
(Short Paper) Towards More Reliable
Bitcoin Timestamps

Pawel Szalachowski
SUTD

pawel@sutd.edu.sg

Abstract—Bitcoin provides freshness properties by forming a
blockchain where each block is associated with its timestamp and
the previous block. Due to these properties, the Bitcoin protocol is
being used as a decentralized, trusted, and secure timestamping
service. Although Bitcoin participants which create new blocks
cannot modify their order, they can manipulate timestamps
almost undetected. This undermines the Bitcoin protocol as a
reliable timestamping service. In particular, a newcomer that
synchronizes the entire blockchain has a little guarantee about
timestamps of all blocks.

In this paper, we present a simple yet powerful mechanism
that increases the reliability of Bitcoin timestamps. Our protocol
can provide evidence that a block was created within a certain
time range. The protocol is efficient, backward compatible, and
surprisingly, currently deployed SSL/TLS servers can act as
reference time sources. The protocol has many applications and
can be used for detecting various attacks against the Bitcoin
protocol.

I. INTRODUCTION

Bitcoin [18] is a cryptocurrency successful beyond all
expectations. As a consequence of this success and properties
of Bitcoin, developers and researchers try to reuse the Bit-
coin infrastructure to build new or enhance existing systems.
One class of such systems is a decentralized timestamping
service. For instance, the OpenTimestamps project [1] aims
to standardize blockchain timestamping, where a timestamp
authority, known from the previous proposals [2], is replaced
by a blockchain. Other, more focused applications that rely
on the blockchain timestamps include trusted record-keeping
service [10], [15], decentralized audit systems [16], [20],
document signing infrastructures [14], timestamped commit-
ments [5], or secure off-line payment systems [7]. Reli-
able timestamps are also vital for preventing various attacks
against the Bitcoin protocol. For instance, Heilman proposed
a scheme [13] which with unforgeable timestamps can protect
from the selfish mining strategy [9].

By design, the Bitcoin protocol preserves the order of
events (i.e., weak freshness), however, accurate time of events
(i.e., strong freshness) is questionable, despite the fact that
each block has a timestamp associated. In practice, Bitcoin
timestamps can differ in hours from the time maintained by
Bitcoin participants (nodes), and in theory can differ radically
from the actual time (i.e., time outside the Bitcoin network).
Effectively, the accurate time cannot be determined from the
protocol, which limits capabilities of the Bitcoin protocol as

This work was supported in part by the National Research Foundation
(NRF), Prime Minister’s Office, Singapore, under its National Cybersecurity
R&D Programme (Award No. NRF2016NCR-NCR002-028) and administered
by the National Cybersecurity R&D Directorate.

a timestamping service, and which impacts the security of the
protocol [11].

In this work, we propose a new mechanism for improving
the security of Bitcoin timestamps. In our protocol, external
timestamp authorities can be used to assert a block creation
time, instead of solely trusting timestamps put by block
creators. Our scheme is efficient, simple, practical, does not
require any additional infrastructure nor any changes to the
Bitcoin protocol, thus can be deployed today. Interestingly,
currently existing SSL/TLS servers can act as time authorities.

II. BACKGROUND AND PRELIMINARIES

A. Freshness in the Bitcoin Blockchain

Bitcoin is an open cryptocurrency and transaction system.
Each transaction is announced to the Bitcoin network, where
nodes called miners collect and validate all non-included
transactions and try to create (mine) a block of transactions by
solving a cryptographic proof-of-work puzzle, whose difficulty
is set such that a new block is mined about every 10 minutes.
Each block has a header that contains the block’s metadata.
Transactions are represented as leaves of a Merkle tree [17]
whose root is included in the header; hence, with the header, it
is possible to prove that a transaction is part of the given block.
Every block header contains also a field with a hash of the
previous header to link the blocks together. Due to this link, the
blocks create an append-only blockchain. Additionally, headers
include Unix timestamps that describe when the corresponding
block was mined. These timestamps are used as an input
for proof-of-work puzzles and are designed to impede an
adversary from manipulating the blockchain.

