt, B in Boston and
T in Tokyo and get RTTs to be 106 ms from Boston
to Frankfurt, 240 ms from Frankfurt to Tokyo, and 197
ms from Tokyo to Boston. An off-blockchain payment
in the Payment Phase completes in under 5 seconds and
most of the running time is due to network latency.

C. Blockchain Tests

Our on-blockchain tests use TumbleBit as a classic
tumbler, where payers pay themselves into a fresh
ephemeral Bitcoin address. All transactions are visible
on the blockchain. Transaction IDs (TXIDs) are hyper-
linked below. The denomination of each TumbleBit pay-
ment (i.e., the price of puzzle solution) was 0.0000769
BTC (roughly $0.04 USD on 8/15/2016). Table IV
details the size and fees8used for each transaction.

TABLE IV. TRANSACTION SIZES AND FEES.

Transaction Size Satoshi/byte Fee (in BTC)
Tescr 190B 30 0.000057
Tcash 447B 30 0.000134
Trefund for Tescr 373B 30 0.000111
Tpuzzle 447B 15 0.000067
Tsolve 907B 15 0.000136
Trefund for Tpuzzle 651B 20 0.000130

Test where everyone behaves. In our first test, all
parties completed the protocol without aborting. We
tumbled 800 payments between ℵ = 800 payers and
ℵ = 800 payees, resulting in 3200 transactions posted
to the blockchain and a k-anonymity of k = 800.The
puzzle-promise escrow transactions Tescr(T ,B) are all
funded from this TXID and the puzzler-solver escrow
transactions Tescr(A,T ) are all funded from this TXID.
This test completed in 23 blocks in total, with Escrow

8We use a lower transaction fee rate of 15 Satoshi/byte (see
Table IV) for Tpuzzle and Tsolve because we are in less of hurry to
have them confirmed. Specifically, if A refuses to sign Tcash(A,T ),
then T ends the Payment Phase with A early (even before the Cash-
Out Phase begins), and immediately posts Tpuzzle and then Tsolve to
the blockchain. See Section V-D.

https://blockchain.info/tx/fd51bd844202ef050f1fbe0563e3babd2df3c3694b61af39ac811ad14f52b233
https://blockchain.info/tx/8520da7116a1e634baf415280fdac45f96e680270ea06810512531a783f0c9f6


Phase completing in 16 blocks, Payment Phase taking
1 block, and Cash-Out Phase completing in 6 blocks.

We note, however, that our protocol could also
have completed much faster, e.g., with 1 block for the
Escrow Phase, and 1 block for the Cash Out Phase. A
Bitcoin block can typically hold ≈ 5260 of our 2-of-2
escrow transactions Tescr and ≈ 2440 of our cash-out
transaction Tcash. We could increase transaction fees to
make sure that our Escrow Phase and Cash-Out phase
(each confirming 2 × 800 transactions) occur within
one block. In our tests, we used fairly conservative
transaction fees (Table IV). While the exact fees needed
vary from minute to minute, doubling our fees to 60
Satoshi per Byte should be sufficient under standard
transaction volume.9 As a classic Tumbler, we therefore
expect TumbleBit to have a higher denomination than
the 0.0000769 BTC we used for our test. For instance,
transaction fees of 60 Satoshi per Byte (0.0007644
BTC/user) are ≈ 1/1000 of a denomination of 0.5 BTC.

Test with uncooperative behavior. Our second run of
only 10 users (5 payers and 5 payees) demonstrates
how fair exchange is enforced in the face of uncooper-
ative or malicious parties. Transactions Tescr(A,T ) and
Tpuzzle were timelocked for 10 blocks and Tescr(T ,B)
was timelocked for 15 blocks. All escrow transactions
Tescr(A,T ) are funded by TXID and all escrow trans-
actions Tescr(T ,B) are funded by TXID. Two payer-
payee pairs completed the protocol successfully. For the
remaining three pairs, some player aborted the protocol:

425500

425502
Escrow Phase
Tescrow(A, T) & Tescrow(T, B)

425505

425507

{Cashout Phase
Tcashout(A, T) & Tcashout(T, B)
Case 2 & 3: Tpuzzle
Case 3: Tsolve

425509

425511
Case 1: Tescrow(A, T) Refund
Case 2: Tpuzzle Refund 

Block Height {

{

425514 {

 Case 1 & 2: Tescrow(T, B) Refund 
425527

Fig. 4. Timeline of test with uncooperative behavior, showing block
height when each transaction was confirmed.
Case 1: The Tumbler T (or, equivalently, Alice A1)
refused to cooperate after the Escrow Phase. Alice A1

8This test, all escrow transactions Tescr(A,T ) and Tcash(T ,B) had
the same timelock tw2 and Tpuzzle had a timelock of tw1, where
tw1 < tw2. Also, we also modify the protocol description in in Step
(2) of Section V-D to have both A and T sign Tpuzzle during the
Payment Phase without posting it to the blockchain. (We can do this
because Alice is only making a single payment in this epoch (i.e.,
Q = 1).) Then, if a malicious Tumbler tried to from steal bitcoins
(per the ‘Tumbler is corrupt’ case of Section VII-B), A could protect
herself by posting Tpuzzle to the blockchain, and reclaim the bitcoins
locked in Tpuzzle after its timelock tw1 expires, but prior to tw2.

9For instance, in a 24 hour window starting on Aug 12 2016, all
188K transactions with a fee ≥ 41 Satoshi/Byte were confirmed in
the next block. A precise model of current Bitcoin miner behavior,
under different fees rates and transaction volumes, remains an open
research question. [42] analyzes transaction priority and fee rates but
uses older data which no longer reflects current trends.

reclaims her bitcoins from escrow transaction Tescr(A,T )

via a refund transaction after the timelock expires.
Tescr(A,T ) was timelocked for 10 blocks, and the refund
transaction was confirmed 8 blocks after Tescr(A,T ) was
confirmed. The Tumbler T reclaims its bitcoins from
his payment channel with Bob B1 escrow transaction
Tescr(T ,B) via a refund transaction after the timelock
expires. Tescr(T ,B) was timelocked for 15 blocks, and
the refund transaction was confirmed 25 blocks after
Tescr(T ,B) was confirmed.

Case 2: The Tumbler aborts the puzzle-solver protocol
by posting the transaction Tpuzzle but refusing to provide
the transaction Tsolve. (Per Section V-D, to meet the
condition in Tpuzzle and claim its bitcoins, the Tumbler
T has to post Tsolve that reveal a set of preimages.
Because the Tumbler refuses to post Tsolve, thus refusing
to solve Alice’s puzzle, Alice’s bitcoins are locked in
Tpuzzle until its timelock expires.) No payment com-
pletes from A2 to B2. Instead, A2 reclaims her bitcoin
from Tpuzzle via a refund transaction after the timelock
in Tpuzzle expires. The refund transaction was confirmed
4 blocks after Tpuzzle was confirmed. Tumbler reclaims
its bitcoins from its payment channel with Bob B2 via
a refund transaction after the timelock on the escrow
transaction Tescr(T ,B) expires. The refund transaction
was confirmed 25 blocks after Tescr(T ,B) was confirmed.

Case 3: The Tumbler provides Alice A3 the solution
to her puzzle in the puzzle-solver protocol, and the
Tumbler has an Tpuzzle signed by A (Section V-D).
However, Alice refuses to sign the cash-out transaction
Tcash(A,T ) to pay out from her escrow with the Tumbler.
Then, the Tumbler signs and posts the transaction Tpuzzle
and its fulfilling transaction Tsolve and claims its bitcoin.
Payment from A3 to B3 completes but the Tumbler has
to pay more in transaction fees. This is because the
Tumbler has to post both transactions Tpuzzle and Tsolve,
rather than just Tcash(A,T ); see Table IV.

Remark: Anonymity when players are uncooperative.
Notice that in Case 1 and Case 2, the protocol aborted
without completing payment from Alice to Bob. k-
anonymity for this TumbleBit run was therefore k = 3.
By aborting, the Tumbler T learns that payers A1,A2

were trying to pay payees B1,B2. However, anonymity
of A1,A2, B1, B2 remains unharmed, since B1 and
B2 were using ephemeral Bitcoin addresses they now
discard to safeguard their anonymity (see Section IV-A).
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APPENDIX

A. Puzzle-Promise Protocol: Extending to Q payments.

We now extend the puzzle-promise protocol between
Bob B and Tumbler T from its “base case’ ’of allowing
a single payment of denomination 1 bitcoin (Figure 3)
to allowing Q payments of denomination 1 bitcoin. The
extended protocol is in Figure 5. The extended protocol
combines some new cryptographic techniques with the
ideas we used in Section III-B (to extend the A-to-T
puzzle-solver protocol to handle Q payments.

