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Abstract

Groups of unknown order are of major interest due to their applications including time-lock puzzles,
verifiable delay functions, and accumulators. In this paper we focus on trustless setup: in this setting,
the most popular unknown-order group construction is ideal class groups of imaginary quadratic fields.

We argue that the full impact of Sutherland’s generic group-order algorithm has not been recognised
in this context, and show that group sizes currently being proposed in practice (namely, approximately
830 bits) do not meet the claimed security level. Instead, we claim that random group orders should be
at least 3300 bits to meet a 128-bit security level. For ideal class groups this leads to discriminants of
around 6656 bits, which are much larger than desirable.

One drawback of class groups is that current approaches require approximately 2 log2(N) bits to
represent an element in a group of order N . We provide two solutions to mitigate this blow-up in the
size of representations. First, we explain how an idea of Bleichenbacher can be used to compress class
group elements to 3

2
log2(N) bits. Second, we note that using Jacobians of hyperelliptic curves (in other

words, class groups of quadratic function fields) allows efficient compression to the optimal element
representation size of log2(N) bits. We discuss point-counting approaches for hyperelliptic curves and
argue that genus-3 curves are secure in the trustless unknown-order setting. We conclude that in practice,
Jacobians of hyperelliptic curves are more efficient in practice than ideal class groups at the same security
level—both in the group operation and in the size of the element representation.

1 Introduction

Interest in groups of unknown order has been fuelled in recent years by applications such as delay functions
[BBF18], accumulators [BBF19], and zero-knowledge proofs of knowledge [BFS19]. As the name suggests, a
group G has unknown order if it is infeasible for anyone to compute the order of G without access to any
secret information used to construct G. In the case of trustless setup, the order should not even be known
to the creator(s) of the group. Specific use-cases may require additional properties, such as Wesolowski’s
adaptive root assumption [Wes19], which is that it should be infeasible to compute random roots, or any
elements of known order.

Previously, there have been two proposals for concrete groups of unknown order: RSA groups [RSW96],
and ideal class groups of imaginary quadratic fields [BW88]. RSA groups are groups of the form (Z/NZ)×,
where N = pq is the product of two primes. Computing the order of this group is equivalent to factoring N .
The main drawback of RSA groups is that it requires a trusted setup to generate N (or at least trust that the
factorisation of N is not known to anyone, or has been destroyed). Class groups, on the other hand, do not
require a trusted setup to generate, and thus have received a lot of attention (see e.g. [Wes19, BBF19, BH01]).
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In this work we begin by reconsidering parameter sizes for the class group setting in the context of
Sutherland’s generic group order algorithm [Sut07]. A randomly-generated group is only vulnerable to this
algorithm with small probability, depending on the order. But inherent to our use-case, since we don’t know
the order, we cannot check if the group is vulnerable or not without simply attempting to run the algorithm
for some time. Suppose a group G is vulnerable to an attack running in time T with probability P . Then,
we claim that the security level of the system is at most max(T, 1/P ). In other words, if max(T, 1/P ) < 2λ

then there is an adversary that runs in less than 2λ time that breaks the scheme with probability greater
than 1/2λ.

In Section 4 we show that Sutherland’s order-computation algorithm presents a strong opponent to class
groups at current discriminant sizes, and propose new parameter sizes in response. For example, Buchmann
and Hamdy [BH01] suggest that class groups with 1665-bit discriminants offer 128-bit security; at this
size, we expect the order of the class group to be around 2833. This security estimate was used by Boneh et
al. [BBF19, BFS19] in their class-group-based instantiations of various protocols. But Sutherland’s algorithm
will compute the group order in around 255 operations with probability ∼ 2−55 (corresponding to u = 15
below). Thus, we claim that groups with these parameters only offer 55-bit security.

Our second major result is a more compact representation of class group elements. Inspired by a signature-
compression method of Bleichenbacher [Ble04], in Section 5 we compress elements of ideal class groups to 3/4
the size of the usual representation. This space saving is particularly welcome in the light of our updated,
much larger class group parameters.

In Sections 6, 7, and 8, we present an alternative source of groups of unknown order, without trusted
setup: Jacobians of hyperelliptic curves of genus 3. Jacobians are more efficient than class groups at the
same security level: the element representation size is smaller by a factor of 2 (or 3/2 if our new compression
algorithm is used), and the group operation can be computed more efficiently. We acknowledge that there are
potentially polynomial-time algorithms to compute the group order of hyperelliptic Jacobians [Pil90, GH00].
However, there is evidence that these algorithms are already impractical for discrete-log-based cryptographic
parameter sizes, i.e., group orders of around 256 bits. Hence, for the extremely large group orders we have
in mind, we believe such methods are not a concern. While curves of genus 2 and above can be considered,
we suggest that genus-3 curves are a safer choice, since the point counting algorithms are more complex in
that case. Naturally, if progress was made to render Schoof-type algorithms for genus 3 practical, then our
proposal would be nullified—but at least we have provided motivation for such work. Finally, in Section 9
we explore the use of multiple instances in parallel.

This paper supersedes ePrint 2020/196.

Acknowledgements. We thank Dan Boneh, Benjamin Wesolowski, Steve Thakur, and Jonathan Lee for
their valuable comments, feedback and suggestions on an earlier version of this work. We also like to thank
Edward Chen for beneficial discussion.

2 Preliminaries

We begin by recalling some elementary definitions and facts on groups of unknown order, ideal class groups,
and Jacobians of hyperelliptic curves. Good references include [Coh10] and [Cox89] for class groups, and
[MWZ96] and [Gal12] for hyperelliptic Jacobians.

Notation. Recall the soft-O notation: Õ(x) = O((log x)c · x) for some constant c. We shall also use the
L-notation: Ln(α) = exp [(1 + o(1))(lnn)α(ln lnn)1−α].

2.1 Groups of unknown order

As the name implies, a group of unknown order is a group whose order should be infeasible to calculate.
The order of the group acts as secret information, which is known either to the creator of the group (trusted
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setup), or to no-one. In order to be useful, despite not knowing the order of the group, the group operation
should be efficiently computable; group elements should have a practical representation; and it should be
possible to efficiently generate random elements of the group.

An additional requirement often used follows directly from Wesolowski’s [Wes19] adaptive root assump-
tion: that it should be infeasible to find any non-trivial element in the group with known order. More
generally, it should be infeasible to compute random roots of any non-trivial element in the group. This
assumption is relied upon in constructions such as Proof of Exponentiation (PoE). We briefly recall this
construction, as it will be a useful example later.

We have as parameters a group, G, chosen according to security parameter λ. The Proof of Exponentia-
tion takes as input u and w in G and x in Z, and aims to prove that ux = w. It proceeds interactively with
a challenge-response format, although can be made non-interactive (see [Wes19, Appendix D] for details).

1. The verifier sends a random prime ` ∈ Primes(λ) to the prover.

2. The prover computes q = bx/`c and Q = uq, and sends Q to the verifier.

3. The verifier computes r = x mod `, and accepts if Q`ur = w

In order to illustrate the necessity of the adaptive root assumption for security of this protocol, suppose we
know an element −1 of order 2 in G. Then for any valid proof that ux = w, we can also easily generate a
false proof of the contradictory statement ux = −w, by replacing Q with Q′ = −1 ·Q in the proof. Since `
is odd, (Q′)`ur = −1 ·Q`ur = −w will hold, despite the fact that ux 6= −w. That is why when using RSA
groups, it is important to use the quotient (Z/NZ)∗/〈±1〉 to eliminate this element.