Freshness properties offered by the Bitcoin protocol are
unclear. Since the blockchain is append-only, weak freshness
is provided by design (i.e., blocks are ordered in the chronolog-
ical order). Timestamps associated with blocks are validated
in a special way. Namely, a node considers a new block’s
timestamp T as valid if:

1) T > the median timestamp of previous eleven blocks, and
2) T − 2h < network time (defined as the median of the

timestamps returned by all nodes connected to the node).

Each node maintains its local Bitcoin timer, which is
defined as the node’s local system time plus the difference
between this time and the network time. However, the timer
cannot be adjusted more than 70 minutes from the local system
time.

As it is not required that all nodes have accurate time,
timestamps encoded in headers may not be even in order,

and their accuracy is estimated to hours. Manipulation of
the Bitcoin network time is possible and can result in severe
attacks [4]. Furthermore, as Bitcoin timestamps depend only
on time of nodes, timestamps can differ radically from the
actual time, outside the network. Another issue is that nodes
synchronizing the entire blockchain have hardly any guarantees
about the previous blocks’ creation times. Given that, it is clear
that the Bitcoin protocol does not provide strong freshness,
what limits the Bitcoin blockchain applicability for time-
sensitive applications (like accurate timestamping).

B. Timestamping Service

The time-stamp protocol (TSP) [2] is a standard timestamp-
ing protocol built on top of the X.509 public key infrastructure
(PKI). In the protocol, a client that wishes to timestamp data
contacts a timestamp authority (TSA) with the data’s hash.
The TSA signs the hash along with the current timestamp and
returns the signed message to the client. The message, with
the TSA’s certificate and the data, allows everyone to verify
that the data was timestamped at the given time.

For simple description, we present our protocol as com-
pliant with TSP. However, with minor or no changes, our
scheme can be combined with other services, like currently
existing PKIs or secure time synchronization services (see
subsection V-B).

C. System Model

Our protocol introduces the two following parties:

• Timestamping authority (TSA) runs a service that
timestamps documents according to the TSP protocol
presented in subsection II-B.

• Verifier is an entity that wants to verify when a new
(upcoming) blockchain’s block was mined. A verifier can
interact with the Bitcoin network by reading blocks and
sending transactions and can interact with a (chosen)
trusted TSA.

We assume that the used cryptographic primitives are secure.
We assume an adversary able to mine Bitcoin blocks, and her
goal is to introduce a new block with an incorrect timestamp
(i.e., deviating from the TSA’s time) undetected.

D. Notation

Throughout the paper we use the following notation:

{msg}A denotes the message msg signed by A,
h(.) is a cryptographic hash function,
‖ is the string concatenation,
r

R←− S denotes that r is an element randomly
selected from the set S,

{0, 1}n is a set of all n-bit long strings,
Bi denotes the ith blockchain’s block,
Hi denotes the ith block header,
Tx is a Unix timestamp expressed in seconds.

III. DESCRIPTION OF THE PROTOCOL

A. High-Level Overview

The main idea behind our scheme is to combine an external
TSA with the blockchain, such that a verifier can create a

cryptographically-provable series of events that asserts when a
given block was mined (i.e., when all transactions associated
with the block were published). A simplified description of
our protocol is presented in Figure 1.

VerifierTSA

prev: h(Hi-1)

time: 1508135779

...

trans: h()

prev: h(Hi-2)

time: 1508104751

...

trans: ...

prev: h(Hi)

time: 1508139750

...

trans: ...

Blockchain

Bi-1 Bi Bi+1

h()h()

(1a) timestamp Hi-1

(1b) timestamped Hi-1

(2) publish the

 timestamped Hi-1

(3a) timestamp Hi

(3b) timestamped Hi

Fig. 1. A high-level overview of the protocol.

The protocol starts, when a verifier sees a new block Bi−1.
The verifier extracts the block header Hi−1 and contacts a
TSA to timestamp Hi−1. Then, the TSA returns a timestamped
and signed Hi−1 to the verifier. This message states that
the block Bi−1 is older than the message itself (i.e., than
its timestamp). Next, the verifier publishes the timestamped
and signed message in the blockchain. The corresponding
transaction is published in the subsequent block Bi. As the
transaction is included in the block, it implies that the block
is newer than the transaction (i.e., the block is newer than the
timestamp associated with the transaction). Finally, the verifier
extracts the header Hi of this block and timestamps it with
the TSA. Now, the verifier has evidence that the block Bi was
created between the timestamped messages (i.e., between their
timestamps).