The extended puzzle-promise protocol produces Q
puzzles z1, ..., zQ for Bob B, where the solution to the
jth puzzle allows Bob to “open” a promise cj . The
promise cj contains the Tumbler’s ECDSA signature
on cash-out transaction Tcash(T ,B)(j) that allocates j
bitcoins to Bob and Q − j bitcoins for the Tumbler.
Each transaction Tcash(T ,B)(j) for j = 1, ..., Q points to
the same 2-of-2 escrow transaction Tescr(T ,B) where the
Tumbler escrowed Q bitcoins during the Escrow Phase.
During the Payment Phase, Bob B asks the jth payer to
solve puzzle zj ; this puzzle solution “opens” promise
cj and provides Bob with the Tumbler’s signature on
transaction Tcash(T ,B)(j). As in Section III-B, Bob does
not sign this transaction Tcash(T ,B)(j) and also does not
post it to the blockchain during the Payment Phase.
Instead, Bob waits until the Escrow Phase starts, and
then signs and posts the single cash-out transaction
allows him to claim the maximum number of bitcoins,
i.e., the Tcash(T ,B)(j) for the last payment Bob received
during the Payment Phase.

How do we ensure that Bob B can open the promise
cj (and thus obtain Tcash(T ,B)(j)) only after he has
opened all prior promises cj−1, ..., c1? (This is crucial,
because otherwise a cheating Bob claim Q bitcoins from
his very first payment, by asking his first payee for the
solution to puzzle zQ. )

We solve this problem by requiring that the solutions
to all of the puzzle z1, ..., zj be used to open the jth
promise cj . To do this, we repeat the steps of the puzzle-
promise protocol Q times in parallel. We refer to the
Q parallel executions as Q levels. In the j-th level,
B prepares η + µ transactions Tcash(T ,B)(j), each of
which transfers j bitcoins to B. Let zj,` denote a puzzle
and its solution εj,` at level j, and let ` ∈ [η + µ]
denote the index for the cut-and-choose as in the base
puzzle-promise protocol in Section VI-A. The promise
is encrypted under the j puzzle solutions ε1,`...εj,` as:

cj,` = H(j|εj,`||εj−1,`|| . . . , ε1,`)⊕ σj,`
where σj,` is the Tumbler’s signature on the cash-out
transaction Tcash(T ,B)(j) that allocates j bitcoins to
Bob.

Now that we have Q levels, we need to extend the
cut-and-choose to check the behavior of Tumbler across
all Q levels. Recall that for the base case of 1 bitcoin,
B prepares η + µ transactions (η of which are fake) of
1 bitcoin each, each of which will be evaluated by T
to obtain a η + µ puzzle-promise pairs. (See Step 5 in
Figure 3.) We can visualize this as a 1× (η+µ) vector,
among which B will check the column positions ` ∈ F
that correspond to fake values (Step 8 in Figure 3). Now,
for the case of Q bitcoins, instead of having a 1×(η+µ)
vector, we have a matrix of Q×(η+µ) elements (Step 5
in Figure 3). B still checks the same column positions
i ∈ F , but instead of checking a single puzzle-promise
pair (c`, z`), B will check a column of Q puzzle-promise
pairs [(c1,`, z1,`), . . . , (cQ,`, zQ,`)] (Step 8 in Figure 5).

Finally, recall that in the base case, B additionally
checks that the full level of puzzles zl1 , . . . , zlµ is
consistent with the quotients q1, . . . , qµ (Step 10 in
Figure 3). Similarly, in the case of Q bitcoins, B will
obtain one set of quotient chain for each of the Q levels.
Bob checks each level individually (Step 10 in Figure 5)
to ensure that by solving puzzle zj for level j, Bob can
also solve all puzzles zj,l1 , . . . , zj,lµ for level j.

Security. The prove security for this protocol, we extend
the definition of the ideal functionality Fpromise-sign in
Section D to the case of Q payments. At high level, this
extended definition has the following additional goal:
to make sure that Bob B cannot cheat by claiming
more than j bitcoins using his jth puzzle solution.
That is, a real puzzle-promise pair (cj,`, zj,`) for level j
must contain a signature on a cash-out transaction that
transfers exactly j bitcoins to Bob, and no more. Our
extended ideal functionality Fpromise-sign enforces this as
follows: When Bob B submits a request to receive the
promise of a signature on a real message, then the ideal
functionality Fpromise-sign checks that the real messages
confirms to a correct format—namely, that for the jth
level it confirms to the format CashOutFormat(j) which
transfers exactly j bitcoins to Bob—before sending it
off to T . Thus, the security of our protocol follows from
the theorem below, which is proved in Appendix G:
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Public input: (pk , N,PKeph
T , π).

Tumbler T chooses fresh ephemeral ECDSA-Secp256k1 key, i.e., bitcoin address (SKeph
T ,PKeph

T ).
π proves validity of pk in a one-time-only setup phase.

Payee Bob B(Q) Voucher Promise Protocol Tumbler T (Q, sk , (pk , N))

1. Set up Tescr(T ,B)

Sign but do not post transaction Tescr(T ,B) timelocked for tw2

offering Q bitcoins under the condition: “the fulfilling transaction
must be signed under key PKeph

T and under PKB .”

2. Prepare Real Unsigned Tcash(T ,B).
Tescr(T ,B)←−−−−−−−

For j ∈ [Q] and i ∈ 1, . . . , µ:
Choose random pad ρj,i ← {0, 1}λ
Set Tcash(T ,B)

j,i = CashOutFormat(j)||ρj,i
htj,i = H′(Tcash(T ,B)

j,i).

3. Prepare Fake Set.
For j ∈ [Q] and i ∈ 1, . . . , µ:

Choose random pad rj,i ← {0, 1}λ
ftj,i = H′(FakeFormat||rj,i).

4. Mix Sets.
Let R be µ random indices in [µ+ η].
Let F be remaining indices F = [µ+ η]\R.
For i = 1, . . . , µ+ η and j ∈ [Q]:

if i ∈ R: βj,i = htj,i (real).
else i ∈ F : βj,i = ftj,i (fake).

β1,1...β1,µ+η−−−−−−−−−−→
...

βQ,1...βQ,µ+η−−−−−−−−−−−→
Choose salt ∈ {0, 1}λ
Compute: hR = H(salt||R), hF = H(salt||F ) 5. Evaluation.

hR,hF−−−−−→ For j ∈ [Q]:
For i ∈ [µ+ η]:

ECDSA sign βj,i to get σj,i = Sig(SKeph
T , βj,i)

Randomly choose εj,i ∈ ZN .
Compute puzzle zj,i=fRSA(εj+1,i, pk , N)

Compute cj,i = Hshk(j|i|εj,i||εj−1,i|| . . . , ε1,i) ⊕
σj,i.

{(zj,i,cj,i)} ∀i∈[µ+η] ∀j∈[Q]
←−−−−−−−−−−−−−−−−−−−−−

6. Reveal Real and Fake Set.
R,F,salt−−−−−→

{rj,i,ρj,l}i∈R,l∈F,j∈[Q]
−−−−−−−−−−−−−−−−−−→ 7. Check Real and Fake Set.

Check hR = H(salt||R) and hF = H(salt||F )
For all j ∈ [Q]:

For all ` ∈ F : Verify βj,` = H(FakeFormat ‖ rj,`).
For all i ∈ R, Verify βj,i = H(CashOutFormat(j)|ρj,i).

8. Check Fake Set.
εj,`,∀`∈F,j∈[Q]
←−−−−−−−−−−− Abort if any check fails

If all εj,` < N , For j ∈ [Q]; for ` ∈ F :
Validate puzzle zj,` = (εj,`)

pk mod N
Validate promise cj,`:
(a) Decrypt σj,` = cj,` ⊕H(j|i|εj,`||εj−1,`|| . . . , ε1,`)
(b) Verify ECDSA-Ver(PKeph

T , H(ftj,`), σj,`) = 1
Abort if any check fails. 9. Prepare quotients.

For j ∈ [Q] and for R = {`1, ..., `µ}:
q1,2,...,q1,µ←−−−−−−−−− Set qj,2 =

εj,`2
εj,`1

, ..., qj,µ =
εj,`µ
εj,`µ−1

...

10. Quotient Test.

qQ,2,...,qQ,µ←−−−−−−−−−−

Let R = {`1, ..., `µ} .
For each j ∈ [Q] check equalities:

zj,`2 = zj,`1 · (qj,2)
pk mod N

...

zj,`µ = zj,`µ−1
· (qj,µ)pk mod N

Abort if any check fails. 11. Post transaction Tescr(T ,B) on blockchain
12. Begin Payment Phase.
For j ∈ [Q], the jth puzzle is zj = zj,`1

Fig. 5. Puzzle promise protocol that allows Bob B to obtain up to Q payments. (sk , (pk , N)) are the RSA keys for the tumbler T . (Sig,
ECDSA-Ver) is an ECDSA-Secp256k1 signature scheme. We model H,H′ and Hshk as random oracles. In our implementation, H is HMAC-
SHA256 (keyed with salt), H′ is ‘Hash256’, i.e., SHA-256 cascaded with itself, which is the hash function used in Bitcoin’s “hash-and-sign”
paradigm with ECDSA-Secp256k1. CashOutFormat(j) is shorthand for the unsigned portion of a transaction that fulfills Tescr(T ,B) and transfers
j bitcoins to B and Q− j bitcoins to T . The protocol appends a random pad to CashOutTFormat. FakeFormat is a distinguishable string known
to all parties.



Theorem 3: Let λ be the security parameter. If
RSA trapdoor function is hard in Z∗N , if H,H ′, Hshk

are independent random oracles, if ECDSA is strong
existentially unforgeable signature scheme, then the
puzzle-promise protocol in Figure 5 securely realizes
the extended Fpromise-sign functionality for the case of Q
payments. The security for T is 1−ν(λ) while security
for B is 1− 1

(µ+ηη )
− ν(λ).

