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Abstract

Smart contracts are programs that execute autonomously
on blockchains. Many of their envisioned uses require
them to consume data from outside the blockchain. (For
example, a financial instrument might rely on a stock
price.) Trustworthy data feeds that can support data
requests by smart contracts will thus be critical to any
smart contract system.

We present an authenticated data feed system called
Town Crier (TC). TC builds on the observation that many
web sites, such as major news and finance sites, already
serve as trusted data sources for non-blockchain uses. TC
acts as a bridge between such servers and smart contract
systems. It uses trusted hardware to authenticate and
scrape data from HTTPS-enabled websites and to gen-
erate trustworthy data for relying smart contracts. It also
includes a range of advanced features such as support for
private data requests, which involve decryption and eval-
uation of request ciphertext within TC’s hardware.

We describe the TC architecture, its underlying trust
model, and its applications, and report on an implemen-
tation that uses the newly released Intel SGX software
development kit and furnishes data for the smart-contract
system Ethereum. To the best of our knowledge, ours is
the first research paper reporting system implementation
on a real SGX-enabled host. Finally, we present formal
proofs of the security of TC, including correct handling
of payment in Ethereum. We will soon be launching TC
as an online public service.

1 Introduction
Smart contracts are computer programs that au-
tonomously execute the terms of a contract. For decades
they have been envisioned as a way to use logical speci-
fication to render legal agreements more precise, perva-
sive, and efficiently executable. Szabo, who popularized
the term “smart contact” in a seminal 1994 essay [33],
gave as an example a smart contract that enforces car

loan payments. If the owner of the car fails to make
a timely payment, a smart contract could programmat-
ically revoke physical access and return control of the
car to the bank.

Cryptocurrencies such as Bitcoin [28] have pro-
vided key technical provisions for decentralized smart
contracts: direct control of money by programs and
fair, automated execution of computations through
the decentralized consensus mechanisms underlying
blockchains. The recently launched Ethereum supports
Turing-complete code and thus fully expressive, self-
enforcing smart contracts, a big step toward the vision
of researchers and proponents.

As Szabo’s example shows, however, the most com-
pelling applications of smart contracts require not just
blockchain code, but access to data about real-world state
and events. Similarly, financial contracts and derivatives,
key applications for Ethereum [15,35], rely on data about
financial markets such as equity prices.

Data feeds—contracts on the blockchain that serve
data requests by other contracts [15, 35]—are intended
to meet this need. A few data feeds exist for Ethereum
today, but provide no assurance of trustworthy data be-
yond the reputation of their operators (who are typically
individuals or small entities), even if their data originates
with trustworthy sources. Of course, there exist rep-
utable websites that serve data for non-blockchain appli-
cations and use HTTPS, enabling source authentication
of served data. Smart contracts, though, lack network ac-
cess and thus cannot directly access such data. The lack
of a substantive ecosystem of trustworthy data feeds thus
remains an oft-cited, critical obstacle to the evolution of
in Ethereum and smart contracts in general [1].

Town Crier. We introduce a system called Town Crier
(TC) that provides an authenticated data feed (ADF) for
smart contracts. TC acts as a high-trust bridge between
existing HTTPS-enabled data websites and the Ethereum
blockchain. It retrieves website data and serves it to re-
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lying contracts on the blockchain as concise, contract-
consumable pieces of data (e.g., stock quotes) called
datagrams. TC makes use of Software Guard Instruc-
tions (SGX), Intel’s recently released trusted hardware
capability. It executes its core functionality as a trusted
piece of code in an SGX enclave, which protects against
malicious processes and the OS and can attest (prove) to
a remote client that the client is interacting with a legiti-
mate, SGX-backed instance of the TC code.

Through a smart-contract front end, Town Crier re-
sponds to requests by contracts on the blockchain with
attestations of the following form:

“Datagram X specified by parameters params is served
by an HTTPS-enabled website Y during a specified
time frame T .”

A relying contract can be assured of the correctness of
X in such a datagram if it trusts the security of SGX, the
(published) TC code, and the validity of source data in
the specified interval of time.

Contributions of TC. We highlight several important
contributions in our design of TC:

Fully functional TC implementation, with pending open
source and launch. We designed and implemented Town
Crier as a complete, end-to-end system that offers formal
security guarantees at the cryptographic protocol level.
Aiming beyond an advance in academic research, we
plan to launch Town Crier as an open-source, production
service atop Ethereum in the near future. Our launch of
TC awaits only availability of the Intel Attestation Ser-
vice (IAS), which is expected to occur soon. In its ini-
tial form, Town Crier be a free service for smart contract
users, requiring users only to defray the (small) cost of
invoking TC on the Ethereum blockchain.

Formal security analysis. Formal security is vitally im-
portant to a data feed. Smart contracts execute in an
adversarial environment where parties can reap finan-
cial gains by subverting the contracts or the services
on which they rely. Legal recourse is often impracti-
cal precisely because of several benefits smart contracts
provide; they enable micro-services without costly legal
setup and enforcement and allow contracts between ar-
bitrary pseudonymous parties. We thus adopt a rigorous,
principled approach to the design of Town Crier by for-
mally defining and ensuring:

• Authenticity: A datagram X returned to a requesting
contract is guaranteed to truly reflect the data served
by specified website Y in time interval T with the re-
quester’s specified parameters params.

• Gas neutrality (zero TC loss). Assuming that TC ex-
ecutes honestly, it does not lose money (cannot suffer

resource depletion) even when accessed by arbitrarily
malicious blockchain contracts and users.

• Fair expenditure (bounded requester loss). Even
when all other users, contracts, and TC itself act mali-
ciously, an honest requester will never pay more than
a tiny amount beyond what is required for valid com-
putation executed for that request—whether or not a
datagram is delivered.

To obtain the above formal guarantees, we rely on the
formal modeling of blockchains proposed by Kosba et
al. [26] and the formal abstraction for SGX proposed by
Shi et al. [32] Our analysis of TC reveals interesting chal-
lenges and technical subtleties, e.g., a subtle gap between
the formal blockchain model of Kosba et al. [26] and
Ethereum’s instantiation that proves important in formal
reasoning about TC’s handling of fees.

Robustness to component compromise. TC minimizes
the Trusted Computing Base (TCB) of its trusted code
in the SGX enclave. It thus offers a basic security model
in which a user need only trust SGX itself and a des-
ignated data source (website). As an additional feature,
TC can hedge against the risk of compromise of a web-
site or single SGX instance by supporting various modes
of majority voting: among multiple websites offering the
same piece of data (e.g., stock price), or among multiple,
possibly geographically dispersed, SGX instances.

Private and custom datagrams. To meet the poten-
tially complex confidentiality concerns that can arise
in the broad array of smart contracts enabled by TC,
TC’s trusted enclave code is instrumented to ingest con-
fidential user data (encrypted under a TC public key).
It can thereby support private datagram requests, with
encrypted parameters, and custom datagram requests,
which securely access the online resources of requesters
(e.g., online accounts) using encrypted credentials.

Additionally, to the best of our knowledge, ours is the
first research paper reporting implementation of a sub-
stantive system on a real, SGX-enabled host, as opposed
to an emulator (e.g., [11, 30]).

Applications. Thanks to the above key contributions,
we believe that TC can spur deployment of a rich spec-
trum of smart contracts that are hard to realize in the ex-
isting Ethereum ecosystem. We present three examples
that showcase TC’s capabilities and demonstrate its end-
to-end use: (1) A financial derivative (cash-settled put
option) that consumes stock ticker data; (2) A flight in-
surance contract that relies on private data requests about
flight cancellations; and (3) A contract for sale of vir-
tual goods and online games (via Steam Marketplace)
for ether, the Ethereum currency, using custom data re-
quests to access online user accounts. We experimentally
measure response times for associated datagram requests
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ranging from 192-1309 ms, depending on the datagram
type. These times are significantly less than an Ethereum
block interval, and suggest that a few SGX-enabled hosts
can support TC data feed rates well beyond the global
transaction rate of a modern decentralized blockchain.

Organization: We present basic technical background
for TC (Section 2), followed by an architectural descrip-
tion (Section 3), a basic set of protocols (Section 4), the
full, enhanced system protocols (Section 5), and a for-
mal security analysis (Section 6). We then present three
example applications (Section 7) which we use as the ba-
sis for performance evaluations of TC (Section 8). After
presenting related work (Section 9), we conclude the pa-
per (Section 10). The paper appendix includes imple-
mentation details, formal modeling and proofs, and fu-
ture directions omitted from the paper body.

2 Background

In this section, we provide basic background on the
main technologies TC incorporates, namely SGX, TLS
/ HTTPS, and smart contracts.

SGX. Intel’s Software Guard Extensions (SGX) [9, 23,
27, 29] is a set of new instructions that confer hardware
protections on user-level code. SGX enables process exe-
cution in a protected address space known as an enclave.
The enclave protects the confidentiality and integrity of
the process from certain forms of hardware attack and
other software on the same host, including the operating
system.

A enclave process cannot make system calls, but can
read and write memory outside the enclave region. Thus
isolated execution in SGX may be viewed in terms of an
ideal model in which a process is guaranteed to execute
correctly and with perfect confidentiality, but relies on a
(potentially malicious) operating system for network and
file-system access.1

SGX allows a remote system to verify the software in
an enclave and communicate securely with it. When an
enclave is created, the CPU produces a hash of its ini-
tial state known as a measurement. The software in the
enclave may, at a later time, request a report which in-
cludes a measurement and supplementary data provided
by the process, such as a public key. The report is digi-
tally signed using a hardware-protected key to produce a
proof that the measured software is running in an SGX-
protected enclave. This proof, known as a quote, can be
verified by a remote system, while the process-provided
public key can be used by the remote system to establish

1This model is a simplification: SGX is known to expose some in-
ternal enclave state to the OS [20]. Our basic security model for TC
assumes ideal isolated execution, but again, TC can also be distributed
across multiple SGX instances as a hedge against compromise.

a secure channel with the enclave or verify signed data
it emits. We use the generic term attestation to refer to
a quote, and denote it by att. We assume that a trust-
worthy measurement of the code for the enclave compo-
nent of TC is available to any client that wishes to verify
an attestation. SGX signs quotes using a group signa-
ture scheme called EPID [13]. This choice of primitive
is significant in our design of Town Crier, as EPID is a
proprietary signature scheme not supported in Ethereum.

SGX additionally provides a trusted time source via
the function sgx_get_trusted_time. On invoking this
function, an enclave obtains a measure of time relative to
a reference point indexed by a nonce. A reference point
remains stable, but SGX does not provide a source of
absolute or wall-clock time, another limitation we must
work around in TC.

TLS / HTTPS. We assume basic familiarity by read-
ers with TLS and HTTPS (HTTP over TLS). As we ex-
plain later, TC exploits an important feature of HTTPS,
namely that it can be partitioned into interoperable lay-
ers: an HTTP layer interacting with web servers, a TLS
layer handling handshakes and secure communication,
and a TCP layer providing reliable data stream.