B. Details

As presented above the verifier interacts with the TSA and
the Bitcoin network. Everyone can act as a verifier, and TSAs
can be chosen arbitrarily by verifiers. The protocol is initiated
independently by a verifier by executing the following:

1) On receiving the (i − 1)th block Bi−1 with the block
header Hi−1, the verifier:
a) selects a random value R0

R←− {0, 1}n,
b) prepares data D0 = h(R0‖Hi−1) to be timestamped.

2) The verifier contacts a TSA to timestamp D0.
3) The TSA returns a timestamped and signed message
{D0, T0}TSA.

4) On receiving this message the verifier:
a) computes C = h({D0, T0}TSA) as a commitment,
b) encodes C within a Bitcoin transaction, and
c) propagates the transaction across the network, such

that it is included in the subsequent block Bi.
5) On receiving the ith block Bi, with the block header Hi,

the verifier:
a) selects a random value R1

R←− {0, 1}n,

b) prepares data D1 = h(R1‖Hi) to be timestamped,
c) creates PC as a Merkle tree inclusion proof of the

transaction containing C.
6) The verifier contacts the TSA to timestamp D1.
7) The TSA returns a signed message {D1, T1}TSA.
8) Now, the verifier has the following information

R0, Hi−1, {D0, T0}TSA, R1, Hi, {D1, T1}TSA, PC , (1)

which constitutes a proof that the block Bi was mined
between T0 and T1.

9) To verify whether the block has a correct timestamp, the
verifier checks if the following is satisfied:

T0 < Hi’s timestamp < T1.

The verifier can terminate the protocol at the step 9.
However, to verify the creation time of the subsequent block,
he can compute a new commitment C = h({D1, T1}TSA) and
conduct the protocol from the step 4b onwards.

For the sake of a simple presentation, we include D0 and
D1 in the proof (see Equation 1), but they are redundant as
can be computed from R0, Hi−1 and R1, Hi, correspondingly.
We also describe the protocol with a single TSA. However,
it is easy to extend the scheme to multiple TSAs. In such a
case, the verifier timestamps the D0 and D1 messages with
multiple TSAs, and computes the commitment C as a hash
over the TSAs messages corresponding to D0.

IV. ANALYSIS

First, we claim that the verifier executing the protocol
obtains a provable series of events that given block was
mined in a given time range. Hence, an adversary cannot
introduce a block with an invalid timestamp undetected. (Al-
though we present our protocol in the adversarial setting,
invalid timestamps can be introduced by benign miners with
desynchronized clocks.)

The timeline of the protocol events is presented in Figure 2.
When the verifier notices the block Bi−1 he creates D0 by
hashing a random value R0 and the block’s header Hi−1. D0 is
timestamped by the TSA, and the commitment C is computed
as a hash of this timestamped message. With C the verifier can
check that it was indeed created after the Bi−1 as the header
of Bi−1 (i.e., Hi−1) was used to create it. Therefore, the block
Bi−1 is older than the timestamp T0. Then, the commitment
is propagated among the network and finally included in the
newly created block Bi. The verifier, with the header Hi of
the new block can prove that C is part of this block (using
the Merkle inclusion proof PC), thus it has to be older than
the block. Next, the verifier from a random value R1 and the

time

block Bi−1

is created mining period

block Bi

is created

timestamp D0

and publish C
timestamp D1

Fig. 2. Timeline of the events in the protocol.

block’s header Hi creates D1, which is timestamped by the
TSA. The message from the TSA ({D1, T1}TSA) states that
D1 was created before T1, and because D1 is derived from Hi,
it implies that the block Bi was created before T1. Finally,
the verifier equipped with this information (see Equation 1)
can check whether the block’s timestamp is correct (i.e., ∈
[T0, T1]).

