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Abstract

Cryptocurrency applications have spurred a resurgence of interest in
the computation of ECDSA signatures using threshold protocols—that
is, protocols in which the signing key is secret-shared among n parties, of
which any subset of size t must interact in order to compute a signature.
Among the resulting works to date, that of Doerner et al. [DKLs18] requires
the most natural assumptions while also achieving the best practical signing
speed. It is, however, limited to the setting in which the threshold is two.
We propose an extension of their scheme to arbitrary thresholds, and prove
it secure against a malicious adversary corrupting up to one party less than
the threshold under only the Computational Diffie-Hellman Assumption
in the Global Random Oracle model, an assumption strictly weaker than
those under which ECDSA is proven.

Whereas the best current schemes for threshold-two ECDSA signing
use a Diffie-Hellman Key Exchange to calculate each signature’s nonce, a
direct adaptation of this technique to a larger threshold t would incur a
round count linear in t; thus we abandon it in favor of a new mechanism
that yields a protocol requiring dlog(t)e + 6 rounds in total. We design
a new consistency check, similar in spirit to that of Doerner et al., but
suitable for an arbitrary number of participants, and we optimize the
underlying two-party multiplication protocol on which our scheme is based,
reducing its concrete communication and computation costs.

We implement our scheme and evaluate it among groups of up to 256
of co-located and geographically-distributed parties, and among small
groups of embedded devices. We find that in the LAN setting, our scheme
outperforms all prior works by orders of magnitude, and that it is efficient
enough for use even on smartphones or hardware tokens. In the WAN
setting we find that, despite its logarithmic round count, our protocol
outperforms the best constant-round protocols in realistic scenarios.
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1 Introduction
Threshold Digital Signature Schemes [Des87] allow a group of individuals to
delegate their joint authority to sign a message to any subcommittee among
themselves that is larger than a certain, predetermined size. Specifically, a t-of-n
threshold signature scheme is a set of protocols that allow n parties to jointly
generate a single public key, along with n private shares of a joint secret key
sk, and then securely sign messages if and only if t of those parties participate
in the signing operation. In addition to the standard unforgeability properties
required of all signature schemes, threshold schemes must satisfy the properties
of privacy against t − 1 malicious participants with respect to the secret key
shares of honest parties, and correctness against t − 1 malicious participants
with respect to signature output. That is, no group of t− 1 colluding parties
should be able to recover the secret key, even by interacting with additional
honest parties, nor should they be able to trick an honest party into signing a
message unwillingly. Threshold signature schemes are thus best modeled as a
special case of secure multiparty computation (MPC).

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a standard-
ized [Nat13,Ame05,Bro10] derivative of the DSA scheme of David Kravitz [Kra93],
which improves upon the efficiency of its forebear by replacing arithmetic modulo
a prime with operations over an elliptic curve. It is widely deployed in various
web-security technologies such as DNSSec and TLS, in various authentication
protocols, in binary signing, and in crypocurrencies, including Bitcoin [Bit17] and
Ethereum [Woo17]. Although ECDSA is in widespread use, designing threshold
signing protocols for ECDSA has been challenging due to the unusual structure
of the signing algorithm: in each signature, a nonce k, its multiplicative inverse
1/k, and the product sk/k (where sk is the secret key) all appear simultaneously.
Computing these values efficiently in the multiparty context is the primary
difficulty that threshold schemes must address.

MacKenzie and Reiter [MR01] constructed a 2-of-2 ECDSA protocol using
multiplicative sharings of k and sk, which allowed shares of sk/k and 1/k to
be computed via local operations, but their protocol required a mechanism to
verify that the shares have been computed correctly. For this, they employed
additively homomorphic encryption. Gennaro et al. [GGN16] extended this
technique, introducing a six-round protocol for general t-of-n signing, and Boneh
et al. [BGG17] subsequently optimized their extension in terms of computational
efficiency, and reduced the round count to four. Meanwhile Lindell [Lin17]
introduced optimizations in the 2-of-2 setting, such that key-generation and
signing required only 2.4 seconds and 37 milliseconds in practice, respectively.
Unfortunately, these schemes all require expensive zero-knowledge proofs, as well
as the use of Paillier Encryption [Pai99], which leads both to poor performance
and to reliance upon assumptions such as the Decisional Composite Residuosity
Assumption (and a new assumption about the Paillier cryptosystem, in Lindell’s
case) that are foreign to the mathematics on which ECDSA is based.

Doerner et al. [DKLs18] propose an alternative solution for 2-of-n threshold
key generation and signing: while their protocol retains the multiplicative shar-
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ings of prior approaches, they forgo operating on Paillier ciphertexts. Instead,
they construct a new, hardened variant of Gilboa’s multiplication-by-oblivious-
transfer technique [Gil99], by which their protocol converts multiplicative shares
into additive shares, and thereby produces additive shares of the final ECDSA
signature. Security against malicious adversaries is achieved via a novel consis-
tency check that leverages relationships among various elements of an ECDSA
signature to ensure that the multipliers receive consistent inputs. Their scheme
requires only two rounds and outperforms prior schemes by one to two orders
of magnitude in terms of computational efficiency, such that signatures can be
produced in under four milliseconds, and key generation for two parties can be
completed in under 45 milliseconds. Moreover, their scheme was proven secure in
the Random Oracle model using only the assumption that ECDSA is a signature
scheme, and the Computational Diffie-Hellman Assumption [DH76] over the
same curve as the signature itself uses. The latter assumption is native to the
primitive on which ECDSA is based, and it is implied by the Generic Group
Model [Sho97] (in which ECDSA is proven secure [Bro05]).

While the 2-of-n key-generation protocol of Doerner et al. can be generalized
to arbitrary thresholds, their signing scheme is in a few respects inherently
limited to two parties. As with prior two-party schemes, it uses a Diffie-Hellman
Key Exchange [DH76] to calculate the signature’s instance key R = k ·G (where
G is the elliptic curve group generator), given a multiplicative sharing of k. With
a threshold larger than two, the long-standing open problem of multiparty key
exchange is implicated. A direct extension of the Diffie-Hellman method to t
parties would require t− 1 rounds, and, though key exchange can be achieved in
a sublinear number of rounds via indistinguishability obfuscation [BZ14] in the
general case, or bilinear pairings [Jou04] when t = 3, neither of these methods
results in a practically-efficient protocol with ECDSA-native assumptions. Addi-
tionally, the consistency check that ensures security against malicious adversaries
is a decidedly two-party construction: it relies upon the asymmetrical roles of
the parties, and integrates proof-wise with the aforementioned Diffie-Hellman
Exchange. Furthermore, we note that the scheme of Doerner et al. realizes a
nonstandard, two-party specific functionality. Though they prove in the Generic
Group Model that this functionality confers no additional power to an adversary,
it does allow one party to negligibly bias the distribution of the instance key.

In this work, we describe an extension of the protocols of Doerner et al. to
arbitrary thresholds. We formally define a new multiparty functionality, replace
their key exchange component with an alternative based on multiparty inverse
sampling, develop a new consistency check, optimize the underlying primitives
for the new setting and protocol structure, and prove our protocol secure in the
Universal Composability (UC) paradigm [Can01]. We implement and benchmark
our protocols, showing in particular that 256 LAN-connected parties can sign in
about half of a second, and that 256 globally-distributed parties require about
four seconds.
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1.1 Our Techniques
Recall that an elliptic curve is defined by the tuple (G, G, q), where G is the
group of order q of points on the curve, and G is the generator for that group.
An ECDSA Signature on a message m under the secret key sk comprises a pair
(sig, rx) of integers in Zq such that

sig =
H(m) + sk · rx

k

where k is a uniform element from Zq and rx is the x-coordinate of the elliptic
curve point R = k ·G. We frame our task as the construction of a multiparty
computation at the end of which participating parties obtain additive shares of
such a signature, having supplied secret shares of sk as input. We also require a
protocol for generating shares of sk and for performing one-time initialization,
which we refer to as the setup protocol.

Our setup protocol is a natural extension of Doerner et al. [DKLs18], requiring
only minor changes to ensure security against a dishonest majority of participants.
When it completes successfully, each of the n participating parties receives a
point on a (t − 1)-degree polynomial. The y-intercept of this polynomial is
the secret key sk, as per Shamir’s secret sharing scheme [Sha79]. This allows
any group of t parties to obtain an additive sharing of sk using the appropriate
Lagrange coefficients. This additive sharing is the input to our signing protocol.
On the other hand, our signing protocol diverges from that of Doerner et al. It
can be understood in terms of three logical phases.

1. Multiplication and Inversion. Once a group of parties P (where |P| = t)
have agreed to sign a message, they use a t-party inverse-sampling protocol
to sample k. From this protocol they receive an additive sharing of k,
an additive sharing of 1/k, and the value R = k · G. They then use
a GMW-style [GMW87] multiplication protocol to compute an additive
sharing of sk/k from their additive sharings of 1/k and sk.

2. Consistency Check. The parties use the public values R = k · G and
pk = sk · G to verify that consistent and correct inputs were used in
the previous phase. Each party broadcasts a set of values that sum to
predictable targets if and only if all parties have used inputs for the GMW-
style multiplier that are consistent with the outputs of the inverse-sampling
protocol. This consistency check is similar in form and purpose to the
consistency check employed by Doerner et al., but it operates in a broadcast
fashion and enforces additional relationships.

3. Signing. Once the consistency of the previous phases has been checked,
each party i in the set of participants P is convinced that it holds vi, wi,
and R such that for some value k,∑

i∈P

vi =
1

k
and

∑
i∈P

wi =
sk

k
and R = k ·G
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The parties locally compute their shares of the signature

sigi
..= vi ·H(m) + wi · rx

and broadcast them. The signature is then reconstructed

sig ..=
∑
i∈P

sigi

and verified using the standard verification algorithm.

Our signing protocol is therefore essentially composed of a maliciously secure
t-party inverse-sampling protocol and a t-party multiplier, plus a check message
to enforce consistency between the two. Both the t-party inverse-sampling
protocol and the t-party multiplier are instantiated via a two-party multiplication
protocol, with one instance of this protocol being run between each pair of parties.
The asymptotic round count of the overall protocol is determined by the fact
that data dependencies in the inverse-sampling process require these two-party
multiplication protocols to be evaluated dlog(t)e sequential groups.

Our two-party multiplier is based upon Oblivious Transfer (OT) and derived
from the two-party multiplication protocol of Doerner et al. [DKLs18], who were
inspired in turn by the semi-honest multiplication protocol of Gilboa [Gil99]. We
improve upon the performance of their protocol in terms of both communication
and computation. The protocol of Doerner et al. specifies that one of the
two parties encodes its input using a high-entropy encoding scheme, and the
length of this encoded input determines the number of OT instances required,
which in turn strongly determines the performance of the multiplication protocol
as a whole. On the other hand, our new protocol specifies that both parties
choose random inputs, and later send correction messages to adjust their output
values as necessary. Allowing only for encodings of random values simplifies
the encoding scheme considerably and reduces the number of OT instances in
proportion to the ECDSA security parameter, or about 40% in practice. This
improvement comes at the cost of one additional round, but because the first two
rounds are input independent and therefore parallelizable, our new multiplier
actually reduces the overall round count of our ECDSA signing protocol relative
to the multiplication protocol of Doerner et al.

1.2 Contributions
1. We present a t-of-n threshold ECDSA signing protocol that requires
dlog(t)e+ 6 rounds1 and prove it UC-secure against a malicious adversary
who statically corrupts t− 1 participants using only the Computational
Diffie-Hellman Assumption in the Global Random Oracle Model. In addi-
tion we modify the setup protocol of Doerner et al. [DKLs18] and prove it
secure under the same constraints.

1In an in-progress follow-up work, we reduce this to a constant by adapting the modular
inversion protocol of Bar-Ilan and Beaver [BB89], at the cost of slightly larger constants.
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2. We introduce a t-party inverse-sampling primitive, which may be of inde-
pendent interest. This primitive requires dlog(t)e+ 6 rounds, and we prove
it statistically secure against a malicious adversary who statically corrupts
t− 1 participants in the UC framework.

3. We improve upon the two-party multiplication protocol of Doerner et al.,
achieving a concrete performance gain of roughly 40%. In our protocol,
a randomized Gilboa-style multiplier generates an unauthenticated mul-
tiplication triple, which is later adjusted at the cost of communicating a
single field element for each party. Our protocol also supports batched
multiplications, with a reduction in communication relative to simple
repetition.

4. We provide an implementation of our protocol in the Rust language, and
benchmark it on commodity server-class hardware in both the WAN and
LAN settings, as well as on embedded devices. In the LAN setting, we
evaluate our protocol with up to 256 parties. In the WAN setting, we
evaluate with 256 parties spread across 16 datacenters. With respect to
signing, our scheme outperforms all prior and concurrent work in the LAN
setting by a factor of 10 or more, and it is competitive in the WAN setting
in spite of its round count. With respect to setup, our scheme outperforms
all prior and concurrent works by a factor of at least 100.

1.3 Contemporary Works
This work is contemporary to two other schemes for threshold ECDSA signing.
The first, proposed by Lindell et al. [LNR18], derives from the earlier work
of Gennaro et al. [GGN16], but mostly avoids the use of Paillier encryption,
relying instead upon a novel technique which they refer two as “ElGamal in
the Exponent”. In their scheme, the parties compute their signature in a way
that guarantees privacy but not correctness, while simultaneously computing the
same signature in the elliptic curve group (i.e. “in the exponent”) in a way that
guarantees correctness but does not allow the signature to be reconstructed; the
latter computation is used to verify the former. Lindell et al. make black-box
use of a multiplication functionality, which they instantiate using either Paillier
encryption or Oblivious Transfer, though they focus on the former case. In
the end they prove their system simulation-secure under the Decisional Diffie-
Hellman Assumption and (if Paillier is used to instantiate multiplication) the
Decisional Composite Residuosity Assumption. They claim that if all component
protocols are UC-secure, then their protocol achieves UC-security as well.

In the second contemporary scheme, from Gennaro and Goldfeder [GG18],
the parties compute their signature in a way that does not guarantee correctness,
and then use zero-knowledge techniques to verify that the signature is well-
formed before revealing it by evaluating a randomized version of the verification
equation in the elliptic curve group. Like Lindell et al., they use a Paillier-based
multiplication protocol. They prove that their scheme fulfills a game-based
security definition under the Decisional Diffie-Hellman Assumption, the Strong

6



RSA Assumption, and the assumption that ECDSA is a signature scheme. They
also propose an optimized variant that requires an ad-hoc assumption over the
Paillier cryptosystem, similar to the one introduced by Lindell [Lin17].

In this work, we take a substantially different approach from our contempo-
raries. Rather than invoking the ECDSA equations explicitly, we protect against
malicious adversaries using a consistency check that verifies a select number of
important relationships in the exponent, and rather than founding our protocol
on Paillier-based multiparty multiplication, we use an inverse-sampling primitive
based upon Oblivious Transfer. This approach allows us to achieve UC-security,
a notion stronger than that achieved by Gennaro and Goldfeder, under only the
Computational Diffie-Hellman Assumption, an assumption strictly weaker than
the Decisional Diffie-Hellman Assumption required by both contemporary works.
Unlike the others, we completely avoid the black-box use of non-interactive
zero-knowledge techniques in our signing protocol, which carry a significant
practical performance penalty if UC-security is to be achieved by an implemen-
tation. On the other hand, our approach incurs somewhat larger communication
costs than the others, and requires a logarithmic number of rounds, whereas the
other protocols have constant round counts. We discuss these issues further in
Section 6, and in Section 7 we provide a comparison of concrete performance.

1.4 Organization
We establish the notation and building blocks for our protocols in Section 2. We
describe our improved protocol for two-party multiplication in Section 3, which
we use to construct t-party inverse sampling in Section 4. We specify our t-of-n
threshold ECDSA protocol in Section 5. We analyze the cost of this protocol
in Section 6 and provide details of our implementation and its performance in
Section 7. Finally, we prove our protocols secure in the appendices.

2 Preliminaries and Definitions

2.1 Notation
Throughout this paper, we use (G, G, q) to represent the elliptic curve over
which signatures are calculated, where G is the group of curve points, G the
curve generator, and q the order of the curve. Curve points are represented
in |q| = κ bits, which is also the curve’s security parameter, and we use s to
represent the statistical security parameter. Curve points are denoted with
capitalized variables and scalars with lower case. Vectors are given in bold and
indexed by subscripts; thus xi is the ith element of the vector x, which is distinct
from the scalar variable x. We use = for equality, ..= for assignment, ← for
sampling from a distribution,

c≡ for computational indistinguishability, and
s≡ for

statistical indistinguishability. We make use of a Global Random Oracle [CJS14]
Hx(y) : {0, 1}∗ → Zxq with its output length varying according to the function’s
superscript; when the superscript is omitted it is assumed to be 1. We use Pi
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to denote the party with index i, and variables may often be subscripted with
an index to indicate that they belong to a particular party. When arrays are
owned by a party, the party index always comes before the array index. For
convenience, when only two parties are present in a context, they are referred to
as Alice and Bob.

In functionalities, we leave standard bookkeeping implicit. In particular,
we assume that along with the other messages we specify, session IDs and
party IDs are transmitted so that the functionality knows to which instance a
message belongs and who is participating in that instance. We assume that the
functionality aborts if a party tries to reuse a session ID, send messages out of
order, etc. We use slab-serif to denote message tokens, which communicate
the function of a message to its recipients. For simplicity, we omit from a
functionality’s specifier all parameters that we do not actively use. For example,
many of our functionalities are parameterized by a group G of order q; we leave
it implicit because in any instantiation all functionalities use the same group.