B. Ideal Functionalities

We analyze each of the fair-exchange protocols used
in TumbleBit in isolation. For each protocol, we identify
the security (fairness) properties that we require for the
players involved in that phase.

In the Escrow Phase, we consider only interactions
between players B and T in the puzzle-promise protocol
(Section VI-A). We identify the functionality and the
security requirements that we expect by this interaction
and we formally capture them through and ideal func-
tionality Fpromise-sign that we describe in the details in
Section D.

In the Payment Phase, we consider only interactions
between players A and T in the puzzle-solver protocol
(Section V-B). We capture the functionality and security
requirements of this interaction in the ideal functionality
Ffair-RSA described in Section C.

We follow the standard ideal/real world paradigm.
To prove that a protocol π securely realizes an ideal
functionality F , one must show that the view obtained
by a real world adversary Adv, corrupting either one of
the parties, and running protocol π, can be simulated
by a PPT simulator S that only has access to the
interface of F . Let us denote by viewπ,Advreal the view
that the adversary Adv, corrupting party Pi and playing
protocol π, with party Pj , playing with input xj . Let us
denote by viewF,Advideal the view generated by simulator
S, interacting with F and having black-box access to
Adv. Security is defined as follows.

Definition 1 (Secure realization of F .): A two-
party protocol π securely realizes F if, for every PPT
static and malicious adversary Adv corrupting either
party P1 or party P2, there exists a PPT Simulator
S such that the view viewπ,Advreal and viewF,Advideal are
computationally indistinguishable.

The Random Oracle Model [8]. Our security proofs are
in the Random Oracle (RO) model [8]; hash functions
are modeled as perfectly random functions, and in the
security proof the simulator can program their answers.

C. Ideal functionality Ffair-RSA

The puzzle-solver protocol allows Alice A to obtain
the solution to a single RSA-puzzle y (chosen by A),
from the Tumbler T (who posses the RSA secret key
sk ), in exchange for a bitcoin. Fair exchange for this

Ffair-RSA is parameterized by a function (fRSA, f
−1
RSA),

key verification algorithm KeyVer and and expiration
time tw ∈ N.

Parties. A, T , and adversary S.
Setup. On receiving (Setup, (pk , sk)) from T .
If KeyVer(pk , sk) = 0 then do nothing.
Else, send (Setup, pk ) to A and S.
Evaluation.

On input (request, sid, y, 1BTC) from A:
If y is in the range of fRSA, send
(request, sid, A, y) to T .
Start counter twsid = 0.

On input (evaluate, sid,A) from T :
Send (sid, f−1RSA(sk , y)) to A.
Send (payment, sid, 1BTC) to T .

If twsid = tw , send (refund,sid, 1BTC) to A.

Fig. 6. Ideal Functionality Ffair-RSA.

protocol entails the following: (1) Fairness for T : After
one execution of the protocol A will learn the correct
solution ysk mod N to at most one puzzle y of her
choice. (2) Fairness for A: T will earn 1 bitcoin iff A
obtains a correct solution.

We model the above two requirements with an ideal
functionality, that we call Ffair-RSA, shown in Figure 6.
Ffair-RSA is a trusted party between A and T . Ffair-RSA
receives a puzzle-solving request of the form (y, 1
bitcoin) from A, and forwards the request to T . If T
agrees to solve the puzzle y for A, then T receives 1
bitcoin while A receives the puzzle solution. Otherwise,
if T refuses, A will get 1 bitcoin back, and T gets
nothing. Fairness for T is captured because A can
request a puzzle solution only if she sends 1 bitcoin to
Ffair-RSA. Fairness for B is captured because T receives
1 bitcoin only if he agrees to reveal the puzzle solution.

Remark 1. Note that A can always learn solution to
RSA puzzles that she generates herself without inter-
acting with Ffair-RSA. That is, A can always choose
a random x ∈ Z∗N and generate the puzzle y = xpk

mod N ; in this case, she trivially knows the puzzle
solution is x. This is not a problem because TumbleBit
requires Alice A to solve puzzles that were provided
to her by Bob B, and generated through Bob B’s
interaction with T during the puzzle-promise protocol.

Remark 2. Note that the functionality Ffair-RSA does not
provide any privacy for A. Indeed, T learns A’s puzzle
y even if T refuses to solve the puzzle. To use Ffair-RSA
in our unlinkable TumbleBit scheme, users will have to
first blind their inputs to Ffair-RSA.



Functionality Fpromise-sign
The functionality is parameterized by a format specification
FakeFormat, and parameters µ and η.

Parties. B, T , and adversary S.

Setup. Inform Fpromise-sign if T is corrupt or honest.

Key Generation. Upon receiving message (KeyGen,B)
from party B, send it to S and receive response
(PK eph

T ,Sig). Sig is a signing algorithm.
Send (Setup,PK eph

T ) to B and record the pair
(PK eph

T , Sig).

Signature Request. Upon receiving this message from B:

(sign-request,PK eph
T

′
, {FkTxni}i∈[η], {mi}i∈[µ])

If PK eph
T

′ 6= PK eph
T , then do nothing.

If ∀i, FkTxni complies with FakeFormat then send to T

(sign-request,B,PK eph
T , {FkTxni}i∈[η])

Else, do nothing.

Promise. Upon receiving (promise,B,ANS, Set) from T .
If ANS = NO, then set all signatures to ⊥.
Else, if Set 6= ∅, compute signatures as follows:
− If T is honest:

Set FkSigni= Sig(FkTxni,PK
eph
T ) for i ∈ [η].

− Else T is corrupt:
Send (Sign,FkTxni,B) to adversary S, and obtain
respective signatures.

− Abort if there is a recorded entry
(FkTxni,FkSigni,PK

eph
T , 0).

− Record entries (FkTxni,FkSigni,PK
eph
T , 1) and

(mj ,PK
eph
T , promise).

Send (Sign-promise,ANS) to B.

Signature Verification. Upon receiving
(Verify, sid,m, σ,PK eph

T
′
) from any party P :

− If PK eph
T

′ 6= PK eph
T , do nothing.

− Else, if T is honest:
♦ If there is a recorded entry (m,σ,PK eph

T , 1),
then set ver = 1 (completeness condition).
♦ If there is no recorded entry (m,σ,PK eph

T , 1),
then set ver = 0 and set the entry
(m,σ,PK eph

T , 0) (unforgeability condition).
− Else, if T is corrupt:

then let ver be set by S. (Corrupt signer case).
Send (Verified, sid,m, σ, ver) to party P .

Fig. 7. Ideal Functionality Fpromise-sign.

D. Ideal functionality Fpromise-sign

The security requirements for the puzzle-promise
protocol (Figure 3), which is run in the Escrow Phase
of TumbleBit, are captured by an ideal functionality
Fpromise-sign that we describe in Figure 7.

Fpromise-sign acts a trusted party between B and

T . Bob B sends the “real” and “fake” transactions to
Fpromise-sign. Fpromise-sign has access to an oracle that can
compute the Tumbler’s T signatures on any messages.
Fpromise-sign is designed to guarantee the following two
properties:

(1) Fairness for B: If T agrees to complete the
protocol, then Bob B obtains at least one promise that
contains a valid signature on a real transaction. This
property follows because Fpromise-sign has access to an
oracle that computes the T ’s signature. Specifically,
upon receipt of a real message mj from B, functionality
Fpromise-sign keeps a record (mj ,PK

eph
T , promise) that

promises to return a valid signature on mj to B.
Importantly, however, Fpromise-sign does not reveal the
actual signature on mj , but only a promise that this
signature will be revealed in the future.

(2) Fairness for T : Bob B learns nothing except
signatures on fake transactions. This property follows
for three reasons. First, Fpromise-sign will only ask its
signing oracle to sign fake transaction, i.e., to sign
messages that conform to the fake transaction format
‘FakeFormat’. Second, when Fpromise-sign is asked to
verify signatures, only signatures computed on fake
transactions will be valid and all others will be invalid.
This follows because the only signatures Fpromise-sign
considers to be valid are those that had previously been
computed by its signing oracle. Third, Fpromise-sign does
not reveal the actual signature on a real message mj ,
but only a promise that the signature will be revealed
in the future.

Discussion. In the ideal world, S will be the signing
oracle for Fpromise-sign. This is follows the definition
of the ideal functionality for signatures, per [15]. We
stress that this does not mean that S has an additional
power. The reason being that in the ideal world, the
only signatures that are verified by Fpromise-sign are
the ones on fake messages. Thus, towards ensuring
indistinguishability between the real world and ideal
world, we just need to make sure that (when T is
honest), no party can (in both the ideal and real world)
produce a signature on a real message without breaking
unforgeability of the signature scheme.

Fpromise-sign and the case of Q payments. For the
case of Q payments, we provide an extended version
of the Fpromise-sign functionality that deals with Q sets
of signatures. The main modification that we need to
make—beside having Fpromise-sign provide Q sets of
fake signatures rather than one set—is to additionally
check the format of real messages. We therefore ex-
tend Fpromise-sign with parameters Q and RealFormat(·),
and a validation test that checks that any real mes-
sage mj,i sent for the j-th set, complies with format
RealFormat(j). This is important because in our appli-
cation we need to control the type of messages that
B gets signed. In our application, RealFormat(j) =
CashOutFormat(j).