Smart contracts. While TC can in principle support any
smart-contract system, we focus in this paper on its use
in Ethereum, whose model we now explain. For further
details, see [15, 35]

A smart contract in Ethereum is represented as what
is called a contract account, endowed with code, a cur-
rency balance, and persistent memory in the form of a
key/value store. A contract accepts messages as inputs
to any of a number of designated functions. These en-
try points, determined by the contract creator, represent
the API of the contract. Once created, a contract exe-
cutes autonomously; it persists indefinitely with even its
creator unable to modify its code.2 Contract code exe-
cutes in response to receipt of a message from another
contract or a transaction from a non-contract (externally
owned) account, informally what we call a wallet. Thus,
contract execution is always initiated by a transaction.
Informally, a contract only executes when “poked,” and
poking progresses through a sequence of entry points un-
til no further message passing occurs (or a shortfall in gas
occurs, as explained below). The “poking” model aside,
as a simple abstraction, a smart contract may be viewed
as an autonomous agent on the blockchain.

Ethereum has its own associated cryptocurrency called
ether. (At the time of writing, 1 ether has a market value
of just over $5 U.S. [2].) To prevent Denial-of-Service
(DoS) attacks, prevent inadvertent infinite looping within
contracts, and generally control network resource expen-

2There is one exception: a special opcode suicide wipes code
from a contract account.

3



diture, Ethereum allows ether-based purchase of a re-
source called gas to power contracts. Every operation,
including sending data, executing computation, and stor-
ing data, has a fixed gas cost. Transactions include a pa-
rameter (GASLIMIT) specifying a bound on the amount
of gas expended by the computations they initiate. When
a function calls another function, it may optionally spec-
ify a lower GASLIMIT for the child call which expends
gas from the same pool as the parent. Should a function
fail to complete due to a gas shortfall, it is aborted and
any state changes induced by the partial computation are
rolled back to their pre-call state; previous computations
on the call path, though, are retained.

Along with a GASLIMIT, a transaction specifies a
GASPRICE, the maximum amount in ether that the trans-
action is willing to pay per unit of gas. The transaction
thus succeeds only if the initiating account has a balance
of GASLIMIT × GASPRICE ether and GASPRICE is high
enough to be accepted by the system (miner).

The management of gas, as we show in our design of
Town Crier, can be delicate. Without careful construc-
tion of TC’s Ethereum front end, an attacker could ex-
haust the ether used to power the delivery of datagrams.

Finally, we note that transactions in Ethereum are dig-
itally signed for a wallet using ECDSA on the curve
Secp256k1 and the hash function SHA3-256.

3 TC Architecture and Security Model

Town Crier includes three main components: The TC
Contract (CTC), the Enclave (whose code is denoted by
progencl), and the Relay (R). The Enclave and Relay re-
side on the TC server, while the TC Contract resides on
the blockchain. We refer to a smart contract making use
of the Town Crier service as a requester or relying con-
tract, which we denote CU , and its (off-chain) owner as a
client or user. A data source, or source for short, is an
online server (running HTTPS) that provides data which
TC draws on to compose datagrams.

An architectural schematic of TC showing its interac-
tion with external entities is given in Figure 1.

The TC Contract CTC. The TC Contract is a smart con-
tract that acts as the blockchain front end for TC. It is
designed to present a simple API to a relying contract
CU for its requests to TC. CTC accepts datagram requests
from CU and returns corresponding datagrams from TC.
Additionally, CTC manages TC’s monetary resources.

The Enclave. We refer to an instance of the TC code run-
ning in an SGX enclave simply as the Enclave and denote
the code itself by progencl. In TC, the Enclave ingests
and fulfills datagram requests from the blockchain. To
obtain the data for inclusion in datagrams, it queries ex-
ternal data sources, specifically HTTPS-enabled internet

Blockchain TC Server

TC Contract
CTC

User Contract
CU

Relay
R

Enclave
(progencl)

HTTPS

lots-o-

data.com

Data Source

Figure 1: Basic Town Crier architecture. Trusted com-
ponents are depicted in green.

services. It returns a datagram to a requesting contract
CU as a digitally signed blockchain message. Under our
basic security model for SGX, network functions aside,
the Enclave runs in complete isolation from an adversar-
ial OS as well as other process on the host.

The Relay R. As an SGX enclave process, the En-
clave lacks direct network access. Thus the Relay han-
dles bidirectional network traffic on behalf of the En-
clave. Specifically, the Relay provides network connec-
tivity from the Enclave to three different types of entities:

1. The Blockchain (the Ethereum system): The Relay
scrapes the blockchain in order to monitor the state of
the TC Contract CTC. In this way, it performs implicit
message passing from CTC to the Enclave, as neither
component itself has network connectivity. Addition-
ally, the Relay places messages emitted from the En-
clave (datagrams) on the blockchain.

2. Clients: The Relay runs a web server to handle off-
chain service requests from clients, specifically, re-
quests for attestations from the Enclave. As we soon
explain, an attestation provides a unique public key
for the Enclave instance to the client and proves that
the Enclave is executing correct code in an SGX en-
clave and that its clock is correct in terms of absolute
(wall-clock) time. A client that successfully verifies
an attestation can then safely create a relying contract
CU that uses the TC.

3. Data sources: The Relay relays traffic to and from
data sources (HTTPS-enabled websites) queried by
the Enclave.

The Relay is an ordinary user-space application. It
does not benefit from integrity protection by SGX and
thus, unlike the Enclave, can be subverted by an adver-
sarial OS on the TC server to cause delays or failures.
A key design aim of TC, however, is that Relay should
be unable to cause incorrect datagrams to be produced
or users to lose fees paid to TC for datagrams (although
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they may lose gas used to fuel their requests). As we
shall show, in general the Relay can only mount denial-
of-service attacks against TC.

Security model. Here we give a brief overview of our
security model for TC, providing more details in later
sections. We assume the following:

• The TC Contract. CTC is globally visible on the
blockchain and its source code is published for clients.
Thus we assume that CTC behaves honestly.

• Data sources. We assume that clients trust the data
sources from which they obtain TC datagrams. We
also assume that these sources are stable, i.e., yield
consistent datagrams, during a requester’s specified
time interval T . (Requests are generally time-invariant,
e.g., for a stock price at a particular time.)

• Enclave security. We make three assumptions: (1)
The Enclave behaves honestly, i.e., progencl, whose
source code is published for clients, correctly executes
the TC protocol; (2) For an Enclave-generated keypair
(skTC,pkTC), the private key skTC is known only to the
Enclave; and (3) The Enclave has an accurate (internal)
real-time clock. We explain below how we use SGX to
achieve these properties.

• Blockchain communication. Transaction and message
sources are authenticable, i.e., a transaction m sent
from an account / walletWX (or message m from con-
tract CX ) is identified by the receiving account as origi-
nating from X . Transactions and messages are integrity
protected (as they are digitally signed by the sender),
but not confidential.

• Network communication. The Relay (and other un-
trusted components of the TC server) can tamper with
or delay communications to and from the Enclave. (As
we explain in our SGX security model, the Relay can-
not otherwise observe or alter the behavior of the En-
clave.) Thus the Relay is subsumed by an adversary
that controls the network.

4 Basic TC Protocol

We now describe the operation of TC at the protocol
level. The basic protocol is conceptually simple: a user
contract CU requests a datagram from the TC Contract
CTC, CTC forwards the request to progencl and then returns
the response to CU . There are many details, however, re-
lating to message contents and protection and the need to
connect the off-chain parts of TC with the blockchain.

First we give a brief protocol overview. Then we
enumerate the data flows in TC. Finally, we provide
a component-level view of the protocol by specifying
the operation of the TC Contract, Relay, and Enclave.
We present these as ideal functionalities, inspired by the

universal-composability (UC) framework, in order to ab-
stract away implementation details and as a springboard
for formal proofs of security. We omit details in this sec-
tion on how payment is incorporated into TC, deferring
this delicate aspect of the system design to Section 5.

4.1 Datagram Lifecycle

The lifecycle of a datagram may be briefly summarized
in the following steps:

• Initiate request. CU sends a datagram request to CTC
on the blockchain.

• Monitor and relay. The Relay monitors CTC and re-
lays any incoming datagram request with parameters
params to the Enclave.

• Securely fetch feed. To process the request speci-
fied in params, the Enclave contacts a data source via
HTTPS and obtains the requested datagram. It for-
wards the datagram via the Relay to CTC.

• Return datagram. CTC returns the datagram to CU .

We now make this data flow more precise.

4.2 Data Flows

A datagram request by CU takes the form of a mes-
sage m1 = (params,callback) to CTC on the blockchain.
params specifies the requested datagram, e.g. params :=
(url,spec,T ), where url is the target data source, spec
specifies content of a the datagram to be retrieved (e.g., a
stock ticker at a particular time), and T specifies the de-
livery time for the datagram (initiated by scraping of the
data source). The parameter callback in m1 indicates the
entry point in CU to which the datagram is to be returned.
(In principle, callback could point to a different contract,
but TC does not yet adopt this generalization.)
CTC generates a fresh unique id and forwards m2 =

(id,params) to the Enclave. It receives in return a re-
turn message m3 = (id,params,data) from the TC ser-
vice, where data is the datagram (e.g. the desired stock
ticker price). CTC checks the consistency of params on
the incoming and outgoing messages, and if they match
forwards data to the entry point callback in CU in mes-
sage m4.

For simplicity here, we assume that CU makes a one-
time datagram request. Thus it can trivially match m4
with m1. Our full protocol contains an optimization by
which CTC returns id to CU after m1 as a consistent, trust-
worthy identifier for all data flows. This enables straight-
forward handling of multiple datagram requests from the
same instance of CU .

Fig. 2 shows the data flows involved in processing a
datagram request. For simplicity, the figure omits the
Relay, which is only responsible for data passing.

5



Blockchain TC Server

TC Contract
CTC

Enclave
(progencl)

User Contract
CU

(obtains data
from data source)

m1 =
(params,
callback)

m2 =
(id,params)

m3 =
(id,params,

data)
m4 =
(data)

Figure 2: Data flows in datagram processing.

Digital signatures are needed to authenticate mes-
sages, such as m3, entering the blockchain from an ex-
ternal source. We let (skTC,pkTC) denote the private /
public keypair associated with the Enclave for such mes-
sage authentication. For simplicity, Fig. 2 assumes that
the Enclave can send signed messages directly to CTC.
We explain shortly how Ethereum requires a layer of in-
direction such that TC sends m3 as a transaction via an
Ethereum walletWTC.

4.3 Use of SGX

Let progencl represent the code for Enclave, which we
presume is trusted by all system participants. Our proto-
cols in TC rely on the ability of SGX to attest to execu-
tion of an instance of progencl and bind a public key pkTC
to this instance. Here we briefly explain how we achieve
these goals. First, we present a model that abstracts away
implementation details in SGX, helping simplify our pro-
tocol presentation and later our security proofs. We then
explain how SGX attestation is used to authenticate data-
grams served by CTC, namely through binding of pkTC
to an Ethereum wallet on the blockchain. Finally, we
explain how we use the clock in SGX. Our discussion
draws on formalism for SGX from [32].