2.2 Digital Signatures
Definition 1 (Digital Signature Scheme [KL15]).
A Digital Signature Scheme is a tuple of probabilistic polynomial time algorithms,
(Gen,Sign,Verify) such that:

1. Given a security parameter κ, the Gen algorithm outputs a public key/secret
key pair: (pk, sk)← Gen(1κ)

2. Given a secret key sk and a message m, the Sign algorithm outputs a
signature σ: σ ← Signsk(m)

3. Given a message m, signature σ, and public key pk, the Verify algorithm
outputs a bit b indicating whether the signature is valid: b ..= Verifypk(m,σ)

A Digital Signature Scheme satisfies two properties:

1. (Correctness) With overwhelmingly high probability, all valid signatures
must verify. Formally, over (pk, sk)← Gen(1κ) and all messages m,

Pr
pk,sk,m

[
Verifypk(m,Signsk(m)) = 1

]
> 1− negl(κ)

2. (Existential Unforgeability) No adversary can forge a signature for any
message with greater than negligible probability, even if that adversary has
seen signatures for polynomially many messages of its choice. Formally,
for all PPT adversaries A with access to the signing oracle Signsk(·), where
Q is the set of queries A asks the oracle,

Pr
pk,sk

[
Verifypk (m,σ) = 1 ∧m /∈ Q :

(m,σ)← ASignsk(·) (pk)

]
< negl(κ)
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2.3 ECDSA
ECDSA is parameterized by a group G of order q generated by a point G on an
elliptic curve over the finite field Zp of integers modulo a prime p. Assuming a
curve has been fixed, the ECDSA algorithms are as follows [KL15]:

Algorithm 1. Gen(1κ):
1. Uniformly choose a secret key sk← Zq.

2. Calculate the public key as pk ..= sk ·G.

3. Output (pk, sk).

Algorithm 2. Sign(sk ∈ Zq,m ∈ {0, 1}∗):
1. Uniformly choose an instance key k ← Zq.

2. Calculate (rx, ry) = R ..= k ·G.

3. Calculate
sig ..=

H(m) + sk · rx
k

4. Output σ ..= (sig mod q, rx mod q).

Algorithm 3. Verify(pk ∈ G,m ∈ {0, 1}∗, σ ∈ (Zq,Zq)):
1. Parse σ as (sig, rx).

2. Calculate
(r′x, r

′
y) = R′ ..=

H(m) ·G+ rx · pk
sig

3. Output 1 if and only if (r′x mod q) = (rx mod q).

2.4 Requisite Functionalities
In this section we introduce a small set of functionalities that we use as building
blocks. We begin with a commitment functionality and a committed-zero-
knowledge functionality. Informally, the commitment functionality FnCom allows a
party to send a commitment to a message to a group of parties, and later reveal
the same message to these parties. The functionality FRDL,n

Com-ZK allows a party to
send a commitment to both an elliptic curve point and a proof of knowledge of its
discrete logarithm to a group of parties, and later reveal both. Concretely, FnCom
can be instantiated via the folkloric hash-based construction, and FRDL,n

Com-ZK via
the Schnorr [Sch89] protocol made non-interactive using the Fiat-Shamir [FS86]
or Fischlin [Fis05] transform, though only the latter achieves UC-security.
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Functionality 1. Commitment (FnCom):
This functionality runs with a group of n parties, where one specific party Pi
commits, and all other parties receive the commitment and committed value.

Commit: On receiving (commit, idcom, x, I) from party Pi where I ⊆ [1, n], if
(commit, idcom, ·, ·) does not exist in memory, then store (commit, idcom, x, I) in
memory and send (committed, idcom, i) to all parties Pj for j ∈ I.

Decommit: On receiving (decommit, idcom) from Pi, send (decommitted, idcom, x)
to every party Pj for j ∈ I

Functionality 2. Committed ZKPoK for Discrete Log
(
FRDL,n

Com-ZK
)
:

This functionality is parameterized by the party count n and the elliptic curve
(G, G, q). In each instance, one party Pi is the prover, and the others verify.

Commit Proof: On receiving (com-proof, idcom-zk, x,X, I) from party Pi where
x ∈ Zq and X ∈ G, if (com-proof, idcom-zk, ·, ·, ·) does not exist in mem-
ory, then send (committed, idcom-zk, i) to every party Pj for j ∈ I and store
(com-proof, idcom-zk, x,X, I) in memory.

Decommit Proof: On receiving (decom-proof, idcom-zk) from party Pi, if there
exists in memory a record (com-proof, idcom-zk, x,X, I), then:

1. If X = x ·G, send (accept, idcom-zk, X) to every party Pj for j ∈ I.

2. Otherwise send (fail, idcom-zk) to every Pj for j ∈ I.

In addition, our multiplication protocols make use of Correlated Oblivious
Transfer extensions [Bea96], which we model using the FηCOTe functionality of
Doerner et al. [DKLs18], reproduced here for completeness. In short, FηCOTe

interacts with two parties: A sender, who supplies a vector of correlations, and
a receiver, who supplies vector of choice bits. For each vector element, the
functionality returns to the sender a random pad, and to the receiver either the
same random pad, or the same pad plus the sender’s correlation. Concretely, we
instantiate this functionality in the same manner as Doerner et al., using the
OT-extension protocol of Keller et al. [KOS15], with Doerner et al.’s VSOT (a
derivative of Simplest OT [CO15]) as the base OT.

Functionality 3. Correlated Oblivious Transfer Extensions (FηCOTe):
This functionality is parameterized by the a batch size η and a set of groups
{Gi}i∈[1,η], one group for each element in a batch (though groups are not
necessarily unique). It interacts with a sender S and a receiver R, who may run
the Init phase once, and the Choice and Transfer phases many times.

Init: On receiving (init) from both parties, store (ready) in memory and send
(init-complete) to the receiver.
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Choice: On receiving
(
choose, idext,β

)
from the receiver, if

(
choice, idext, ·

)
with the same idext does not exist in memory, and if (ready) does exist in
memory, and if β ∈ {0, 1}η, then send

(
chosen, idext

)
to the sender and store(

choice, idext,β
)
in memory.

Transfer: On receiving
(
transfer, idext,α

)
from the sender, if a message of the

form
(
choice, idext,β

)
exists in memory with the same idext, and if

(
complete, idext

)
does not exist in memory, and if α ∈ G1 × . . .×Gη, then:

1. Sample a vector of random pads ωS ← G1 × . . .×Gη

2. Send
(
pad, idext,ωS

)
to the sender.

3. Compute ωR
..=
{
βi ·αi − ωS,i

}
i∈[1,η]

.

4. Send
(
correlation, idext,ωR

)
to the receiver.

5. Store (complete, idext) in memory.

3 Improved Two-party Multiplication
Like Doerner et al. [DKLs18], we build our signing protocol atop two-party
multiplication. They introduced a multiplication protocol optimized for the
single-use computation setting (in which a small number of multiplications
are computed by exactly two parties with no preprocessing), and we will now
introduce a variant of their protocol that is optimized for scenarios in which
multiple overlapping pairs of parties compose their multiplications with one
another. As a result we require a new functionality, conceptually similar to the
functionality realized by Beaver triples [Bea91]. In our case Alice and Bob learn
a and b respectively, plus one share each of z such that a · b = z, whereas in the
case of Beaver triples, Alice and Bob learn one share each of a, b, and z.

Our functionality involves three main phases. Following the one-time ini-
tialization phase, there is a preprocessing phase in which the parties must each
send a message to the functionality in a specific order. Following this, they
can supply their inputs (either party going first), and as each party’s input is
supplied, the opposite party’s output is delivered. One party is also given the
ability to define their own output by rushing in the last phase; we will discuss
this later in conjunction with the protocol that realizes our functionality. When
our functionality is composed, multiple instances can preprocess concurrently,
and then inputs can be supplied as data dependencies require. This corresponds
to a savings in rounds in our higher-level protocols.

In addition, we add to both our protocol and our functionality the ability to
batch multiplications together, and we make a simplification relative to Doerner
et al.: whereas their two-party multiplication functionality allows an adversary to
inject additive error into the output, ours does not. Because both functionalities
output unauthenticated shares, an offset can always be induced.
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Functionality 4. Two-party Multiplication
(
F`2PMul

)
:

This functionality is parameterized by the batch size ` and the group Zq over
which multiplication is to be performed. It interacts with two parties, Alice
and Bob, who may run the Init phase once, the remaining phases repeatedly.

Init: Wait for message (init) from Alice and Bob. Store (init-complete) in
memory and send (init-complete) to Bob.

Bob’s Preprocessing: On receiving (preprocess, idmul) from Bob, if a record
(bob-ready, idmul) with the same idmul does not exist in memory, but the record
(init-complete) does exist in memory, then store (bob-ready, idmul) in memory,
and send (bob-ready, idmul) to Alice.

Alice’s Preprocessing: On receiving (preprocess, idmul) from Alice, if there
exists a record (bob-ready, idmul, ·) in memory with the same idmul, and if
(alice-ready, idmul) does not exist in memory, then store (alice-ready, idmul) in
memory, and send (alice-ready, idmul) to Bob.

Alice’s Input: On receiving (input, idmul,a) from Alice, if (alice-ready, idmul)
exists in memory with the same idmul, and if (alice-complete, idmul, ·, ·) and
(bob-complete, idmul, ·, ·) do not exist in memory, and if a ∈ Zq then

1. Sample zB ← Z`q

2. Send (output, idmul, zB) to Bob.

3. Store (alice-complete, idmul,a, zB) in memory.

Bob’s Input: On receiving (input, idmul,b) from Bob, if there exists a record
(alice-ready, idmul) in memory with the same idmul, and if no record of the form
(bob-complete, idmul, ·, ·) exists in memory, and if b ∈ Zq then

1. If (alice-complete, idmul,a, zB) exists in memory, then compute

zA ..=
{
ai · bi − zB,i

}
i∈[1,`]

and send (output, idmul, zA) to Alice.

2. Otherwise send (bob-complete, idmul) to Alice.

3. Store (bob-complete, idmul,b) in memory.

Rushing Alice: On receiving (rush, idmul,a, zA) from Alice, if records (alice-ready, idmul)
and (bob-complete, idmul,b) exist in memory, but (alice-complete, idmul, ·, ·)
does not, and if a ∈ Zq and zA ∈ Zq then

1. Compute
zB ..=

{
ai · bi − zA,i

}
i∈[1,`]
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2. Send (output, idmul, zB) to Bob.

3. Store (alice-complete, idmul,a, zB) in memory.

The protocol with which we instantiate the foregoing functionality is based
upon Correlated Oblivious Transfer Extensions. Alice and Bob use oblivious
transfer to perform a randomized multiplication, in a similar style to the non-
randomized multiplication of Doerner et al., and they adjust their output shares
after the fact when their inputs become known. The randomized multiplication
requires two rounds on its own, and the adjustment step a third, as compared to
the two-round multiplier of Doerner et al., but in our case it is possible for many
multipliers with data dependencies to evaluate their randomized multiplications
concurrently, reducing the round count overall. This corresponds to parallelizing
the preprocessing phases of multiple F`2PMul instances.

Protocol 1. Two-party Multiplication
(
π`2PMul

)
:

This protocol is parameterized by the batch size `, the statistical security
parameter s, and the group Zq over which multiplication is to be performed.
Let κ = |q| and for convenience let η = ξ · ` where ξ = κ+ 2s is the number of
random choice bits per element in a batch. This protocol makes use of a public
gadget vector g← Zηq , and it invokes the FηCOTe functionality and the random
oracle H. Alice and Bob supply a vectors input integers a ∈ Z`q and b ∈ Z`q
respectively. They receive as output vectors of integers zA ∈ Z`q and zB ∈ Z`q.

Init: Alice and Bob transmit (init) to FηCOTe.

Randomized Multiplication:

1. Bob samples a set of OT choice bits and calculates his pads b̃

β ← {0, 1}η and b̃ ..=

{〈
g,
{
βi·ξ+j

}
j∈[1,ξ]

〉}
i∈[0,`)

2. Alice samples a set of pads ã← Z`q and check values â← Z`q and sets her
OT correlation α ∈ Zηq as

α ..= {ã1‖â1}j∈[1,ξ]

∥∥ . . . ∥∥ {ã`‖â`}j∈[1,ξ]

3. Alice and Bob access the FηCOTe functionality, supplying η = ξ · ` as the
OT-extension batch size. Alice plays the sender, supplying α as her input,
and Bob, the receiver, supplies β. They receive as outputs, respectively,
the arrays ωA ∈ Zηq and ωB ∈ Zηq , which they interpret as{

z̃A,j
∥∥ẑA,j}j∈[1,η]

= ωA and
{
z̃B,j

∥∥ẑB,j}j∈[1,η]
= ωB
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That is, z̃A is a vector wherein each element contains the first half of the
corresponding element in Alice’s output from FηCOTe, and ẑA is a vector
wherein each element contains the second half. z̃B and ẑB play identical
roles for Bob. The steps in the protocol up to this point correspond to
Bob’s preprocessing phase in F`2PMul.

4. Alice and Bob generate 2` shared, random values by calling the random
oracle. As input they use the shared components of the transcript of
the protocol that implements FηCOTe, so that that these values have a
dependency on the completion of Step 3. In our proofs, we abstract this
step as a coin tossing protocol.

χ̃← H`(1‖transcript) and χ̂← H`(2‖transcript)

5. Alice computes

r ..=

 ∑
i∈[0,`)

χ̃i+1 · z̃A,i·ξ+j + χ̂i+1 · ẑA,i·ξ+j


j∈[1,ξ]

u ..= {χ̃i · ãi + χ̂i · âi}i∈[1,`]

and sends r and u to Bob.

6. Bob aborts if

∨
j∈[1,ξ]


rj +

∑
i∈[0,`)

χ̃i+1 · z̃B,i·ξ+j + χ̂i+1 · ẑB,i·ξ+j

6=
∑
i∈[0,`)

βi·ξ+j · ui+1


Note that steps 4, 5, and 6 correspond to Alice’s preprocessing in F`2PMul.

Input and Adjustment:

7. Alice and Bob respectively compute

γA
..= {ai − ãi}i∈[1,`] and γB

..=
{

bi − b̃i

}
i∈[1,`]

and send these values to one another.

8. Alice and Bob compute their output shares

zA ..=

ai+1 · γB,i+1 +
∑
j∈[1,ξ]

gj · z̃A,i·ξ+j


i∈[0,`)
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zB ..=

b̃i+1 · γA,i+1 +
∑
j∈[1,ξ]

gj · z̃B,i·ξ+j


i∈[0,`)

Note that Steps 7 and 8 correspond to the final three phases in F`2PMul.

Theorem 3.1. When ` ≤ c · log(κ) for some constant c, the protocol π`2PMul

UC-realizes the functionality F`2PMul for a κ-bit field Zq in the FηCOTe-hybrid
Global Random Oracle Model, in the presence of a malicious adversary statically
corrupting either party.

Proof. A proof of this theorem is given in Appendix B.

Rushing Adversaries. In both F`2PMul and π`2PMul we specify that during the
adjustment process, either Alice or Bob may adjust their value first. This ensures
that both adjustments can occur in a single round, without assuming simultaneous
message transmission: in the real world, one party will likely transmit slightly
before the other, but neither party will know the transmission order until after
both messages are sent. Due to the asymmetry in the equations that the parties
use to calculate their output shares in Step 8 of π`2PMul, this pseudo-simultaneous
transmission opens up an opportunity for a rushing adversary to deprive the
simulator of information that it requires to produce γB, which necessitates the
addition of the aforementioned Rushing Alice phase in F`2PMul.

Consider a similar functionality that lacked the final phase (always using the
Alice’s Input phase instead), and imagine the procedure of the simulator S`,A2PMul

that interacts with Alice and plays the role of the ideal adversary for F`2PMul.
If Bob adjusts his input first, then F`2PMul will communicate Alice’s output zA
to S`,A2PMul. S`,A2PMul must then calculate an adjustment value γB that causes the
output in her view to equal the value zA returned by F`2PMul. γB must satisfy

γB =

zA,i+1 −
∑

j∈[1,ξ]

gj · z̃A,i·ξ+j

ai+1


i∈[0,`)

At this point, zA and z̃A should be known to the simulator, but since Alice has
not yet transmitted her adjustment message, the simulator should not know a,
and consequently the correct value of γB cannot be calculated. We remedy this
by compelling Alice to determine her own output zA in the ideal world if and
only if she performs her adjustment second. Consequently S`,A2PMul can choose γB

uniformly, and Alice’s subsequent adjustment message γA fixes her output zA
and thereby allows her input to be extracted via the above equation. Note that
when simulating against Bob, and equivalent problem does not occur, since the
equation Bob uses to adjust his output value does not involve his input value.
We formalize the intuition presented here in Appendix B.

Round Count. As we have mentioned, our multiplication protocol π`2PMul

requires an additional round relative to the protocol of Doerner et al. This
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third round is necessitated by the proof of security and not the protocol per
se: the adjustment messages γA and γB have no data dependency upon the
random multiplication that precedes them, but an adversary with knowledge of
their counterparty’s input could potentially use that knowledge in combination
with the adjustment messages to compromise the random multiplication, were
the adjustment messages sent before the random multiplication is complete. In
Section 5, we present a context-dependent two-round optimization.

Cost Comparison to Prior Work. Our multiplication protocol incurs a
cost of ` · (κ+ 2s) OT invocations for a batched input of size `. The encoding
scheme used by Doerner et al.’s multiplication protocol specifies codewords of
size 2κ+ 2s, which implies a cost of 2κ+ 2s OT instances per input. In practice,
it is reasonable to choose κ = 256 and s = 80, under which parameterization our
protocol yields a savings of about 40% in terms of OT instances.