As mentioned earlier, previous work with groups of unknown order has been primarily centred around
two ideas: RSA groups [RSW96] and class groups of imaginary quadratic orders [BW88] (discussed below
in Section 2.2). Brent [Bre00] briefly mentioned using the Jacobian of a hyperelliptic curve as a group of
unknown order, following work by Koblitz [Kob89] on the use of Jacobians as groups in which the discrete
logarithm problem is infeasible. But unlike class groups of imaginary quadratic fields, this Jacobian idea has
received very little further attention.

2.2 Ideal and form class groups

An imaginary quadratic field is an algebraic extension

K = Q(
√
d) = {a+ b

√
d | a, b ∈ Q}

where d < 0 is a square-free integer. The discriminant ∆ of K is d if d ≡ 1 (mod 4), or 4d otherwise (so
∆ ≡ 0, 1 (mod 4), since only 0 and 1 are quadratic residues modulo 4). The ring of integers OK is generated
by {1, ω}, where ω = 1

2 (1 +
√
d) when d ≡ 1 (mod 4) and ω =

√
d otherwise.

Let JK denote the group of non-zero fractional ideals of OK . Let PK < JK be the subgroup of non-zero
principal fractional ideals. Then the ideal class group is the quotient group Cl(OK) = JK/PK . This is
the abelian group of fractional ideal classes under the equivalence relation a ∼ b iff (α)a = (β)b for some
principal ideals (α) and (β). We denote the class of an ideal a as [a]. The identity of the group is [(1)], and
the order of this group is the class number of K (it is always finite when constructed with a ring of integers
such as OK). We shall denote the order of the group as h(∆) = |Cl(OK)|.

In practice, it is most efficient to represent Cl(OK) using binary quadratic forms: that is, using the
isomorphic form class group Cl(∆), which is defined as follows. We denote by (a, b, c) the binary quadratic
form

(a, b, c) = ax2 + bxy + cy2 ∈ Z[x, y]

Its discriminant is ∆ = b2 − 4ac. In Cl(∆), we can represent forms using only two elements (a, b), because
c is uniquely determined by the equation c = (b2 −∆)/4a. A form is positive definite if a > 0. Just as in
the ideal class group, we have an equivalence relation on these quadratic forms. We say forms f and g are

equivalent, and write f ∼ g, if there exists a matrix
(
α β
γ δ

)
in SL2(Z) such that f(x, y) = g(αx+βy, γx+δy).
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Equivalent forms always have the same discriminant, so the class group of forms under this relation, denoted
Cl(∆), is well defined.

We represent each equivalence class in Cl(∆) using the unique reduced form in that equivalence class.
A reduced form (a, b, c) of discriminant ∆ is one where |b| ≤ a ≤ c, and if |b| = a or a = c, then b ≥ 0.
Lagrange, and later Gauss and then Zagier, gave algorithms for finding an equivalent reduced form for any
binary quadratic form. The identity in Cl(∆) is the equivalence class of the principal form (1, 0,−k) if
∆ = 4k, or (1, 1, k) if ∆ = 4k + 1. The group law in Cl(∆) is known as composition of forms, and is due to
Gauss (it corresponds exactly to multiplication of ideals in Cl(OK), defined by ab = {

∑
aibi | ai ∈ a, bi ∈ b}).

The algorithm does not usually output a reduced form, so reduction is an additional step. We shall not give
these algorithms here (the reader can consult [Coh10] for more information).

It follows from the Brauer–Siegel theorem that for sufficiently large negative discriminant ∆→ −∞, the
class number is on average

h(∆) ≈ 1

2

√
|∆| (1)

(see [HM00]), and thus log h(∆) ∼ log
√
|∆|. So we can conservatively assume a group size of ≈ 1

2 log |∆|
bits for cryptographic-sized negative discriminants.

The use of class groups in cryptography was first suggested by Buchmann and Williams [BW88]. A
sub-exponential algorithm for computing the order of Cl(∆) was given by Hafner and McCurley [HM89],
with complexity L|∆|(1/2). Thus, the order of a class group Cl(∆) of negative prime discriminant ∆ ≡ 1
(mod 4) is believed to be difficult to compute, if ∆ is sufficiently large. Wesolowski [Wes19] proposed that by
simply selecting a suitable large ∆, the class group Cl(∆) can be used as a group of unknown order without
a trusted setup. We also need to choose an element in Cl(∆) which we shall treat as a generator; it is not
possible to know if it really generates the whole of Cl(∆) or just a subgroup (we shall discuss this further
below).

2.3 Hyperelliptic curves

Let k be a field, and k its algebraic closure. A hyperelliptic curve C of genus g > 1 is a curve of the form
y2 + h(x)y = f(x), where h and f are polynomials over k with f monic, deg f = 2g + 1, and deg h ≤ g.
(We will not need the more general case where deg f = 2g + 2.) The curve C must have no singular points:

that is, there is no (u, v) in k
2

satisfying both the equation of C and its partial derivatives. For an extension
field K/k, we denote by C(K) the set of points P in K2 satisfying C (the finite points), together with
the projective point at infinity ∞ in P2(k). Recall that every P = (x, y) on C has an opposite point
P̃ = (x,−y − h(x)) (with ∞ = ∞̃).

Unlike points on elliptic curves (which correspond to g = 1), the points in C(K) do not form a group.
Instead, the group we use is the class group of degree-0 divisors on C, also known as the Jacobian.

The coordinate ring of C over K is the quotient ring K[C] = K[x, y]/(y2 + h(x)y − f(x)), where the
modulus is the ideal generated by the equation of C. Elements of K[C] are called polynomial functions on
C. Every polynomial function G(x, y) can be written in the form a(x) − b(x)y for some a and b in k[x].
The conjugate of G is G := a(x) + b(x)(h(x) + y), and the norm of G is N(G) := GG. The ring k[C] is an
integral domain.

The function field K(C) of C is the field of fractions of K[C]. We say that a function R in k(C) is defined
at a point P 6= ∞ in C(K) if and only if R = G/H for some polynomial functions G and H in k[C] with
H(P ) 6= 0; and in this case, R(P ) = G(P )/H(P ).

A divisor on C is a formal sum of points D =
∑
mPP where mP = 0 for all but finitely many P .

The divisors form a group DivC. The degree of a divisor is degD =
∑
mP . The divisors of degree zero

Div0(C) is a proper subgroup of Div(C). A principal divisor is a divisor of the form (γ) =
∑
P∈C mPP for

a function γ in k(C), where mP = ordP (γ) is the order of vanishing of γ at the point P . Denote by P(C)
the set of principal divisors of C. It is a fact that principal divisors have degree 0, so P(C) < Div0(C), and
we may define the Jacobian

JC ∼= Div0(C)/P(C) (2)

4



(also known as the degree-0 Picard group, denoted by Pic0(C)). Two divisors D1 and D2 in Div0(C) are
equivalent if D1 −D2 is in P(C). Each element in JC can be represented by the unique reduced divisor in
the divisor class: this is the divisor of the form D = P1 + · · ·+Pr− r∞ (with the Pi not necessarily distinct)
such that r ≥ g and Pi 6= P̃j for all i 6= j.