Formal model and notation. We adopt a formal ab-
straction of Intel SGX proposed by Shi et al. [32]. Fol-
lowing the UC and GUC paradigms [16–18], Shi et al.
propose to abstract away the details of SGX implemen-
tation, and instead view SGX as a third party trusted for
both confidentiality and integrity. Specifically, we use a
global UC functionalityFsgx(Σsgx)[progencl,R] to denote
(an instance of) an SGX functionality parameterized by
a (group) signature scheme Σsgx. Here progencl denotes
the SGX enclave program and R the physical SGX host
(which we assume for simplicity is the same as that for
the TC Relay). As described in Fig. 3, upon initializa-
tion, Fsgx runs outp := progencl.Initialize() and attests
to the code of progencl as well as outp. Upon a resume

call with (id,params), Fsgx runs and outputs the result
of progencl.Resume(id,params). Further formalism for
Fsgx is given in Appendix B.1.

Fsgx[progencl,R]: abstraction for SGX

Hardcoded: sksgx

Assume: progencl has entry points Initialize and Resume

Initialize:
On receive (init) fromR:

Let outp := progencl.Initalize()
// models EPID signature.
σatt := Σsgx.Sign(sksgx,(progencl,outp))
Output (outp,σatt)

Resume:
On receive (resume, id, params) fromR:

Let outp := progencl.Resume(id,params)
Output outp

Figure 3: Formal abstraction for SGX execution captur-
ing a subset of SGX features sufficient for implementa-
tion of TC.

Binding progencl to Ethereum wallet WTC. Informa-
tion can only be inserted into the blockchain in Ethereum
as a transaction from a wallet. Thus, the only way the
Relay can relay messages from the Enclave to CTC is
through a wallet WTC. Since the Relay may corrupt
messages, however, it is critical that they be authenti-
cated by the Enclave. Since Ethereum itself already veri-
fies signatures on transactions from externally owned ac-
counts (i.e., users interact with the Ethereum blockchain
through an authenticated channel), TC uses a trick to
piggyback verification of enclave signatures on top of
Ethereum’s already existing transaction signature ver-
ification mechanism. Very simply, the Enclave creates
WTC with the public key pkTC.

To make this idea work fully, the public key pkTC must
be hardcoded into CTC. A client creating or relying on a
contract that uses CTC is responsible for making sure that
this hardcoded pkTC has an appropriate SGX attestation
before interacting with the CTC blockchain contract. Let
Verify denote a verification algorithm for EPID signa-
tures. Fig. 4 gives the protocol for a client to check that
CTC is backed by a valid Enclave instance. (We omit
modeling here of IAS online revocation checks.)

In summary, then, we may assume in our protocol
specifications that relying clients have verified an attes-
tation for Enclave and thus that datagram responses sent
fromWTC to CTC are trusted to originate from progencl.

SGX Clock. As noted above, the trusted clock for SGX
provides only relative time with respect to a reference
point. To work around this, the Enclave is initialized
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User: offline verification of SGX attestation

Inputs: pksgx, pkTC, progencl, σatt

Verify:
Assert progencl is the expected enclave code
Assert Σsgx.Verify(pksgx,σatt,(progencl,pkTC))
Assert CTC is correct and parametrized w/ pkTC
// now okay to rely on CTC

Figure 4: A client checks an SGX attestation on the en-
clave’s code progencl and public key pkTC. The client
also checks that pkTC is hardcoded into TC blockchain
contract CTC before using CTC.

with the current wall-clock time provided by a trusted
source, e.g. the Relay (under a trust-on-first-use model).
In the current implementation of TC, clients may, in real
time, request and verify a fresh timestamp—signed by
the Enclave under pkTC—via a web interface in the Re-
lay. Thus, a client can determine the absolute clock time
of the Enclave to a degree of accuracy bounded by the
round-trip time of its attestation request plus the attes-
tation verification time—hundreds of milliseconds in a
wide-area network. This high degree of accuracy is po-
tentially useful for some applications but only loose ac-
curacy is required for most. Ethereum targets a block in-
terval of 12 s and the clock serves in TC primarily to: (1)
Schedule connections to data sources and (2) To check
TLS certificates for expiration when establishing HTTPS
connections. For simplicity, we assume in our protocol
specifications that the Enclave clock provides accurate
wall-clock time in the canonical format of seconds since
the Unix epoch January 1, 1970 00:00 UTC.

We let clock() denote measurement of the SGX clock
from within the enclave, expressed as the current abso-
lute (wall-clock) time.

4.4 A Payment-Free Basic Protocol

For simplicity, we first specify a payment-free version
of our basic protocol, i.e. one that does not include gas
or fees. Later, in our implementation discussion, we ex-
plain how we handle these two resources and we prove
payment-related properties in the paper appendix. For
simplicity, we assume a single instance of progencl, al-
though our architecture could scale up to multiple en-
claves and even server instances. To show messages cor-
responding to those in Fig. 2, we use the label (msg.mi).

The Requester Contract CU . The requester contract
CU sends to the TC Contract CTC a request of the form
(params,callback).

The TC Contract CTC. The TC Contract, as noted
above, accepts a datagram request from CU , assigns a
unique id to each request, and records the request. Our
Town Crier Relay R monitors requests received by CTC
and forwards them to an SGX enclave. When CTC ob-
tains a valid response from WTC, it sends the resulting
datagram data to the entry point callback specified by the
requesting contract CU . As explained above, because the
response (msg.m2) comes fromWTC, the blockchain au-
tomatically verifies that the response is correctly signed
under progencl’s key pkTC and CTC need not verify the
signature explicitly. TC does, however, have a subtle se-
curity requirement. Specifically, for a given datagram re-
quest id, CTC must verify that params′ = params, where
params′ is in the digitally signed message produced by
progencl and params is the locally stored parameters. The
check is necessary to prevent R from corrupting data-
gram requests passed by CTC (which, as a public func-
tion, has no means of digitally signing requests).
CTC is specified in Fig. 5. Here, Call denotes a call to

a contact entry point.

Program for Town Crier blockchain contract CTC

Initialize: Counter := 0

Request: On recv (params,callback) from some CU :
id:= Counter; Counter := Counter + 1
Record (id,params,callback) // msg.m1

Deliver: On recv (id,params,data) fromWTC:
Retrieve recorded (id,params′,callback)
Assert params= params′

Call callback(data) // msg.m4

Figure 5: The Town Crier TC Contract CTC.

The Enclave progencl. When initialized through Initial-
ize(), progencl ingests the current wall-clock time; by
storing this time and setting a clock reference point, it
calibrates its absolute clock. It generates an ECDSA key-
pair (pkTC,skTC) (parameterized as in Ethereum), where
pkTC is bound to the progencl instance through insertion
into attestations.

Upon a call to Resume(id,params), progencl contacts
the data source specified by params via HTTPS and
checks that the corresponding certificate cert is valid.
(We discuss certificate checking in Appendix A.) Then
progencl fetches the requested datagram and returns it to
R along with params and id, all digitally signed with
skTC. Fig. 6 shows the protocol for progencl.

The Relay R. As noted in Section 3, R bridges
the gap between the Enclave and the blockchain in
three ways. (1) It scrapes the blockchain and mon-
itors CTC for new requests (id,params). (2) It
boots the Enclave with progencl.Initialize() and calls
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Program for Town Crier Enclave (progencl)

Initialize (void)
// Subroutine call from Fsgx, which attests to
// progencl and pkTC. See Figure 3.
(pkTC,skTC) := Σ.KeyGen(1λ )
Output pkTC

Resume (id,params)
Parse params as (url,spec,T ):
Assert clock()≥ T.min
Contact url via HTTPS, obtaining cert
Verify cert is valid for time clock()
Obtain webpage w from url
Assert clock()≤ T.max
Parse w to extract data with specification spec
σ := Σ.Sign(skTC,(id,params,data))
Output ((id,params,data),σ)

Figure 6: The Town Crier Enclave progencl.

progencl.Resume(id,params) on incoming requests. (3)
it forwards datagram responses from progencl to the
blockchain. Recall that it forwards already-signed
transacations to the blockchain as WTC. The program
for R is shown in Fig. 7. The function AuthSend in-
serts a transaction to blockchain (“as WTC” means the
transaction is already signed with skTC). An honest Re-
lay will invoke progencl.Resume exactly once with the
parameters of each valid request and never otherwise.

Program for Town Crier RelayR
Initialize:

Send init to Fsgx[progencl,R]
On recv (pkTC,σatt) from Fsgx[progencl,R]:

Publish (pkTC,σatt)

Handle(id,params):
Parse params as ( , ,T )
Wait until clock()≥ T.min
Send (resume, id,params) to Fsgx[progencl,R]
On recv ((id,params,data),σ) from
Fsgx[progencl,R]:
AuthSend (id,params,data) to CTC asWTC
// send out msg.m3

Main:
Loop Forever:

Wait for CTC to records request (id,params, ):
Fork a process of Handle(id,params)

End

Figure 7: The Town Crier RelayR.

5 Full Town Crier Protocol

The simplified payment-free protocol in Section 4.4
guarantees authenticity of data for an honest user. In
Ethereum, however, computation is not free; recall from
Section 2 that Ethereum employs gas to fuel contracts.
This means that TC needs enough gas to deliver data-
grams, so users must pay a fee to reimburse costs. If fees
are not properly handled, a malicious relay (or malicious
user) could prevent delivery of a datagram or cost an hon-
est requester money for no gain. We discuss Section 5.1
how we address this issue throughout TC’s design. We
also briefly discuss other enhancements to the basic TC
protocol: private and custom datagrams (Section 5.2) and
use of replication / voting to achieving robustness against
SGX host or data-source compromise (Section 5.3).

5.1 Handling Fees in Ethereum

To address the above concern of attacks on TC fee man-
agement, we employ and prove the security of a novel
two-currency resource-management system. This system
causes requesters to make gas payments up front as ether.
It converts this ether to gas so as to prevent a malicious
requester from exhausting TC’s resources or a malicious
TC from stealing an honest user’s money. We now give
some preliminaries and then explain our system.

Execution model and notation. We take Ethereum’s
gas model as described in Section 2. We use the notation
$g to denote gas and $f to denote non-gas currency. In
both cases $ is a type annotation and the letter denotes the
numerical amount. For simplicity, our notation assumes
that gas and normal currency adopt the same units (al-
lowing us to avoid explicit conversions), so system con-
stants are values without a unit. We use the following
identifiers to denote currency and gas amounts.

$f Currency a requester deposits to refund Town
Crier’s gas expenditure to deliver a datagram

$greq
$gdvr
$gcncl

GASLIMIT when invoking Request, Deliver, or
Cancel, respectively

$gclbk
GASLIMIT for callback while executing Deliver,
set to the max value that can be reimbursed

$Gmin Gas required for Deliver excluding callback
$Gmax Maximum gas TC can provide to invoke Deliver
$Gcncl Gas needed to invoke Cancel
$G /0 Gas needed for Deliver on a canceled request

$Gmin, $Gmax, $Gcncl, and $G /0 are system constants, $f
is chosen by the requester (and may be malicious if the
requester is dishonest), and $gdvr is chosen by the TC En-
clave when calling Deliver. Though $greq and $gcncl are
set by the requester, we need not worry about the values.
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If they are too small, Ethereum will abort the transaction
and there will not be a request or cancellation.