Concretely, we extend Figure 7 as follows. First,
Fpromise-sign is parameterized by two format specifica-
tions: FakeFormat and RealFormat, and 3 parameters
Q, µ and η. Second, in the Signature Request step B
one of the following tuples for every j ∈ [Q]:

(sign-request,PK eph
T
′
, {FkTxnj,i}i∈[η], {mj,i}i∈[µ])

In other words, B sends a Q×µ-matrix of fake messages
FkTxnj,i and a Q×µ-matrix of real messages mj,i. The
ideal functionality will additionally check that:

mj,i = RealFormat(j)

Then, when T chooses the Set ⊂ [µ] in the Promise
step, then index i ∈ Set means that B is promised that
mj,` will be signed for every j ∈ [Q]. In other words, if
column index i is in Set, it follows that signatures are
promised for the entire column of real messages mj,i

∀j ∈ [Q].

E. Proof of Theorem 1

The proof is divided into two cases.

1) Case: A is corrupted: We start with intuition,
and then present the formal proof.

Intuition. We want to prove that, by participating in
(and arbitrarily deviating from) the protocol in Figure 2,
any corrupted A does not learn anything more than
the solution x to the puzzle y, i.e., A learns only the
RSA pre-image x = f−1(y, sk) = ysk . The transcript
obtained by A in the protocol executions contains: (1)
pre-images for all the fake values βi with i ∈ F , that
is f−1(βi, sk); (2) encryptions ci of the pre-images of
all “real” βi and hash hi of the keys used to encrypt
these ci. Informally, such transcript does not leak any
information to A for the following reasons:

1) A learns nothing from the answers to the fake
set: For all βi in the fake set F , A must
provide the pre-images f−1(βi, ·) to T before
T decrypts ci. Therefore, A does not learn
anything new from T ’s decryptions.

2) For the real βi, A is computationally-bound to
a single puzzle y because in A must provide
values r1, . . . , rn that demonstrate that, for all
i,

βi = y · (ri)pk mod N

Intuitively, due to the hardness of inverting
RSA trapdoor function, such values can be
provided only if βis where honestly computed.

3) A does not learn the puzzle solution ysk unless
T reveals ki used to encrypted the puzzle
solution inside ci. Encryptions ci are statisti-
cally hiding (and in fact, equivocable10) in the
Random Oracle model.

10Equivocable means that the encryptions can be later decrypted
by S as any value, by programming the output of the random oracle.

Overview of proof. Formally, we shall prove this by
showing that there exists a PPT simulator S that is able
to simulate the transcript between A and T , having in
input only the puzzle solution f−1(y, sk) = ysk . If this
is possible, it means that the transcript reveals nothing
more than the puzzle solution ysk to A.

We heavily use the programmability of the RO. In
a nutshell, the S computes all ciphertexts using random
values (instead of by encrypting the actual values) and
will later ensure that they decrypt to the correct values
by programming the random oracle (RO). The key
observation is that, at any point in the protocol, T
“decrypts” his encryptions only after A has sent some
crucial information. Indeed, T sees the pre-images (i.e.,
ρi) of the fake set before he sends the keys to decrypt
his ciphertext. This allows the simulator to learn how to
program the RO to decrypt the ciphertext with the values
ρi that A reveals. Similarly, S learns the original puzzle
y in the second phase of the protocol, and S will query
the ideal functionality Ffair-RSA with (y, 1btc) to obtain
the puzzle solution x = ysk . Finally, S will program the
RO so that he can equivocate the remaining ciphertexts
so that they decrypt to the correct puzzle solution x.

Proof. The formal proof consists of two steps. First,
we describe the simulator S, then we prove that the
transcript generated by S is indistinguishable from the
transcript generated in the real world execution. Let Adv
denote the adversary corrupting player A.

Simulator S.
S internally runs adversary Adv. Let session identifier
be sid. Let QH be the set of queries made to the H
random oracle, and QHprg be the queries made to the
Hprg random oracle.

1) Setup. Extract (pk , sk) from proof π published
by Adv. Send (Setup, (pk , sk)) to Ffair-RSA.

2) Upon receiving β1, . . . , βm+n from Adv; ran-
domly pick ci in {0, 1}λ and hi ∈ {0, 1}λ2 for
i ∈ [m+ n] and send it to Adv.

3) Upon receiving F and ρi for i ∈ F , check
if βi = (ρi)

pk mod N, ∀i. If check fails,
output whatever Adv outputs and halt. Else,
run procedure Equivocate(ci, ρi, hi) to obtains
keys k ′i . Send k ′i for i ∈ F to Adv.

4) Upon receiving y, ri for i ∈ R from Adv. If
βi = y · (ri)

pk mod N for all i ∈ R and
transaction Tpuzzle is correctly formed, do as
follows:
− Send (request,sid, y, 1btc) to Ffair-RSA
and obtain x = ysk mod N .
− Run Equivocate(ci, x · ri,hi) and obtain k ′i
with i ∈ R.
− Send transaction Tsolve with values k ′i .
Else, checks have failed so output whatever
Adv outputs and halt.

Procedure RO: Random Oracle Simulation for H,Hprg

proceeds as follows. Upon receiving query q for H



(resp., Hprg):

1) if query q ∈ QH (resp., QHprg ), retrieve entry
(q, a) from the set and output a.

2) Else pick a random a ∈ {0, 1}λ2 (resp. λ1),
add (q, a) to QH (resp., QHprg ) and output a.

Procedure Equivocate(ci,mi, hi) is as follows:

1) Pick a random k ′i ∈ {0, 1}λ1 . If k ′i ∈ QH or
QHprg , output Collision and abort.

2) Compute ai = ci ⊕ mi, then add (k ′i , ai) to
QHprg .

3) Add (k ′i , hi) to QH .
4) Output k ′i .

Indistinguishability proof.
We prove by hybrid arguments that view
viewAdv,T (T , sk) obtained by Adv interacting with T
playing with secret input sk is indistinguishable from
the view S interacting with Ffair-RSA.

Lemma 1: Assume π is a zero-knowledge proof of
knowledge in the random oracle model. Assume RSA
assumption holds in Z∗N , and Hprg : {0, 1}λ1 → {0, 1}λ
and H : {0, 1}λ1 → {0, 1}λ2 are independent random
oracles. Then, the view generated by S is computation-
ally indistinguishable from the view viewAdv,T (T , sk)
obtained by Adv in the real world.

Proof: We use a hybrid argument.

H0: This is the real game. The transcript is generated
precisely using the procedure of T with secret input
sk . The view generated in this hybrid experiment is
viewAdv(T , sk).

H1: In this hybrid we change the way encryptions ci
are decrypted and pre-image of hash values hi are
computed. Instead of sending keys ki, as computed in
the protocol, send k ′i computed by running procedure
Equivocate(ci, (βi)

sk , hi). Note that, in this hybrid we
are still using sk (which S does not know), but we
are programming the answers to the RO. The difference
between H0 and H1 is in the way keys k ′i are computed.

Due to the security properties assumed in the
RO, the values ci, hi statistically hide the message
encrypted and the hash-preimage; and probability of
event Collision is negligible. Therefore, the view
generated in hybrid H0 is statistically indistinguishable
from the view generated in H1.

H2: This hybrid experiment is exactly as H1 with the
only difference that procedure Equivocate is run with
input Equivocate(ci, ρi, hi) where ρi is taken directly
from the transcript, and Equivocate(ci, y

sk · ri, hi).
where ysk is taken from Ffair-RSA only after Adv
hast send Tpuzzle. The view generated in this hybrid
experiment is identical to view generated hybrid H1,
and correspond to the simulation strategy S.Note that
in this hybrid argument the entire view is generated only
with a single evaluation ysk .

2) Case: Tumbler T is corrupted: We want to show
that any adversary Adv corrupting T will earn 1 bitcoin
if and only if she provides a correct solution to A’s
puzzle. This follows from the following arguments.

Define BAD the following event: (1) T passes the
Fake Set Check (Step 7 in Figure 2), therefore providing
n correct decryptions to ci for i ∈ F , AND (2) all
encryptions ci in the real set i ∈ R are incorrect, i.e.,
do not decrypt to a valid puzzle solution.

Given that (1) permuted β1, . . . , βm+n information
theoretically do not reveal any information about sets
F,R and (2) H,Hprg are modeled as random oracles,
then the probability of event BAD amounts to the
probability of guessing set F , which is

Pr[BAD] =
1(

m+n
n

) +
1

2λ1

Simulator S.
Suppose Adv corrupts Tumbler T . S internally runs
Adv. S, playing in the ideal world, receives (request,
sid, y, 1 bitcoin) from Ffair-RSA. Using input y, S
simulates the transcript that Adv expects to see in
the real world, by honestly following A’s procedure
on input y. Upon receiving {ki} for all i ∈ F from
Adv, S checks if all {ci}i∈F are correct. If so, S
sends message (evaluate,sid, A) to Ffair-RSA which
then passes the puzzle solution x to the ideal world
player A. Meanwhile, S sends Tpuzzle to Adv. Upon
receiving Tsolve from Adv: if all keys {ki} for all i ∈ R
decrypt ciphertexts ci that do not contain valid puzzle
solutions, then S outputs BAD and aborts. Else, S
outputs whatever Adv outputs and halts.