We represent reduced divisors using the Mumford representation [Mum07]. A reduced divisor is uniquely
specified by a pair of polynomials 〈u(x), v(x)〉, where u is monic, deg v < deg u ≤ g and u divides v2 +hv−f
. Specifically, the roots of u(x) are the x-coordinates of the points in the support of the divisor. The divisor
is prime if u(x) is irreducible over Fq. Cantor’s algorithm computes the group law on JC in terms of the
Mumford representation [Can87] (see also [CL12]). More efficient explicit formulae have been given when
the genus g is small: see [Lan05] for g = 2 and [FWG07] for g = 3.

If we have a curve C of genus g over the finite field of cardinality q, then the Fq-rational points of JC
form a finite group. The Hasse–Weil bound tells us that #JC ∼ qg; more precisely,

(
√
q − 1)2g ≤ #JC ≤ (

√
q + 1)2g .

An abelian variety—and specifically, in this case, the Jacobian—is simple if it does not contain a (non-
zero) proper abelian subvariety. If JC contains an abelian subvariety A (such as an elliptic curve E, in the
case where there exists a nontrivial map C → E), then #A(Fq) divides #JC(Fq). This type of splitting may
reduce the difficulty of order computations, so we want to restrict to simple Jacobians; fortunately, a general
Jacobian is simple.

Recall that if E is an elliptic curve, then for all positive integers n there exists a division polynomial
Ψn(X) such that Ψn(x(P )) = 0 if and only if P 6= 0 is in the n-torsion of E. The hyperelliptic analogue
of these polynomials are division ideals: homogenous ideals vanishing on coordinates of points in torsion
subgroups (in this sense, the genus-one division ideals are the principal ideals generated by the n-division
polynomials). Cantor constructs a system of polynomials generating the `-division ideal in [Can94] (see
also [CFA+05]); in genus 3, the degrees of Cantor’s `-division polynomials are bounded byO(`2) (see [Abe18]).

3 Sutherland’s algorithm: the security of generic groups

We now come to the algorithm presented by Sutherland in his thesis [Sut07, Algorithm 4.2], which he calls the
primorial-steps algorithm. This algorithm computes the order of an element in a generic group; it can be used
to probabilistically determine the exponent of a group. Remarkably, it runs in O(

√
N/ log logN) = o(

√
N)

time (where N is the group order) in the worst case, but in fact the expected runtime depends heavily on the
multiplicative structure of N . The algorithm runs particularly quickly when N is smooth, which we do not
expect (or desire!) in a group of unknown order. However, Sutherland’s algorithm also poses a significant
threat to a larger class of groups.

The primorial-steps algorithm is based on the baby-step giant-step (BSGS) algorithm. Suppose we wish
to compute the order of α. Instead of computing consecutive powers of α in the baby-steps, we instead
compute a new element β = αE , such that the order of β is coprime to all primes 2, 3, . . . , pn ≤ L for a
chosen bound L. This is done by setting E to be a product of the pi, each raised to an appropriate exponent
b` logpi 2c (where ` is the bit-size of the group element identifiers). The baby-steps are then all powers of β
with exponents coprime to Pn, and the giant-step exponents are multiples of Pn, where Pn =

∏n
i=1 pi. As

in BSGS, a collision allows |β| to be learnt, which then allows |α| to be computed very efficiently.
Sutherland shows that if the order N of a group element α is uniformly distributed over [1,M ] (for

sufficiently large M) and L = M1/u, then this is a O(M1/u) time and space algorithm that successfully
computes N with probability P ≥ G(1/u, 2/u) [Sut07, Proposition 4.7]. Here G(r, s) is the semismooth
probability function

G(r, s) = lim
x→∞

ψ(x, xs, xr)/x

where ψ(x, y, z) is the number of integers up to x which are semismooth with respect to y and z (that is, all
prime factors less than y, with at most one greater than z).
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Table 1: Asymptotic semismoothness probabilities for various values of u, from [Sut07] and [BP96]

u G(1/u, 2/u) u G(1/u, 2/u) u G(1/u, 2/u)

2.1 0.9488 5.0 0.4473 12.0 4.255e-12

2.9 0.5038 6.0 1.092e-03 16.0 6.534e-19

3.0 0.4473 10.0 5.382e-09 20.0 2.416e-26

Table 1 gives some numerically computed values for G(1/u, 2/u) from [BP96] and [Sut07]. But in order
to estimate the group orders required for 100- or 128-bit security, we need even larger values of u. For
this reason, we plotted the known semismoothness probabilities from Table 1 as a function of u, and tenta-
tively extrapolated the trend to larger values (see Figure 1). Our extrapolation suggests that for a success
probability of less than 2−100, we should take u ≈ 23; for 2−128, we should take u ≈ 26.

In the introduction, we stated that the bit-security level λ is bounded by 2λ ≤ max(T, 1/P ), where there
exists an attack running in time T that succeeds with probability P . Therefore, when targeting 128-bit
security, we must ensure that the probability that a ≤ 2128-step algorithm exists for a random group order
is less than 2−128. Hence, we suggest that order approximately M = 2128×26 = 23328 is required for any
random group to meet this security level.

Figure 1: Graph of − logG(1/u, 2/u) as u grows, from values in [BP96] for u ≤ 20, with a tenuous polynomial
projection for u > 20.

We remark that Sutherland’s algorithm is less of a threat to unknown order groups with trusted setup.
For example, if there is an authority that can be trusted to generate an RSA modulus N = pq where p and
q are safe primes, then the order of Z×N cannot be computed using Sutherland’s approach.
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4 The security of ideal class groups

Until now, cryptographic class group parameters have mainly been proposed with an eye to resisting Hafner
and McCurley’s subexponential algorithm for computing orders of quadratic imaginary class groups [HM89].
In this section we re-assess the security these parameters in the light of Sutherland’s algorithm, and propose
new (much larger) parameter sizes targeting the 128-bit security level.

Hafner and McCurley gave their L|∆|(1/2) algorithm to compute the order of quadratic imaginary class
groups in 1989 [HM89]; for three decades this has been the benchmark for cryptographers estimating the
security of quadratic imaginary class groups. The important thing for us to note is that while the Hafner–
McCurley algorithm is subexponential, its runtime depends essentially on the size of ∆; in contrast, Suther-
land’s algorithm has exponential worst-case runtime, but performs much faster with non-negligable proba-
bility, depending on the structure of the class group—a factor that the Hafner–McCurley algorithm cannot
exploit. When computing the order of a randomly selected class group, therefore, the small probability that
Sutherland’s algorithm outperforms Hafner–McCurley must be taken into account.

The cryptographic parameter sizes in [HM00] and [BH01] both suppose that Hafner–McCurley is the
best known algorithm. Concretely, it is suggested that a 1665-bit negative fundamental discriminant, which
means an approximately 833-bit group order (cf. Eq. (1)), should provide 128-bit security. This estimate has
since been quoted in various more recent works (e.g. [BBF19] and [BFS19]).