Adversarial cases. During the creation and fulfillment
of any request, there are two untrusted parties: The re-
quester contract / user CU and the Relay. In the TC im-
plementation, we thus consider three cases, here giving
the desired properties of each:

• Honest requester and Relay. The requester must re-
ceive a valid authenticated response from TC.

• Malicious requester and honest Relay. TC must still be
able to respond to requests from other (honest) users.
Thus we must prevent a malicious user from interfer-
ing directly with other requests (which the payment-
free protocol already does) or exhausting the financial
resources of TC.

• Honest requester and malicious Relay. The requester
cannot receive invalid data (which is also assured by
the payment-free protocol) and the requester should
not have to pay for computation that is not executed.

We formalize these properties in Section 6 and prove that
our protocol provides these guarantees. We intentionally
ignore the case where both the requester and the Relay
are dishonest. If the requester is dishonest we need to
not protect her request, and if the Relay is dishonest we
cannot protect the TC system.

Town Crier protocol with fees. Our basic Town Crier
system implements a policy where the requester pays for
all gas needed and Town Crier effectively pays nothing.
We now describe how this can be realized by modifying
the payment-free protocol described in Section 4.4.

• Initialization. We assume that TC deposits at least
$Gmax into the walletWTC.

• Town Crier blockchain contract. Figure 8 specifies
the TC blockchain contract CTC, with fees. Since
WTC must invoke Deliver, TC pays the gas cost. It
sets the GASLIMIT $gdvr := $Gmax. To ensure that
the gas spent does not exceed the reimbursement
available ($f), CTC sets the GASLIMIT $gclbk for the
sub-call to callback to the remaining reimbursement:
$f−$Gmin.

• Town Crier Relay. The Relay behavior does not
change with the presence of fees. It still moni-
tors the blockchain and whenever the contract CTC
stores a new request (id,params, , , ), it invokes
progencl.Resume(id,params).

• Town Crier Enclave. We make the following
small modification to the fee-free protocol. Instead
of signing the tuple (id,params,data) at the end
of its execution, the enclave now signs the tuple
(id,params,data,$gdvr) where $gdvr = $Gmax.

Town Crier blockchain contract CTC with fees

Initialize: Counter := 0

Request: On recv (params,callback,$f,$greq) from
some CU :
Assert $Gmin ≤ $f≤ $Gmax
id := Counter; Counter := Counter+1
Store (id,params,callback,$f,CU )
// $f held by contract

Deliver: On recv (id,params,data,$gdvr) fromWTC:
(1) If isCanceled[id] and not isDelivered[id]

Set isDelivered[id]
(2) Send $G /0 toWTC

Return
Retrieve stored (id,params′,callback,$f, )

// abort if not found
Assert params= params′ and $f≤ $gdvr

and isDelivered[id] not set
Set isDelievered[id]

(3) Send $f toWTC
Set $gclbk := $f−$Gmin

(4) Call callback(data) with $gclbk max gas
Cancel: On recv (id,$gcncl) from CU :

Retrieve stored (id, , ,$f,C′U )
// abort if not found

Assert CU = C′U and $f≥ $G /0
and isDelivered[id] not set
and isCanceled[id] not set

Set isCanceled[id]
(5) Send ($f−$G /0) to CU // hold $G /0

Figure 8: Town Crier contract CTC reflecting fees. The
last argument of each entry point is the GASLIMIT pro-
vided. An honest requester sets $f to be the gas required
to execute Deliver including callback. Town Crier sets
$gdvr := $Gmax, but lowers the gas limit for callback to
ensure that no more than $f is spent.

Program for Town Crier Enclave (progencl)

Initialize (void) [Same as Figure 6]
Resume (id,params)

[Same as Figure 6 except the last two lines:]
Set $gdvr := $Gmax
σ := Σ.Sign(skTC,(id,params,data,$gdvr))
Output ((id,params,data,$gdvr),σ)

Figure 9: The Town Crier Enclave progencl.

• Requester. An honest requester follows the proto-
col in Fig. 4 to verify the SGX attestation. Then
she prepares params and callback, sets $greq to
the gas cost of Request with params, and sets
$f to $Gmin plus the cost of executing callback.
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Figure 10: Money Flow for a Delivered Request. Red
arrows denote flow of money and brown arrows denote
gas limits for functions. The thickness of the line indi-
cates the quantity of the resource. The $gclbk arrow is
thin because the value is limited to $f−$Gmin.

Finally, she invokes Request(params,callback,$f)
with GASLIMIT $greq.

If callback is not executed, the requester will invoke
Cancel with argument id and gas limit $Gcncl to re-
ceive a partial refund. The honest requester will
never invoke Cancel more than once for the same
request and will never invoke Cancel with an id that
corresponds to a different user’s request.

5.2 Private and Custom Datagrams

In addition to ordinary datagrams, TC supports private
datagrams, which are requests where params includes
ciphertexts under pkTC. Private datagrams can thus en-
able confidentiality-preserving applications despite the
public readability of the blockchain. Custom datagrams,
also supported by TC, allow a contract to specify a partic-
ular web-scraping target, potentially involving multiple
interactions, and thus greatly expand the range of pos-
sible relying contracts for TC. We do not treat them in
our security proofs, but give examples of both datagram
types in Section 7.

5.3 Enhanced Robustness via Replication

Our basic security model for TC assumes the ideal isola-
tion model for SGX described above as well as client
trust in data sources. Given various concerns about
SGX security [20, 36] and the possible fallibility of data
sources, we examine two important ways TC can sup-
port hedging. To protect against the compromise of a
single SGX instance, contracts may request datagrams
from multiple SGX instances and implement majority
voting among the responses. This hedge requires in-

creased gas expenditure for additional requests and stor-
age of returned data. Similarly, TC can hedge against
the compromise of a data source by scraping multiple
sources for the same data and selecting the majority re-
sponse. We demonstrate both of these mechanisms in our
example financial derivative application in Section 8.4.
(A potential optimization is mentioned in Appendix E.)

5.4 Implementation Details

We implemented a full version of the TC protocol in
a complete, end-to-end system using Intel SGX and
Ethereum. Due to space constraints, we defer discussion
of implementation details and other practical considera-
tions to Appendix A.

6 Security Analysis

Proofs of theorems in this section appear in Appendix C.

Authenticity. Intuitively, authenticity means that an ad-
versary (including a corrupt user, Relay, or collusion
thereof) cannot convince CTC to accept a datagram that
differs from the expected content obtained by crawling
the specified url at the specified time. In our formal defi-
nition, we assume that the user and CTC behave honestly.
Recall that the user must verify upfront the attestation
σatt that vouches for the enclave’s public key pkTC.

Definition 1 (Authenticity of Data Feed). We say that the
TC protocol satisfies Authenticity of Data Feed if, for any
polynomial-time adversary A that can interact arbitrar-
ily with Fsgx,A cannot cause an honest verifier to accept
(pkTC,σatt,params := (url,pkurl,T ),data,σ) where data
is not the contents of url with the public key pkurl at time
T (progencl(params) in our model). More formally, for
any probabilistic polynomial-time adversary A,

Pr


(pkTC,σatt, id,params,data,σ)←AFsgx(1λ ) :(

Σsgx.Verify(pksgx,σatt,(progencl,pkTC)) = 1
)
∧

(Σ.Verify(pkTC, id,params,data) = 1)∧
data 6= progencl(params)


≤ negl(λ ),

for security parameter λ .

Theorem 1 (Authenticity). Assume that Σsgx and Σ are
secure signature schemes. Then, the full TC protocol
achieves authenticity of data feed under Definition 1.3

Fee Safety. Our protocol in Section 5.1 ensures that an
honest Town Crier will not run out of money and that an
honest requester will not pay excessive fees.

3Recall that we model SGX’s group signature as a regular signature
scheme under a manufacturer public key pksgx using the model in [32].
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Theorem 2 (Gas neutrality for Town Crier). If the
TC Relay is honest, Town Crier’s wallet WTC will have
at least $Gmax remaining after each Deliver call.

An honest user should only have to pay for com-
putation that is executed honestly on her behalf. If a
valid datagram is delivered, this is a constant value plus
the cost of executing callback. Otherwise the requester
should be able to recover the cost of executing Deliver.
For Theorem 2 to hold, CTC must retain a small fee on
cancellation, but we allow the user to recover all but this
small constant amount. We now formalize this intuition.

Theorem 3 (Fair Expenditure for Honest Requester).
For any params and callback, let $Greq and $F
be the respective values chosen by an honest re-
quester for $greq and $f when submitting the request
(params,callback,$f,$greq). For any such request sub-
mitted by an honest user CU , one of the following holds:

• callback is invoked with a valid datagram matching the
request parameters params, and the requester spends
at most $Greq +$Gcncl +$F;

• The requester spends at most $Greq +$Gcncl +$G /0.

Other security concerns. In Section 5.3, we addressed
concerns about attacks outside the SGX isolation model
embraced in the basic TC protocol. A threat we do not
address in TC is the risk of traffic analysis by a net-
work adversary or compromised Relay against confiden-
tial applications (e.g. with private datagrams), although
we briefly discuss the issue in Section 7. We also note
that while TC assumes the correctness of data sources,
if a scraping failure occurs, TC delivers an empty data-
gram, enabling relying contracts to fail gracefully.

7 Applications: Requesting Contracts

We built and implemented several showcase applications
which we plan to launch together with Town Crier. We
give a description of these applications in this section,
and show experimental results in Section 8. We refer the
reader to Appendix D for more details on these applica-
tions, as well as CU code samples that demonstrate how
to use Town Crier’s service.

Financial derivative (CashSettledPut). Financial
derivatives are among the most commonly cited smart
contract applications, and exemplify the need for a data
feed on financial instruments. We implemented an ex-
ample contract CashSettledPut for a cash-settled put op-
tion. This is an agreement for one party to buy an asset
from the other at an agreed upon price on or before a
particular date. It is “cash-settled” in that the sale is im-
plicit, i.e. no asset changes hands, only cash reflecting
the asset’s value.

Flight insurance (FlightIns). Flight insurance indemni-
fies a purchaser should her flight be delayed or canceled.
We have implemented a simple flight insurance contract
called FlightIns. Our implementation showcases TC’s
private-datagram feature to address an obvious concern:
Customers may not wish to reveal their travel plans pub-
licly on the blockchain. Roughly speaking, a customer
submits to CTC a request EncpkTC(req) encrypted under
Town Crier enclave’s public key pkTC. The enclave de-
crypts req and checks that it is well-formed (e.g., sub-
mitted sufficiently long before the flight time). The en-
clave will then fetch the flight information from a target
website at a specified later time, and send to CTC a data-
gram indicating whether the flight is canceled. Finally, to
avoid leaking information through timing (e.g., when the
flight information website is accessed or datagram sent),
random delays are introduced.

Steam Marketplace (SteamTrade). Authenticated data
feeds and smart contracts can enable fair exchange of
digital goods between Internet users who do not have
pre-established trust. We have developed an exam-
ple application supporting fair trade of virtual items
for Steam [5], an online gaming platform that supports
thousands of games and maintains its own marketplace,
where users can trade, buy, and sell games and other vir-
tual items. We implemented a contract for the sale of
games and items for ether that showcases TC’s support
for custom datagrams through the use of Steam’s access-
controlled API. In our implementation, the seller sends
EncpkTC(account credentials, req) to CTC, such that TC’s
enclave can log in as the seller and determine from the
web-page whether the virtual item has been shipped.