Indistinguishability Proof.
Real world and ideal world execution are distinguish-
able only in the case that "BAD" event happens. To see
why, note that, when S outputs "BAD" it means that in
the ideal world S sent message (evaluate,sid, A)
to Ffair-RSA, so that ideal player A receives her output.
However, in the real world, A will not get any valid
output. So the two worlds will be distinguishable. The
two worlds are therefore distinguishable with probabil-
ity Pr[BAD].

F. Proof of Theorem 2

In this section we provide the formal proof of
Theorem 2. We prove that the puzzle-promise protocol
in Figure 3 securely realizes functionality Fpromise-sign
(Figure 7) in the random oracle model.

The proof consists of analyzing two cases: (1) Case
B is corrupted, where we argue that any malicious
B∗ does not learn anything besides signatures of fake
transactions; (2) Case T is corrupted, where we argue
that, if the protocol successfully terminates, then B
will be able to retrieve a signature (on a real cash-
out transaction Tcash(T ,B)) from a puzzle-promise pair
(ci, zi) for some i ∈ R.



1) Case B is corrupted: The proof consists of
showing that for any corrupted B∗ there exists a PPT
simulator S that corrupts B in the ideal world, and can
generate the entire view of B∗ while having access only
to the information provided by the ideal functionality
Fpromise-sign. Recall that, in the ideal world, Bob B only
receives signatures for the fake messages. With only
this information in hand, S will have to simulate the
view that the real world adversary B∗ has during its
interaction with T . The idea is that, if we can prove
that the transcript generated by S is indistinguishable
from the one generated by T , then it follows that any
B∗ learns no more that what B learns from Fpromise-sign.

We stress that the following analysis only consider
the puzzle-promise protocol run during the Escrow
Phase. The analysis works in the stand-alone setting,
where no other protocol, except the puzzle-promise
protocol is executed.

We start with the intuition behind the proof.

Proof Intuition. We have to prove that the transcript
of the protocol between B∗ and T , reveals nothing
more than signatures on fake messages, i.e., σ` =
Sig(SK eph

T , β`) for ` ∈ F ; and a “promise” of at least
one valid signatures on a real messages βi for i ∈ R. In
the real world, the promise is the set of puzzle-promise
pairs (ci, zi) for i ∈ R, where ci is an encryption of a
valid signatures on βi, and zi is an RSA puzzle whose
solution can be used to decrypt ci. The point of the
proof is to show that B learns nothing else beyond the
guarantee that for i ∈ R there is at least one pair (ci, zi)
that has an encryption of a valid ECDSA signatures on
a real message βi.

We prove this by showing that if (1) the encryption
scheme is perfectly secure in the RO model, and (2)
that RSA trapdoor function is hard to invert, then the
transcript obtained by B from the interaction with T
reveals nothing but the signatures on fake messages.
We will show that the entire transcript can be simulated
by a simulator S that only gets the signatures on fake
messages as input.

To build intuition, we list the information that B∗
obtains from the transcript, and we explain why it gives
no information on the signatures of valid messages. B∗
obtains the following values:

1. Encryptions (c1, . . . , cµ+η) computed as a one-time
pad of the output of the Random Oracle Hshk queried
with secret values ε1, . . . , εµ+η .

As we work in the (programmable) random ora-
cle, we assume that each encryption perfectly hides
the message. Also, the simulator can equivocate each
decryption, by programming the random oracle. This
means that, encryptions ci alone do not reveal any in-
formation to B∗; indeed the simulator S could generate
such ci by just sending a random value. Here we are

using the unpredictability property of the RO, as well
its programmability.

2. RSA puzzles (z1, . . . , zµ+η) where zi =
Ffair-RSA(εi, pk , N). Recall that each εi is randomly
chosen group element, and that RSA parameters are
computed using the correct procedure. Therefore, under
the assumption that RSA trapdoor function is hard in
the group determined by the chosen parameters, a PPT
B∗ cannot learn any εi from zi.

3. Quotients (q2, ..., qµ), where qj =
εji
εji−1

for ji ∈ R.
This is a sequence of connected divisions of the secret
keys εj1 , . . . , εjµ . Intuitively, to see that these quotients
do not give any more information than what can be
learnt from values zj1 , . . . , zjµ , we show that one can
compute zji and qji that pass the “quotient test”, without
knowing any εji .

To see why, note that the quotient test checks that
for each each i = 2, ..., µ,

zji = zji−1 · (qji)pk

where R = {j1, ..., jµ}. This means that one can fix ar-
bitrary zji , qji ∈ Z∗N and compute zji−1

as zji/(qji)
pk .

In this way one can generate zji , qji that pass the test
without knowing the RSA inverse of any of the zji .

This observation will be crucial in the proof, because
it allows us to show that if there is an adversary B∗ that
is able to learn some εji for ji ∈ R, then we can build
a reduction ARSA that can solve an RSA puzzle z∗.

Looking ahead, in order to carry out the reduction,
we need to make sure that adversary ARSA can identify
the set R in advance, so that he can place his challenge
value as z∗ = zji for some ji in the real set. To achieve
this, we exploit the observability of the RO. Namely, the
reduction ARSA can obtain the set F and R by observing
the RO queries made by B∗ to obtain the values hR and
hF .

Formal Proof. The formal proof consists of two
steps. First we show a PPT simulator S generates
a simulated transcript for B∗, by using only the in-
formation that B would get in the ideal world (that
is, only signatures of fake values obtained through
interaction with Fpromise-sign). S exploits the extractabil-
ity/programmability properties of the RO. Second, we
prove that the view generated by the simulator S in the
ideal world is computationally indistinguishable from
the transcript in the real world.

Simulator S.
S, interacting with Fpromise-sign, internally runs adver-
sary B∗ and simulates the messages that B∗ expects
from T as follows.

First, inform Fpromise-sign that T is honest. Then,
compute (PK eph

T ,SK eph
T ) = GenKey(1λ), and send

PK eph
T to B∗ and to Fpromise-sign.



(A) Upon receiving hR, hF , and {β1 . . . βµ+η} from B∗,
do the following:

1) Extract sets F and R from RO. To do this, look
at the set of queries QH made by B∗ and ex-
tract the pairs (salt||R, hR) and (salt||F, hF ).
If there is no pair with (·, hR) or (·, hF ), then
set R = F = ⊥.

2) Send pairs (ci, zi) to B∗ prepared as:
(1) For all i, ci

$← {0, 1}s;
(2) For i ∈ F , zi = (εi)

pk where εi
$← Z∗N ;

(3) For R = {j1, . . . , jµ}, zji = (qi)
pk · zji−1

where zj1 , q2, . . . qµ
$← Z∗N .

(B) Upon receiving (F ′, R′, ri) from B∗, do the follow-
ing:

1) If F ′ 6= F or R 6= R′, then abort.
2) If any (FakeFormat||ri, βi) /∈ QH′ for i ∈ F

then abort. For j ∈ R, set mj = γ if there
exists (γ, βi) ∈ QH′ . Else set mj = ⊥.

3) Send to Fpromise-sign the message
(sign-request,PK eph

T , {FakeFormat||ri}i∈F ,
{mj}j∈R)
Obtain response (promise, |B∗,ANS,
{FkSigni}i∈[η]).
If ANS = NO, then halt and output whatever
B∗ outputs.

4) Compute hj` = cj` ⊕ FkSign`.
Store in QHshk the pair (εj`,hj` ).

5) Send εi for i ∈ F and quotients qj1 , . . . , qjµ .

(C) Finally, output whatever B∗ outputs and halt.

Procedure RO1: Random Oracle simulation for H
proceeds as follows. Upon receiving query γ for H:

1) If query γ ∈ QH , retrieve (γ, a) from QH .
2) Else pick random a ∈ {0, 1}λ2 . Add tuple

(γ, a) to QH .
3) Output a.

Procedure RO2: Random Oracle simulation for Hshk

proceeds as follows. Upon receiving query γ for Hshk:

1) If query γ ∈ QHshk , retrieve (γ, a) from QHshk .
2) If (γ)pk = (zi) for some i ∈ R and no pair

(γ, a) has been recorded yet in QHshk , then
output RSA failure.

3) Else, pick a random a ∈ {0, 1}λ2 . Add tuple
(γ, a) to QHshk .

4) Output a.

Indistinguishability Proof.
We now show that the transcript generated by S is
indistinguishable from the transcript generated by T in
the real world. This is done via a sequence of hybrid
experiments. We start with the real world transcript,
hybrid H0, where the transcript of the protocol is
computed following algorithm T (Figure 3). Then, in
a sequence of hybrid experiments we change the way

we compute the values βi, ci, zi, qi until we reach the
final hybrid experiment where all values are computed
following the algorithm S defined above.

H0. This is the real world. The transcript is computed
according to Protocol in Figure 3. Namely, the simulator
follows exactly the same steps as the Tumbler T .

H0.5 (Learn R,F using observability of RO). In this hy-
brid experiment the simulator uses the observability of
the RO H during the protocol execution. Namely, upon
receiving message (hF , hR, βi) from B∗, we extract the
queries (salt||F, hF ) and (salt||R, hR) made to QH to
identify the real and fake sets R,F . If no such query is
found, but later B∗ sends a well formed message, the
simulator aborts.