4 Sampling Modular Inverses
In this section, we present a t-party modular inversion protocol based upon
the folkloric technique of t-party multiplication via composition of F`2PMul. The
ability of a malicious party playing the role of Alice to define its own output by
rushing while interacting with F`2PMul implies that an adversary that can do the
same in the t-party setting, so long as at least one corrupted party plays the role
of Alice. For simplicity, our functionality will assume that this is always the case
and unconditionally allow corrupted parties to define their own output. We note
that the simulator, which we will describe in Appendix C, cannot extract outputs
from corrupted parties individually, but must instead extract the sum of all
corrupted parties’ outputs. Consequently, we specify that a single ideal adversary
(the simulator Sn,t,P∗Inv ) interacts with the functionality in the corrupted parties’
stead. In both the functionality and the protocol, a group of n parties run the
setup phase, and size-t subgroups of these parties may then sample inverses.

Functionality 5. t-party Modular Inverse Sampling
(
Fn,tInv

)
:

This functionality is parameterized by the party count n, the threshold size t,
and the elliptic curve group (G, G, q). The Init phase runs once with a group of
n parties, and the Inversion phase may be run many times among any (varying)
subgroup of parties indexed by P ⊆ [1, n] such that |P| = t. An ideal adversary,
denoted Sn,t,P∗Inv , statically corrupts the parties indexed by the set P∗ ⊂ [1, n]
such that |P∗| < t. Inputs from corrupt parties are provided directly to the
functionality by Sn,t,P∗Inv as a single, combined value.

Init: Wait for message (init) from the honest parties {Pi}i∈[1,n]\P∗ and
from Sn,t,P∗Inv . Store (init-complete) in memory and send (init-complete)
to {Pi}i∈[1,n]\P∗ and to Sn,t,P∗Inv .

Sampling: Receive (inv, idinv,P) from each party Pi for i ∈ P \ P∗, and
receive (inv, idinv,P, u∗) from Sn,t,P∗Inv . If (init-complete) exists in memory but
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(shares, idinv, ·, ·) does not, and all parties agree to the same set P, then sample

{ui}i∈P\P∗ ← Z|P\P
∗|

q

uniformly, compute
R ..= u∗ ·G+

∑
i∈P\P∗

ui ·G

and store (shares, idinv, {ui}i∈P\P∗ , u∗) in memory. Send (output, idinv, ui) to
Pi for every i ∈ P\P∗ and (exp-output, idinv, R) to Sn,t,P∗Inv , and upon receiving
(exp-release, idinv) from Sn,t,P∗Inv , send (exp-output, idinv, R) to Pi for i ∈ P\P∗.

Inversion: Wait for either (inv-release, idinv) or (inv-zero, idinv) from Sn,t,P∗Inv .
If (inv-release, idinv) is received, then sample v∗ ← Zq, and if (inv-zero, idinv)
is received, then set v∗ ..= 0. Regardless of which message is received, if
(shares, idinv, {ui}i∈P\P∗ , u∗) exists in memory but (complete, idinv) does not
exist in memory, then sample

{vi}i∈P\P∗ ← Z|P\P
∗|

q

uniformly subject to

v∗ +
∑

i∈P\P∗
vi =

1

u∗ +
∑

i∈P\P∗
ui

and send (inv-output, idinv, v∗) to Sn,t,P
∗

Inv . Send (inv-output, idinv, vi) as private,
adversarially-delayed output to Pi for i ∈ P \P∗, and store (complete, idinv).

Our inverse-sampling protocol is based upon the folkloric technique of n-
party multiplication. The parties sample multiplicative shares of k and a pad φ,
and then locally compute multiplicative shares of φ/k. They use two n-party
multipliers to convert their multiplicative shares of k and φ/k into additive
shares, and then use a consistency check to verify that the two sets of shares are
related in the correct way, after which they remove the pad.

Protocol 2. t-party Modular Inverse Sampling
(
πn,tInv

)
:

This protocol is parameterized by the party count n, the threshold size t, the
statistical security parameter s, and elliptic curve group (G, G, q). It invokes
the functionalities F`2PMul and FnCom. The Init phase is run once with a group of
n parties, and the subsequent phases can be run repeatedly by a varying subset
of parties P ⊆ [1, n] such that |P| = t. During each execution, every party Pi
receives a pair of outputs ui, vi ∈ Zq and they all receive a single value R ∈ G.

Init: Each pair of parties Pi,Pj for i, j ∈ [1, n] such that i < j initialize their
multiplication oracle by sending (init) to their shared F`2PMul instance.

Inverse Sampling:

1. Each party Pi for i ∈ P samples k ← Zq and a pad φi ← Zq and sets
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ψ1
i

..= {ki, φi/ki}.

2. Each party Pi commits to the pad by sending (commit, idcomi,1 , φi,P) to
FnCom using a fresh value for idcomi,1 . All other parties are notified of Pi’s
commitment.

3. For each pair of parties Pi,Pj such that i < j:

(a) Pj , acting as Bob, sends (preprocess, idmul
i,j ) to F`2PMul, where idmul

i,j

is a unique, agreed upon index, and ` = 2.

(b) On receiving (bob-ready, idmul
i,j ) from F`2PMul, Pi, as Alice, sends

(preprocess, idmul
i,j ) to F`2PMul.

(c) Pj receives (alice-ready, idmul
i,j ) from F`2PMul.

4. For ρ ∈ [1, log2(t)]:

(a) For each pair of parties Pi,Pj in each contiguous non-overlapping
subgroup of 2ρ parties from P, if Pi and Pj have not previously
interacted during the course of this invocation of πn,tInv , then they
send (input, idmul

i,j ,ψ
ρ
i ) and (input, idmul

i,j ,ψ
ρ
j ) to F`2PMul, respectively,

and receive (output, idmul
i,j , ζ

ρ,j
i ) and (output, idmul

i,j , ζ
ρ,i
j ). If the party

playing the role of Alice goes second, then it samples a random
output and uses the Rushing Alice phase of F`2PMul.

(b) Each party Pi privately computes ψρ+1
i to be the element-wise sum

of its output shares for round ρ:

ψρ+1
i

..=

 ∑
j∈Pρ,i

ζρ,ji,l


l∈[1,2]

where Pρ,i ⊂ P is the subgroup with whom Pi interacted in round
ρ such that |Pρ,i| = 2ρ−1.

5. Each party Pi sets {ui, ṽi} = ψ
log2(t)+1
i . Note that∑

i∈P

ui =
∏
i∈P

ki and
∑
i∈P

ṽi =
∏
i∈P

φi
ki
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Consistency Check:

6. Each party Pi computes Ri ..= ui · G and commits to it by sending
(commit, idcomi,2 , Ri,P) to FnCom, using a fresh value for idcomi,2 .

7. Upon being notified of all other parties’ commitments, each party Pi sends
(decommit, idcomi,2 ) to FnCom and collects {Rj}j∈P\{i} as the other parties do
the same. Then, each party computes

R ..=
∑
j∈P

Rj

8. Each party Pi calculates Γ 1
i

..= ṽi · R and commits to it by sending
(commit, idcomi,3 ,Γ

1
i ,P) to FnCom, using a fresh value for idcomi,3 .

9. Upon being notified of all other parties’ commitments, each party Pi for
i ∈ P sends (decommit, idcomi,1 ) and (decommit, idcomi,3 ) to FnCom and collects
{(φj ,Γ 1

j )}j∈P\{i} as the other parties do the same.

10. Each party Pi computes
φ ..=

∏
j∈P

φj

and aborts if the pad is equal to zero, or if∑
j∈P

Γ 1
j 6= φ ·G

11. Each party Pi computes vi ..= ṽi/φ and takes (ui, vi, R) as its output.

Theorem 4.1. The protocol πn,tInv UC-realizes the functionality Fn,tInv for a κ-bit
elliptic curve group (G, G, q) in the (F`2PMul,FnCom)-hybrid model, in the presence
of a computationally unbound malicious adversary statically corrupting up to
t− 1 parties.

Proof. A proof of this theorem is given in Appendix C.

Round Count. The protocol πn,tInv requires each party to engage in t instances
of the F`2PMul functionality. The preprocessing phases of these instances are
evaluated in parallel, but due to data dependencies, the input-adjustment phases
must be evaluated in dlog(t)e sequential groups. The subsequent consistency
check requires four rounds. When F`2PMul is realized by π`2PMul, preprocessing re-
quires two rounds, and we can perform the commitment in Step 2 simultaneously
with the first round of preprocessing. Thus πn,tInv requires dlog(t)e+ 6 rounds in
the general case. In Section 5, we present a context-dependent optimization that
reduces the round count to dlog(t)e+ 5.
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5 Threshold ECDSA
In this section, we describe our threshold ECDSA functionality, followed by
setup and signing protocols that jointly realize it. We have made no attempt to
formulate a general signature functionality, but instead have modeled ECDSA in
the threshold setting directly, much as previous works [BGG17,Lin17,DKLs18]
have done. We note that ECDSA makes use of a hash function, and that
the standard specifies this function to be SHA-256. Thus, when the following
functionality makes use of the function H, it refers not to the Random Oracle
but to the concrete SHA-256 function. We note that while the two-party ECDSA
functionality of Doerner et al. allowed malicious parties the ability to bias the
instance key, our functionality does not.

Functionality 6. t-of-n ECDSA
(
Fn,tECDSA

)
:

This functionality is parameterized by the party count n, the threshold t, the
elliptic curve (G, G, q), and a hash function H. The setup phase runs once with
n parties, and the signing phase may be run many times between (varying)
subgroups of parties indexed by P ⊆ [1, n] such that |P| = t.

Setup: On receiving (init) from all parties,

1. Sample and store the joint secret key, sk← Zq.

2. Compute and store the joint public key, pk ..= sk ·G.

3. Send (public-key, pk) to all parties.

4. Store (ready) in memory.

Signing: On receiving (sign, idsig,P,m) from all parties indexed by P, if (ready)
exists in memory but (complete, idsig) does not exist in memory, and if all parties
agree to the same set P, then

1. Sample k ← Zq and store it as the instance key.

2. Wait for (get-instance-key, idsig) from all parties indexed by P.

3. Compute R ..= k ·G and send (instance-key, idsig, R) to all parties indexed
by P. Let (rx, ry) = R.

4. Wait for (proceed, idsig) from all parties indexed by P.

5. Compute

sig ..=
H(m) + sk · rx

k

6. Collect the signature, σ ..= (sig mod q, rx mod q).
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7. Send (signature, idsig, σ) to all parties indexed by P as adversarially-
delayed private output.

8. Store (complete, idsig) in memory.

Our setup protocol is derived from the 2-of-n setup protocol of Doerner et
al. [DKLs18]. Like their scheme, it uses simple techniques to produce and verify
an n-party Shamir secret sharing [Sha79] of a joint secret key sk, from which any
t parties can derive a t-party additive sharing of sk with no further interaction;
unlike their scheme, we use a proof of knowledge to ensure security against a
dishonest majority. This is the only use of zero-knowledge techniques in this
work. Their protocol samples the public/private key pair as an n-party additive
sharing, and then converts it to a Shamir sharing; we make a small improvement
by sampling the Shamir sharing directly. Specifically, each party locally samples
a random polynomial of degree-(t− 1) and distributes points at predetermined
locations on this polynomial to the other parties. The parties sum the points
they receive to construct a Shamir sharing of a single degree-(t− 1) polynomial.
The parties then multiply their points on the shared polynomial by the elliptic
curve generator G, broadcast the result, and verify that all subsets of their shares
represent the same polynomial by homomorphically evaluating the polynomial in
the curve group. For degree-2 polynomials, Doerner et al. required a number of
evaluations quadratic in n, whereas we require only a linear number regardless
of the polynomial degree. Since the homomorphic evaluation of the polynomial
is equal to pk, an adversary can learn nothing more from the protocol than could
be learned from any protocol that realizes the same functionality.

Protocol 3. t-of-n ECDSA Setup
(
πn,tECDSA-Setup

)
:

This protocol is parameterized by the party count n, the threshold size t, and the
elliptic curve (G, G, q). It invokes the F`2PMul, Fn,tInv , and FRDL,n

Com-ZK functionalities.
It takes no input and yields to each party Pi a point p(i) on the polynomial p,
and the joint public key pk.

Public Key Generation:

1. Each party Pi samples a random degree polynomial pi of degree t− 1.

2. For all pairs of parties Pi and Pj , Pi sends pi(j) to Pj and receives pj(i)
in return.

3. Each party Pi computes its point

p(i) ..=
∑
j∈[1,n]

pj(i)

4. Each Pi computes Ti ..= p(i) ·G and sends (com-proof, idcom-zk
i , p(i), Ti) to

FRDL,n
Com-ZK, using a fresh, unique value for idcom-zk

i .
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5. Upon being notified of all other parties’ commitments, each party Pi
releases its proof by sending (decom-proof, idcom-zk

i ) to FRDL,n
Com-ZK.

6. Each party Pi receives (accept, idcom-zk
j , Tj) from FRDL,n

Com-ZK for each j ∈
[1, n] \ {i} if Pj ’s proof of knowledge is valid. Pi aborts if it receives
(fail, idcom-zk

j ) instead for any proof, or if there exists an index x ∈
[1, n− t− 1] such that Jx = [x, x+ t] and Jx+1 = [x+ 1, x+ t+ 1] and∑

j∈Jx

λJx

j (0) · Tj 6=
∑

j∈Jx+1

λJx+1

j (0) · Tj

where λJx

j (y) and λJx+1

j (y) are party Pj ’s Lagrange coefficients for inter-
polating p at location y with the sets of parties indexed by Jx and Jx+1

respectively.

7. The parties compute the shared public key using any subset J ⊆ [1, n]
such that |J| = t

pk ..=
∑
j∈J

λJ
j (0) · Tj

Auxiliary Setup:

8. Every party sends (init) to the Fn,tInv .

9. Every pair of parties Pi and Pj such that i < j sends (init) to F`2PMul.

Once the a group of n parties has completed the πn,tECDSA-Setup protocol, any
t-sized subgroup of those parties indexed by P can run the following signing
protocol to produce a signature.

Protocol 4. t-of-n ECDSA Signing
(
πn,t,PECDSA-Sign

)
:

This protocol is parameterized by the party count n, the threshold size t, the
group of parties P ⊆ [1, n] among which it runs, the elliptic curve (G, G, q),
and the statistical security parameter s. It invokes the F`2PMul, Fn,tInv , and FnCom
functionalities. It takes as input from each party Pi for i ∈ P the public key
pk, the message m, the signature index idsig (which is used to generate other
unique indices as required), and the point p(i) on the polynomial that encodes
the secret key, and yields to each party a copy of the signature σ.

Multiplication and Inversion:

1. Each party Pi invokes Fn,tInv with a fresh, agreed-upon inversion index,
and receives as output (ui, vi, R).

2. Each party Pi computes λP
i (0), its Lagrange coefficient given that it is

reconstructing sk with the parties in P. Pi then computes ski, its additive
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share of the secret key for this group of parties

ski ..= λP
i (0) · p(i)

3. Each pair of parties, Pi and Pj invoke F`2PMul with ` = 2. The party
with the lower index plays the role of Alice and the other the role of
Bob, and they use a fresh, agreed-upon multiplication index. The parties
run the multiplication preprocessing and input phases, with Pi supplying
as input {ski, vi} and Pj supplying {vj , skj}. As outputs they receive
{wj,1i , wj,2i } and {wi,1j , wi,2j }, respectively. We again elide the specific
messages involved in this process, but note that

wj,1i + wi,1j = ski · vj and wj,2i + wi,2j = skj · vi

4. Each party Pi sets

wi ..= ski · vi +
∑

j∈P\{i}

(
wj,1i + wj,2i

)

Consistency Check:

5. Each party Pi calculates

Γ 2
i

..= vi · pk− wi ·G and Γ 3
i

..= wi ·R

and commits to both values by sending (commit, idcomi ,
(
Γ 2
i ,Γ

3
i

)
,P) to

FnCom, using a fresh value for idcomi .

6. Upon being notified of all other parties’ commitments, each party Pi
sends (decommit, idcomi ) to FnCom and collects {(Γ 2

j ,Γ
3
j )}j∈P\{i} as the other

parties do the same.

7. The parties abort if∑
j∈P

Γ 2
j 6= 0 or

∑
j∈P

Γ 3
j 6= pk

Signing:

8. Each party Pi calculates

sigi
..= H(m) · vi + rx · wi

and broadcasts sigi.
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9. Each party computes

sig ..=
∑
i∈P

sigi and σ ..= (sig, rx)

where (rx, ry) = R, and outputs σ if Verify(pk, σ) = 1.

Our proof of security for the foregoing protocols relies on the Computational
Diffie-Hellman Assumption in the group over which the signature is computed.
Because this assumption is formally defined over an infinite sequence of groups,
our security theorem must also consider such a sequence.

Theorem 5.1. Let (GGG,G,q) be an infinite sequence of elliptic curves in which
the Computational Diffie-Hellman Problem is hard. The protocols πn,tECDSA-Setup
and πn,t,PECDSA-Sign jointly UC-realize the functionality Fn,tECDSA for this sequence in
the (Fn,tInv ,F`2PMul,FRDL,n

Com-ZK,FnCom)-hybrid model, in the presence of a malicious
adversary statically corrupting up to t− 1 parties.

Proof. A proof of this theorem is given in Appendix D.

Setup Round Count. The Public Key Generation portion of πn,tECDSA-Setup
requires three broadcast rounds in total, but the initialization procedures in
the Auxiliary Setup phase require five, when FηCOTe is realized by Keller et
al.’s OT-extension [KOS15] and the VSOT protocol [DKLs18], as we intend.
Since Auxiliary Setup is independent of Key Generation, these phases can be
run concurrently, and the round count can be as low as five, concretely. Our
implementation, however, runs them in sequence, yielding eight concrete rounds.