8 Experiments

We evaluated the performance of TC on a Dell Inspiron
13-7359 laptop with an Intel i7-6500U CPU and 8.00GB
memory, one of the few SGX-enabled systems commer-
cially available at the time of writing. We show that
on this single host—not even a server, but a consumer
device—our implementation of TC can easily process
transactions at the peak global rate of Bitcoin, currently
the most heavily loaded decentralized blockchain.

8.1 Enclave Response Time

We first measured the enclave response time for handling
a TC request, defined as the difference in time between
(1) the Relay sending a request to the enclave and (2) the
Relay receiving a response back from the enclave.

Table 1 summarizes the total enclave response time as
well as its breakdown over 500 runs. For the three ap-
plications we implemented, the enclave response time
ranges from 180 ms to 599 ms. The response time is

11



CashSettledPut FlightIns SteamTrade
mean % tmax tmin σt mean % tmax tmin σt mean % tmax tmin σt

Ctx. switch 1.00 0.6 3.12 0.25 0.31 1.23 0.24 2.94 0.17 0.32 1.17 0.20 3.25 0.36 0.35
Web scraper 157 87.2 258 135 18 482 95.4 600 418 31 576 96.2 765 489 52
Sign 20.2 11.2 26.6 18.7 1.52 20.5 4.0 25.3 18.9 1.4 20.3 3.4 24.8 18.8 1.28
Serialization 0.40 0.2 0.84 0.24 0.08 0.38 0.08 0.67 0.20 0.08 0.39 0.07 0.65 0.24 0.09

Total 180 100 284 158 18 505 100 623 439 31 599 100 787 510 52

Table 1: Enclave response time t, with profiling breakdown. All times are in milliseconds. We executed 500 experi-
mental runs, and report the statistics including the average (mean), proportion (%), maximum (tmax), minimum (tmin)
and standard deviation (σt ). Note that Total is the end-to-end response time as defined in Section 8.1. Times may not
sum to this total due to minor unprofiled overhead.

clearly dominated by the web scraper time, i.e., the time
it takes to fetch the requested information from a web-
site. Among the three applications evaluated, Steam-
Trade has the longest web scraper time, as it interacts
with the target website over multiple roundtrips to fetch
the desired datagram.

8.2 Transaction Throughput
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Figure 11: Throughput on a single SGX machine. The x-
axis is the number of concurrent enclaves and the y-axis
is the number of tx / sec. Dashed lines indicate the ideal
scaling for each application, and error bars, the standard
deviation. We ran 20 rounds of experiments (each round
processing 1000 transactions in parallel).

We performed a sequence of experiments measuring
the transaction throughput while scaling up the number
of concurrently running enclaves on our single SGX-
enabled host from 1 to 20. 20 TC enclaves is the maxi-
mum possible given the enclave memory constraints on
the specific machine model we used. Figure 11 shows
that for the three applications evaluated, a single SGX

machine can handle 15 to 65 tx/sec.
Several significant data points show how effectively

TC can serve the needs of today’s blockchains for au-
thenticated data: Ethereum currently handles < 1 tx/sec
on average. Bitcoin today handles slightly more than
3 tx/sec, and its maximum throughput (with full block
utilization) is roughly 7 tx/sec. We know of no mea-
surement study of the throughput bound of the Ethereum
peer-to-peer network. It has been shown that without a
protocol redesign, however, the current Bitcoin network
cannot scale via reparametrization beyond 27 tx/sec [21].
Thus, with one or at most a few hosts, TC can easily
meet the data feed demands of even future decentralized
blockchains.

8.3 Gas Costs

Currently 1 gas costs 5×10−8 ether, so at the exchange
rate of $5 for 1 ether, $1 buys 4 million gas. Here we
provide costs for the components of our implementation.

Table 2 shows gas costs for calling TC in our example
applications; these costs are callback-independent to re-
flect datagram costs only, not application costs. We see
an effective gas cost for TC of roughly 4 to 5 cents.

The callback-independent portion of Deliver costs
about 35,000 gas (0.9¢), so this is the value of $Gmin.
We set $Gmax = 3,100,000 gas (77.5¢), as this is approx-
imately Ethereum’s maximum GASLIMIT. The cost for
executing Request is approximately 120,000 gas (3¢) of
fixed cost, plus 2500 gas (0.06¢) for every 32 bytes of
request parameters. The cost to execute Cancel is 62500
gas (1.55¢) including the gas cost $Gcncl and the refund
$G /0 paid to TC should Deliver be called after Cancel.

8.4 Component-Compromise Resilience

For the CashSettledPut application, we implemented
and evaluated two modes of majority voting (as in Sec-
tion 5.3):

• 2-out-of-3 majority voting within the enclave, provid-
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CashSettledPut FlightIns SteamTrade†

Deliver without Cancel 3.95¢ 4.00¢ 4.30¢
Cancel arrived after Deliver 4.90¢ 4.95¢ 5.25¢
Cancel without Deliver 4.65¢ 4.70¢ 5.00¢

Table 2: Callback-independent portion of gas expenditure in USD. The difference between applications is due to the
differing lengths of the input parameters. The first two rows would also have to pay for callback, but we do not include
that cost as it would exist even if data acquisition were free.
† These numbers are for 1 item. Each additional item costs an additional 0.06¢.

ing robustness against data-source compromise. In our
experiments the enclave performed simple sequential
scraping of current stock prices from three different
data sources: Bloomberg, Google Finance and Ya-
hoo Finance. The enclave response time is roughly
1743(109) ms in this case (c.f. 1058(88), 423(34) and
262(12) ms for each respective data source). Finally,
there is no change in gas cost, as voting is done inside
the SGX enclave. In the future, we will investigate par-
allelization of SGX’s thread mechanism, with careful
consideration of the security implications.

• 2-out-of-3 majority voting within the requester con-
tract, which provides robustness against SGX compro-
mise. We ran three instances of SGX enclaves, all
scraping the same data source. The main change in
this scenario is that the gas cost would increase by a
factor of 3 plus an additional 1.95¢. So CashSettled-
Put would cost 13.8¢ for Deliver without Cancel. The
extra 1.95¢ is a storage cost: The requester contract
must store votes until a winner is known.

8.5 Offline Measurements

Recall that a one-time setup operation is required for an
enclave, and involves attestation generation. We report
mean run times (with the standard deviation in paren-
theses) for these experiments, which involved 100 trials.
Setting up the TC Enclave takes 49.5 (7.2) ms, and at-
testation generation takes 61.9 (10.7) ms, including 7.65
(0.97) ms for report generation, and 54.9 (10.3) ms for
quote generation.

Recall also that since clock() yields only relative time
in SGX, TC’s absolute clock is calibrated through an ex-
ternally furnished wall-clock timestamp. A user can ver-
ify the correctness of the Enclave absolute clock by re-
questing a digitally signed timestamp. This verification
procedure is, of course, accurate only to within its end-
to-end latency. Our experiments show that the time be-
tween Relay transmission of a clock calibration request
to the enclave and receipt of a response is 11.4 (1.9) ms
of which 10.5 (1.9) ms is to sign the timestamp. To this
must be added the wide-area network roundtrip latency,
at most typically a few hundred milliseconds.

9 Related Work

Several data feeds are deployed today for smart con-
tract systems such as Ethereum. Examples include Price-
Feed [4] and Oraclize.it [8]. The latter achieves dis-
tributed trust by using a second service called TLSno-
tary [7], which digitally signs webpages. These ser-
vices, however, ultimately rely on the reputations of their
(small) providers to ensure data authenticity. To address
this problem, systems such as SchellingCoin [14] and
Augur [3] rely on mechanisms such as prediction mar-
kets to decentralize trust. Prediction markets often rely
on human input, though, constraining their scope. They
have not yet seen widespread use in cryptocurrencies.

Despite an active developer community, research com-
munity exploration of smart contracts has been very lim-
ited to date. Work includes off-chain contract execution
for confidentiality [26], and, more tangentially, explo-
ration of e.g., randomness sources in [12]. The only ex-
ploration relating to data feeds of which we’re aware is
discussion of their use for (criminal) applications in [25].

SGX is similarly in its infancy. While a Windows
SDK [24] and programming manual [23] have just been
released, a number of pre-release papers have already ex-
plored SGX, e.g., [9, 27, 29, 30, 36]. Researchers have
demonstrated applications including enclave execution
of legacy (non-SGX) code [11] and use of SGX in a dis-
tributed setting for map-reduce computations [30]. Sev-
eral works have exposed shortcomings of the security
model for SGX [20, 31, 32], including side-channel at-
tacks and other attacks against enclave state.

10 Conclusion

We have introduced Town Crier (TC), an authenticated
data feed for smart contracts specifically designed to sup-
port Ethereum. Thanks to its use of Intel’s new SGX
trusted hardware, TC serves datagrams with a high de-
gree of trustworthiness. We prove in a formal model
capturing SGX and blockchain behavior that TC serves
only data from authentic sources. We also prove that its
novel gas-management system achieves sustainable gas
use if the unprotected server code (outside SGX) in TC
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behaves honestly and minimizes gas losses should the
code behave maliciously. In experiments involving end-
to-end use of the complete system with the Ethereum
blockchain, we demonstrated TC’s practicality, cost ef-
fectiveness, and flexibility for three example smart con-
tract applications. We believe that TC offers a powerful,
practical means to address the lack of trustworthy data
feeds hampering Ethereum evolution today and will sup-
port a rich range of applications. Pending deployment of
the Intel attestation verification service in the near future,
we will make TC freely available as a public service.
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A TC Implementation Details

We now present further, system-level details on the TC
contract CTC and the two parts of the TC server, the En-
clave and Relay.

A.1 TC Contract

We implement CTC with fees as described in Section 5.1
in Solidity, a high-level language with JavaScript-like
syntax which compiles to Ethereum Virtual Machine
bytecode—the language Ethereum contracts use.

In order to handle the most general type of requests—
including encrypted parameters—the CTC implementa-
tion requires two parameter fields: an integer specifying
the type of request (e.g. flight status) and a byte array of
user-specified size. This byte array is parsed and inter-
preted inside the Enclave, but is treated as an opaque byte
array by CTC. For convenience, we include the timestamp
of the current block as an implicit parameter.

To guard against the Relay tampering with request pa-
rameters, the CTC protocol includes params as an argu-
ment to Deliver which validates against stored values.
To reduce this cost for large arrays, we store and ver-
ify SHA3-256(requestType||timestamp||paramArray).
The Relay scrapes the raw values for the Enclave which
computes the hash and includes it as an argument to De-
liver.

As we mentioned in Section 4.2, to allow for im-
proved efficiency in client contracts, Request returns id
and Deliver includes id along with data as arguments to
callback. This allows client contracts to make multiple
requests in parallel and differentiate the responses, so it
is no longer necessary to create a unique client contract
for every request to CTC.