The difference between the distribution of the tran-
script obtained in H0 and that in H0.5 is that the
simulator aborts in H0.5 if the RO H was not queried
when forming hR, hR). The probability of aborting
corresponds to the probability of correctly guessing the
output of H . As H is modeled as a RO, this probability
amounts to 1/2λ2 . Therefore experiments H0 and H0.5

are statistically close.

H1 (Equivocate encryptions using programmability of
RO). In this hybrid we change the way encryptions ci
are computed. Instead of computing

ci = Hshk(εi)⊕ σi

In H1, the simulator sets ci
$← {0, 1}s and stores the

pair (εi, ci ⊕ σi) in QHshk . Hybrids H0.5 and H1 are
statistically close due to the unpredictability of the RO
Hshk (when answers to RO Hshk are processed as in
procedure RO2 of S above).

H2 (Change computation of values for real set R using
RSA security). In this hybrid the simulator computes
zji , qi for i ∈ R, following the algorithm S described
above. The differences are the following. For ji ∈ R,
in H1 we have that

zji = (εji)
pk

while in H2 we have that

zji = (qi)
pk · zji−1

where zj1 , q2, . . . qµ
$← Z∗N . Note that in H2, εji is

neither computed nor stored in QHshk . Thus, H2 is
different from H1 because in H2 procedure RO2 can
trigger a RSA failure event and abort. (Because
the RSA failure event happens when B∗ queries
oracle QHshk with the pre-image of a real puzzle zji ,
it follows that the probability of an abort in H2 is
related to the probability of B∗ of (RSA)-inverting zji
for some ji ∈ R.) Therefore, to argue that H1 and H2

are computationally indistinguishable, we need to show
that the distinguishing event – event RSA failure –
happens only with probability that is negligible in λ.



Lemma 2: Assuming that RSA is hard in Z∗N , with
N > 2λ then

Pr[RSA failure] ≤ ν(λ)

Proof: We can construct a reduction AdvRSA to the
hardness of RSA trapdoor function using an adversary
B∗ that causes hybrid H2 to abort due to an RSA
failure event.

AdvRSA plays the RSA game, receiving values pk , z∗
from a challenger. The goal of AdvRSA is to output a the
pre-image x = (z∗)sk with non-negligible probability.

Meanwhile, the reduction’s high-level goal is to
place the challenge value z∗ among the values
zj1 , . . . , zjµ with ji ∈ R. Because B∗ causes hybrid H2

to abort due to RSA failure event, there exists some
i such that B∗ queries Hshk with εji = (zji)

sk , with
non-negligible probability. Thus, if AdvRSA places z∗ in
position ji, then AdvRSA wins the game with the same
probability (discounted by a 1/µ polynomial factor of
guessing ji correctly). The crux of the reduction is to
show how AdvRSA generates the entire transcript for
B∗—and in particular the quotients q2, . . . , qµ—without
knowing the the pre-image of zji . To do this, we have
AdvRSA generate all zj` for j` ∈ R, without knowing
their pre-image.

Reduction AdvRSA.
AdvRSA receives (pk , z∗) from the RSA chal-
lenger. AdvRSA chooses ECDSA ephemeral key
(SK eph

T ,PK eph
T ). AdvRSA activates B∗ on input

(pk ,PK eph
T ) and follow procedure run in H2 by com-

puting (zji , qi) as follows. AdvRSA first randomly picks
an index ji ∈ R and sets zji = z∗. Then she
chooses values qj1 , . . . , qjµ and remaining zj1 , . . . , zjµ
as follows.

1) For values preceding zji (i.e., for 0 < ` < i),
pick q`+1 ∈ Z∗N ; compute z` = z`+1

(q`+1)pk
.

2) For values following zji (i.e., for i < ` ≤ µ),
pick q` ∈ Z∗N ; compute z` = (q`)

pk · z`−1

If event RSA failure occurs, then procedure RO2
has observed an RSA pre-image some some zi. If zi =
z∗ then AdvRSA outputs it and win the game. Else, she
halts.

Summing up, in hybrid H2, tuples (εi, ci ⊕ σi) for
all i ∈ R are not recorded in QHshk . In other words,
neither εi, nor the signature σi for real messages mi

with i ∈ R are computed in this hybrid.

H3 (Obtaining signatures from Fpromise-sign.) In this
hybrid experiment the signatures σi for i ∈ F
are computed using Fpromise-sign. That is, S sends
Fpromise-sign the message
(sign-request,B,PK eph

T , {FakeFormat||ri}i∈F ,
{mj}j∈R)
If ANS =yes, S uses answers σi = FkSigni to set

(εi, ci ⊕ σi) in QHshk . From B∗’s the point of view,
hybrid H2 and H3 are identical. Experiment H3

thus corresponds to the exact simulation strategy S
described above. This conclude the proof.

In the above proof we have shown that any PPT
B∗ does not learn anything from the transcript obtained
in Protocol in Figure 3. We now show that if B∗ does
indeed output a valid signature σ∗ for a valid message
Tcash(T ,B), then B∗ (who is not getting any information
from the transcript), must have produced a signature
forgery. Define event Eforge as the event where, a PPT
B∗ runs the protocol in Figure 3 and outputs a pair
(Tcash(T ,B), σ) where Tcash(T ,B) is a real message rather
than a fake message (i.e., Tcash(T ,B) is a valid cash-
out transaction for Tcash(T ,B) that does not conform to
FakeFormat). We now prove the following.

Lemma 3: If ECDSA is an existentially unforgeable
signature scheme, Pr[Eforge] is negligible.

Proof: We can construct an adversary Advecdsa that
forges a signature on a new message Tescr(T ,B)

i using
adversary B∗.

Advecdsa plays the signature game and has oracle
access to the signing algorithm O, and has verification
key PK eph

T . The goal of Advecdsa is to use B∗ to
produce a signatures σ∗ on a message that was never
queried to O. Advecdsa simulates the interaction between
B and T using algorithm S. Recall that S obtains
the signatures by interacting with the ideal function-
ality Fpromise-sign and, in particular, S only queries
Fpromise-sign for signatures on fake messages, i.e., , with
messages in fki ∈ FakeFormat. Thus, the reduction
Advecdsa will simply run S’s algorithm, and when S
queries Fpromise-sign, Advecdsa will use its access to O
to generate the correct signatures. It follows from the
previous hybrid arguments that B∗ cannot distinguish
whether she is talking to T or S. Therefore, the proba-
bility of B∗ generating a forgery when interacting with
T is close (up to a negligible factor) to the probability
of B∗ generating a forgery when interacting with S and
therefore Advecdsa.

If B∗ outputs the pair (σ,m), and m /∈ FakeFormat,
then Advecdsa has obtained her forgery (σ,m). Thus,
Pr[Eforge] = Pr[Eforge−ECDSA] − ν(λ). Which is neg-
ligible assuming EDCSA signature scheme is secure.

2) T is corrupted: We now show that the view of
any corrupted T ∗, playing with an honest B, can be
simulated by a simulator ST that only has access to the
ideal functionality Fpromise-sign.

Proof Intuition. In the ideal world, T needs to decide
whether to grant signatures to B (that is, set ANS to
yes or no, and the indexes in Set) in a committing
manner: if ANS =yes then T has no power to prevent
B from getting the promised signatures later. This is
because ideal functionality Fpromise-sign has access to



the algorithm Sig, and when ANS =yes the ideal func-
tionality proceeds with the computation of the required
signatures for the fake messages, and has the ability to
sign the real messages in the future.

Now, the goal of the simulator ST , is twofold: (1) To
decide whether T should set ANS to yes or no, and to
choose Set in the ideal world. (2) To correctly compute
the signatures requested by Fpromise-sign via Sig. To this
end, ST will do as follows. ST interacts with real world
T ∗, and if T ∗ provides an accepting transcript, then ST
will play ANS =yes. Then, by using the observability
of the RO Hshk, ST will extract the signatures σi for
i ∈ F ∪ Set and uses these signatures to produce the
output of the signing algorithm Sig.

At high-level, a bad case for the simulator ST is
when (1) the transcript is accepting11 and ST sent
promise ’ANS =yes, Set’ to Fpromise-sign, but (2) the
real T ∗ did not make RO queries that allow ST to
recover σi from ci for all i ∈ F ∪ Set. That is, the
bad case happens when the promise is fulfilled in the
ideal world, but not in the real world.

Thus, the crux of the proof is to show that the
probability of the bad event is negligible if T ∗ provides
an accepting transcript. That is, when the transcript is
accepting and ST plays ANS =yes in the ideal world,
also real world B is guaranteed that will receive the
promised signature. At a high level, this holds due to
the following reasons.

1. Fake-Set Test. Due to the perfect hiding of the RO,
sets F and R are information theoretically hidden for
T ∗. Thus the probability that T ∗ successfully passes
the cut-and-choose phase, (i.e., the Fake Set Check in
Figure 3) and that there is no i ∈ R such that (ci, zi)
is correctly formed, corresponds to the probability of
correctly guessing the set F . This happens with proba-
bility: 1

(η+µη )

2. Quotient Test. The quotients q2, . . . , qµ guarantees
that knowledge of εj1 = (zj1)sk for j1 ∈ R, allows
B to learn all remaining keys εj2 , . . . , εjµ . To see why,
notice that if T ∗ passes the Quotient Test, it means that
for each i, zji = qi · zji−1 . Thus unlocking zj1 recovers
εj1 that in turns unlocks zj2 which recovers εj2 and so
on. Therefore, even if only one ciphertext cji contains a
valid signature, B will be able to decrypt cji and recover
that signature.