But now suppose we try to compute the order of a random class group with 1665-bit fundamental negative
discriminant using Sutherland’s algorithm. Hamdy and Möller [HM00] show that for negative fundamental
discriminants, it is expected that class numbers are more frequently smooth (although not significantly
so) than uniformly random integers of the same size. We may therefore conservatively approximate the
smoothness probability of random class group orders as being that of random integers. With the results
summarized in Section 3, we find that the probability that such a group class group has less than 128 bits
of security (u = 6.5) is at least 2−14, and the chance it has less than 64-bit security is 2−42. Thus, with
respect to Sutherland’s algorithm, the security is much weaker at these discriminant sizes than was previously
thought. In fact, taking u = 15 (so that a ∼ 255 operation algorithm succeeds with probability ∼ 2−55), we
estimate that class groups with 1665-bit discriminants only provide 55-bit security.

Bach and Peralta [BP96] give G(1/u, 2/u) for u = 20 as 2.415504 × 10−26 ≈ 2−85. Thus in order to
truly obtain even 85-bit security, a discriminant of size around 3400 bits would be required. Using our
extrapolation of G(1/u, 2/u) in Figure 1, we estimate that for 100-bit security with respect to Sutherland’s
algorithm, a discriminant of around 4400 bits would be required. For 128-bit security, we estimate that
u = 26 should give G(1/u, 2/u) ≈ 2−128. this implies a group order N ≈ 2128×26 = 23328, and hence we
estimate that ∆ should be approximately 6656 bits.

We stress that these are tenuous estimates, and that G(1/u, 2/u) is only a lower bound for the sucess
probability of Sutherland’s algorithm. Still, this should serve at least as a starting point for more accurate
estimates in future work.

5 Compression of group elements in class groups

Bleichenbacher [Ble04] proposed a beautiful algorithm to compress Rabin signatures, and his methods can
also be used to compress elements in ideal class groups. As far as we can tell, this simple observation has
not been made in the literature previously.

As mentioned in Section 2.2, an element of the ideal class group corresponds to a triple of integers (a, b, c)
such that b2− 4ac = ∆. Since ∆ is a fixed and known constant, it suffices to store the pair (a, b). A reduced
quadratic form satisfies |b| ≤ a <

√
|∆|. It follows that the pair (a, b) can be encoded in approximately

log2(|∆|) bits.
Recall that a Rabin signature on a message m under the public (RSA) key N is an integer s such that

s2 ≡ m (mod N). Normally s is the same size as N , but Bleichenbacher showed how to bring this down
to
√
N . The continued fraction algorithm (or the Euclidean algorithm) can be used to compute integers r

and t with |r|, |t| ≤
√
N such that s ≡ r/t (mod N) (see Lemma 1 below). It then follows that r2 ≡ mt2
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(mod N). But |r| <
√
N , so we can recover r from m and t by taking the integer square root of mt2 mod N ;

and given r and t, it is trivial to recover s ≡ r/t (mod N). Hence, we may replace s with t, which has half
the size,

Now, given a reduced form (a, b) in Cl(∆), we have

b2 ≡ ∆ (mod a)

—a relation reminiscent of the Rabin signature verification equation. As in Bleichenbacher’s signature
compression, we can use the extended Euclidean algorithm to compute integers s, t such that b ≡ s/t
(mod a) and |s|, |t| ≤

√
a (see Lemma 1 below). It then follows that

s2 ≡ ∆t2 (mod a) .

We can now use t to encode the the coefficient b in half the space. Given a and t, we compute ∆t2

(mod a), which is equal as an integer to s2 because 0 ≤ s < a; so s can be recovered as the exact (positive)
integer square root. This yields b, up to sign—thus, an additional sign bit is also required.

Lemma 1. Given integers a > b > 0, the extended Euclidean algorithm applied to (a, b) will produce
si, ti ≤

√
a at some stage i during the course of its execution.

Proof. At each iteration of the extended Euclidean algorithm, we have integers si, ui, and ti such that

si = uia+ tib

At step i in the algorithm, |ti| < |ti+1| and |si| > |si+1| [Gal12, Lemma 2.3.3]. Suppose at stage i we
have si ≤

√
a for the first time (that is, si−1 >

√
a). Because the sequence of si is strictly decreasing, and

s−1 = a >
√
a, such a stage will always exist. From [Gal12, Lemma 2.3.3] we know that |si−1ti| ≤ a, and

recall that si−1 >
√
a. This implies that |ti| < a√

a
=
√
a. Then we are done: we can return si and ti.

The same idea can be used for class groups. Given the pair (a, b) we compute the corresponding value r/t.
A few special cases arise in this context, mostly related to the fact that a is not an RSA modulus:

1. If r =
√
a then r2 ≡ 0 (mod a), so if the computation above gives 0 during decompression, then we

assume we are in this case.

2. If a = b, then we exceptionally let t = 0 in the compressed form, and recognise this case during
decompression. Note that t = 0 cannot arise in any other case.

3. If gcd(a, t) 6= 1 then basic Bleichenbacher-style decompression fails. To fix this, we let g = gcd(a, t),
a′ = a/g, t′ = t/g, and b0 = b mod g. Given a′, t′, b0, g, and a sign bit ε, we can compute a = a′g,

t = t′g, and s = 1
g

√
t2∆ mod a, using ε to choose the correct sign; then b′ = s′/t′ (mod a), r′ = r/g,

and b′ = b (mod a′). The Chinese Remainder Theorem lets us recover b (mod a) from b ≡ b0 (mod g)
and b ≡ b′ (mod a′).

Algorithms 1 and 2 make the compression and decompression procedures completely explicit. Note that
log2 b0 ≤ log2 g, so log2 a

′ + log2 g = log2 a ≈ log2

√
|∆| and log2 t

′ + log2 b0 = log2 t
′ + log2 g = log2 t ≈

1
2 log2

√
|∆|, We have thus compressed the element (a, b) to a 3

2 log2 |∆|-bit representation, which is three-
quarters of the size of (a, b).

6 The security of hyperelliptic Jacobians

In order for a group of unknown order to be useful in its named role, calculating the order of the group
should be infeasible. In the case of hyperelliptic Jacobians, there are two relevant classes of algorithms:
point-counting algorithms and discrete-log algorithms. Indeed, if the DLP can be efficiently solved, then the
group order can also be efficiently computed: if we solve the DLP instance xG = O, where G the generator
of (the cryptogaphic subgroup of) JC , then x is (a divisor of) the exponent of JC .

8



Algorithm 1: Element compression for the quadratic imaginary class group Cl(∆)

Input: A reduced form (a, b)
Output: A compressed form (a′, t′, g, b0, ε)

1 (s, u, t)← PartialXGCD(|a|, |b|,
√
|a|) // Now s = au+ bt with |s| and |t| <

√
|a|

2 if b < 0 then t← −t
3 g ← gcd(a, t)
4 a′ ← a/g
5 if a = b then
6 t′ ← 0
7 else
8 t′ ← t/g

9 b0 ← b mod g
10 ε← [b >= 0]
11 return (a′, t′, g, b0, ε)

Algorithm 2: Element decompression for the quadratic imaginary class group Cl(∆)

Input: A compressed form (a′, t′, g, b0, ε) and ∆
Output: A reduced form (a, b) and ∆

1 a← g · a′
2 t← g · t′
3 if t = 0 then return (a, a)
4 x← t2∆ mod a
5 s←

√
x // Integer square root

6 s′ ← s/g // Exact integer division

7 b′ ← s′ · t−1 (mod a′)
8 b← CRT((b′, a′), (b0, g))
9 if ε = False then b← −b mod a

10 return (a, b)

6.1 Point-counting algorithms

Let C be a hyperelliptic curve of genus g over Fq, where q = pn; we want to compute #JC . This is a classic
problem (called “point counting”) in algorithmic number theory, with many dedicated algorithms. The goal
is to compute the zeta function of C, from which we immediately get #JC . Point-counting algorithms fall
naturally into two broad classes: p-adic algorithms and `-adic or Schoof-type algorithms.