A.2 TC Server

Using the recently released Intel SGX SDK [24], we im-
plemented the TC Server as an SGX-enabled application
in C++. In the programming model supported by the
SGX SDK, the body of an SGX-enabled application runs
as an ordinary user-space application, while a relatively
small piece of security-sensitive code runs in the isolated
environment of the SGX enclave.

The enclave portion of an SGX-enabled application
may be viewed as a shared library exposing an API in the
form of ecalls [24] to be invoked by the untrusted appli-
cation. Invocation of an ecall transfers control to the en-
clave; the enclave code runs until it either terminates and
explicitly releases control, or some special event (e.g.,
exception) happens [23]. Again, as we assume SGX pro-
vides ideal isolation, the untrusted application cannot ob-
serve or alter the execution of ecalls.

Enclave programs can make ocalls [24] to invoke
functions defined outside of the enclave. An ocall trig-
gers an exit from the enclave; control is returned once
the ocall completes. As ocalls execute outside the en-
clave, they must be treated by enclave code as untrusted.

HTTPS
websites blockchain

Client
Interface TCP

geth

Blockchain
Interface

Attestation
Generation

HTTPS

Web
Scrapers

Ethereum TX
Reader/Writer

Request
Handler

pkTC, skTCsksgx

Legend: Relay Enclave Server ecall ocall

Figure 12: Components of TC Server

For TC, we recall that Fig. 6 shows the Enclave code
progencl. Fig. 7 specifies the operation of the Relay, the
untrusted code in TC, which we emphasize again pro-
vides essentially only network functionality. We now
give details on the services in the Enclave and the Relay
and describe their interaction, as summarized in Fig. 12.

The Enclave. There are three components to the enclave
code progencl: an HTTPS service, Web Scrapers, which
interact with data sources, and a Request Handler, which
services datagram requests.

HTTPS Service. We recall that the enclave does not have
direct access to host network functionality. TC thus par-
titions HTTPS into a trusted layer, consisting of HTTP
and TLS code, and an untrusted layer that provides low-
layer network service, specifically TCP. This arrange-
ment allows the enclave to establish a secure channel
with a web server; the enclave itself performs the TLS
handshake with a target server and performs all cryp-
tographic operations internally, while the untrusted pro-
cess acts as a network interface only. We ported a TLS
library (mbedTLS [10]) and HTTP code into the SGX
environment. We minimized the HTTP code to meet
the web-scraping requirements of TC while keeping the
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TCB small. To verify certificates presented by remote
servers, we hardcoded a collection of root CA certificates
into the enclave code; in the first version of TC, the root
CAs are identical to those in Chrome. By using its inter-
nal, trusted wall-clock time, it is possible to verify that a
certificate has not expired. (We briefly discuss revocation
in Appendix E.)

Web Scrapers. We implemented scrapers for our exam-
ples in Section 7 in an ad hoc manner for our initial im-
plementation of TC. We defer more principled, robust
approaches to future work.

Request Handler. The Request Handler has two jobs.

1. It ingests a datagram request in Ethereum’s serializa-
tion format, parses it, and decrypts it (if it is a private-
datagram request).

2. It generates an Ethereum transaction containing the
requested datagram (and parameter hash), serializes
it as a blockchain transaction, signs it using skTC, and
furnishes it to the Relay.

We implemented the Ethereum ABI and RLP which,
respectively, specify the serialization of arguments and
transactions in Ethereum.

Attestation Generation. Recall in Section 2 we men-
tioned that an attestation is an report digitally signed by
the Intel-provided Quoting Enclave (QE). Therefore two
phases are involved in generating att. First, the Enclave
calls sgx_create_report to generate a report with QE
as the target enclave. Then the Relay forwards the report
to QE and calls sgx_get_quote to get a signed version
of the report, namely an attestation.

The Relay. The Relay encompasses three components:
A Client Interface, which serves attestations and times-
tamps, OS services, including networking and time ser-
vices, and a Blockchain Interface.

Client Interface. As described in Section 3, a client
starts using TC by requesting and verifying an attesta-
tion att and checking the correctness of the clock in the
TC enclave using a fresh timestamp. The Client Inter-
face caches att upon initialization of progencl. When it
receives a web request from a client for an attestation, it
issues an ecall to the enclave to obtain a Unix timestamp
signed using skTC, which it returns to the client along
with att. The client verify att using the Intel Attestation
Service (IAS) and then verify the timestamp using pkTC
and check it using any trustworthy time service.

OS services. The Enclave relies on the Relay to access
networking and wall-clock time (used for initialization)
provided by the OS and implemented as ocalls.

Blockchain Interface. The Relay’s Blockchain Inter-
face monitors the blockchain for incoming requests and

places transactions on the blockchain in order to deliver
datagrams. The Blockchain Interface incorporates an of-
ficial Ethereum client, Geth [22]. This Geth client can
be configured with a JSON RPC server. The Relay com-
municates with the blockchain indirectly via RPC calls
to this server. For example, to insert a signed transac-
tion, the Relay simply calls eth_sendRawTransaction
with the byte array of the serialized transaction. We em-
phasize that, as the enclave holds skTC, transactions are
signed within the enclave.

B More Details on Formal Modeling

B.1 SGX Formal Modeling

As mentioned earlier, we adopt the UC model of SGX
proposed by Shi et al. [32] In particular, their abstrac-
tion captures a subset of the features of Intel SGX. The
main idea behind the UC modeling by Shi et al. [32] is to
think of SGX as a trusted third party defined by a global
functionality Fsgx (see Figure 3 of Section 4.3).

Modeling choices. For simplicity, the Fsgx model cur-
rently does not capture the issue of revocation. In this
case, as Shi et al. point out, we can model SGX’s group
signature simply as a regular signature scheme Σsgx,
whose public and secret keys are called “manufacturer
keys” and denoted pksgx and sksgx (i.e., think of always
signing with the 0-th key of the group signature scheme).
We adopt this notational choice from [32] for simplicity.
Later when we need to take revocation into account, it is
always possible to replace this signature scheme with a
group signature scheme in the modeling.

The Fsgx(Σsgx) functionality described by Shi et
al. [32] is a global functionality shared by all protocols,
parametrized by a signature scheme Σsgx. This global
Fsgx is meant to capture all SGX machines available in
the world, and keeps track of multiple execution contexts
for multiple enclave programs, happening on different
SGX machines in the world. For convenience, this pa-
per adopts a new notation Fsgx(Σsgx)[progencl,R] to de-
note one specific execution context of the global Fsgx
functionality where the enclave program in question is
progencl, and the specific SGX instance is attached to a
physical machine R. (As the Relay in TC describes all
functionality outside the enclave, we use R for conve-
nience also to denote the physical host.) This specific
context Fsgx(Σsgx)[progencl,R] ignores all parties’ inputs
except those coming from R. We often omit writing
(Σsgx) without risk of ambiguity.

Operations. Fsgx captures the following features:

• Initialize. Initialization is run only once.
Upon receiving init, Fsgx runs the initial-
ization part of the enclave program denoted
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outp := progencl.Initialize(). Then, Fsgx attests to
the code of the enclave program progencl as well as
outp. The resulting attestation is denoted σatt.

• Resume. When resume is received, Fsgx calls
progencl.Resume on the input parameters denoted
params. Fsgx outputs whatever progencl.Resume out-
puts. Fsgx is stateful, i.e., allowed to carry state be-
tween init and multiple resume invocations.

Finally, we remark that this formal model by Shi et
al. is speculative, since we know of no formal proof
that Intel’s SGX does securely realize this abstraction
(or realize any useful formal abstraction at all for that
matter)—in fact, available public documentation of SGX
does not provide sufficient information for making such
formal proofs. As such, the formal model in [32] ap-
pears to be the best available tool for us to formally rea-
son about security for SGX-based protocols. Shi et al.
leave it as an open question to design secure processors
with clear formal specifications, such that they can be
used in the design of larger protocols/systems supporting
formal reasoning of security. We refer the readers to [32]
for a more detailed description of the UC modeling of
Intel SGX.

B.2 Blockchain Formal Modeling

Our protocol notation adopts the formal blockchain
framework recently proposed by Kosba et al. [26]. In
addition to UC modeling of blockchain-based protocols,
Kosba et al. [26] also design a modular notational sys-
tem that is intuitive and factors out tedious but common
features inside functionality and protocol wrappers (e.g.,
modeling of time, pseudonyms, adversarial reordering of
messages, a global ledger). The advantages of adopting
Kosba et al.’s notational system are these: the blockchain
contracts and user-side protocols are intuitive on their
own and they are endowed with precise, formal mean-
ing when we apply the blockchain wrappers.

Technical subtleties. While Kosba et al.’s formal
blockchain model is applicable for the most part, we
point out a subtle mismatch between their formal
blockchain model in [26] and the real-world instantiation
of blockchains such as Ethereum (and Bitcoin for that
matter). The design of Town Crier is secure in a slightly
modified version of the blockchain model that more ac-
curately reflects the real-world Ethereum instantiation of
a blockchain.

Recall that one tricky detail for the gas-aware version
of the Town Crier contract arises from the need to deal
with with Deliver arriving after Cancel. In the formal
blockchain model proposed by Kosba et al. [26], we can
easily get away with this issue by introducing a time-
out parameter Ttimeout that the requester attaches to each

datagram request. If the datagram fails to arrive before
Ttimeout, the requester can call Cancel any time after
Ttimeout +∆T . On the surface, this seems to ensure that
no Deliver will be invoked after Cancel assuming Town
Crier is honest.

However, we did not adopt this approach due to a
technical subtlety that arises in this context—again, the
fact that the Ethereum blockchain does not perfectly
match the formal blockchain model specified by Kosba
et al [26]. Specifically, the blockchain model by Kosba et
al. assumes that every message (i.e., transaction) will be
delivered to the blockchain by the end of each epoch and
that the adversary cannot drop any message. In practice,
however, Ethereum adopts a dictatorship strategy in the
mining protocol, and the winning miner for an epoch can
censor transactions for this specific epoch, and thus ef-
fectively this transaction will be deferred to later epochs.
Further, in case there are more incoming transactions
than the block size capacity of Ethereum, a backlog of
transactions will build up, and similarly in this case there
is also guaranteed ordering of backlogged transactions.
Due to these considerations, we defensively design our
Town Crier contract such that gas neutrality is attained
for Town Crier even if the Deliver transaction arrives af-
ter Cancel.

C Proofs of Security

This section contains the proofs of the theorems we
stated in Section 6.

Theorem 1 (Authenticity). Assume that Σsgx and Σ are
secure signature schemes. Then, the full TC protocol
achieves authenticity of data feed under Definition 1.

Proof. We show that if the adversary A succeeds in a
forgery with non-negligible probability, we can construct
an adversary B that can either break Σsgx or Σ with non-
negligible probability. We consider two cases. The re-
duction B will flip a random coin to guess which case it
is, and if the guess is wrong, simply abort.

• Case 1: A outputs a signature σ that uses the same
pkTC as the SGX functionality Fsgx. In this case, B
will try to break Σ. B interacts with a signature chal-
lenger Ch who generates some (pk∗,sk∗) pair, and
gives to B the public key pk∗. B simulates Fsgx by
implicitly letting pkTC := pk∗. Whenever Fsgx needs
to sign a query, B passes the signing query onto the
signature challenger Ch.