Formal proof. We now proceed with the formal argu-
ment. We present the simulator ST , the algorithm Sig
(which is part of Fpromise-sign, see Figure 7), and finally
argue that the transcript generated by the simulator in
the ideal world is indistinguishable from that in the real
world.

Simulator S.
S runs T ∗ internally.

11A transcript is accepting if the honest player B completes the
protocol without aborting.

Upon receiving (KeyGen,B), send request to T ∗ and
obtain PK eph

T . Send (PK eph
T ,Sig) to Fpromise-sign where

Sig is defined as below.

Upon receiving (sign-request,B,PK eph
T , {FkTxni}i∈[η]):

Randomly pick R,F with R∩ T = ∅, compute the RO
outputs hF , hR and β1, . . . , βη+µ, and send them to
T ∗.

Upon receiving a pair (ci, zi) from T ∗:

1) Extract εi by observing queries to Hshk.
2) Let σi be the signature decrypted from ci using

εi.
3) If ci, zi, εi, βi, σi for i ∈ F pass all validity

checks, record tuple (FkTxni, βi, σi) in Lfake.
4) If ci, zi, εi, βi, σi for i ∈ R pass all validity

checks, add i to set Set, and add (βi, σi) to
Lreal. If no such i exists, set real = no. (Note
that, for the real set, it is sufficient that one a
single εl, with l ∈ R is correct. This is because
the quotient chain guarantees that knowledge
of εj1 allows B to obtain all εji for ji ∈ R.)

For all i ∈ F , pick randomness ri, and send it T ∗.
Add pair (FkTxni||ri, βi) to QH′ .

Upon receiving the ‘openings’ ε′i to fake mes-
sages i ∈ F , use ε′i to obtain σ′i from ci. If
any (i, ci, zi, ε

′
i, βi, σ

′
i) fails any validity check, send

(promise,B, NO,⊥) to Fpromise-sign. Else, if all checks
pass, send (promise,B, yes, Set).

Now we have two cases:

Case 1: Suppose there exists i ∈ F such that tuple
(i, ε′i, βi, σ

′
i) passes all validity checks but (·, βi, σ′i)

is not recorded in Lfake. Then, abort and output
binding-fail!.

Case 2: Otherwise, for all i ∈ F , we have that
(i, ε′i, βi, σ

′
i) pass all validity tests and (·, βi, σ′i) is

recorded in Lfake.

1) If real = no, abort and output
cut-and-choose-fail!.

2) Else, set variables Lfake and Lreal for algo-
rithm Sig.

Algorithm Sig(mi,PK
eph
T ).

Internal variable Lfake and Lreal.
If there is tuple (mi, βi, σi) in Lfake, output signature
(βi, σi).
Else if there is tuple (βi, σi) in Lreal, then add tuple
(mi, β) to QH′ , and output signature (βi, σi).
Else, abort.

Indistinguishability Proof.
The protocol messages generated by ST interacting
with T ∗ are distributed identically to the transcript
produced by a real B. The only difference between the
distribution of the output of the real and ideal world



is that the simulator aborts more often. Thus, prov-
ing indistinguishability between the two distributions,
amounts to proving that events binding-fail! and
cut-and-choose-fail! happen with negligible
probability.

Let us look at each event, and argue why they occur
with negligible probability

Event cut-and-choose-fail! This event hap-
pens when the transcript is accepting and all the fake
values are computed correctly, but all the real val-
ues are incorrect (i.e., ST set real = no). Namely
cut− and− choose− fail! happens when:

1) For all i ∈ F , T ∗ provides consistent re-
sponses εi, which were queried to Hshk.

2) For all j ∈ R, there exists no εj ∈ QHshk that
can be used to decrypt cj to a valid signature
σj on βj .

By the hiding of H,H ′, probability of
cut− and− choose− fail! corresponds to the
probability that T ∗ guesses the set F which is:

1(
µ+η
n

) +
1

2λ1

.

Event binding-fail! This event happens when (1)
T ∗ did not query the random oracle Hshk with string ε′i,
but (2) later he sends ε′i that passes all validity checks
and is such that

ci = Hshk(ε′i)⊕ σi
where σi is a valid signature on βi. This event happens
if somehow T ∗ was able to predict the output of Hshk

without actually querying Hshk, or if T ∗ finds two εi, ε′i
such that zi = εi and zi = ε′i. Due to the fact that RSA
is a permutation and that B checks that εi < N , the
latter event happens with probability 0. Due to the one-
wayness of the random oracle, the first event happens
when T ∗ guesses the output of H , which happens with
negligible probability 1/2λ2

G. Proof of Theorem 3: the case of Q payments

We now prove the Theorem 3 for puzzle-promise
protocol that allows Bob B to obtain Q payments. The
proof follows similar arguments used to prove Theo-
rem 2 for the “base case” where Q = 1 in Appendix F.

1) Case B is corrupt: We outline the key differences
w.t.r to the simulator and the indistinguishability proof
provided in Appendix F.

Simulator.
The simulator for protocol in Figure 5, that we denote
by SQ, follows the same steps as the simulator S shown
for the base case, with the following modifications:

Step (A): S receives hR, hF and βj,i for j ∈ Q, i ∈
[η + µ].

Step (B.2): S additionally receives ρj,i for j ∈
[Q], i ∈ R, checks whether

(CashOutFormat(j)||ρj,i) ∈ QH′

and, if so, sets the real messages mj,i =
CashOutFormat(j)||ρj,i), and the fake messages
FkTxnj,i = FakeFormat||rj,i. Else, it aborts. The
difference here is that for the case of Q payments
we also check the semantics of the real messages.
That is, a real message for level j must be a cash-out
transaction that transfers exactly j bitcoins to Bob.

Step (B.3): For each j ∈ Q, S sends

(sign-request,PK eph
T
′
, {FkTxnj,`}`∈F , {mj,i}i∈R)

Step (B.4): For j ∈ Q, ` ∈ F , S stores in QHshk the
pair

([j, `, εj,`||εj−1,`|| . . . , ε1,`], hj,`)

Procedure RO2: The difference here is that in the
case of Q payments, when decrypting a ciphertext at
level j, B∗ needs to query the RO Hshk with all the
εj′ with j′ < j. Thus, Procedure RO2 is modified as
follows. A query γ is parsed as (j|`|γj |γj−1| . . . , γ1),
and the procedure aborts and outputs RSA failure
if there exits a j∗ ∈ [j] such that (γj∗)

pk = zj∗,` with
` ∈ R, and no pair ([j∗, `, . . . ||γj∗ || . . .], a) has been
recorded yet in QHshk .

Indistinguishability Proof.
The indistinguishability proof for the output of SQ

follows the same hybrid experiments shown for arguing
indistinguishability of the output of S in AppendixF.
In particular, experiments H0.5 and H3 can be directly
extended for the case of Q payments. Denote the
extended experiments by HQ

0.5 and HQ
3 .

In experiment H2, S changes the way the real
RSA puzzles are computed by not recording the RSA-
solutions εi` for i` ∈ R in QHshk . This change po-
tentially triggers event RSA failure in the RO2
procedure. The distribution of hybrid H2 is only compu-
tationally indistinguishable from hybrid H1 in the proof
of the base case in of Appendix F. So, when we deal
with of Q payments we use a sequence of sub-hybrids
HQ

2 , HQ−1
2 , . . . , H1

2 . In sub-hybrid Hj
2 we change the

j-th row of real RSA puzzles. Hence, first we define
hybrid Hj

2 as the experiment where: (1) the j-th row of
puzzles zj,i1 , . . . , zj,iµ is computed as:

zj,il = (ql)
pk · zj,il−1

,∀l ∈ [µ]

(2) queries (j||`|εj,`, εj−1,`, . . . , ε1,`) for ` ∈ R are not
recorded in QHshk .

Then, indistinguishability of experiment Hj
2 and

Hj−1
2 can be argued by following the same argument

as Lemma ??: the RSA reduction AdvRSA will place
its challenge z∗ among the puzzles of the j-th row



zj,i1 , . . . , zj,iµ (il ∈ R), while computing all the re-
maining rows as in Hj

2 .

H. Case T is corrupt

Here it will be most convenient to present the full
simulator SQT for the case of Q payment. We then pro-
vide an indistinguishability proof by presenting its key
differences w.r.t. the base case shown in Appendix F.

Simulator.
Conceptually, there is no difference between SQT and
ST (the simulator for the base case in Appendix F). The
both send ANS =yes to Fpromise-sign if the transcript is
accepting, and they both try to extract keys εj,i from
the RO Hshk, for all i ∈ F and for some i ∈ R. For
both simulators, the bad event corresponds to case when
the transcript is accepting but the simulator does not
observes a RO query that contains an εi that allows σi
to be recovered from ci for all i ∈ F ∪ Set.

The only difference between ST and SQT is what
constitutes a good key, that is, a key that allows the
simulator to decrypt a signature. In the base case of 1
payment, a good key is a string εi such that Hshk(εi)⊕
ci = σi and σi is a valid signature and zi = (εi)

pk . In
the case of Q payment, we need Q good keys, and the
j-th good key is a chain (εj,i, εj−1,i, . . . , ε1,i) of good
keys.