Signing Optimizations and Round Count. For the sake of readability
and ease of proof we have separated our threshold ECDSA signing system as
cleanly as possible into independent functionalities and protocols. If we blur the
boundaries between them slightly, we can achieve a smaller round count and
reduced concrete costs with no loss in security. Consider the composite system
represented by πn,t,PECDSA-Sign when we realize Fn,tInv and F`2PMul via πn,tInv and π`2PMul

respectively; in this composite system, three major optimizations are available.

1. Each party’s inputs to the instances of π`2PMul contained within πn,tInv are
information-theoretically hidden from that party’s counterparties prior
to the multiplications themselves. This mitigates the potential attack
on a two-round variant of π`2PMul mentioned at the end of Section 3, and
consequently we can optimize π`2PMul by sending the adjustment messages
simultaneously with the randomized multiplication, reducing each instance
of π`2PMul to two rounds, and πn,tInv to dlog(t)e+ 5 rounds.

2. Each pair of parties initializes two separate instances of π`2PMul with ` = 2
- one due to πn,tInv and the other due to πn,t,PECDSA-Sign. These can be merged
into a single instance with ` = 4. Although the specifications of π`2PMul

and F`2PMul do not describe it explicitly, it is possible for Alice and Bob
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run the Randomized Multiplication phase of π`2PMul for an entire batch,
and then run the Input and Adjustment phase for elements in the batch
individually, suppling inputs (and receive outputs) one element at a time
as the multiplications are needed. This optimization removes the security-
parameter-dependent overhead associated with evaluating a second batched
multiplication during each signature. Such overhead is incurred both by
π`2PMul itself, and by the protocol that instantiates FηCOTe.

3. Both πn,tInv and πn,t,PECDSA-Sign have Consistency Check phases: in the course
of πn,tInv the parties each transmit a check value Γ 1

i , and in πn,t,PECDSA-Sign they
each transmit check values Γ 2

i and Γ 3
i . As described, the Consistency

Check phase of πn,t,PECDSA-Sign cannot begin until πn,tInv is complete, but minor
changes allow us to transmit these values simultaneously. Specifically,
if each party Pi replaces vi with ṽi in their input to F`2PMul/π

`
2PMul in

Step 3 of πn,t,PECDSA-Sign, then this step can be evaluated immediately upon
the completion of Step 5 of πn,tInv , before R is available. Step 4 of πn,t,PECDSA-Sign
will now yield for each party Pi a value w̃i such that∑

i∈P

w̃i =
∑
i∈P

vi ·
∑
i∈P

ski ·
∏
i∈P

φi =
φ · sk
k

Since π`2PMul requires only one round once the input becomes available, w̃i
becomes available no later than R, and when R and w̃i are both known,
Pi can compute three check values

Γ 1
i

..= ṽi ·R and Γ 2
i

..= ṽi · pk− w̃i ·G and Γ 3
i

..= w̃i ·R

and commit to all three at once. Once the commitments are received, the
parties decommit them along with their shares of φ and abort if∑

i∈P

Γ 1
i 6= φ ·R or Γ 2

i 6= 0 or Γ 3
i 6= φ · pk

Finally, each party Pi computes vi ..= ṽi/φ and wi ..= w̃i/φ, and continues
with the signing procedure as described in Steps 8 and 9 of πn,t,PECDSA-Sign.
This optimization allows the GMW-style multiplier and Consistency Check
components of πn,t,PECDSA-Sign to be run in parallel with πn,tInv , and as a result
they contribute no extra rounds to the composite protocol.

Given these optimizations, πn,t,PECDSA-Sign requires only a single additional round
over those required by πn,tInv , in which shares of the final signature are exchanged.
Since πn,tInv requires only dlog(t)e+ 5 rounds in the context of our protocol, the
total round count for ECDSA signing comes to dlog(t)e+ 6.

6 Cost Analysis
In Tables 1 and 2 we provide accountings of the communication and computation
costs respectively for the four protocols that we have presented. Round counts
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Offline (Setup) Costs
Protocol Rounds Party Bits Transmitted Per Party

π`
2PMul 5

Alice 2κ2 + κ

Bob 3κ2 + 3κ+ 2

πn,t
Inv 5

P1 (n− 1) · (2κ2 + κ)

Pn (n− 1) · (3κ2 + 3κ+ 2)

πn,t
ECDSA-Setup 5

P1 (n− 1) · (2κ2 + 6κ+ 2)

Pn (n− 1) · (3κ2 + 8κ+ 4)

Online Costs
Protocol Rounds Party Bits Transmitted Per Party

π`
2PMul 3

Alice (2`+ 1) · κ2 + (4`+ 2) · κ · s+ 2` · κ
Bob ` · κ2 + (2`+ 1) · κ · s+ (`+ 130)κ

πn,t
Inv dlog(t)e+ 6

PP1 (t− 1) · (5κ2 + 10κ · s+ 10κ+ 2)

PPt (t− 1) · (2κ2 + 5κ · s+ 138κ+ 2)

πn,t,P
ECDSA-Sign dlog(t)e+ 6

PP1 (t− 1) · (9κ2 + 18κ · s+ 18κ+ 4)

PPt (t− 1) · (4κ2 + 9κ · s+ 144κ+ 4)

Table 1: Communication Cost Equations for Subprotocols. In this table we do
not consider the round-reducing optimizations for π`

2PMul and πn,t
Inv , but we do consider

all of the available optimizations for πn,t,P
ECDSA-Sign. Note that we count the number of bits

transmitted by a single party to all other parties.

for our protocols are discussed at length in the relevant sections. Our equations
assume that elements from Zq are represented in κ bits, and that curve points are
transmitted with point compression and thus are represented in κ+ 1 bits. We
assume that commitments require a single hash to generate and the transmission
of a single element from Zq, that decommitments consist simply of the committed
values and require a single hash to verify, and that zero-knowledge proofs of
knowledge of discrete logarithm are implemented with Schnorr protocols and the
Fiat-Shamir heuristic, and thus comprise a curve point and an element from Zq,
along with the point for which knowledge of discrete logarithm is to be proven,
and require one elliptic curve multiplication and one hash from the prover, and
two curve multiplications plus one hash from the verifier. Finally, we assume
that FηCOTe functionality is realized via the protocol of Keller et al. [KOS15]
with the VSOT protocol [DKLs18] supplying base-OTs. Keller et al.’s protocol
requires an additional security parameter, which we set as 128 + s, following
their analysis. Concretely, for κ = 256 and s = 80, the average total number of
bits transmitted per party is (t− 1) · 88.28 KiB, and for setup (n− 1) · 20.22 KiB.
As an example, average costs for n = 16 and t = 8 are 303 KiB transmitted per
party for setup, and 618 KiB for signing.

We observe that among the contemporaries of this work [LN18,GG18], ours is
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Offline (Setup) Costs
Protocol Party EC Multiplications Hash Invocations

π`
2PMul

Alice 5 6
Bob 4 7

πn,t
Inv

P1 5n− 5 6n− 6

Pn 4n− 4 7n− 7

πn,t
ECDSA-Setup

P1 t · n− t2 + 7n− t− 5 8n− 6

Pn t · n− t2 + 6n− t− 4 9n− 7

Online Costs
Protocol Party EC Multiplications Hash Invocations

π`
2PMul

Alice 0 6` · κ+ 12` · s+ 2`+ 2s+ 256

Bob 0 5` · κ+ 10` · s+ 2`+ 3s+ 384

πn,t
Inv

PP1 3 3t+ (t− 1) · (12κ+ 26s+ 260)

PPt 3 3t+ (t− 1) · (10κ+ 23s+ 388)

πn,t,P
ECDSA-Sign

PP1 6 4t+ (t− 1) · (24κ+ 50s+ 264)

PPt 6 4t+ (t− 1) · (20κ+ 43s+ 392)

Table 2: Computation Cost Equations for Subprotocols. In this table we
consider all of the available optimizations for πn,t,P

ECDSA-Sign.

the only signing protocol with a superconstant round count,2 but also the only one
with a constant number of public-key operations per signature. The benchmarks
we report in Section 7 reveal our approach to have yielded competitive concrete
performance, even in the context of large numbers of parties and high latency.
Furthermore, we observe that the public key operations required by other signing
protocols are incurred in part by non-interactive zero-knowledge proofs. If
UC-security is to be achieved in an implementation of any protocol, the Fiat-
Shamir transform must be abandoned in favor of an alternative with straight-line
extraction, such as Fischlin’s transform [Fis05]. Such straight-line extractable
transforms incur a much larger practical cost than Fiat-Shamir. Our signing
protocol makes no black-box use of zero-knowledge functionalities (instead relying
on an algebraic check), and so we avoid this UC-security penalty completely.

7 Implementation
We created a proof-of-concept implementation of our protocols in the Rust
language, which is derived from the open source 2-of-n implementation of
Doerner et al. [DKLs18]. Our implementation uses the secp256k1 curve, as
standardized by NIST [Bro10]. Thus, for all benchmarks, κ = 256, and we set

2As mentioned in footnote 1, a constant-round version of our protocol is in development.

27



the statistical security parameter s = 80. We instantiated the FηCOTe functionality
using the protocol of Keller et al. [KOS15] and set the OT-extensions security
parameter to 128 + s, following their analysis. We chose, as Doerner et al. did,
to instantiate FRDL,n

Com-ZK via the Fiat-Shamir Heuristic (though we note that this
transform is not UC-secure), and to instantiate the PRG, the random oracle H,
and the commitment functionality FnCom via SHA-256. Thus, our protocol uses
the same concrete hash function as specified in the ECDSA standard. We note
that while the folkloric hash-based instantiation of FnCom (i.e. H(m‖r) where m
is the message, and r ← {0, 1}κ) requires a uniform nonce in order to hide the
message regardless of its distribution, in our protocol all committed messages
have sufficient entropy that the nonce can be omitted.

Unlike Doerner et al., we do not parallelize vectors of hashing operations.
Instead, each party parallelizes its interactions with its counterparties (and
the computations that they require), using a number of threads equal to the
number of parties, or a specified maximum, whichever is smaller. While we
have assumed throughout this paper that the setup protocol can parallelize
key-generation and OT-extension initialization, our implementation runs these
two phases sequentially, and thus the practical round count is eight, whereas the
theoretical round count is five.

We benchmarked our implementation using a set of Google Cloud Platform
n1-highcpu-8 nodes, each running Ubuntu 18.04 with kernel 4.15.0. Each node
of this type has a CPU from the Intel Skylake family, with four physical cores
clocked at 2.0 GHz, capable of executing eight threads simultaneously in total.
These machines are slightly slower than those used by Doerner et al. [DKLs18],
and thus the timings we report for their protocol are slightly slower than they
report themselves. Each party participating in a benchmark was allocated
one node, and the parties communicated via Google’s internal network. We
compiled our code using the nightly version of Rust 1.28, with the default level
of optimization. Parallelism was provided by the Rayon crate and, as each node
can execute eight threads simultaneously, we limited the number of threads used
in signing to ten (having arrived at this number empirically). Our hash function
implementations were written in C using compiler intrinsics, and were compiled
with GCC 8.2.0. Our benchmarking programs were designed to establish insecure
connections among the parties one time only, and then run a batch of setup or
signing operations, measuring the wall clock time for the entire batch. Thus,
they record overhead due to latency and bandwidth constraints, but they do not
record overhead due to private or authenticated channels.

7.1 LAN Benchmarks
For benchmarks in the LAN setting, we created a set of 256 nodes in Google’s
South Carolina datacenter. Among these nodes, we measured the bandwidth
to be generally between 5 and 10 Gbits/sec, and the round-trip latency to be
approximately 0.3 ms. Using these nodes, we collected data for both our setup
and signing protocols using combinations of parameters as specified in Table 3.
For signing benchmarks, all costs are independent of n, the number of parties in
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n/t Range n/t Step Samples (Signing) Samples (Setup)

[2, 8] 1 16000 2000

(8, 16] 2 8000 1000

(16, 32] 4 4000 500

(32, 64] 8 2000 250

(64, 128] 16 1000 125

(128, 256] 32 500 62

Table 3: LAN Benchmark Parameters. For signing we varied t according to these
parameters, and for setup we varied n, fixing t = dn/2e.
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Figure 1: Wall Clock Times for n-Party Setup over LAN. Note that all parties
reside on individual machines in the same datacenter, and latency is on the order of a
few tenths of a millisecond.

the larger group from whom the signing parties are selected. Consequently, we
varied only t, the number of parties actually participating in signing. For setup,
only computation costs depend upon t, and not bandwidth; consequently we
varied n and set t = dn/2e, which we determined to be the most expensive value
relative to a particular choice of n. Our aim in choosing sample counts was to
ensure each benchmark took five to ten minutes in total, in order to smooth out
artifacts due to transient network conditions. Our results for setup are reported
in Figure 1, and our results for signing are reported in Figure 2.

7.2 Comparison
We note that our method only slightly underperforms that of Doerner et
al. [DKLs18] for 2-of-n signing, in spite of the fact that our protocol implements
a somewhat stronger functionality. Specifically, we require 8.6 ms, whereas an
evaluation of their protocol (with no parallelism) in our benchmarking environ-
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Figure 2: Wall Clock Times for t-Party Signing over LAN. Note that all parties
reside on individual machines in the same datacenter, and latency is on the order of a
few tenths of a millisecond.

Signing Setup
Protocol t = 2 t = 20 n = 2 n = 20

This Work 8.6 31.5 48.5 242

[GG18] 77 509 – –
[LNR18] 304 5194 ∼11000 ∼28000

[BGG17] ∼650 ∼1500 – –
[GGN16] 205 1136 – –

[Lin17] 36.8 – 2435 –
[DKLs18] 3.8 – 43.4 177

Table 4: Wall-clock Time Comparison to Other Works. Note that benchmarking
environments are non-identical, but all benchmarks are networkless or over LAN.

ment requires 5.8 ms. In the arbitrary-threshold context, a number of prior
and concurrent works exist. We did not benchmark their protocols in our envi-
ronment, and so no truly fair comparison is possible. Nevertheless, all of them
report benchmarks among 2 to 20 LAN-connected parties on hardware broadly
similar to our own, and we believe it possible to draw some loose conclusions by
comparing their results. We reproduce setup and signing times from a selection
of publications in Table 4.

The protocol of Gennaro and Goldfeder [GG18] appears to be the fastest
prior or concurrent work for signing, although they do not report benchmarks
for their key-generation protocol. Their benchmarks were performed using
3.4 GHz processors from the Intel Skylake family, but they used only a single
thread and did not count network costs. In another concurrent work, Lindell et
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al. [LNR18] present a different protocol and perform benchmarks using reasonably
recent 2.4 GHz processors from the Intel Haswell family. Their benchmarks do
count network costs, but like Gennaro and Goldfeder, they use only a single
thread. Among prior works, the most efficient techniques are those of Gennaro et
al. [GGN16] and Boneh et al. [BGG17] (who provide an improved implementation
Gennaro et al.’s protocol in addition to developing new techniques). Boneh et
al. provide benchmarks for both protocols, with no network costs recorded. In
all parameter regimes reported, all prior and concurrent works are at least one
order of magnitude slower than our own in terms of both key-generation and
signing, and in some cases we improve upon them by two or more orders of
magnitude. We stress again that as these benchmarks were not run in identical
environments, they do not constitute a fair comparison. Nevertheless, we do not
believe that environmental differences account for the performance discrepancy.

7.3 WAN Benchmarks
As we have previously noted, our protocol is at a disadvantage relative to other
approaches in terms of round count. In order to demonstrate the practical
implications of this fact, we ran an additional benchmark in the WAN setting.
We chose 16 Google datacenters (otherwise known as zones) that offer instances
with current-generation CPUs; these are located on a map in Figure 3. Five
were located inside the United States, in South Carolina, Virginia, Oregon,
California, and Iowa. Among these, the longest leg was between Oregon and
South Carolina, with a round-trip latency of 66.5 ms and bandwidth of 353
Mbits/sec. The remaining 11 were located in Montreál, London, Frankfurt,
Belgium, the Netherlands, Finland, Sydney, Taiwan, Tokyo, Mumbai, and
Singapore. Among the complete set, the longest leg was between Belgium and
Mumbai, with a round-trip latency of 348 ms and a bandwidth of 53.4 MBits/sec.
We tested two configurations: one with only the five US datacenters participating,
and another with all 16. For each configuration, we performed benchmarks with
one party in each participating datacenter, and with sixteen parties in each
participating datacenter. In all cases, we collected 125 samples. Results are
reported in Table 5, along with comparative data from our LAN benchmarks. As
we mentioned, the protocol of Gennaro and Goldfeder [GG18] appears to be the
fastest prior or concurrent work for signing; we observe that with 20 parties and
no latency, their protocol is slightly slower than ours is with 80 parties spread
across the United States.

It is worth noting that Wang et al. [WRK17] recently made the claim that they
performed the largest-scale demonstration of multiparty computation to date.
Their benchmark involves 128 parties split among eight datacenters around the
world, who jointly compute an AES circuit using the actively-secure multiparty
garbling protocol that they developed. Our WAN benchmark involves 256 parties
split among 16 datacenters, and thus we seem also to have evaluated one of the
largest secure multiparty protocols to date, at least so far as party count and
geographic distribution are concerned. We also note that the in the clear setting,
AES is generally considered to have a much lower circuit complexity than ECDSA;
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66.5 ms
348 ms

87.1 ms

235 ms

Figure 3: Map of Datacenter Locations used for WAN Benchmarks, with
latency figures along a few of the longer routes. The subgroup of five zones inside the
US are highlighted in red.