The p-adic point-counting algorithms, most notably Kedlaya’s algorithm [Ked01] and its descendents,
generally compute the action of Frobenius on some p-adic cohomology group connected with C. Kedlaya’s
original algorithm computes the zeta function of C in time Õ(pg4n3). Harvey [Har07] has reduced the
dependence in p to p1/2. For fixed, or very small p (polynomial in n and g), this is polynomial-time; in
practice, this is highly efficient for p into the thousands. However, as p grows larger, these algorithms
become completely impractical. If we focus on Jacobians of curves C over Fpn with p large—and especially,
on curves over Fp—then we can safely ignore the threat of any Kedlaya-style algorithm.

Schoof-type algorithms compute the characteristic polynomial of Frobenius on subgroups of the (generally
irrational) `-torsion for various ` using the division polynomials, before combining the results with the Chinese

Remainder Theorem to compute the zeta function. Schoof’s ground-breaking Õ(log5 q) algorithm [Sch85]
was the first polynomial-time point-counting algorithm for elliptic curves. Its successor, the Schoof–Elkies–
Atkin (SEA) algorithm has made elliptic-curve point counting a routine calculation. Pila gave a general
extension to higher-dimensional abelian varieties [Pil90], which is polynomial time in p and n, but very
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badly exponential in g. As far as we know, this general algorithm has never been implemented.
Several Schoof-type algorithms for genus 2 have been implemented and analyzed, for example by Gaudry

and Harley [GH00] and Gaudry and Schost [GS04]. This involves computing `-division ideals and analysing
action of Frobenius on them, which can become impractical for even moderately small `. Pitcher’s PhD
thesis [Pit09] gave a Schoof-type point counting algorithm on genus 2 with complexity O((log q)7). Gaudry
and Schost [GS12] used an improved algorithm, with a mixture of Pitcher’s approach and exponential BSGS
algorithms, to find a curve of secure order over the 127-bit Mersenne prime field F2127−1. In their experiments,
they claimed around 1,000 CPU hours to compute the order of a random curve over this field.

This practical work has not been extended beyond genus 2, though some first steps have been made
towards a practical algorithm for the very special class of genus-3 Jacobians with known and efficiently
computable real multiplication in [AGS19b], following the analogous algorithm for genus 2 in [GKS11].
Abelard, Gaudry, and Spaenlehauer give some theoretical analysis and projected complexities for the general
case in [AGS19a], but the main obstruction, even in genus 3, remains the complexity of division ideal
manipulations: as stated in [GH00], “it does not appear possible to avoid manipulation of ideals.”

For discrete-log-based cryptography we need Jacobians with known and secure (near-prime) orders, and
some work has been done on generating Jacobians with a known number of points, using CM theory (see
e.g. [GS12] and [HSS01]). In particular, Weng [Wen01, Wen03] discusses ways to generate hyperelliptic genus
2 and 3 curves with prescribed numbers of Fq-rational points in their Jacobians. While this is all well and
good for discrete-log-based cryptography, in our setting we need to trustlessly ensure that the group order
is unknown to all parties. These curve-generation methods must therefore be avoided; instead, the curve
should be generated in a nothing-up-my-sleeve type manner, as discussed in Section 8.

The upshot is that while point-counting for fixed genus g > 2 is polynomial-time in theory, so far it
remains impractical—and even infeasible—in the real world.

6.2 Discrete logarithm algorithms

As we noted above, if we can solve DLP instances in JC , then we can compute #JC . Suppose, then, that
we want to solve the DLP in JC , where C is a curve of genus g over Fq. Gaudry et al. [GTTD07], and also

Nagao [Nag04], present algorithms for small g running in time Õ(q2−2/g), improving on the O(q2) algorithm
of [Gau00], and the single-large-prime algorithm of [Thé03].

This has better performance for genus 3 than square-root algorithms like Pollard’s Rho algorithm, which
has expected runtime in Õ(q3/2); but in genus 2, Pollard’s Rho algorithm is more efficient, in Õ(q). Avanzi,
Thériault, and Wang [ATW08] give further discussion the security in these cases. Smith [Smi09] gives a
method of transferring the DLP from hyperelliptic to non-hyperelliptic genus-3 Jacobians that applies to
18.57% of genus 3 curves; Diem’s algorithm [Die06] can then be used to solve the DLP in time Õ(q). Laine
and Lauter [LL15] examine and improve on Diem’s attack (including analysis of the logarithmic factors,

which they estimate to be O(log2 q)), but the memory requirement for their attack is high at Õ(q3/4). Ways
to generate genus-3 hyperelliptic curves that avoid these isogeny-based attacks are discussed in [Lai15].

As g → ∞, there exist sub-exponential (in the group order) attacks on the DLP using index calculus
methods (for example, [Eng02]); but these do not impact the case of fixed genus g = 2 and 3.

Previous work on generating hyperelliptic curves for cryptography focused on generating Jacobians whose
orders have specific properties to prevent known DLP attacks. For example, the order should have a large
prime factor, to avoid attacks such as Pohlig–Hellman; the largest prime factor should not divide qk − 1 for
small k, to avoid MOV-type attacks [FR94]; and the group order should be prime to p = char(Fq) to avoid
“anomalous curve” attacks [Rüc99]. Finally, to ensure that we do not weaken the difficulty of point counting
using maps to subvarieties, the curve should have a simple Jacobian.

In the context of groups of unknown order, it is (by definition) not possible to know whether the Jacobian
meets these conditions or not. Fortunately, the vulnerable group orders are extremely rare: a randomly
generated hyperelliptic Jacobian will be simple, and will have a large prime dividing its order, with very
high probability. The security of random ideal class groups as groups of unknown order depends on similar
assumptions and heuristics [CL84].
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6.3 The impact of Sutherland’s algorithm

We can use the results summarized in Section 3 to give some success probabilities for computing Jacobian
orders of randomly chosen genus-3 hyperelliptic curves over Fq, given different running times.

For example, given O(q) time (corresponding to u = 3.0), we would expect to find the group order with
probability 0.4473. But even for O(

√
q) time (u = 6.0), we can expect to find the group order with probability

at least 0.001092. This chance of success, while small at first glance, is still very worrying for cryptographic
applications, because it means that at least 1 in every 1000 randomly generated curves would be vulnerable
to this algorithm in O(

√
q) time. These generic group algorithms can be further optimised when specialised

to Jacobians: we can exploit the fact that negation is effectively a free operation. We can also exploit the
fact that even if a curve is not directly vulnerable to Sutherland’s algorithm, it may be vulnerable through
related curves such as its quadratic twist (this fact was used by Sutherland in [Sut09]). In order to secure
against these algorithms and make the probability of a random curve having weak order exponentially small,
the group order must be made subexponentially large.