Our protocol provides much better freshness properties
than the Bitcoin protocol alone. As depicted in Figure 2, if the
verifier creates and publishes C immediately after the block
Bi−1 is observed and timestamps D1 after the block Bi is
observed, then the accuracy of timestamping is approximately
equal the block creation time (currently, estimated as 10
minutes). The verifier can increase the accuracy by creating
and publishing multiple commitments in a sequence, such that
the difference between timestamped D0 and D1 decreases.

The protocol is described in the scenario where the com-
mitment C appears in transactions corresponding to the block
Bi. Although the propagation in the Bitcoin network is fast
when compared to the average block creation time [6], it may
happen that C is included in a later block. In such a case, our
protocol still provides guarantees about the blocks in between.
For example, if the commitment C appears not in Bi but in
the block Bi+1, then the proof states that blocks Bi and Bi+1

were mined between T0 and T1.

The verifier generates a random value R0 that together with
Hi−1 is timestamped by the TSA as {D0, T0}TSA, which
in turn is hashed into the commitment C. The commitment
is published in the blockchain, however, R0 is not revealed.
This construction protects the protocol from censorship by an
adversary that wishes to manipulate the timestamp. Without
this random value, the adversary could just keep timestamping
hash of Hi−1 every second, learn all possible commitments for
the block header, and censor the verifier’s transaction. With a
large random value (e.g., chosen from {0, 1}128), generating all
possible commitments is infeasible, hence the adversary cannot
distinguish between a regular transaction and the verifier’s
transaction.

Although we do not consider malicious TSAs, the protocol
provides means to keep them accountable. If the TSA returns
the signed messages such that T0 > T1, then the verifier has
an evidence that the TSA misbehaved. More specifically, the
verifier can show that D0 is older than D1 (by showing that
D1 was created using Hi, which contains C created from D0

which was timestamped at T0), which proves that the TSA
contradicted itself. Moreover, the TSA does not know secret
random values R0, R1, hence cannot learn what is being
timestamped. (However, colluding TSA and adversary could
censor commitments.)

V. PRACTICAL CONSIDERATIONS

A. Commitments Encoding

In our protocol, a verifier publishes commitments in the
blockchain (see the step 4c of the protocol). This message
is computed as a hash thus is short and can be encoded
on the blockchain in many ways. One way is to publish a
transaction with the commitment encoded within the 20-byte
long receiver of transaction (pay-to-pubkey-hash) field.

An alternative could be to encode messages into other fields
or to use the OP_RETURN instruction [19].

Storing non-transaction data in the Bitcoin blockchain is
regarded by many members of the Bitcoin community as a
spam or even a vandalism. We agree that using the Bitcoin
blockchain as a highly distributed database negatively influ-
ences its performance. However, we believe that our protocol
will be seen as a positive contribution to the ecosystem,
as firstly, it aims to improve the security of the protocol,
and secondly, the overhead introduced is marginal. Moreover,
this overhead can be minimized by publishing commitments
through a system like OpenTimestamp, which aggregates and
publishes data in the blockchain efficiently.

B. Timestamping Service

We describe our protocol to be compliant with the times-
tamping service as defined in the RFC 3161 [2] (see sub-
section II-B). There are many providers of this service, both
commercial and free. However, our protocol, with minimal or
no changes, can be combined with other currently existing
infrastructures.

Surprisingly, today’s SSL/TLS servers can act in our proto-
col as TSAs. The SSL/TLS protocol supports Diffie-Hellman
(DH) as a key-exchange algorithm. In such a case, a server
sends to a client the ServerKeyExchange message, that
among other parameters, signs the DH parameters, and client’s
and server’s random values. These random values start with a
timestamp field, hence it is possible to timestamp a document
by the server’s key by setting the client’s random value to a
document’s hash [8]. As, SSL/TLS is becoming ubiquitous and
the DH exchange is widely supported [3], [21], web servers of
reputable organizations (e.g., mozilla.org) or high-profile
websites (like google.com or live.com) can be used as
TSAs.

Another infrastructure that with minimal changes can im-
plement the TSA functionality is secure time synchronization
infrastructure. For instance, Roughtime [12], a recent proposal
by Google, provides signed timestamps. To prevent replay at-
tacks, a client inputs its nonce which together with a timestamp
is signed by the server. To implement the TSA functionality,
a client just inputs Di−1 as a nonce, like in the protocol. One
small change is caused by the design of Roughtime where, for
efficiency reasons, servers sign responses in batches. Hence,
values returned by servers are encoded differently, however
still are verifiable and can be used analogically as the TSA’s
output from the protocol (see the steps 3 and 7).