Parties/Zones Signing Rounds Signing Time Setup Time

5/1 9 12.2 67.9

5/5 9 288 330

16/1 10 25.2 181

16/16 10 3018 1655

80/1 12 109 539

80/5 12 388 1521

256/1 13 376 2300

256/16 13 4408 7283

Table 5: Wall-clock Times in Milliseconds over WAN. The benchmark configu-
rations used are described in Section 7.3. For signing we varied t according to these
parameters, and for setup we varied n, fixing t = b(n+ 1)/2c. Benchmarks involving
only a single zone are LAN benchmarks, for comparison.

this is reflected in the significantly lower computation time for a single AES
operation as compared to signing a single message using ECDSA. Interestingly,
in the context of evaluating these primitives securely among multiple parties,
our protocol for realizing Fn,tECDSA performs considerably better than Wang et
al.’s realization of FnAES. In the LAN setting with 128 parties (each much more
powerful than the ones we employ), they report a 17-second wall clock time,
including preprocessing, and in the global WAN setting with 128 parties, their
protocol requires 2.5 minutes. When the setup and signing costs are combined
for our protocol, it requires 6.8 seconds and 11.7 seconds with 256 parties in the
LAN and global WAN settings, respectively. This discrepancy in performance
is counterintuitive, but unsurprising in light of the fact that the algebraically
structured nature of ECDSA allows custom protocols such as our own to be
devised. We believe that this serves to demonstrate that there are multiparty
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Configuration Benchmark Setup Time Signing Time

Macbook/RPi 2-of-2 1308 49.8

2×RPi 2-of-2 1320 55.6

2×RPi 2-of-n – 66.6

3×RPi 3-of-3 1390 92.8

Table 6: Wall-clock Times in Milliseconds for Raspberry Pi. The benchmark
configurations used are described in Section 7.4.

functionalities for which specially tailored protocols are warranted in practice,
as opposed to the blind use of generic MPC for all tasks.

7.4 Low-power Benchmarks
Finally, we performed a set of benchmarks on a group of three Raspberry Pi
model 3B+ single-board computers in order to demonstrate the feasibility of
evaluating our protocol (and the protocols of Doerner et al. [DKLs18]) on small,
low-powered devices. Each board has a single, quad-core ARM-based processor
clocked at 1.4 GHz. The boards were loaded with Raspbian Linux (kernel 4.14)
and connected to one another via ethernet. As an optimization for the embedded
setting, we abandoned SHA-256 (except where required by ECDSA) in favor
of the BLAKE2 hash function [ANWOW13], using assembly implementations
provided by the BLAKE2 authors. To simulate the setting wherein an embedded
device signs with a more powerful one, we used a 2018 15" Macbook Pro running
Mac OS 10.14 (i.e. one author’s laptop). This machine was engaged in other
tasks at the time of benchmarking, and no attempt was made to prevent this.
We benchmarked 2-of-2 signing and setup between the Macbook and a single
Raspberry Pi, and t-of-n setup and signing among the group of Pis, with n set
as 3 and t as both 2 and 3. When n = 2, we used the slightly more efficient
protocols of Doerner et al. [DKLs18] without modification, and when t = 3 we
used the protocols presented in this paper. For setup, we collected 50 samples,
and for signing, we collected 250. Results are presented in Table 6. We observe
that in spite of the limitations of the hardware on which these benchmarks were
run, the signing time remains much less than a second, and setup requires only a
few seconds. Thus we expect our protocol to be computationally efficient enough
to run even on embedded devices such as hardware tokens or smartwatches, and
certainly on more powerful mobile devices such as phones.

8 Code Availability
Our implementation is available under the three-clause BSD license from
https://gitlab.com/neucrypt/mpecdsa.
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A Introduction to our Proofs
In the appendices to follow, we prove the protocols from the foregoing paper secure
against a malicious adversary in the Universal Composability (UC) framework.
For a full introduction to UC, we refer the reader to Canetti [Can01]. Let
Z denote the environment, and let AP∗ denote an adversary who corrupts a
subset of parties indexed by P∗. Suppose we have an n-party protocol π with
a corresponding ideal functionality F and a simulator SP∗ that interacts the
corrupt parties, and suppose we denote by C the set of all subsets of parties
against which we wish to prove π secure (i.e. the set of all possible values of P∗).
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We define the real-world experiment REALπ,AP∗ ,Z (z) to proceed in the fol-
lowing way: the environment receives some nonuniform advice z and determines
the inputs of all n parties, who then engage in the protocol π, those parties
indexed by P∗ acting according to the corrupt instructions of AP∗ , and the
others following the protocol honestly; after the interaction of the parties is
complete, Z receives the outputs of all parties, plus an output from AP∗ that is
characterized by the messages received by the parties indexed by P∗, and using
this information Z outputs a bit, which is the result of the experiment.

In the ideal-world experiment IDEALF,(SP∗,AP∗ ),Z (z), on the other hand, the
interaction of the parties is defined by the ideal functionality F . The honest
parties are replaced by ideal counterparts, and parties corrupted by AP∗ interact
with the simulator SP∗ , which interacts with F on their behalf. Thus the ideal
adversary is defined by the tuple (SP∗,AP∗). A proof that for any AP∗ ,{

REALπ,AP∗ ,Z (z)
}
z∈{0,1}∗,P∗∈C

≡
{
IDEALF,(SP∗,AP∗ ),Z (z)

}
z∈{0,1}∗,P∗∈C

is a proof that π UC-realizes F in the presence of a malicious adversary statically
corrupting parties as given by C, or, in other words, a proof of security for π.

Organization. In Appendix B, we prove that π`2PMul UC-realizes F`2PMul in the
presence of one statically corrupted party. In Appendix C, we prove that πn,tInv

UC-realizes Fn,tInv in the presence of t− 1 statically corrupted parties. Finally, in
Appendix D, we prove that πn,tECDSA-Setup and πn,t,PECDSA-Sign jointly UC-realize Fn,tECDSA

in the presence of t− 1 statically corrupted parties. All of these proofs share the
same basic structure: we begin with a Security Theorem, give a simulator to
serve as the ideal adversary in an ideal-world experiment, and then the proof
proceeds as a sequence of hybrid experiments.

B Proof of Security for Two-party Multiplication
Theorem 3.1. When ` ≤ c · log(κ) for some constant c, the protocol π`2PMul

UC-realizes the functionality F`2PMul for a κ-bit field Zq in the FηCOTe-hybrid
Global Random Oracle Model, in the presence of a malicious adversary statically
corrupting either party.

Proof. In Appendices B.1 and B.2 we prove respectively that there exist simula-
tors S`,A2PMul and S`,B2PMul such that over all z ∈ {0, 1}∗,

REALπ`2PMul,AA,Z (z)
c≡ IDEALF`2PMul,(S`,A2PMul,AA),Z (z)

REALπ`2PMul,AB,Z (z) = IDEALF`2PMul,(S`,B2PMul,AB),Z (z)

The conjunction of these statements yields Theorem 3.1.
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B.1 Simulating Against Alice
We now present the simulation against Alice. We note that in Step 2 of π`2PMul,
we specify that Alice sends to F`2PMul

α ..= {ã1‖â1}j∈[1,ξ]

∥∥ . . . ∥∥ {ã`‖â`}j∈[1,ξ]

for some vectors ã, â ∈ Z`q, whereas in Step 2 of our simulator, we interpret the
received value as {

α̃j‖α̂j
}
j∈[1,η]

= α

using a different variable. We use this notational discrepancy to indicate that,
though the protocol instructs Alice to send a vector α containing repetitions of
the same value, a malicious Alice may not actually do so, and thus values that
should be identical may differ arbitrarily in the received vector.

Simulator 1. Two-party Multiplication against Alice
(
S`,A2PMul

)
:

This simulator interposes between the ideal functionality F`2PMul and a malicious
Alice running the π`2PMul protocol. It is parameterized by the statistical security
parameter s and the symmetric security parameter κ, with ξ = κ + 2s and
η = ξ · `. It also makes use of a gadget vector g of the same form as that used
by π`2PMul. It plays the role of the functionality FηCOTe in its interaction with
Alice, and it can observe Alice’s queries to the random oracle H.

Init: Receive (init) from Alice on behalf of FηCOTe and send (init) to F`2PMul.

Multiplication:

1. Upon receiving (bob-ready, idmul) from F`2PMul, send (chosen, idext) to Alice
on behalf of FηCOTe, where idext is a fresh index.

2. Upon receiving (transfer, idext,α) from Alice on behalf of FηCOTe, sample

z̃A ← Zηq and ẑA ← Zηq

and let {
α̃j‖α̂j

}
j∈[1,η]

= α

ωA =
{
z̃A,j

∥∥ẑA,j}j∈[1,η]

and send (pad, idext,ωA) to Alice on behalf of FηCOTe.

3. Engage in the coin tossing protocol (corresponding to Step 4 of π`2PMul)
with Alice to generate χ̃ ∈ Z`q and χ̂ ∈ Z`q. Using these values, compute
r∗, the value of r that Alice is expected to send if she is honest.

r∗ ..=

 ∑
i∈[0,`)

χ̃i+1 · z̃A,i·ξ+j + χ̂i+1 · ẑA,i·ξ+j


j∈[1,ξ]
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4. Receive u ∈ Z`q and r ∈ Zξq from Alice, and compute the vector of values
by which her inputs are offset from the expectation. Note that if Alice is
honest, this vector will contain only zeros.

∆ ..=
{
χ̃dj/`e · α̃j + χ̂dj/`e · α̂j − udj/`e

}
j∈[1,η]

5. Check whether there exists a set of choice bits β∗ that would allow Alice’s
cheats to go undetected in a real exectution of the protocol. That is, find
β∗ ∈ {0, 1}η such that

∧
j∈[1,ξ]

r∗j − rj =
∑
i∈[0,`)

β∗i·ξ+j ·∆i·ξ+j


Since this condition comprises ξ individual predicates, each on ` bits, an
exhaustive search can be performed in O(ξ · 2`), where ` = O(log κ). If
no such β∗ exists, then abort. If such a β∗ does exist, then flip one coin
for each nonzero value in ∆, and abort if any coin comes up heads.

6. Find ã ∈ Z`q such that

∧
i∈[0,`)

{
∃j ∈ [1, ξ] : ãi = α̃i·ξ+j

∧ χ̃i+1 · α̃i·ξ+j + χ̂i+1 · α̂i·ξ+j = ui+1

}

If no such ã exists, or if more than one valid candidate for ã exists, then
abort. If exactly one candidate for ã exists, then compute the additive
offsets d ∈ Z`q caused by any undetected cheating on the part of Alice

d ..=

 ∑
j∈[1,ξ]

gj · β
∗
i·ξ+j ·

(
α̃i·ξ+j − ãi+1

)
i∈[0,`)

and send (alice-ready, idmul) to F`2PMul.

7. Wait for either a message from F`2PMul, or a message from Alice. If γA ∈ Z`q
is received from Alice before anything is received from the functionality,
then

(a) Compute Alice’s true input

a ..=
{

ãi + γA,i

}
i∈[1,`]

and send (input, idmul,a) to F`2PMul.
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(b) On receiving (output, idmul, zA) from F`2PMul, calculate the appro-
priate adjustment message. For i ∈ [1, `], if ai = 0, then sample
γB,i ← Zq. Otherwise, set

γB,i
..=

zA,i + di −
∑

j∈[1,ξ]

gj · z̃A,(i−1)·ξ+j

ai

and send γB to Alice and terminate successfully.

On the other hand, if (bob-complete, idmul) is received from F`2PMul before
anything is received from Alice, then

(a) Sample and send γB ← Z`q to Alice on behalf of Bob.

(b) On receiving γA ∈ Z`q from Alice, compute her true input and her
output share

a ..=
{

ãi + γA,i

}
i∈[1,`]

zA ..=

ai · γB,i − di +
∑
j∈[1,ξ]

gj · z̃A,(i−1)·ξ+j


i∈[1,`]

and send (rush, idmul,a, zA) to F`2PMul and terminate successfully.

Lemma B.1. In the FηCOTe-hybrid Global Random Oracle Model,

REALπ`2PMul,AA,Z (z)
c≡ IDEALF`2PMul,(S`,A2PMul,AA),Z (z)

for all z ∈ {0, 1}∗, when ` = O(log(κ))

Proof. Our proof of Lemma B.1 will proceed via a sequence of hybrid experiments,
beginning with a real-world execution of the protocol,

H0 =
{
REALπ`2PMul,AA,Z (z)

}
z∈{0,1}∗

the outcome of which is characterized Alice’s view and by the outputs of Alice
and Bob. The information in Alice’s view is characterized by the values z̃A
and ẑA that she receives as output from FηCOTe upon sending it α̃ and α̂, a bit
indicating whether Bob aborts, and the value γB received from Bob when he
does not abort. We will argue about the joint distribution of these values.

Our first hybrid will involve the implementation of Step 5 of S`,A2PMul, which
tests whether there exists a hypothetical subset of choice bits that would allow
Alice to offset her inputs to FηCOTe without detection in a real execution of the
protocol, and then aborts based on the probability that exactly those bits are
sampled. This step assumes that no more than one such set of choice bits exists.
Thus, before we give the hybrid, we will introduce a few lemmas to help us
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prove that this is true with overwhelming probability. Specifically, we wish to
prove that when ∆← Z`q and ` = O(log log(q)), there do not exist two distinct
bit vectors β,β′ ∈ {0, 1}` such that 〈∆,β〉 = 〈∆,β′〉 except with negligible
probability.

Lemma B.2. If ∆ ∈ Z`q, then there are no more than 3` unique tuples
(x,β,β′) ∈ Zq × {0, 1}` × {0, 1}` such that

〈∆,β〉+ x = 〈∆,β′〉 (1)

Proof. Consider Equation 1 and notice that at any location i where βi = β′i, the
contributions of the leftmost term and the right hand side cancel one another.
Consequently, all unique solutions can be generated as follows:

1. Partition ∆ into sets ∆L, ∆R, and ∆U.

2. For every possible partition, solve for x in

x+
∑

i∈[1,|∆L|]

∆L
i =

∑
i∈[1,|∆R|]

∆R
i

The above method exhaustively generates all possible solutions to Equation 1.
The total number of possible partitions (∆L,∆R,∆U) is 3`, which proves the
lemma.

Lemma B.3. Let Zq be a κ-bit field, and let ` ≤ c · log2(κ) for some constant
c > 0. Then

Pr
∆←Z`q

[
∃β,β′ ∈ {0, 1}` : β 6= β′ ∧ 〈∆,β〉 = 〈∆,β′〉

]
≤ κ2c

2κ

Proof. Let us denote by Expti the following experiment:

1. Uniformly sample ∆← Ziq.

2. Return 1 if and only if there exists a pair of vectors β,β′ ∈ {0, 1}i such
that β 6= β′ and 〈∆,β〉 = 〈∆,β′〉.

3. Return 0 otherwise.

In the base case, when i = 0, we have

Pr [Expt1] = Pr
∆←Zq

[∆ = 0] = 1/q

In the case that i > 1 consider the following: if for a particular assignment of
∆ ∈ Ziq, an assignment of β,β′ ∈ {0, 1}i exists to satisfy the above experiment,
then when any element is appended to ∆, zeros may may be appended to both
β and β′ in order to satisfy the experiment again. On the other hand, if for
a particular assignment of ∆ ∈ Ziq no satisfying assignment of β,β′ ∈ {0, 1}i
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exists, then when a new element x is appended to ∆ we can only satisfy the
experiment by finding β,β′ ∈ {0, 1}i such that 〈∆,β〉+ x = 〈∆,β′〉. Thus

Pr [Expti = 1] ≤ Pr
[
Expti−1 = 1

]
+ Pr

∆←Ziq

[
∃β,β′ ∈ {0, 1}i−1 :

〈∆,β〉+ ∆i = 〈∆,β′〉

]
where we assume the inner product operator truncates its operands as necessary.
By Lemma B.2 it follows that

Pr [Expti = 1] ≤ Pr
[
Expti−1 = 1

]
+

3i−1

q

Thus, we can derive the statement of this lemma,

Pr [Expt` = 1]

≤
∑
i∈[1,`]

3i−1

q
=

3` − 1

2q
≤ 3c·log2(κ)

2q

=
κc·log2 3

2q
≤ κ2c

2q
≤ κ2c

2κ

Lemma B.4. Let Zq be a κ-bit field, let ` ≤ c · log2(κ) for some constant c > 0,
and let δ ∈ Zηq be an arbitrary non-zero vector for η = ` · ξ and some positive
integer ξ. Then

Pr
χ←Z`q


∃j ∈ [1, ξ], ∃β,β′ ∈ {0, 1}` :

∆ = {δi·ξ+j · χi}i∈[1,`]

=⇒ β 6= β′ ∧ 〈∆,β〉 = 〈∆,β′〉

 ≤ ξ · κ2c

2κ

Proof. Consider the case where ξ = 1. That is, a non-zero δ ∈ Z`q is fixed,
following which a vector χ ∈ Z`q is sampled uniformly and ∆ is formed by
element-wise multiplication of the two. Because χ is uniform, ∆ must also be,
and thus by Lemma B.3 our new lemma holds directly.

Now observe that when ξ > 1, this lemma is essentially a statement about
the success of any subset of ξ simultaneous repetitions this experiment, under the
constraint that they all use the same value of χ. Since δ is fixed independently
of χ, we can simply take the union bound over ξ simultaneous experiments to
find that our lemma holds.

Hybrid H1 . This experiment is the same as H0, except that Steps 3 through 5
of S`,A2PMul are implemented in order to define ∆, β∗, and r∗, replacing Bob’s
instructions in Steps 4 and 6 of π`2PMul. This experiment aborts based upon the
condition in Step 5 of S`,A2PMul rather than aborting based on Step 6 of π`2PMul.
To be clear, this hybrid changes no variables in the view of Alice, and thus it
can be distinguished from the real execution only based upon the difference in
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the probability of Alice inducing an abort. Thus, we argue that the probability
distribution of an abort in this hybrid is negligibly different (statistically) from
the distribution in the real world.