We conclude that Sutherland’s algorithm overshadows the other attacks discussed above when it comes to
choosing concrete parameters for the unknown-order setting. It is conservative to assume an Õ(q) algorithm
for finding the order of the group in the genus 3 and above. But to keep the probability of generating
one with semismooth order which can be attacked with Sutherland’s algorithm, q would need to be made
subexponentially large. At these group orders, subexponential attacks on the DLP in higher genus become
insignificant - even an O(q) attack on the discrete logarithm in any genus would be irrelevant. So despite the
fact that raising the genus beyond 3 may have previously been considered risky, we are forced into parameter
choices such that this isn’t the case, even for genus as large as 10 or more. By using parameters of this size,
we also avoid all criticisms of Lee [Lee20].

6.4 Estimating concrete cryptogaphic parameters

With respect to the algorithms mentioned above, we shall now discuss choices of parameters for practical
security levels. The practicality of the above point counting/discrete logarithm algorithms has certainly
been debated, but we shall conservatively proceed assuming they can feasibly be used. The existence of
algorithms with certain time-complexities is allowable if we choose the parameters appropriately in concrete
situations. Despite the use of Õ complexity, for simplicity we will assume no logarithmic factors - which also
gives a more conservative analysis.

We shall first begin by ignoring Sutherland’s algorithm, and discuss only attacks on the group order and
DLP as if the group order were not vulnerable to the primorial-steps algorithm. We shall then address this
algorithm and propose parameters based on it. Choosing parameters q ∼ 2100 in the genus g = 3 case would
appear sufficient to resist point counting on most curves. This would result in the order of the Jacobian of
the curve being around 2300. The practical results from [LL15] suggest at this field size, around 2113 field
multiplications and 1.2 · 1014 TB of memory would be required to mount their attack - even supposing the
chosen genus 3 hyperelliptic curve could be mapped via [Smi09] to a non-hyperelliptic one. The algorithm

by [GTTD07] would give time complexity Õ(2133).
In the genus 2 case, q ∼ 2128 will give only around 49 bits of security on paper, according to the O(log7(x))

attack. Against such an algorithm, attaining 128-bit security would require an infeasibly large field order.
But rather than ruling out the use of genus 2 curves in high security situations entirely, we stress that this
is in the very worst case and ignores very large constant factors in the real runtime of such an attack. In
practice the security is probably a lot better than this assumption, and there have not been any such large
scale computations reported. But even (optimistically) assuming this case has lower security, it could still
be useful for some applications.

Compared to class groups, to get a similar level of security against the sub-exponential L|∆|(1/2) algo-
rithm, a much larger negative prime discriminant of around 1208 bits would be required according to [HM00].
To compare performance in practice, we generated random hyperelliptic curves of genus 3 over the finite field
Fp, p = 2101−69, and selected a random point as the generator point. We then ran basic timing experiments
in MAGMA for group operations. For the class groups, we used the open source rust implementation by KZen
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Networks [KZe]. We used form groups of 996-bit negative prime discriminants in our tests (even smaller than
above) and randomly generated reduced forms as the generators. We found that for 100,000 group element
additions (point additions in the Jacobian, composition-then-reductions of quadratic forms), the hyperellip-
tic curve implementation in MAGMA performed around 28 times faster on average than the quadratic form test
(despite the security level difference). Of course, this is highly implementation dependent and optimisations
may be possible in both cases, but the result is in line with our claim that using a genus 3 hyperelliptic curve
is more practically efficient.

Because elements of the Jacobian are represented as a pair of polynomials 〈u, v〉 such that deg v < deg u ≤
g, the element can be stored concretely as just 6 coefficients of polynomials - a total of 6 elements of Fq.
This can be further reduced down to just 3 elements and 3 extra bits using the point compression of Hess,
Seroussi, and Smart [HSS01]. In that case that q ∼ 2100, this means elements can be stored in around 303
bits. On the other hand, representing a form or ideal class group can be done using two integers. A reduced
form implies that a ≤

√
|∆|/3 so for ∆ ∼ 21208 we have that a ∼ 2603 - so that elements are representable

in around 1206 bits. The compression from Section 5 would reduce this to around 905 bits. Hence we also
propose that Jacobian elements are more compactly represented for the same level of security.

We now come to concrete parameter choice suggestions for the bound s in Assumption 1. Because there
has been no previous work done on Schoof-type algorithms in genus 3 (due to the complexity of using division
ideals), we shall instead inspect progress in genus 2. Gaudry and Schost [GS12] in their 2012 work calculated
modular information for primes up to ` = 31. Memory restrictions prevented higher primes being used at
that time. This bound gave them around 30 bits of information when searching in a 127 bit field, giving a
cost of the BSGS step of around O(249). While no practical implementation beyond this has been presented
in the literature, Abelard’s PhD thesis [Abe18] discusses the feasibility of extending this work to higher

primes. Due to time complexity growing as Õ(`6 log q) and memory as Õ(`4 log q), it is in fact the running
time which becomes more of an issue than the memory. He states that in a 192-bit field, computation with
` = 53 could take around 1000 CPU days and would still result in a search space of ≈ 295 in the collision
step of the algorithm. Given the current understanding and previous work in genus 2, and considering the
inherent difficulty in performing similar work in genus 3, a bound such as s = 60 should thus be sufficient.
At this size, the memory and time constraints should be large enough to make computation infeasible. This
could even be raised to s = 70 or higher depending on the use-case.

Let us take s = 60 in order to make some concrete efficiency claims. The bit length of N = 60! is 273
bits. Consider the modified PoE from Section 8. The only performance impact the choice of s has is in the
final verification step, checking [N ]([`]Q + [r]U) = W . We observe that the choice of prime ` respects the
security parameter, so would perhaps be around the order of 100 or more bits, and r would be similar. So
the additional cost to the verifier is comparable to the existing cost of operation anyway. Thus we claim
that this should still be faster than using ideal class groups.

Coming now to Sutherland’s algorithms [Sut07], we realise that we cannot safely assume that the group
order of a random hyperelliptic curve would be secure against this attack. To keep the probability of
generating a weak curve exponentially small in the security parameter λ, the group order must be made
much larger - ∼ 23328 for λ = 128. At these group orders, the attacks above and any subexponential attacks
on the DLP in higher genus become insignificant - even an O(q) attack on the discrete logarithm in any
genus would be irrelevant. So despite the fact that raising the genus beyond 3 may not considered risky, we
are forced into parameter choices that this isn’t the case for genus even as large as 10 or more.

Specifically, for 128-bit security, we estimate that u = 26 should give G(1/u, 2/u) ≈ 2−128 (from Figure 1).
The group order requirement arises from M = 2128∗26 = 23328 (as in Section 3), which would require a field
order q such that log q ≈ 1109. Because the primorial-steps algorithm by Sutherland is a generic group
algorithm, this requirement on the group order applies to any group of unknown order, and is much larger
than has been previously recommended in the literature. We also discuss the possibility of using multiple
different group instances in parallel below, in order to lower the group order and retain the negligible
probability.
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7 Elements of known order in hyperelliptic Jacobians

We now consider the problem of constructing points of known order in a hyperelliptic Jacobian of unknown
order. This will give us an idea of how to work with Jacobians in situations where Wesolowski’s adaptive
root assumption is required.

7.1 Constructing points of known order

If E/Fq is an elliptic curve, then whether or not of the order of E(Fq) is known, we can try to compute
elements of small order ` by finding roots of the division polynomial Ψ` for E. In the same way, we can
try to construct points of small, known order on hyperelliptic Jacobians using their division ideals, hence
invalidating the adaptive root assumption.