Simulator SQT .
SQT runs T ∗ internally.

Upon receiving (KeyGen,B) send request to T ∗ and
obtain PK eph

T . Send (PK eph
T ,Sig) to Fpromise-sign where

Sig is defined below.

Upon receiving

(sign-request,PK eph
T
′
, {FkTxnj,i}i∈[η], {mj,i}i∈[µ])

for all j ∈ [Q]. Randomly pick R,F with R ∩ F = ∅,
compute the RO outputs hF , hR and βj,i for j ∈ Q and
i ∈ [η + µ], and send them to T ∗.

Upon receiving pairs (cj,i, zj,i) from T ∗. Then, do
the following for j = 1, . . . , Q:

1) Extract key εj,i by observing queries to Hshk

that have format (j|i|εj,i|εj−1,i| . . . |?), where
εj−1,i, . . . ε1,i are the keys extracted previ-
ously.

2) Let σj,i be the signature decrypted from cj,i
using εj,i, . . . , ε1,i.

3) If cj,i, zj,i, εj,i, βj,i, σj,i for i ∈ F pass all va-
lidity checks, record tuple (FkTxnj,i, βj,i, σj,i)
in Lfake.

4) If cj,i, zj,i, εj,i, βj,i, σj,i for i ∈ R pass all
validity checks add pair (j, i) to a temporary
set TempSet. Else add (j,⊥) in TempSet.

If there exist no i such that for all j, tuple (j, i) ∈
TempSet then set real = no. Else, store in Set the in-
dexes i such that (j, i) ∈ TempSet for all j ∈ Q. Then,
only for i ∈ Set, record tuple (mj,i, βj,i, σj,i) ∈ Lreal
for all j ∈ [Q].

For all j ∈ [Q] and i ∈ F , pick randomness rj,i,
and send it T ∗. Add pair (FkTxnj,i||rj,i, βj,i) to QH′ .

For all j ∈ [Q] and i ∈ R, pick randomness ρj,i,
and send it T ∗. Add pair (mj,i||ρj,i, βj,i) to QH′ .

For all j ∈ [Q], upon receiving the ‘openings’
ε′j,i to fake messages i ∈ F , use ε′1,i, . . . , ε

′
j,i to

obtain σ′j,i from cj,i. If any (j, i, cj,i, zj,i, ε
′
j,i, βj,i, σ

′
j,i)

fails any validity check, send (promise,B, NO,⊥)
to Fpromise-sign. Else, if all checks pass, send
(promise,B, Y ES,Set).

Now we have two cases:

Case 1: Suppose there exists i ∈ F and j ∈ [Q] such
that tuple (i, ε′j,i, βj,i, σ

′
j,i) passes all validity checks but

(·, βj,i, σ′j,i) is not recorded in Lfake. Then, abort and
output binding-fail!.

Case 2: Otherwise, for all i ∈ F and j ∈ [Q], we
have that (j, i, ε′j,i, βj,i, σ

′
j,i) pass all validity tests and

(·, βj,i, σ′j,i) is recorded in Lfake.

1) If real = no, abort and output
cut-and-choose-fail!.

2) Else, set variables Lfake and Lreal for algo-
rithm Sig.

Algorithm Sig(mi,PK
eph
T ).

Variables: Lfake and Lreal.
Search for record (mj,i, βj,i, σj,i) in Lfake and Lreal
and output (βj,i, σj,i). Else, abort.
Note that mi,j cannot be found in both lists. This
is because Lfake is populated only with signatures
of messages in FakeFormat, and Lreal only collects
signatures of messages in RealFormat, and a message
mj,i cannot be both fake and real.

Indistinguishability Proof.
As for the base case, the indistinguishability proof
amounts to show that the probability that SQT aborts
in the simulation is negligible. As in the base case
(Appendix F), SQT will abort if the test phase passes
successfully, but later he finds that T ∗ did not
compute any i ∈ R correctly, therefore not de-
livering any promise. We focus only on the event
cut-and-choose-fail!(event binding-fail!
depends only on the failure of the random oracle, and
is independent of the number of payments). We argue
that probability of such event is negligible, due to the
same arguments as the base case. Too see why, consider
the following observations.

In the base case, a coordinate i ∈ F passes the va-
lidity check if the tuple zi, ci, σi is correctly computed.
In the Q-payments case, a coordinate i ∈ F passes the



check if the column zj,i, cj,i, σj,i is correctly computed
for all j ∈ [Q]. That is, starting from j = 1, it holds that
c1,i is correctly computed using keys ε1,i, and for j = 2,
c2,i is correctly computed using both keys (ε2,i|ε1,i) and
so on and so forth. Thus, for column i we have that B
is guaranteed that he can decrypt all signatures for all
j = [Q].

Now, recall that this check is performed for all
i ∈ F . This means that for η coordinates T ∗ correctly
computed for all levels j ∈ [Q]. Hence, the probability
that all columns i ∈ F are computed correctly in all Q
levels, but there is no column i ∈ R that is completely
correct in all Q levels, amounts to the probability of
guessing F . Thus, it follows that there exists at one
column i ∈ R, where values (zj,icj,i, σj,i) are computed
correctly for all levels j, except with probability 1

(µ+ηn )
.

However, we need a second argument that shows
that, even one good index i ∈ R suffices for B to
recover his required signatures. To argue this, we use the
quotient chains provided for each j ∈ Q. The quotient
chain qj,1, . . . , qj,µ guarantees that for level j, solving
puzzle zj,i1 for i1 ∈ R is sufficient to then unlock all
puzzles in level j. This guarantees that for every level
j, B will be able to unlock keys εj,i for all i ∈ R. Thus,
if there is at least on i ∈ R where the entire column
is correctly formed, then B is guaranteed to decrypt at
least one entire column (and SQT is guaranteed to not
abort) except with probability 1

(µ+ηn )
.

I. Details of our Bitcoin Scripts

All our redeem scripts include a time-locked refund
condition, that allows the payer to retrieve the funds
after time window Locktime. The refund condition is
scripted as follows:

Locktime
OP_CHECKLOCKTIMEVERIFY
OP_DROP
Payer_Pubkey
OP_CHECKSIG

Our subsequent descriptions of our scripts use
refund_condition as a placeholder for the script
above. When some part of protocol has failed, the party
whose bitcoins are timelocked in Toffer can retrieve
those bitcoins by posting a refund transaction that
contains the following input values (signature is a
signature that verifies under Payer_pubkey):

Signature
OP_FALSE

The redeem script for our RSA-puzzle-solver pro-
tocol checks either the refund condition is met, or that
the input values in Tsolve contain the correct preimages
(h1, . . . , h15 from Figure 2) and that Tsolve is signed by
T ’s public key:

OP_IF
OP_RIPEMD160, h1, OP_EQUALVERIFY
...
OP_RIPEMD160, h15, OP_EQUALVERIFY
Redeemer_PubKey
OP_CHECKSIG
OP_ELSE
refund_condition
OP_ENDIF

Redeemer_PubKey is the Tumbler T ’s permanent
bitcoin address (i.e., public key). The redeem script is
run against the input values (that are stored in Tsolve):

signature
k15
...
k1
OP_TRUE

signature is a signature under the the Tum-
bler T ’s permanent bitcoin address. The preimages
k1, ..., k15 are such that H(k`) = h` per Figure 2.

The redeem script for our two-of-two escrow trans-
actions Tescr requires either the refund condition to be
met, or for both parties to sign the cash-out transaction
Tcash:

OP_IF
OP_2
payer_pubkey
redeemer_pubkey
OP_2
OP_CHECKMULTISIG,
OP_ELSE
refund_condition
OP_ENDIF

OP_CHECKMULTISIG checks for two signatures on
Tcash. The redeem script is run against the following
input values, which contain the required two signatures:

OP_FALSE
payer_signature
redeemer_signature
OP_TRUE


	Introduction
	TumbleBit Features 
	Related Work

	Bitcoin Scripts and Smart Contacts
	TumbleBit: An Unlinkable Payment Hub
	Overview of TumbleBit's Phases
	Overview of Alice's Interaction with the Tumbler
	TumbleBit's Security Properties

	TumbleBit: Also a Classic Tumbler.
	Anonymity Properties

	A Fair Exchange for RSA Puzzle Solving
	Approaches from the Literature
	Our (Stand-Alone) RSA-Puzzle-Solver Protocol
	Fair Exchange
	Solving Many Puzzles

	Puzzle-Promise Protocol
	Protocol Walk Through
	Security Properties

	TumbleBit Security
	Unlinkability
	Balance

	Implementation
	Protocol Instantiation
	Off-Blockchain Performance Evaluation
	Blockchain Tests

	References
	Appendix
	Puzzle-Promise Protocol: Extending to Q payments.
	Ideal Functionalities
	Ideal functionality Ffair-RSA 
	Ideal functionality Fpromise-sign
	Proof of Theorem 1
	Case: A is corrupted
	Case: Tumbler T is corrupted

	Proof of Theorem 2
	Case B is corrupted
	T is corrupted

	Proof of Theorem 3: the case of Q payments
	Case B is corrupt

	Case T is corrupt
	Details of our Bitcoin Scripts