Informally stated, Alice may supply the wrong input value to FηCOTe at some
locations, which causes a corresponding nonzero value to appear in ∆ in H1. In
the real world she can attempt to compensate for this by adjusting her r values
such that Bob’s check in Step 6 of π`2PMul passes. Specifically, Alice avoids an
abort in the real world when

∧
j∈[1,ξ]


rj +

∑
i∈[0,`)

χ̃i+1 · z̃B,i·ξ+j + χ̂i+1 · ẑB,i·ξ+j

=
∑
i∈[0,`)

βi·ξ+j · ui+1

 (2)

Per FηCOTe, we have that for all j ∈ [1, η],

z̃B,j = βj · α̃j − z̃A,j and ẑB,j = βj · α̂j − ẑA,j

And thus for all j ∈ [1, ξ], by substitution and per Steps 3 and 4 of S`,A2PMul,∑
i∈[0,`)

χ̃i+1 · z̃B,i·ξ+j + χ̂i+1 · ẑB,i·ξ+j

=
∑
i∈[0,`)

χ̃i+1 ·
(
βi·ξ+j · α̃i·ξ+j − z̃A,i·ξ+j

)
+ χ̂i+1 ·

(
βi·ξ+j · α̂i·ξ+j − ẑA,i·ξ+j

)


=
∑
i∈[0,`)

βi·ξ+j ·
(
χ̃i+1 · α̃i·ξ+j + χ̂i+1 · α̂i·ξ+j

)
−
(
χ̃i+1 · z̃A,i·ξ+j + χ̂i+1 · ẑA,i·ξ+j

)


= − r∗j +
∑
i∈[0,`)

βi·ξ+j ·
(
∆i·ξ+j + ui+1

)
We then substitute this equality into Equation 2 and find that

∧
j∈[1,ξ]



∑
i∈[0,`)

χ̃i+1 · z̃B,i·ξ+j + χ̂i+1 · ẑB,i·ξ+j

= −rj +
∑
i∈[0,`)

βi·ξ+j · ui+1


=

∧
j∈[1,ξ]


−r∗j +

∑
i∈[0,`)

βi·ξ+j ·
(
∆i·ξ+j + ui+1

)
= −rj +

∑
i∈[0,`)

βi·ξ+j · ui+1
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=
∧

j∈[1,ξ]

 ∑
i∈[0,`)

βi·ξ+j ·∆i·ξ+j = r∗j − rj

 (3)

which is exactly the equation from Step 5 of S`,A2PMul. If we consider only the
subset of indices whereat ∆ is nonzero (the size of which is bounded by ξ), then
by Lemma B.4 and the fact that ` ≤ c · log(κ), except with probability ξ · κ2c/2κ

there exists at most one assignment of the corresponding entries in β such that
this equation is satisfied for a particular combination of ∆, r, and r∗j . We call
this assignment β∗.

In the case that no such assignment β∗ exists when ∆, r and r∗j are fixed,
Bob will certainly abort in the real world. In this hybrid, Step 5 of S`,A2PMul checks
exhaustively whether such a β∗ does exist (which requires 2` = 2c·log κ = κc

steps), and aborts with certainty if not.
In the case that an appropriate assignment β∗ does exist, Alice avoids an

abort in the real world only when Bob chooses β = β∗ (again, considering only
the subset of indices whereat ∆ is nonzero). Because Step 5 of S`,A2PMul chooses β
from the same distribution as Bob (i.e. uniformly) and aborts under the same
condition (i.e. β = β∗), it follows from the existence of exactly one satisfying
assignment of β∗ that Alice sees an abort in H1 with the same probability as
she does in the real protocol. Consequently, this hybrid is distinguishable from
the real protocol only when there exists more than one assignment of β∗ that
satisfies Equation 3. This happens with probability ξ · κ2c/2κ.

Hybrid H2 . This experiment is the same as H1, except that it implements
Step 6 of S`,A2PMul in order to define ã. No variables in view of Alice are changed,
but an abort condition is added. Specifically, H2 aborts if there is not exactly
one unique candidate for ã, whereas no equivalent behavior exists in H1. We
argue that this event occurs with negligible probability by taking a union bound
over the two possible cases: that there is no candidate and that there are too
many candidates.

Consider the event in H1 that there is some i ∈ [0, `) for which there exists
no j ∈ [1, ξ] such that

χ̃i+1 · α̃i·ξ+j + χ̂i+1 · α̂i·ξ+j = ui+1

Per Step 4 of S`,A2PMul, this implies that ∆i·ξ+j 6= 0 for the same i and all j ∈ [1, ξ].
Since H1 implemented Step 5 of S`,A2PMul, the probability that it will not have
aborted in this case is less than 2−ξ < 2−κ.

Next, consider the event in H1 that there are two possible candidates for ã.
That is, for some i ∈ [0, `) there exist two values j, j′ ∈ [1, ξ] such that

α̃i·ξ+j 6= α̃i·ξ+j′ or α̂i·ξ+j 6= α̂i·ξ+j′

but also such that

χ̃i+1 · α̃i·ξ+j + χ̂i+1 · α̂i·ξ+j = χ̃i+1 · α̃i·ξ+j′ + χ̂i+1 · α̂i·ξ+j′
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which implies that

χ̃i+1 · (α̃i·ξ+j − α̃i·ξ+j′) = χ̂i+1 · (α̂i·ξ+j′ − α̂i·ξ+j)

Note that α̃ and α̂ are fixed, and then χ̃, χ̂ are chosen by calling the Random
Oracle on the transcript of the protocol thus far, per Step 4 of π`2PMul. A
malicious Alice may attempt to produce different transcripts in order to satisfy
this equality, but because there are exactly q satisfying pairs (χ̃i+1, χ̂i+1) in the
q2-sized space of all pairs, each of her attempts succeeds with with probability
2−κ. If we call the set of Alice’s Random Oracle queries Q, then this event
occurs with probability no greater than |Q|/2κ, and H2 is thus computationally
indistinguishable from H1.

We now give two lemmas related to the distribution of Bob’s value b̃ in H2,
which we will use to argue indistinguishability of our next hybrid.

Lemma B.5. Let Zq be a κ-bit field, and µ > 0 an integer. For uniformly
sampled g ← Zκ+µ

q , β ← {0, 1}κ+µ, and x ← Zq, and for all unbounded non-
uniform distinguishers A,∣∣∣∣Pr

g,β
[A (g, 〈g,β〉) = 1]− Pr

g,x
[A (g, x) = 1]

∣∣∣∣ ≤ 2
µ
2

Proof. Follows from a direct application of the Leftover Hash Lemma [ILL89],
as shown previously by Impagliazzo and Naor [IN96, Proposition 1.1].

Lemma B.6. In the context of the experiment H2, for x ← Z`q and for all
unbounded non-uniform distinguishers A playing the role of Alice,∣∣∣∣∣Pr

g,b̃

[
A
(
g, b̃

)
= 1

]
− Pr

g,x
[A(g,x) = 1]

∣∣∣∣∣ ≤ ` · 2−s
Proof. Recall that in H2,

b̃ =

{〈
g,
{
βi·ξ+j

}
j∈[1,ξ]

〉}
i∈[0,`)

per Step 1 of π`2PMul, where g is a uniformly sampled, publicly known vector
g← Zξq. Recall also that it is within the power of Alice to set

α̃i·ξ+j 6= ãi+1 =⇒ ∆i·ξ+j 6= 0

for any subset of i ∈ [0, `), j ∈ [1, ξ], and that per Step 5 of S`,A2PMul, H2 will have
aborted with probability

2
−

∑
i∈[1,η]
d∆i/qe

If H2 has not already aborted, then we must assume that Alice knows the value
of βi for all i ∈ [1, η] such that ∆i 6= 0. Given this additional information, and

45



accounting for the probability that acquiring this information does not induce an
abort, the advantage that any unbounded distinguisher A has in distinguishing
b̃ from a set sampled uniformly from from Z`q is given by

AdvA =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

A
g,


∑
j∈[1,ξ]:
∆i·ξ+j 6=0

gj · βi·ξ+j


i∈[0,`)

 = 1


−Pr

[
A
(
g,x← Z`q

)
= 1

]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
· 2
−

∑
i∈[1,η]
d∆i/qe

Observe that this is essentially a statement about ` independent experiments
(each with a distinguisher A′), over which we can instead take a union bound to
find that the distinguisher A has an advantage no greater than

AdvA ≤ 2
−

∑
i∈[1,η]
d∆i/qe

·
∑
i∈[0,`)

AdvA′

= 2
−

∑
i∈[1,η]
d∆i/qe

·
∑
i∈[0,`)

∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr

A′
g,

∑
j∈[1,ξ]:
∆i·ξ+j 6=0

gj · βi·ξ+j

 = 1


−Pr

[
A′
(
g, x← Zq

)
= 1
]

∣∣∣∣∣∣∣∣∣∣∣∣∣
Via Lemma B.5 and the fact that ξ = κ+ 2s, the advantage of the distinguisher
A′ in each experiment i for i ∈ [1, `] is at most

AdvA′ ≤ 2

∑
j∈[1,ξ]
d∆i·ξ+j/qe/2−s

which gives A a maximum total advantage of

AdvA ≤ 2
−

∑
i∈[1,η]
d∆i/qe

·
∑
i∈[0,`)

2

∑
j∈[1,ξ]
d∆i·ξ+j/qe/2−s

≤ ` · 2−s

Hybrid H3 . This experiment is the same as H2, except that it implements
Steps 1, 2, and 7 of S`,A2PMul, replacing Bob’s instructions in Steps 3, 7, and 8 of
π`2PMul. This hybrid differs from H2 in the way that Bob’s output zB is calculated.
Specifically, in this hybrid zB is calculated by F`2PMul. Note that this value is not
in Alice’s view, but nevertheless influences the output of the experiment. This
hybrid also differs with respect to the distribution of γB. First, we will discuss
the distribution of zB.

In H3, Bob’s output zB is received from F`2PMul, and thus

zB =
{
ai · bi − zA,i

}
i∈[1,`]

(4)
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while Alice’s output zA is chosen uniformly by S`,A2PMul. Per Step 7 of S`,A2PMul,
Alice’s input a is extracted as

a =
{

ãi + γA,i

}
i∈[1,`]

(5)

and per the same step,

zA =

ai · γB,i − di +
∑
j∈[1,ξ]

gj · z̃A,(i−1)·ξ+j


i∈[1,`]

(6)

Consequently, by sequential substitution of Equations 5 and 6 into Equation 4,
Bob’s output is calculated in H3 as

zB =


(
bi+1 − γB,i+1

)
·
(
ãi+1 + γA,i+1

)
+ di+1 −

∑
j∈[1,ξ]

gj · z̃A,i·ξ+j


i∈[0,`)

(7)

In H2 on the other hand, Step 8 of π`2PMul gives us

zB =

b̃i+1 · γA,i+1 +
∑
j∈[1,ξ]

gj · z̃B,i·ξ+j


i∈[0,`)

(8)

Recall that per the FηCOTe specification and Step 3 of π`2PMul,

z̃B =
{
α̃i · βi − z̃A,i

}
i∈[1,η]

(9)

and that Step 6 of S`,A2PMul defined

d =

 ∑
j∈[1,ξ]

gj · β
∗
i·ξ+j ·

(
α̃i·ξ+j − ãi+1

)
i∈[0,`)

(10)

and that per Steps 5 and 6 of S`,A2PMul,

∀i ∈ [0, `)∀j ∈ [1, ξ], α̃i·ξ+j 6= ãi+1 =⇒ βi·ξ+j = β∗i·ξ+j

and finally recall that per Steps 1 and 7 of π`2PMul respectively,

b̃ =

{〈
g,
{
βi·ξ+j

}
j∈[1,ξ]

〉}
i∈[0,`)

(11)

b̃ =
{

bi − γB,i

}
i∈[1,`]

(12)
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Consequently, by sequential substitution of Equations 9, 10, 11, and 12 into
Equation 8, we have in H2

zB =


b̃i+1 · γA,i+1

+
∑
j∈[1,ξ]

gj ·
(
α̃i·ξ+j · βi·ξ+j − z̃A,i·ξ+j

)

i∈[0,`)

=


b̃i+1 · γA,i+1 + di+1

+
∑
j∈[1,ξ]

gj ·
(
ãi+1 · βi·ξ+j − z̃A,i·ξ+j

)

i∈[0,`)

=


b̃i+1 ·

(
ãi+1 + γA,i+1

)
+ di+1 −

∑
j∈[1,ξ]

gj · z̃A,i·ξ+j


i∈[0,`)

=


(
bi+1 − γB,i+1

)
·
(
ãi+1 + γA,i+1

)
+ di+1 −

∑
j∈[1,ξ]

gj · z̃A,i·ξ+j


i∈[0,`)

which exactly the same as Equation 7. Thus, this change is purely syntacti-
cal, and the distinguishability of H3 and H2 is conditioned solely upon the
distinguishability of the distributions of γB in each.

The distribution of γB inH3 varies based upon the cases in Step 7 of S`,A2PMul. If
the second branch of Step 7 is taken, then we have γB ← Z`q, and the distribution
of γB is uniform. If the first branch of Step 7 is taken, we have for every i ∈ [1, `]
either that γB,i ← Zq, or

γB,i =

zA,i + di −
∑

j∈[1,ξ]

gj · z̃A,(i−1)·ξ+j

ai

whence we derive, via substitution of Equation 4

γB,i = bi +

di − zB,i −
∑

j∈[1,ξ]

gj · z̃A,(i−1)·ξ+j

ai

where zB,i is sampled uniformly by F`2PMul. As a consequence, the distribution
of γB is uniform regardless of which branch is taken in Step 7 of S`,A2PMul.

In H2, on the other hand, we have

γB =
{

bi − b̃i

}
i∈[1,`]

per Step 7 of π`2PMul. We will assume that b is completely known to the
distinguisher, and thus H3 is indistinguishable from H2 if and only if b̃ is
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indistinguishable from uniform. By Lemma B.6, we have that these distributions
are distinguishable with probability at most ` · 2−s. Since ` = c · log2(κ) for some
constant c, it follows that an unbounded adversary can distinguish H3 from H2

with probability at most c · log2(κ) · 2−s. Because we have now implemented all
steps in S`,A2PMul, we have

H3 =
{
IDEALF`2PMul,(S`,A2PMul,AA),Z (z)

}
z∈{0,1}∗

and by transitivity we have H3
c≡ H0, proving Lemma B.1.

B.2 Simulating Against Bob

Simulator 2. Two-party Multiplication against Bob
(
S`,B2PMul

)
:

This simulator interposes between the ideal functionality F`2PMul and a malicious
Bob running the π`2PMul protocol. It is parameterized by the statistical security
parameter s and the symmetric security parameter κ, with ξ = κ + 2s and
η = ξ · `. It also makes use of a gadget vector g of the same form as that used
by π`2PMul. It plays the role of the functionality FηCOTe in its interaction with
Bob, and it can observe Alice’s queries to the random oracle H.

Init: Receive message (init) from Bob on behalf of FηCOTe, and then send (init)
to F`2PMul. Upon receipt of (init-complete) from F`2PMul, send (init-complete)
to Bob on behalf of FηCOTe.

Multiplication:

1. On receiving (choose, idext,β) from Bob on behalf of FηCOTe, if id
ext is a

fresh index, then compute

b̃ ..=

{〈
g,
{
βi·ξ+j

}
j∈[1,ξ]

〉}
i∈[0,`)

and send (bob-ready, idmul) to F`2PMul, where idmul is a fresh index.

2. Wait for (alice-ready, idmul) from F`2PMul. Upon receipt, sample

z̃B ← Zηq and ẑB ← Zηq

and then compute ωB as

ωB
..=
{
z̃B,j‖ẑB,j

}
j∈[1,η]

and send (correlation, idmul,ωB) to Bob on behalf of FηCOTe.
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3. Engage in the coin tossing protocol (corresponding to Step 4 of π`2PMul)
with Bob to compute χ̃ and χ̂. Sample u← Z`q, and compute

r ..=


∑
i∈[0,`)


βi·ξ+j · ui+1

− χ̃i+1 · z̃B,i·ξ+j
− χ̂i+1 · ẑB,i·ξ+j



j∈[1,ξ]

and send r and u to Bob on behalf of Alice.

4. Wait for a single message each from both F`2PMul and Bob. Regardless
of the sequence in which the two messages arrive, perform the following
steps:

• When γB is received from Bob, compute

b ..=
{
γB,i + b̃i

}
i∈[1,`]

and send (input, idmul,b) to F`2PMul.

• When (output, idmul, zB) is received from F`2PMul, define γA ∈ Z`q such
that for i ∈ [1, `], if b̃i = 0 then γA,i ← Zq, and otherwise

γA,i
..=

zB,i −
∑

j∈[1,ξ]

gj · z̃B,(i−1)·ξ+j

b̃i

and send γA to Bob on behalf of Alice.

When both messages have been received and the above steps are complete,
terminate successfully.

Lemma B.7. In the FηCOTe-hybrid Global Random Oracle Model, for z ∈ {0, 1}∗

REALπ`2PMul,AB,Z (z) = IDEALF`2PMul,(S`,B2PMul,AB),Z (z)

Proof. The outputs of the experiments are characterized by Bob’s view and by
the values zA and zB. The information in Bob’s view is characterized by the
outputs z̃B and ẑB that he receives from FηCOTe, and by the messages u, r, and
γA that he receives from Alice. Thus, we will argue that the joint distribution
of all these values is identical in the real and ideal worlds.