However, if we assume (as we did in Section 6.1) that there exists no feasible Schoof-type algorithm for
counting points on genus 3 curves, then we implicitly assume that it becomes infeasible to construct points
of order larger than some bound. More formally, we have the following assumption:

Assumption 1. For each integer g > 0, there exists an integer s(g) such that for sufficiently large prime p,
it is infeasible to compute roots of the `-division polynomials for a random hyperelliptic curve1 of genus g
over Fp if ` > s(g).

Given Assumption 1, we can maintain the adaptive root assumption if we use the subgroup

[S]JC(Fp) = {[S]P | P ∈ JC(Fp)} ,

where S is a smooth integer chosen to kill off all points of small order. We can take S = s! with s > s(g) for
some very conservative estimate of s(g).

The issue now is that given a point Q in JC(Fp), testing subgroup membership Q ∈ [S]JC(Fp) is not
easy. However, the original point Q is effectively a proof that [S]Q is in [S]JC , because this can be easily
verified; so Q should be sent instead of [S]Q in cryptographic protocols, and the verifier can perform the
multiplication by S themselves. See Section 8 for an illustrative example in the case of accumulators.

Another important, related observation is that computing repeated divisions by 2 in JC allows the
construction of points of order 2k for arbitrarily large k. Since 2k is coprime to all odd primes `, this would
allow a malicious prover to easily find `-th prime roots for these points (that is, given a point Q, find P such
that [`]P = Q). But repeated division by 2 in JC(Fp) requires the repeated extraction of square roots in Fp,
which quickly requires repeated quadratic field extensions. Using hyperelliptic curves in the form y2 = f(x)
with f(x) irreducible ensures that the required square roots do not exist in Fp. But similarly, repeated
powers of other small primes > 2 might still be calculated. Using the group [S]JC will kill off powers of these
low primes dividing the group order. It could also be possible to simply test for these repeated divisions
during the curve generation procedure, allowing parties to check for small factors of the group order—and
then kill those off with a more tailored choice of S above. It is a potential interesting open problem to
generate an easily verifiable proof that a Jacobian does not have any points of low order.

It is worth noting that the impact of finding small-order points is highly domain-specific. For example,
in the VDF of [Wes19, BBF18], even if points of known order can be found, forging a false PoE still requires
knowing the true result of the exponentiation—and hence stil requires computing the output of the VDF.
Relying on a PoE would thus break the requirement that the VDF output is unique, but it would still
provide assurance of the delay. In the case of accumulators, we need the strong RSA assumption rather
than the adaptive root assumption: it should be hard to find chosen prime roots of an element (recall
that the membership witness of ` in A is the `-th root of A). This case can be addressed differently, by
simply disallowing the accumulation of small primes ` < s(g). Finding `-th roots with ` > s(g) is hard by
Assumption 1 above, so here we do not require the use of [S]JC .

1It is important to work with random curves in Assumption 1, since it is easy to construct special curves whose Jacobians
have divisors of known order. For example: for any odd prime `, the divisor (0, 1)−∞ represents a nontrivial point of order `
in the Jacobian of the curve y2 = x` + 1, because the principal divisor of the function y − 1 is (y − 1) = `(0, 1)− `∞.
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Using [S]JC in place of JC has an impact on efficiency, due to the extra scalar multiplications required.
This impact is highly protocol-dependent, but in most cases only a few extra multiplications should be
needed. For example, in the PoE protocol of Section 8.2, the verifier only needs to perform one extra
multiplication-by-S during verification when working in [S]JC instead of JC . We suggest that this is still
efficient enough for practical use.

7.2 Testing small divisors of orders with the Tate pairing

Let JC be the Jacobian of a hyperelliptic curve C over Fq, let ` be a prime (coprime to q), and let k be a
positive integer such that ` | qk − 1, The reduced Tate pairing is a bilinear mapping

t` : JC [`]× JC/`JC → µ` ,

where µ` is the group of `-th roots of unity in F×
qk

. (A good reference for the background of pairings on

hyperelliptic curves is [GHV07].) If we can find points of known small order `, then the Tate pairing can be
used to learn information about the `-divisibility of the order of other points.

Suppose we can find a point Q in JC(Fqk) of small known prime order `. Then for any point P in JC(Fq),
we can efficiently compute t`(Q,P ) in µ` (assuming k is only polynomially large in log q). Now, if ` - Ord(P ),
then P = `P ′ for some P ′, so t`(Q,P ) = 1 for every Q in J [`]. By the contrapositive, if t`(Q,P ) 6= 1 for
some Q in J [`], then ` divides the order of P .

Unfortunately, the converse is not so simple: t`(Q,P ) = 1 for a single point Q of order ` is not sufficient
to imply that the order of P is coprime to `. Instead, it must be shown that t`(Q,P ) = 1 for all Q in JC [`].
Thus, we require a basis {Q1, Q2} of JC [`] which we can test: if t`(Qi, P ) = 1 for i = 1 and 2, then the
bilinearity of the Tate pairing implies t`(Q,P ) for all Q in JC [`], and hence that gcd(|P |, `) = 1.

Finally, we observe that the coordinates of Q and the value t`(Q,P ) are in Fqk , an extension whose degree
blows up with `, so this approach is only useful for very small `. We assert that Assumption 1 makes this
an infeasible approach to learn any significant amount of information about the orders of random points in
JC(Fq), or any information at all in [S]JC for well-chosen S.

8 Constructions using hyperelliptic curves

We claim that hyperelliptic curves offer a more efficient alternative to class groups in situations where a
group of unknown order is required. In this section we consider the construction of hyperelliptic Jacobians
for this use-case, with a focus on applications to accumulators.

8.1 Generating hyperelliptic Jacobians of unknown order

After choosing an appropriate genus g and a random prime p of size determined by the security parameter
(as discussed in Section 6.4), we need to generate a secure hyperelliptic curve C : y2 = f(x) over Fp. To
select C, we let f be a random irreducible polynomial of degree 2g+1 over Fp. Ensuring that f is irreducible
over Fp guarantees that JC has no points of order 2. As we saw in Section 7.1, it may be possible to construct
points of small odd order; we could try this for a few small primes ` to eliminate C with a small factor in
#JC , but this makes no significant difference to the probability of semismoothness of #JC . Indeed, our
simulations of semismoothness probabilities showed that rejecting random group orders divisible by the first
few primes decreased the semismoothness probability by less than a factor of 2.

As in Section 6.2, We impose some simple conditions on C to avoid well-known weak cases. First, JC
is a simple abelian variety; a randomly chosen C will ensure this with overwhelming probability (generic
Jacobians are absolutely simple), but we should still be careful to ensure that C does not cover some other
curve D (that is, that there is no morphism C → C ′ with C ′ not isomorphic to C or the projective line; for
example, C ′ an elliptic curve), since then JD would be a nontrivial abelian subvariety of JC .

We must also exclude curves whose Jacobians have special endomorphism structures, such as the families
with efficiently-computable real multiplication exploited in [AGS19b]. Again, a randomly chosen C will land
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outside these special classes of curves with overwhelming probability, since they form positive-codimensional
subspaces of the moduli space. Recent work of Thakur [Tha20] discusses potential classes of curves to avoid.