Since data 6= progencl(params), B cannot have
queried Ch on a tuple of the form ( ,params,data).
Therefore, B simply outputs what A outputs (sup-
pressing unnecessary terms) as the signature forgery.
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• Case 2: A outputs a signature σ that uses a different
pkTC as the SGX functionality Fsgx. In this case, B
will seek to break Σsgx. B interacts with a signature
challenger Ch, who generates some (pk∗,sk∗) pair,
and gives to B the public key pk∗. B simulates Fsgx
by implicitly setting pksgx := pk∗. Whenever Fsgx
needs to make a signature with sksgx, B simply passes
the signature query onto Ch. In this case, in order for
A to succeed, it must produce a valid signature σatt
for a different public key pk′. Therefore, B simply
outputs this as a signature forgery.

Lemma 1. CTC will never attempt to send money in De-
liver or Cancel that were not deposited with the given
id.

Proof. First we note that there are only three lines on
which CTC sends money: (2), (3), and (5). Second, for a
request id, $f is deposited. Third, because isCanceled[id]
is only set immediately prior to line (5) and line (2) is
only reachable if isCanceled[id] is set, it is impossible to
reach line (2) without reaching line (5).

We now consider cases based on which of lines (3) and
(5) are reached first (since at least one must be reached
to send any money).

• Line (5) is reached first. In this case, line (5) sends
$f− $G /0 and allows $G /0 to remain. Future calls to
Cancel with this id will fail the isCanceled[id] not
check assertion, so line (5) can never be reached again
with this id. If WTC invokes Deliver after this point,
the first such invocation will satisfy the predicate on
line (1) and proceed to set isDelivered[id] and reach
line (2). Any future entries to Deliver with id will
fail to satisfy the predicate on line (1) and then fail
an assertion and abort prior to line (3). Since line (2)
sends $G /0, the total money sent in connection with id
is ($f−$G /0)+$G /0 = $f.

• Line (3) is reached first. In this case, line (3) send the
full $f immediately after setting isDelivered[id]. With
isDelivered[id] set, any call to Cancel with id will fail
an assertion prior to line (5) and any future call to De-
liver with id will fail to satisfy the predicate on line
(1) and also fail an assertion prior to reaching line (3).
Thus no further money will be distributed in connec-
tion with id.

Theorem 2 (Gas neutrality for Town Crier). If the
TC Relay is honest, Town Crier’s wallet WTC will have
at least $Gmax remaining after each Deliver call.

Proof. By assumption,WTC is seeded with at least $Gmax
money. Thus it suffices to prove that, given an honest Re-
lay,WTC will have at least as much money after invoking
Deliver as it did before.

An honest Relay will never ask for a response for
the same id more than once. Deliver only responds to
messages from WTC, and isDelivered[id] is only set in-
side Deliver, so therefore we know that isDelivered[id]
is not set for this id. We now consider the case where
isCanceled[id] is set upon invocation of Deliver and the
case where it is not.

• isCanceled[id] not set: In this case the predicate on line
(1) of the protocol returns false. Because the Relay
is honest, id exists and params= params′. The enclave
always provides $gdvr = $Gmax (which it has by as-
sumption) and Request ensures that $f≤ $Gmax. Thus,
coupled with the knowledge that isDeliver[id] is not set,
all assertions pass and we progress through lines (3)
and (4). Now we must show that at line (3) CTC had
$f to send and that the total gas spend to execute De-
liver does not exceed $f.

To see that CTC had sufficient funds, we note
that upon entry to Deliver, both isDelivered[id] and
isCanceled[id] must have been unset. The first we
showed above. The second is because, given the first,
if isCanceled[id] were set, the predicate on line (1)
would have returned true, sending execution on a path
that would not encounter (4). This means that line
(5) was never reached because the preceding line sets
isCanceled[id]. Because (2), (3), and (5) are the only
lines that remove money from CTC and $f was de-
posited as part of Request, it must be the case that $f
is still in the contract.

To see how much gas is spent, we first note that $Gmin is
defined to be the amount of gas needed to execute De-
liver along this execution path not including line (4).
Since $gclbk is set to $f−$Gmin and line (4) is limited
to using $gclbk gas, the total gas spent on this execution
of Deliver is at most $Gmin +($f−$Gmin) = $f.

• isCanceled[id] is set: Here the predicate on line (1) re-
turns true. Along this execution path CTC sendsWTC
$G /0 and quickly returns. $G /0 is defined as the amount
of gas necessary to execute this execution path, so we
need only show that CTC has $G /0 available to send.

Because isCanceled[id] is set, it must be the case that
Cancel was invoked with id and reached line (5). Gas
exhaustion in Cancel is not a concern because it would
abort and revert the entire invocation. This is only pos-
sible if the data retrieval and all assertions in Cancel
succeed. In particular, this means that id corresponds
to a valid request which deposited $f. Line (5) returns
$f−$G /0 to CU , but it leaves $Gmin from the original $f.
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Moreover, if Cancel is invoked multiple times with the
same id, all but the first will fail due to the assert that
isCanceled[id] is not set and the fact that any invocation
that reaches (5) will set isCanceled for that id. Since
only lines (2), (3), and (5) can remove money from
CTC and line (3) will never be called in this case, there
will still be exactly $Gmin available when this invoca-
tion of Deliver reaches line (2).

Theorem 3 (Fair Expenditure for Honest Requester).
For any params and callback, let $Greq and $F
be the respective values chosen by an honest re-
quester for $greq and $f when submitting the request
(params,callback,$f,$greq). For any such request sub-
mitted by an honest user CU , one of the following holds:

• callback is invoked with a valid datagram matching the
request parameters params and the requester spends at
most $Greq +$Gcncl +$F.

• The requester spends at most $Greq +$Gcncl +$G /0.

Proof. CU is honest, so she will spend $Greq to invoke
Request(params,callback,$F). Ethereum does not al-
low money to change hands without the payer explicitly
sending money. Therefore we must only examine the
explicit function invocations and monetary transfers ini-
tiated by CU in connection with the request. It is impossi-
ble for CU to lose more money than she gives up in these
transactions even if TC is malicious.

• Request Delivered: If protocol line (4) is reached,
then we are guaranteed that params = params′ and
$gdvr ≥ $F. By Theorem 1, the datagram must there-
fore be authentic for params. Because $F is chosen
honestly for callback, $F−$Gmin is enough gas to exe-
cute callback, so callback will be invoked with a data-
gram that is a valid and matches the request parame-
ters.

In this case, the honest requester will have spent $Greq
to invoke Request and $F in paying TC’s cost for De-
liver. The requester may have also invoked Cancel at
most once at the cost of $Gcncl. While CU may not re-
ceive any refund due to Cancel aborting, CU will still
have spent at most $Greq +$Gcncl +$F.

• Request not Delivered: The request not being deliv-
ered means that line (4) is never reached. This can only
happen if Deliver is never called with a valid response
or if isCanceled[id] is set before deliver is called. The
only way to set isCanceled[id] is for CU to invoke Can-
cel with isDelivered[id] not set. If deliver is not exe-
cuted, we assume that an honest requester will eventu-
ally invoke Cancel, so this case will always reach line
(5). When line (5) is reached, then CU will have spent

$Greq + $F while executing Request, and spent $Gcncl
in Cancel and will attempt to retrieve $F−$G /0.

The retrieval will succeed because CTC will always
have the funds to send CU $F− $G /0. To see this,
Lemma 1 allows us to consider only Deliver and Can-
cel calls associated with id.

Since line (5) is reached, it must be the case the
isDelivered[id] is not set. This means that neither lines
(2) nor (3) were reached since the line before each sets
isDelivered[id]. The lines preceding those two and (5)
are the only lines that remove money from the contract.
Line (5) cannot have been reached before because CU
is assumed to be honest, so she will not invoke Cancel
twice for the same request and if any other user invokes
Cancel for this request, the CU = C′U assertion will fail
and the invocation will abort before line (5). Because
none of (2), (3), or (5) has been reached before and
CU deposited $F> $Gmin > $G /0 on Request, it must be
the case that CTC has $F−$G /0 left.

This means the total expenditure in this case will be

$Greq +$Gcncl +$F− ($F−$G /0)

= $Greq +$Gcncl +$G /0.

D Applications and Code Samples

We now elaborate on the applications described in Sec-
tion 7 and we show a short Solidity code sample for one
of these applications, to demonstrate first-hand what a
requester contract would look like to call Town Crier’s
authenticated data feed service.

Financial derivative (CashSettledPut). Financial
derivatives are among the most commonly cited smart
contract applications, and exemplify the need for a data
feed on financial instruments. We implemented an ex-
ample contract CashSettledPut for a cash-settled put op-
tion. This is an agreement for one party to buy an asset
from the other at an agreed upon price on or before a
particular date. It is “cash-settled” in that the sale is im-
plicit, i.e. no asset changes hands, only cash reflecting
the asset’s value. In our implementation, the issuer of
the option specifies a strike price PS, expiration date, unit
price PU , and maximum number of units M she is will-
ing to sell. A customer may send a request to the contract
specifying the number X of option units to be purchased
and containing the associated fee (X ·PU ). A customer
may then exercise the option by sending another request
prior to the expiration date. CashSettledPut calls TC to
retrieve the closing price PC of the underlying instrument
on the day the option was exercised, and pays the cus-
tomer X · (PS−PC). To ensure sufficient funding to pay
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out, the contract must be endowed with ether value at
least M ·PS.

In Figure 13 we describe the protocol for CashSettled-
Put. We omit the full source code due to length and com-
plexity.

CashSettledPut blockchain contract

Constants
Tstock := Town Crier stock info request type
$FTC := fee payed to TC for datagram delivery

Functions
Init: On recv (CTC, ticker,PS,PU ,M,expr,$f)

fromWissuer
Assert $f= (PS−PU ) ·M+$FTC
Save all inputs andWissuer to storage.

Buy: On recv (X ,$f) fromWU :
Assert isRecovered not set

and timestamp< expr
andWbuyer not set
and X ≤M
and $f= (X ·PU )

SetWbuyer =WU
Save X to storage
Send (PS−PU )(M−X) toWissuer
// Hold PS ·X +$FTC

Put: On recv () fromWbuyer:
and timestamp< expr
and isPut not set

Set isPut
params := [Tstock, ticker]
callback := this.Settle
CTC.Request(params,callback,$FTC)

Settle: On recv (id,P) from CTC:
If P≥ PS

Send PS ·X toWissuer
Return

Send (PS−P)X toWbuyer
Send all money in contract toWissuer

Send P ·X toWissuer

Recover: On recv () fromWissuer:
and isPut not set
and isRecovered not set
and (Wbuyer not set

or timestamp≥ expr)
Set isRecovered
Send all money in contract toWissuer

Figure 13: The CashSettledPut application contract

Flight insurance (FlightIns). Flight insurance indemni-
fies a purchaser should her flight be delayed or canceled.

We have implemented a simple flight insurance contract
called FlightIns. Our implementation showcases TC’s
private-datagram feature to address an obvious concern:
customers may not wish to reveal their travel plans pub-
licly on the blockchain.