In the real protocol, per Step 3 of π`2PMul, z̃B and ẑB are chosen uniformly by
FηCOTe, subject to the relationships

z̃A,i + z̃B,i = βi · ãdi/ξe and ẑA,i + ẑB,i = βi · âdi/ξe

for i ∈ [1, η]. In the simulation, on the other hand, z̃B and ẑB are uniformly
sampled per Step 2 of S`,B2PMul, and thus are identically distributed to their
real-world counterparts from Bob’s perspective.
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In the real protocol, per Step 7 of π`2PMul,

γA = {ai − ãi}i∈[1,`]

Since ã is sampled uniformly per Step 2 of π`2PMul (and no trace of it is in Bob’s
view), γA is uniform from Bob’s perspective. On the other hand, the in the ideal
experiment per Step 4 of S`,B2PMul, the simulator computes γA to satisfy

γA
..=


zB,i+1 −

∑
j∈[1,ξ]

gj · z̃B,i·ξ+j

b̃i+1


i∈[0,`)

where zB is uniformly chosen by F`2PMul and not (yet) known to Bob, which
implies that γA is distributed uniformly from his perspective. Note that in the
edge case where b̃i = 0 for some i ∈ [1, `], any uniformly chosen γA,i will produce
a correct output.

In the real protocol, â is sampled uniformly per Step 2 of π`2PMul and does
not occur anywhere else in Bob’s view; thus

u = {χ̃i · ãi + χ̂i · âi}i∈[1,`]

(where χ̃ and χ̂ are non-zero values known to Bob) is uniform from Bob’s
perspective. In the simulation u is sampled uniformly by S`,A2PMul, and thus is
identically distributed.

We have in the real experiment per Step 6 of π`2PMul that for j ∈ [1, ξ], r is
consistent with

rj +
∑
i∈[0,`)

χ̃i+1 · z̃B,i·ξ+j + χ̂i+1 · ẑB,i·ξ+j =
∑
i∈[0,`)

βi·ξ+j · ui+1

In the simulation, β is received from Bob on behalf of FηCOTe, the values u, z̃B,
and ẑB are chosen by the simulator, and χ̃ and χ̂ are public. In Step 3, S`,B2PMul

can solve for r, maintaining the correct distribution.
Finally, we must consider the distribution of the output zA, defined in the

real world per Step 8 of π`2PMul by

zA =

ai+1 · γB,i+1 +
∑
j∈[1,ξ]

gj · z̃A,i·ξ+j


i∈[0,`)

(13)

Recall that per FηCOTe and Step 3 of π`2PMul,

z̃A =
{

ãdi/ξe · βi − z̃B,i

}
i∈[1,η]

(14)

and recall that

b̃ ..=

{〈
g,
{
βi·ξ+j

}
j∈[1,ξ]

〉}
i∈[0,`)

(15)
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and that per Step 7 of π`2PMul,

ã =
{

ai − γA,i

}
i∈[1,`]

(16)

and Step 4 of S`,B2PMul

b =
{

b̃i + γB,i

}
i∈[1,`]

(17)

and that Step 8 of π`2PMul defines

zB =

b̃i+1 · γA,i+1 +
∑
j∈[1,ξ]

gj · z̃B,i·ξ+j


i∈[0,`)

(18)

Thus sequential substitution of Equations 14, 16, 15, 18, and 17 into 13 yields

zA =


ai+1 · γB,i+1

+
∑
j∈[1,ξ]

gj ·
(
ãi+1 · βi·ξ+j − z̃B,i·ξ+j

)

i∈[0,`)

=


ai · γB,i + ãi · b̃i
−
∑
j∈[1,ξ]

gj · z̃B,(i−1)·ξ+j


i∈[1,`]

=


ai · γB,i + ai · b̃i − γA,i · b̃i
−
∑
j∈[1,ξ]

gj · z̃B,(i−1)·ξ+j


i∈[1,`]

=
{

ai · γB,i + ai · b̃i − zB,i

}
i∈[1,`]

=
{
ai · bi − zB,i

}
i∈[1,`]

which is identical to the relation maintained by F`2PMul in the ideal execution.
The views produced by real and simulated executions of π`2PMul are therefore
distributed identically to an adversary corrupting Bob.

C Proof of Security for t-Party Inverse Sampling
Theorem 4.1. The protocol πn,tInv UC-realizes the functionality Fn,tInv for a κ-bit
elliptic curve group (G, G, q) in the (F`2PMul,FnCom)-hybrid model, in the presence
of a computationally unbounded malicious adversary statically corrupting up to
t− 1 parties.
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Proof. After the init phase, the online phases of the πn,tInv protocol are run with
only t parties who are indexed by P. We make the simplifying assumption that
the adversary makes complete use of its power by corrupting t− 1 parties with
indices given by P∗, such that P∗ ⊂ P, and only a single honest party with
index h remains to participate in the protocol. It should be remembered that P
and P∗ need not have any particular relationship in general, and may even be
disjoint, but the adversary in any other case is strictly weaker than the adversary
we assume here. Our simulator Sn,t,P∗Inv for the protocol πn,tInv extracts the inputs
and characteristic values of the corrupt parties jointly. We notate these joint
values with asterisks in place of the party-index subscript; so, for example,

u∗ =
∑
i∈P∗

ui

Before we give a formal description of our simulator and hybrids, we outline
our argument informally. The adversary’s view is characterized by the values Rh,
Γ 1
h , and φh along with the pattern of aborts. Because the simulator plays the

role of F`2PMul, it can observe the adversary’s inputs and outputs in the Inverse
Sampling phase of πn,tInv and use this information to choose one of three simulation
strategies for the subsequent Consistency Check phase. If the adversary’s
behavior is consistent with an honest execution of πn,tInv , then the simulator
queries Fn,tInv , supplying an extracted value of u∗ and receiving R and v∗ in
return; because the adversary has behaved honestly, Γ 1

h and φh can be calculated
as a function of these values and the corrupted parties’ outputs from F`2PMul.
This is the first strategy, and in this case, the simulation is perfect.

The second and third strategies are used respectively in the case that the
adversary to sets k = 0 (and thus attempts to force the protocol to invert zero),
and the case that the adversary behaves dishonestly by using inconsistent values
within the Inverse Sampling phase or between this phase and the Consistency
Check. Both strategies are similar in that the simulator avoids querying Fn,tInv

and instead effectively runs the code of an honest party before aborting uncon-
ditionally. Both strategies are distinguishable from the real world only if the
adversary can behave dishonestly and yet avoid an abort in the real world. We
argue in both cases that the probability of such an event is negligible.

Regardless of which simulation strategy is taken, this simulator can be
generalized to the case of acting on behalf of multiple honest parties via the
same transformation: for each additional honest party, the simulator runs an
instance of the code in πn,tInv that interacts with the corrupt parties, and for the
purpose of simulating party h, these virtual parties are treated adversarially.

Simulator 3. t-party Modular Inverse Sampling against P∗
(
Sn,t,P∗Inv

)
:

This simulator interposes between an evaluation of the πn,tInv protocol involving
the group of t− 1 malicious parties indexed by P∗ and the ideal functionality
Fn,tInv . In the online stages of the protocol, it acts on behalf of the remaining
honest party Ph with index h, and plays the roles the functionalities F`2PMul,
FnCom, and FRDL,n

Com-ZK in their interactions with the corrupted parties.
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Init: Receive message (init) from all parties in P∗ on behalf of F`2PMul and
then send (init) to Fn,tInv .

Inverse Sampling:

1. Send (committed, idcomh,1 , h) to every Pi for i ∈ P∗ on behalf of FnCom,
using a fresh value for idcomh,1 . Wait until every Pi for i ∈ P∗ has sent
(commit, idcomi,1 , φi) to FnCom. Compute

φ∗ ..=
∏
i∈P∗

φi

2. Let ` = 2. For each i ∈ P∗:

(a) If i < j then Send (bob-ready, idmul
i,h ) to Pi on behalf of F`2PMul

(b) Otherwise wait for (preprocess, idmul
h,i ) (on behalf of F`2PMul) from Pi

and respond with (alice-ready, idmul
i,h )

3. For ρ ∈ [1, dlog2(t)e]:

(a) Let Pρ,h ⊂ P be the vector of indices of the parties that interact
with Ph in iteration ρ. For all i ∈ Pρ,j ∩ P∗, interact with Pi on
behalf of F`2PMul as appropriate in order to receive ψρi , Pi’s input in
its multiplication with Ph in iteration ρ.

• If Pi is playing the role of Alice and submitted her input via the
Alice-input-rush interface of F`2PMul, then she also submitted
ζρ,hi , and no response is necessary

• Otherwise, sample ζρ,hi ← Z`q and send (output, idmul
i,h , ζ

ρ,h
i ) to

Pi on behalf of F`2PMul.

4. Compute the effective joint inputs of the corrupted parties given the
interactions in Step 3.

ψ∗
..=

 ∏
ρ∈[1,dlog2(t)e]

∑
i∈Pρ,h

ψρi,l


l∈[1,`]

and then let

k∗ ..= ψ∗,1 and ek ..= ψ∗,2 −
φ∗
k∗

5. Compute the expected joint product shares u∗, ṽ∗ for the corrupt parties,
given the interactions in Step 3. As before, let Pρ,h ⊂ P be the vector
of indices of the parties that interact with Ph in iteration ρ, and now let
Pdlog2(t)e+1,h = P∗ (for notational convenience; does not correspond to
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an actual interaction). Then, for Pi we have the vector ζρi ∈ Z`q defined
recursively for all l ∈ [1, `] by

ζρi,l
..=



ζρ,hi,l +ψρi,l ·
∑
j∈

⋃
ρ′∈[1,ρ−1]

Pρ
′,h

ζρ−1
j,l if i ∈ Pρ,h

ζρ−1
i,l ·

∑
j∈Pρ,h

ψρj,l if i /∈ Pρ,h

and finally we can compute the joint output shares for the corrupt parties

u∗ ..=
∑
i∈P∗

ζ
dlog2(t)e
i,1 and ṽ∗ ..=

∑
i∈P∗

ζ
dlog2(t)e
i,2

Consistency Check:

6. Send (committed, idcom-zk
h , h) to every Pi for i ∈ P∗ on behalf of Fn,RDL

ZK ,
using a fresh value for idcom-zk

h . Wait until (com-proof, idcom-zk
i , ri, Ri,P)

is received (on behalf of Fn,RDL

ZK ) from each Pi for i ∈ P∗. Let

R∗ ..=
∑
i∈P∗

Ri

ER ..= R∗ − u∗ ·G

7. If ek 6= 0 or ER 6= 0 or k∗ = 0, then sample kh ← Zq and compute

uh ..= kh · k∗ − u∗ and Rh ..= uh ·G and R ..= Rh +R∗

Otherwise, send (inv, idinv, {h} ∪ P∗, u∗) to Fn,tInv using a fresh value of
idinv on behalf of the corrupted parties. In return, receive (output, idinv, R)
and compute Rh ..= R−R∗. In either case, send (accept, idcom-zk

h , Rh) to
every party Pi for i ∈ P∗ on behalf of Fn,RDL

ZK .

8. On behalf of FRDL,n
Com-ZK, wait to receive from Pi for every i ∈ P∗ the

decommitment message (decom-proof, idcom-zk
i ) corresponding to the com-

mitments in Step 6. Upon receiving this message, abort if a valid wit-
ness was not input in Step 6. When all proofs are decommitted, send
(exp-release, idinv) to Fn,tInv .
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9. Send (committed, idcomh,2 , h) to every Pi for i ∈ P∗ on behalf of FnCom, using
a fresh value for idcomh,2 . Wait to receive (commit, idcomi,2 ,Γ

1
i ) from every Pi

for i ∈ P∗ on behalf of FnCom. Compute

Γ 1
∗

..=
∑
i∈P∗

Γ 1
i

10. If k∗ = 0, then abort by taking the following steps, and continue to
Step 11 only if k∗ 6= 0.

(a) Instruct Fn,tInv to abort.

(b) Sample φh ← Zq, compute

Γ 1
h

..=

((
ψ∗,2 ·

φh
kh

)
− ṽ∗

)
·R

and decommit these values to all parties indexed by P∗ by send-
ing (decommitted, idcomh,1 , φh) and (decommitted, idcomh,2 ,Γ

1
h) on behalf of

FnCom. Note that per Step 7, kh is always known if k∗ = 0, and thus
Γ 1
h is computable.

(c) Wait for (decommit, idcomh,1 ) and (decommit, idcomh,2 ) from all parties in-
dexed by P∗, and then abort.

11. If ek 6= 0 or ER 6= 0 or ṽ∗ · R 6= Γ 1
∗ or φ∗ = 0, then some party has

cheated. Abort by taking the following steps, and continue to Step 12
only if none of the above conditions hold.

(a) Instruct Fn,tInv to abort.

(b) Sample φh ← Zq and then compute

EΓ1 ..=
1

kh
·
(
φ∗
k∗

+ ek
)
· ER + k∗ · ek ·G

Γ 1
h

..= φh ·
(
φ∗ ·G+ EΓ1

)
− ṽ∗ ·R

and decommit these values to all parties indexed by P∗ by send-
ing (decommitted, idcomh,1 , φh) and (decommitted, idcomh,2 ,Γ

1
h) on behalf

of FnCom. Note that in the equation that determines EΓ1

, kh has a
coefficient of zero if φ∗ = 0, and that per Step 7, kh is always known
if ER 6= 0 or ek 6= 0. As we will show in the proof that follows this
simulator, ṽ∗ ·R 6= Γ 1

∗ implies at least one of the other conditions,
and as a consequence, EΓ1

is always computable.

(c) Wait for (decommit, idcomh,1 ) and (decommit, idcomh,2 ) from all parties in-
dexed by P∗, and then abort.
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12. If ṽ∗ = 0, then send (inv-zero, idinv) to Fn,tInv , receive (inv-output, idinv, 0)
in response, and sample φh ← Zq. Otherwise, send (inv-release, idinv) to
Fn,tInv , receive (inv-output, idinv, v∗), and compute

φh ..=
ṽ∗

v∗ · φ∗

Then, regardless of how φh is derived, compute

Γ 1
h

..= φh · φ∗ ·G− Γ 1
∗

and decommit φh and Γ 1
h to all parties indexed by P∗ by sending

(decommitted, idcomh,1 , φh) and (decommitted, idcomh,2 ,Γ
1
h) on behalf of FnCom.

13. Wait for (decommit, idcomh,1 ) and (decommit, idcomh,2 ) from all parties indexed
by P∗, and then instruct Fn,tInv to release the appropriate output to Ph,
and terminate successfully.

Our proof proceeds as a sequence of hybrid experiments, starting from

H0 =
{
REALπn,tInv ,AP∗ ,Z (z)

}
z∈{0,1}∗,
P∗⊂P:|P∗|=t−1

The result of this experiment is characterized by the outputs ui, vi, and R for all
parties indexed by i ∈ [1, n], as well as the joint view of the parties indexed by
P∗, which is in turn characterized by the variables Rh, Γ 1

h , φh, ζ
ρ,h
i,1 , and ζ

ρ,h
i,2 .

Hybrid H1 . This hybrid implements Steps 1 to 6 and 9 of Sn,t,P∗Inv , replacing
Bob’s instructions in Steps 2 to 6 and 8 of πn,tInv , and is otherwise identical to a
real-world execution of πn,tInv . This is only a syntactic change, necessary to define
variables that will be used by future hybrids, and thus the distribution of H1 is
identical to that of H0.

Hybrid H2 . This hybrid is identical to H1, except that we implement Step 10
of Sn,t,P∗Inv , and in addition, we implement the part of Step 7 that deals with the
case that k∗ = 0. H2 is distinguishable from H1 only by the fact that H2 aborts
unconditionally when k∗ = 0, whereas H1 does not, and by the distributions of
φh and Γ 1

h , the only values released to the corrupt parties in the case that this
abort is triggered.

First we consider the distributions of φh and Γ 1
h when k∗ = 0 and an abort

is triggered. In both H2 and H1, φh is sampled uniformly, and the two are thus
identically distributed in terms of this variable. In H2, per Step 10 of Sn,t,P∗Inv ,

Γ 1
h =

((
φh
kh
·ψ∗,2

)
− ṽ∗

)
·R (19)

and per Steps 3 through 5 of Sn,t,P∗Inv and the specification of F`2PMul,

ṽh + ṽ∗ =
φh
kh
·ψ∗,2 (20)
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and thus by substitution of Equation 20 into Equation 19, we have Γ 1
h = ṽh ·R,

which is exactly the distribution of Γ 1
h in H1, per Step 8 of πn,tInv .

We now reason about the distributions of aborts when k∗ = 0. H2 aborts
unconditionally, and so an adversary could distinguish it from H1 by setting
k∗ = 0 and avoiding an abort. In H1, we have from Steps 3 to 5 of Sn,t,P∗Inv and
the specification of F`2PMul that

uh + u∗ = kh · k∗ (21)

which implies that uh + u∗ = 0 regardless of the value of kh. As a consequence
R = ER per Step 6 of Sn,t,P∗Inv . In order to avoid an abort, the adversary must
arrange for the corrupted parties to send shares of Γ 1 such that

Γ 1∗ = φh · φ∗ ·G− Γ 1
h

= φh · φ∗ ·G− ṽh ·R
= φh · φ∗ ·G− ṽh · ER (22)

and by substituting Equation 20 into Equation 22 we have

Γ 1
∗ = φh · φ∗ ·G−

(
φh
kh
·ψ∗,2 − ṽ∗

)
· ER

= φh ·

(
φ∗ ·G−

ψ∗,2
kh
· ER

)
+ ṽ∗ · ER (23)

Recall that in H1, φh is sampled uniformly and independently of all other
variables, and that it is hidden from the adversary until after the adversary has
committed to Γ 1

∗ . The first term of Equation 23 is therefore uniform unless

φ∗ ·G−
ψ∗,2
kh
· ER = 0 (24)

Now recall that both H2 and H1 abort with certainty when φ∗ = 0, and thus
if the adversary is to distinguish the two hybrids, 1/kh must have a nonzero
coefficient. As with φh, the value kh is sampled uniformly and independently
of all other variables in H1, and is unknown to the adversary. When φ∗, ER,
and ψ∗,2 are fixed, there is one value of kh that satisfies Equation 24; thus over
the coins of kh we have Γ 1

∗ = ṽ∗ ·ER with probability 1/q and otherwise Γ 1
∗ is

distributed uniformly in G. Combining these two cases, we have Γ 1
∗ = ṽ∗ ·ER

with probability 2/q−1/q2, and all other values occur with probability 1/q−1/q2.
Consequently an adversary can guess the correct value of Γ 1

∗ and avoid an abort
in H1 with probability at most 2/q − 1/q2, which is negligible in κ. H1 is thus
statistically indistinguishable from H2.