VI. CONCLUSIONS

In this paper, we presented a method of strengthening the
reliability of Bitcoin timestamps. Our protocol is efficient,
backward compatible, and can provide much stronger freshness
guarantees than the Bitcoin protocol alone. Our method can
be combined with currently existing and widespread security
infrastructures like the SSL/TLS PKI. Although we presented
our scheme in the Bitcoin context, it is also applicable to other
blockchain-based platforms.

The protocol can be deployed in many applications. Ver-
ifiers can run the protocol to detect misbehaving nodes. The

protocol can be part of a detection system against time-related
attacks or can be combined with a system like OpenTimes-
tamps to enhance it. Proofs can be also publicly published,
so nodes that in the future download and validate the entire
blockchain will have much better assurance about the event
timeline.

REFERENCES

[1] Open timestamps. https://opentimestamps.org/, 2018.
[2] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. Internet X.509 Public

Key Infrastructure Time-Stamp Protocol (TSP). RFC 3161 (Proposed
Standard), 2001. Updated by RFC 5816.

[3] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, et al.
Imperfect forward secrecy: How diffie-hellman fails in practice. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015.

[4] A. Boverman. Timejacking & bitcoin. https://culubas.blogspot.sg/2011/
05/timejacking-bitcoin 802.html, 2011.

[5] J. Clark and A. Essex. Commitcoin: Carbon dating commitments with
bitcoin. Financial Cryptography and Data Security, 7397, 2012.

[6] C. Decker and R. Wattenhofer. Information propagation in the bitcoin
network. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth
International Conference on. IEEE, 2013.

[7] A. Dmitrienko, D. Noack, and M. Yung. Secure wallet-assisted offline
bitcoin payments with double-spender revocation. In Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications
Security. ACM, 2017.

[8] B. Edström. Fun with the tls handshake. http://blog.bjrn.se/2012/07/
fun-with-tls-handshake.html, 2012.

[9] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In International conference on financial cryptography and
data security, pages 436–454. Springer, 2014.

[10] Y. Gao and H. Nobuhara. A decentralized trusted timestamping based
on blockchains. IEEJ Journal of Industry Applications, 2017.

[11] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun. Tampering with
the delivery of blocks and transactions in bitcoin. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 692–705. ACM, 2015.

[12] Google. Roughtime. https://roughtime.googlesource.com/, 2016.
[13] E. Heilman. One weird trick to stop selfish miners: Fresh bitcoins, a

solution for the honest miner. In International Conference on Financial
Cryptography and Data Security. Springer, 2014.

[14] C. Jämthagen and M. Hell. Blockchain-based publishing layer for the
keyless signing infrastructure. In Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and Communi-
cations, Cloud and Big Data Computing, Internet of People, and Smart
World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016
Intl IEEE Conferences. IEEE, 2016.

[15] V. L. Lemieux and V. L. Lemieux. Trusting records: is blockchain
technology the answer? Records Management Journal, 2016.

[16] Z. Li. Will blockchain change the audit? 2017.
[17] R. C. Merkle. A digital signature based on a conventional encryption

function. In Proceedings of Advances in Cryptology, 1988.
[18] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.
[19] K. Shirriff. Hidden surprises in the bitcoin blockchain and how they are

stored: Nelson mandela, wikileaks, photos, and python software, 2014.
[20] M. Spoke. How blockchain tech will change auditing for good, 2015.
[21] P. Szalachowski. Blockchain-based tls notary service. arXiv preprint

arXiv:1804.00875, 2018.

https://opentimestamps.org/
https://culubas.blogspot.sg/2011/05/timejacking-bitcoin_802.html
https://culubas.blogspot.sg/2011/05/timejacking-bitcoin_802.html
http://blog.bjrn.se/2012/07/fun-with-tls-handshake.html
http://blog.bjrn.se/2012/07/fun-with-tls-handshake.html
https://roughtime.googlesource.com/