Having chosen C, we also need an element P of JC to serve as a generator for the group of unknown
order. This can be chosen in a similar way, choosing random coefficients for u(x) as the first polynomial in
the Mumford representation 〈u, v〉 of P , before solving for v such that v2 = f (mod u) (recovering v can be
done in the same way as from the compressed form of a divisor [HSS01]); if no such v exists, we try another
u. Of course, the order of P is also unknown, so we cannot know whether P generates the full group or a
subgroup. But as we will see below, there is a high probability that a randomly selected P will not have a
small order—so it will at least generate a large-order subgroup of JC .

To ensure that not even the constructor of C curve knows #JC , and that C and P were indeed generated
randomly, we suggest that f and u be chosen by deterministic “nothing up my sleeve”-type process. For
example, the coefficients of f might be taken from the hash of a certain string. Suppose this process were
manipulated by testing multiple different NUMS “seeds”, and testing each for a weakness with complexity
2n for some n. If the probability of encountering a weak curve among random curves is p, then a malicious
actor would have to do around 1

p2n work to find such a C. A skeptical verifier, on the other hand, must
only test the proposed C just once with just 2n work in order to detect cheating. So the imbalance of work
required to cheat versus to verify is a deterrent for attackers, regardless of the weakness in question. In
general, a random curve is in an approximately random isogeny class, and a random isogeny class should be
not vulnerable to any of the attacks with very high probability.

Now the order of the Jacobian JC (and the subgroup generated by P ) cannot feasibly be computed, not
even by the party who constructed the curve: we have achieved trustless setup. This group can then be
used in cryptographic constructions including accumulators and VDFs. Overall, the generation of a new
hyperelliptic curve is relatively cheap. Therefore, just as in the case of class groups, it should be feasible to
generate a new group of unknown order for each new instance of an accumulator or VDF if desired.

8.2 Wesolowski’s Proof of Exponentiation

Given Assumption 1, constructions such as accumulators that rely on the adaptive root assumption should
use the group [S]JC . The operation of the accumulator in this group is standard, but some protocols may
need modification—for example, proofs may require an extra check that an element is indeed in the group.

To give a specific example of this, we consider Wesolowski’s Proof of Exponentiation (PoE) [Wes19]. We
expect that other protocols using the adaptive root assumption can be modified in a similar way.

We begin the PoE protocol with input U ∈ JC , W ∈ [S]JC , and x ∈ Z. The claim to be proven is that
[x][S]U = W in [S]JC . The protocol proceeds as follows:

1. Verifier selects a random prime ` > s from Primes(λ) and sends ` to the prover.

2. Prover computes q = bx/`c, computes Q = [q]U in JC , and sends Q to the verifier.

3. The verifier computes r = x mod `, and accepts if Q is in JC and [S]([`]Q+ [r]U) = W .

This protocol is compatible with Assumption 1. Specifically, given a valid proof of [x][S]U = W , in order
to falsely prove [x][S]U = W + P , the prover must compute [1/`]P for whichever ` is chosen by the verifier.
This may be possible if the order of P is known, or if it is feasible to compute the division ideal—but this
is infeasible under Assumption 1, because ` > s.

9 Parallel instances

Even if the accidental random selection of a weak group might highly improbable, it may not be crypto-
graphically improbable. But rather than increasing the group size, we can try using multiple instances in
parallel: the chance that all of the instances are weak decreases exponentially in the number of instances.
Specifically, if the probability of selecting a curve with less than λ-bit security is 2−n, then we require k
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instances such that 2−nk ≤ 2−λ. For example, if we take 1665-bit discriminants, then for ≈ 128-bit security
it should suffice to choose k = 9 instances, because the chance that all 9 are weak would be 2−126.

Naturally, when computing with k instances the computation time (in serial, although this is parallelis-
able) and storage requirements scale linearly with k. Recall that class group elements can be represented
using a pair of integers (a, b). A reduced form implies that a ≤

√
|∆|/3, so elements are representable

with around two bits less than the size of ∆. We discussed in Section 5 the possibility of compressing class
group elements to around 3/4 of their original size. With this, k instances would require ∼ 3

4k log |∆| bits.
Since ∆ has roughly twice the bitlength of the group order bound M , we require 3

2k logM space. Above,
this would be around 11.2kB. Minimal k is thus most efficient in terms of storage requirement for element
representations. However the efficiency of the group law computation decreases as the group order increases,
so there may be a tradeoff between space and time-efficiency when choosing k.

We turn now to the security offered by genus-3 hyperelliptic Jacobians, when the order of the field is
q ∼ 2350. The Jacobian order is around 21050, so the chance of a curve weak to Sutherland’s algorithm is
around 2−18. In this case we would need k = 7 instances to have probability 2−126 of a curve weaker than
128-bit occurring. Recall that to store an element of a genus-3 Jacobian in compressed Mumford form, we
need 3 field elements and 3 extra bits. The group order has around 3 times as many bits as q, so the space
required would be approximately k logM–0around half that of the class group requirement for any particular
security level. So at this security would require just under 7.4kB. This is around two-thirds the size required
for a class group at equivalent security level above. This difference primarily lies in the compression of the
Jacobian points being more efficient than the class group compression from Section 5.

Table 2 shows the group order required for 128-bit security with different numbers k of parallel group
instances. It also shows the space requirement for elements of both class groups and Jacobians. It can be
clearly seen that a single instance is still more space-efficient than multiple instances, and that the storage
requirements of Jacobian instances are more efficient than class groups (after compression).

Table 2: Parameter sizes and element storage requirements as number of parallel instances (k) increases, for
128-bit security

k occurence ∼ u logM log ∆ log q Cl storage (kB) Jac storage (kB)

1 10−38.5 26 3328 6656 1109 5 3.3

2 10−19.3 16 2048 4096 683 6.2 4.1

3 10−12.8 12 1536 3072 512 6.9 4.6

4 10−9.6 10 1280 2560 427 7.7 5.1

At these group sizes, even an O(q) algorithm to solve the discrete logarithm would be no threat. In
genus 10, we could take a 333-bit q. Thus we can consider even higher genus curves safely, despite them
being notionally weaker discrete-log-based applications. The storage requirement does not decrease, as the
compressed Mumford representation in genus g requires ≈ g log q + g ∼ logM + g ∼ logM bits. But the
smaller size of q could possibly improve efficiency of operations. We mention this here for completeness, but
we will not follow this line further in this article.

10 Conclusion

Due to the importance of groups of unknown order in many recent constructions - and especially those
requiring trustless setup - an improvement to the practical efficiency of these groups is a useful advancement.
Upon reviewing the security of recommended parameter choices for class groups of unknown order, we find
that the parameters used in recent work are significantly smaller than required for constructions to meet
their desired security levels. We thus propose that any group of unknown order must have at least a ∼ 3300-
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bit order to provide 128-bit security. This would require the discriminant of a class groups ∆ ∼ 6656
bits. We also propose the use of Bleichenbacher-type compression on class group elements to reduce the
storage space. We then propose the use of Jacobian groups of genus 3 hyperelliptic curves as more efficient,
practical alternatives in the construction of unknown-order groups, where the aforementioned group order
would require a field of order q ∼ 1109 bits. We hope that this work will motivate further investigation
on the practical use of Jacobians as groups of unknown order, or otherwise improvements to point-counting
algorithms on such Jacobians.
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