An insurer stands up FlightIns with a specified policy
fee, payout, and lead time ∆T . (∆T is set large enough
to ensure that a customer can’t anticipate flight cancella-
tion or delay due to weather, etc.) To purchase a policy,
a customer sends the FlightIns a ciphertext C under the
TC’s pubic key pkTC of the ICAO flight number FN and
scheduled time of departure TD for her flight, along with
the policy fee. FlightIns sends TC a private-datagram
request containing the current time T and the ciphertext
C. TC decrypts C and checks that the lead time meets
the policy requirement, i.e., that TD−T ≥ ∆T . TC then
scrapes a flight information data source several hours af-
ter TD to check the flight status, and returns to Flight-
Ins predicates on whether the lead time was valid and
whether the flight has been delayed or canceled. If both
predicates are true, then FlightIns returns the payout to
the customer. Note that FN is never exposed in the clear.

Despite the use of private datagrams, FlightIns as de-
scribed here still poses a privacy risk, as the timing of
the predicate delivery by TC leaks information about TD,
which may be sensitive information; this, and the fact
that the payout is publicly visible, could also indirectly
reveal FN. FlightIns addresses this issue by including in
the private datagram request another parameter t > TD
specifying the time at which predicates should be re-
turned. By randomizing t and making t−TD sufficiently
large, FlightIns can substantially reduce the leakage of
timing information.

In Figure 14 we include a full implementation of
FlightIns in Solidity.

Steam Marketplace (SteamTrade). Steam [5] is an on-
line gaming platform that supports thousands of games
and maintains its own marketplace, where users can
trade, buy, and sell games and other virtual items. We
implement a contract for the sale of games and items for
ether that showcases TC’s support for custom datagrams
through the use of Steam’s access-controlled API.

A user intending to sell items creates a contract
SteamTrade with her Steam account number IDS, a list
L of items for sale, a price P, and a ciphertext C under
the TC’s public key pkTC of her Steam API key. In order
to purchase the list of items, a buyer first uses a Steam
client to create a trade offer requesting each item in L.
The buyer then submits to SteamTrade her Steam ac-
count number IDU , a length of time TU indicating how
long the seller has to respond to the offer, and an amount
of ether equivalent to the price P. SteamTrade sends TC
a custom datagram containing the current time T , IDU ,
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// A simple flight insurance contract using Town Crier ’s private datagram.

contract FlightIns {

uint constant TC_REQ_TYPE = 0;

uint constant TC_FEE = (35000 + 20000) * 5 * 10**10;

uint constant FEE = 10**18; // $5 in wei

uint constant PAYOUT = 2 * 10**19; // $200 in wei

uint32 constant MIN_DELAY = 30;

// The function identifier in Solidity is the first 4 bytes

// of the sha3 hash of the functions ’ canonical signature.

// This contract ’s callback is bytes4(sha3("pay(uint64 ,bytes32 )"))

bytes4 constant CALLBACK_FID = 0x3d622256;

TownCrier tc;

address [2**64] requesters;

// Constructor which sets the address of the Town Crier contract.

function FlightIns(TownCrier _tc) public {

tc = _tc;

}

// A user can purchase insurance through this entry point.

// encFN is an encryption of the flight number and date

// as well as the time when Town Crier should respond to the request.

function insure(bytes32 [] encFN) public {

if (msg.value != FEE) return;

// Adding money to a function call involves calling ".value ()"

// on the function itself before calling it with arguments.

uint64 requestId =

tc.request.value(TC_FEE )( TC_REQ_TYPE , this , CALLBACK_FID , encFN );

requesters[requestId] = msg.sender;

}

// This is the entry point for Town Crier to respond to a request.

function pay(uint64 requestId , bytes32 delay) public {

// Check that this is a response from Town Crier

// and that the ID is valid and unfulfilled.

address requester = requesters[requestId ];

if (msg.sender != address(tc) || requester == 0) return;

if (uint(delay) >= MIN_DELAY) {

address(requester ).send(PAYOUT );

}

requesters[requestId] = 0;

}

}

Figure 14: Solidity code for the FlightIns application contract.

21



TU , L, and the encrypted API key C. TC decrypts C to
obtain the API key, delays for time TU , then retrieves all
trades between the two accounts using the provided API
key within that time period. TC verifies whether or not
a trade exactly matching the items in L successfully oc-
curred between the two accounts and returns the result
to SteamTrade. If such a trade occurred, SteamTrade
sends the buyer’s ether to the seller’s account. Otherwise
the buyer’s ether is refunded.

In Figure 15 we describe the protocol for CashSettled-
Put. We again omit the full source code due to length and
complexity.

SteamTrade blockchain contract

Constants
Tsteam := Town Crier Steam trade request type
$FTC := fee payed to TC for datagram delivery

Functions
Init: On recv (CTC, IDS,encAPIS,ListI ,P) from

Wseller:
Save all inputs andWseller to storage.

Buy: On recv (IDU ,TU ,$f) fromWU :
Assert $f= P
params := [encAPIS, IDU ,TU ,LISTI ]
callback := this.Pay
id := CTC.Request(params,callback,$FTC)
Store (id,WU )

Pay: On recv (id,status) from CTC:
Retrieve and remove stored (id,WU )

// Abort if not found
If status > 0

Send $Fprice toWseller
Else

send $Fprice toWU

Figure 15: The FlightIns application contract

E Future Work

We plan to develop TC after its initial deployment and
expect it to evolve to incorporate a number of additional
features. These fall into two categories: (1) Expanding
the security model to address threats outside the scope of
the initial version and (2) Extending the functionality of
TC. Here we briefly discuss a few of these extensions.

E.1 Expanding TC threat model

• Freeloading protection. Serious concerns have arisen
in the Ethereum community about “parasite contracts”
that forward or resell datagrams—particularly those
from fee-based data feeds [34]. We plan to deploy

a novel mechanism in TC to address this concern.
Suppose contract CU involves a set of parties / users
U = {Ui}n

i=1. Each player Ui generates an individ-
ual share (ski,pki) of a global keypair (pk,sk), where
sk = ∑i=1 ski and pk = ∏i=1 pki, and communicates
a ciphertext EpkTC [ski] to CTC, e.g., by including it in
a datagram request. Players then jointly set up under
public key pk a wallet W∗ for datagram transmission
by CTC.

Thanks to the homomorphic properties of ECDSA,
CTC can compute sk (non-interactively) and send data-
grams from W∗. But the users U collaboratively can
also compute sk and send messages from W∗. Con-
sequently, while each user Ui can individually be as-
sured that a datagram sent to CU by CTC from W∗ is
valid (as Ui didn’t collude in its creation), other players
cannot determine whether a datagram was produced by
CTC or U , and thus whether or not it is valid. Such a
source-equivocal datagram renders data from parasite
contracts less trustworthy and thus less attractive.

• Traffic-analysis protection. As noted in the body of
the paper, the Relay can observe the pattern of data
source accesses made by TC. By correlating with ac-
tivity in CTC, an adversarial Relay can thus infer the
data source targeted by private datagrams, as well as
the timing. This adversary can potentially also per-
form traffic analysis on the Enclave’s HTTPS requests.
(See, e.g., [19].) In the example contract FlightIns in
Section 7, this issue is partially addressed through the
insertion of random delays into TC responses. We in-
tend to develop a comprehensive approach to mitigat-
ing traffic analysis in TC. This approach will include,
for the problem of traffic analysis of web scraping, the
incorporation of facilities in the Enclave to make chaff
or decoy data requests, i.e., false requests, to both the
true data source and well as non-target data sources.

• Revocation support. Revocation of two forms can im-
pact the TC service.

First, the certificates of data sources may be revoked.
To address this issue, given its ability to establish exter-
nal HTTPS connections, TC could easily make use of
Online Certificate Status Protocol (OCSP) certificate
checking. This functionality would amount to an ad-
ditional form of web scraping, and could be executed
in parallel with web scraping to support datagram re-
quests, resulting in minimal additional latency.

Second, an SGX host could become compromised,
prompting revocation of its EPID signatures by Intel.
The Intel Attestation Service (IAS) will reportedly pro-
vide support for online attestation verification and thus
for revocation. Conveniently, clients use the IAS when
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checking the attestation σatt, so no modification to TC
is required to support the service.

• SLAs. Were TC to be deployed as a fee-for-service sys-
tem, requesters might wish to see Service Level Agree-
ments (SLAs) enforced. A temporary outage on a TC
host or a malicious Relay could cause a delay in data-
gram delivery, potentially with aftereffects in relying
contracts. An SLA could be implemented as an indem-
nity paid to a contract if a datagram is not delivered
within a specified period of time. This feature could it-
self be implemented, for example, as an entry point in
CTC. (Naturally care would be required to ensure that
CTC holds funds sufficient for payout in the case of a
general delivery failure.)

• Hedging against SGX compromise. We discussed in
Section 5.3 and demonstrated in Section 8.4 how TC
can support majority voting across SGX hosts and/or
data sources to hedge against failures in either (out-
side TC’s basic security model) via majority voting.
It would be possible to reduce the latency and gas
costs of such voting with design enhancements to TC.
Specifically, for the case of SGX voting, we plan to in-
vestigate a scheme in which consensus on a datagram
value X is reached off-chain among SGX-enable TC
hosts via Byzantine consensus. These hosts may then
use a threshold digital signature scheme to sign the
datagram response from WTC. To ensure that the re-
sponse is delivered to the blockchain, each participat-
ing host can monitor the blockchain and itself transmit
the response in the case of an observed delivery failure.
This approach will largely eliminate the incremental
gas cost of majority voting across SGX instances.

E.2 Expanding TC functionality

• New opcodes. Ethereum’s developers [6] have indi-
cated an intention to expand the range of supported
cryptographic primitives in Ethereum and stated that
they are amenable to the authors’ suggestion of incor-
porating opcodes supporting Intel’s EPID in particu-
lar, which would enable efficient attestation verifica-
tion within the blockchain.

• Migration to data-source feeds. Ultimately, we envi-
sion that data sources may wish themselves to serve as
authenticated data feeds. To do so, they could simply
stand up TC as a front end. As a first step along this
path, however, an independent TC service might pro-
vide support for XML-labelled data from data sources,
enabling more accurate and direct scraping and inten-
tional identification of what data should be served. We
plan to build support for such explicit data labeling
into TC should this approach prove attractive to data
sources.

• Generalized custom datagrams. In our example smart
contract SteamTrade, we demonstrated a custom data-
gram that is essentially hardwired: It employs a
user’s credentials to scrape her individual online ac-
count. A more general approach would be to al-
low contract owners to specify their own general-
ized functionalities–scrapers and/or confidential con-
tract modules—as general purpose code, achieving a
data-source-enriched emulation of private contracts as
in Hawk [26], but with much lower resource require-
ments. Furnishing large custom datagrams on the
blockchain would be prohibitively expensive, but off-
chain loading of code would be quite feasible. Of
course, many security and confidentiality considera-
tions arise in a system that allows users to deploy arbi-
trary code, giving rise to programming language chal-
lenges that deployment of this feature in TC would
need to address.
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