Hybrid H3 . This hybrid is identical to H2, except that we remove Step 10 of
πn,tInv and instead implement Step 11 of Sn,t,P∗Inv and the part of Step 7 of Sn,t,P∗Inv

that deals with the case that ek 6= 0 or ER 6= 0. Consequently, this hybrid differs
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from H2 according to the distributions of φh and Γ 1
h (the only values released to

the corrupt parties in the case of an abort) and according to the distributions
of aborts: H3 aborts unconditionally when ek 6= 0 or ER 6= 0 or ṽ∗ · R 6= Γ 1

∗ ,
whereas H2 aborts unconditionally when Γ 1

h + Γ 1
∗ 6= φh · φ∗ ·G.

We first assume an abort has been triggered and consider the distributions of
φh and Γ 1

h . In both H3 and H2, φh is sampled uniformly, and the two are thus
identically distributed in terms of this variable. In H3 per Step 11 of Sn,t,P∗Inv ,

EΓ1

=
1

kh
·
(
φ∗
k∗

+ ek
)
· ER + k∗ · ek ·G (25)

Γ 1
h = φh ·

(
φ∗ ·G+ EΓ1

)
− ṽ∗ ·R (26)

and by expanding Equation 25, we have

EΓ1

=
φ∗

kh · k∗
· ER +

ek

kh
· ER +

kh · k∗ · ek

kh
·G

to both sides of which we can add φ∗ ·G, yielding

φ∗ ·G+ EΓ1

=
φ∗

kh · k∗
· ER +

φ∗ · kh · k∗
kh · k∗

·G+
ek

kh
· ER +

kh · k∗ · ek

kh
·G

=
φ∗

kh · k∗
·
(
kh · k∗ ·G+ ER

)
+
ek

kh
·
(
kh · k∗ ·G+ ER

)
=

(
φ∗

kh · k∗
+
ek

kh

)
·
(
kh · k∗ ·G+ ER

)
which, via substitution of Equation 21 yields

φ∗ ·G+ EΓ1

=

(
φ∗

kh · k∗
+
ek

kh

)
·
(

(uh + u∗) ·G+ ER
)

(27)

We also have from Steps 6 and 7 of Sn,t,P∗Inv that

(uh + u∗) ·G+ ER = R (28)

and per Steps 3 through 5 of Sn,t,P∗Inv and the specification of F`2PMul,

1

kh
·
(
φ∗
k∗

+ ek
)

=
ṽh + ṽ∗
φh

(29)

and by substitution of Equations 28 and 29 into 27 we have

φ∗ ·G+ EΓ1

=
1

kh

(
φ∗
k∗

+ ek
)
·R =

ṽh + ṽ∗
φh

·R (30)

Finally, by substituting Equation 30 into Equation 26 we find that Γ 1
h = ṽh ·R,

which is exactly the distribution of Γ 1
h in H2, per Step 8 of πn,tInv . Thus the
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distributions of φh and Γ 1
h are identical in H3 and H2, and it remains only to

reason about the distribution of aborts.
In both H3 and H2, an abort is guaranteed if φ∗ = 0. In H3, an abort is also

guaranteed if ek 6= 0 or ER 6= 0 or ṽ∗ · R 6= Γ 1
∗ . On the other hand, in H2, an

abort occurs if Γ 1
h +Γ 1

∗ 6= φh ·φ∗ ·G. Thus, an adversary can distinguish H3 from
H2 if they can set ek 6= 0 or ER 6= 0 or ṽ∗ ·R 6= Γ 1

∗ and still transmit values of
φ∗ and Γ 1

∗ such that Γ 1
h +Γ 1

∗ = φh · φ∗ ·G, or if they can set ek = 0 and ER = 0
and ṽ∗ ·R = Γ 1

∗ and transmit values of φ∗ and Γ 1
∗ such that Γ 1

h +Γ 1
∗ 6= φh ·φ∗ ·G.

We will show that the latter circumstance is impossible, and that the former
occurs with negligible probability.

As previously given in Equations 25 and 26, we have in both H2 and H3 that

Γ 1
h = φh ·

(
φ∗ + k∗ · ek

)
·G+

φh
kh
·
(
φ∗
k∗

+ ek
)
· ER − ṽ∗ ·R (31)

Notice that if ek = 0 and ER = 0 and ṽ∗ ·R = Γ 1
∗ , then it follows directly from

Equation 31 that Γ 1
h + Γ 1

∗ = φh · φ∗ ·G, and that H2 cannot abort unless H3

also aborts. It remains to consider whether an adversary can avoid an abort in
H2 while setting ek 6= 0 or ER 6= 0 or ṽ∗ ·R 6= Γ 1

∗ . According to Step 10 of πn,tInv

and Equation 31, an abort can by avoided in H2 only if the corrupted parties
transmit shares of the check value such that

Γ 1
∗ = ṽ∗ ·R− φh ·

(
1

kh
·
(
φ∗
k∗

+ ek
)
· ER − k∗ · ek ·G

)
(32)

Notice that Equation 32 implies that ṽ∗ · R 6= Γ 1
∗ only if ek 6= 0 or ER 6= 0;

it is therefore sufficient to consider whether an adversary can set ek 6= 0 or
ER 6= 0 and yet avoid an abort in H2. Recall that φh is sampled uniformly
and independently of all other variables, and that it is hidden from the corrupt
parties until after they are committed to Γ 1

∗ . Thus, Γ 1
∗ = ṽ∗ ·R if

1

kh
·
(
φ∗
k∗

+ ek
)
· ER + k∗ · ek ·G = 0 (33)

and otherwise Γ 1
∗ is distributed uniformly in G. Recall that k∗ must be nonzero

because both H3 and H2 abort with certainty when k∗ = 0. Combining this fact
with the fact that ek 6= 0 or ER 6= 0, we find that 1/kh must have a nonzero
coefficient in Equation 33 if the two hybrids are to be distinguished. Observe
that ER, φ∗, k∗, and ek are fixed before kh is chosen. For each assignment of ER,
φ∗, k∗, and ek, there is exactly one value of kh that satisfies Equation 33, and
consequently, over the (uniform) coins of kh we have Γ 1

∗ = ṽ∗ ·R with probability
1/q and otherwise Γ 1

∗ is distributed uniformly in G. Combining these two cases,
we have Γ 1

∗ = ṽ∗ ·R with probability 2/q− 1/q2, and all other values occur with
probability 1/q − 1/q2. Consequently an adversary can guess the correct value
of Γ 1

∗ and avoid an abort in H2 with probability at most 2/q − 1/q2, which is
negligible in κ. H2 is thus statistically indistinguishable from H3.
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Hybrid H4 . H4 differs from H3 in that it implements Steps 7, 8, 12, and 13
of Sn,t,P∗Inv , replacing Ph’s instructions in Steps 1, 7, 9, and 11 of πn,tInv . Thus,

H4 =
{
IDEALFn,tInv ,(Sn,t,P

∗
Inv ,AP∗ ),Z (z)

}
z∈{0,1}∗,
P∗⊂P:|P∗|=t−1

The view of the adversary is characterized by the values Rh, φh, and Γ 1
h , and

so we must consider the distributions of these variables jointly with the output
values uh and vh in order to argue indistinguishability.

In H3, when ek = 0 and ER = 0, Rh is calculated per Step 6 of πn,tInv as
Rh = uh ·G. Because the honest party samples its instance key share kh uniformly
in Step 1 of πn,tInv , Equation 21 implies that uh is uniform and independent of the
other variables in the adversary’s view, and the uniformity of Rh follows. In
H4, Fn,tInv chooses uh uniformly, and returns R ..= R∗ + uh ·G, from which the
simulator calculates Rh by subtraction. Thus, the distributions of uh and Rh
are identical in H4 and H3.

In H3, φh is sampled uniformly, and given that value the adversary computes

v∗ =
ṽ∗

φh · φ∗
(34)

as specified in Step 11 of πn,tInv . From Equations 34, 21, and 20, and the fact that
ek = 0 and φ∗ 6= 0, we find that in H3

vh =
1

uh + u∗
− v∗ (35)

In H4, on the other hand, Step 12 of Sn,t,P∗Inv implies that vh and φh may be
set in two different ways, depending on the adversary’s choice of ṽ∗. In the case
that ṽ∗ = 0, φh is sampled uniformly by Sn,t,P∗Inv , and Fn,tInv is signaled via the
inv-zero interface, which causes it to set

vh =
1

uh + u∗

Thus, when ṽ∗ = 0, both φh and vh have identical distributions in H4 and H3.
In the case that ṽ∗ 6= 0, Sn,t,P∗Inv uses the inv-output interface to retrieve a

value v∗ from Fn,tInv , which is uniform, but adheres to the relation

vh + v∗ =
1

uh + u∗

which is equivalent to Equation 35. φh is calculated per Step 12 of Sn,t,P∗Inv as

φh =
ṽ∗

v∗ · φ∗

which is equivalent to Equation 34. Thus, regardless of the value of ṽ∗, both φh
and vh have distributions identical to their distributions in H3.
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The final value to consider is Γ 1
h . In H3, it is computed per Step 8 of πn,tInv as

Γ 1
h = ṽh ·R (36)

and because ek = 0, we have from Equations 21 and 20 that

ṽh + ṽ∗ =
φh · φ∗
uh + u∗

which we substitute into Equation 36 to find that

Γ 1
h =

(
φh · φ∗
uh + u∗

− ṽ∗
)
·R (37)

Next, recall that per Steps 6 and 7 of Sn,t,P∗Inv ,

R = (uh + u∗) ·G+ ER (38)

and recall that ER = 0 and Γ 1
∗ = ṽ∗ ·R. Substituting Equation 38 into 37 yields

Γ 1
h = φh · φ∗ ·G− ṽ∗ ·R = φh · φ∗ ·G− Γ 1

∗

which is exactly how Γ 1
h is calculated inH4. Thus the distributions of all variables

are identical in H4 and H3, and the two hybrids are perfectly indistinguishable.
By transitivity, we have also that H4

s≡ H0, and thus Theorem 4.1 is proved.

D Proof of Security for t-of-n ECDSA
In this section, we reduce the security of our setup and signing protocols to the
difficulty of solving the Computational Diffie-Hellman problem in G. As we are
concerned with the security of our threshold signing system over the lifetime of a
public key, and in consideration of the interactions of all participating parties, we
specify a shell protocol πn,tECDSA which orchestrates a signing epoch, in which the
parties perform a single setup as a group, followed by some number of signatures
between subgroups of size t. It is with respect to this shell protocol that we claim
security, and because we claim only static security, we predetermine both the
set of messages to be signed and the subgroups of parties who will participating
in the signing process for each.

Protocol 5. t-of-n ECDSA
(
πn,tECDSA

)
:

This protocol is parameterized by the union of the parameters of its subprotocols;
specifically, by the party count n, the threshold size t, the elliptic curve group
(G, G, q), and the statistical security parameter s. It receives as input a vector
m ∈ {0, 1}∗×∗ of messages and a vector P of groups of parties to sign those
messages, such that each group Pj ⊂ [1, n] is of size t. To each party, it outputs
a vector of signatures.

Setup:

1. The parties jointly run πn,tECDSA-Setup with no inputs. Each party Pi receives
as output the joint public key pk and a point p(i) on the polynomial p.
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Signing:

2. For each message mj in m, let Pj be the group of t parties associated
with that message. Now this group runs πn,t,PECDSA-Sign with P = Pj , each
party Pi for i ∈ P supplying p(i) and all parties supplying mj and
receiving the signature as output.

Theorem 5.1. Let (GGG,G,q) be an infinite sequence of elliptic curves in which
the Computational Diffie-Hellman Problem is hard. The protocol πn,tECDSA UC-
realizes the functionality Fn,tECDSA for this sequence in the (Fn,tInv ,F`2PMul,FRDL,n

Com-ZK,
FnCom)-hybrid model, in the presence of a malicious adversary statically corrupting
up to t− 1 parties.

Proof. We make the simplifying assumption that the adversary makes complete
use of its power by corrupting exactly t − 1 parties with indices given by P∗.
Our proof will be via a sequence of hybrid experiments, beginning with

H0 =
{
REALπn,tECDSA,AP∗ ,Z (z)

}
z∈{0,1}∗,
P∗⊂P:|P∗|=t−1

Due to the length and complexity of this proof, we have divided it into two
sections. In Appendix D.1, we give a hybrid in which the components of the
corrupt parties’ transcripts that are due to the setup protocol πn,tECDSA-Setup are
simulated. In Appendix D.2, we give a further sequence of hybrids that replace
the transcript components due to participation in the signing protocol πn,t,PECDSA-Sign.
We begin by giving a master simulator, which corresponds to πn,tECDSA and calls
upon the simulators we introduce in subsequent sections.

Simulator 4. t-of-n ECDSA against P∗
(
Sn,t,P∗ECDSA

)
:

This simulator interposes between a group of t− 1 malicious parties P∗ ⊂ [1, n]
and the ideal functionality Fn,tECDSA. It is parameterized by the union of the
parameters of the simulators that it calls; specifically, by the party count n, the
threshold t, the elliptic curve (G, G, q), and the statistical security parameter
s. It receives as input a vector of messages m ∈ {0, 1}∗×∗ and a vector P of
party groups with which those messages should be signed.

Setup:

1. Run Sn,t,P∗ECDSA-Setup against the parties indexed by P∗ and receive the public
key pk and a secret key share p(i) for i ∈ P∗.

Signing:

2. For each item mj in m, invoke Sn,t,P∗ECDSA-Sign against P∗ ∩Pj with message
mj , public key pk, a fresh signature index idsig, and the appropriate secret
key shares p(i) for i ∈ P∗ ∩Pj .
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D.1 Simulating Setup

Simulator 5. t-of-n ECDSA Setup against P∗
(
Sn,t,P∗ECDSA-Setup

)
:

This simulator interposes between an evaluation of the πn,tECDSA-Setup protocol
involving the group of t − 1 malicious parties indexed by P∗ and the ideal
functionality Fn,tECDSA. It acts on behalf of of the remaining, non-corrupted
parties, who interact with the functionality. For convenience, let us index these
parties by P∗ = [1, n] \P∗. Sn,t,P∗ECDSA-Setup receives no inputs, and it extracts and
returns Pi’s share of the secret key p(i) for all i ∈ P∗. It is parameterized
by the elliptic curve (G, G, q), and it plays the role of F`2PMul and FRDL,n

Com-ZK in
their interactions with the parties indexed by P∗, and the role of Fn,tInv in its
interaction with the adversary.

Public Key Generation:

1. For all i ∈ P∗ and j ∈ P∗, sample pj(i)← Zq and send pj(i) to party Pi
on behalf of Pj . Receive pi,j(j) from Pi in response.

2. For all i ∈ P∗ and j ∈ P∗, send (committed, j) to Pi on behalf of FRDL,n
Com-ZK.

3. For all i ∈ P∗, receive (com-proof, idcom-zk
i , p(i), Ti) from Pi on behalf of

FRDL,n
Com-ZK.

4. Let p∗ be the joint polynomial chosen (and distributed) by the corrupt
parties; that is, the sum of their individual polynomials. We wish to
check whether this polynomial indeed has degree t− 1 as specified by the
protocol. For i ∈ P∗, calculate

p∗(i) ..= p(i)−
∑
j∈P∗

pj(i)

where p(i) is the value that Pi committed in Step 3 and pj(i) is the value
sent to Pi on behalf of Pj for j ∈ P∗ in Step 1. For each honest party
j ∈ P∗ calculate

p∗(j) ..=
∑
i∈P∗

pi,j(j)

where pi,j(j) is the value received from Pi on behalf of Pj in Step 1.
The values p∗(i) ∀i ∈ [1, n] define a consistent polynomial of degree
t − 1 if and only if for all x ∈ [1, n − t − 1] defining Jx = [x, x + t] and
Jx+1 = [x+ 1, x+ t+ 1],∑

j∈Jx

λJx

j (0) · Tj =
∑

j∈Jx+1

λJx+1

j (0) · Tj
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where λJx

j (y) and λJx+1

j (y) are party Pj ’s Lagrange coefficients for inter-
polating p at location y with the sets of parties indexed by Jx and Jx+1

respectively.

5. If p∗(i) is not a consistent polynomial of degree t − 1 or there is some
i ∈ P∗ for which Ti 6= p(i) · G, then use the following steps to run the
protocol as honest parties would, and afterward abort. Proceed to Step 6
only if p∗(i) is a consistent polynomial of degree t− 1 .

(a) For j ∈ P∗, sample pj(0) ← Zq, and then for j, h ∈ P∗, calculate
party Ph’s point on Pj ’s polynomial

pj(h) ..=
pj(0)

λ
{h}∪P∗

h (0)
−
∑
i∈P∗

λ
{h}∪P∗

i (0)

λ
{h}∪P∗

h (0)
· pj(i)

(b) For j ∈ P∗, calculate party Pj ’s point on the joint polynomial

p(j) ..=
∑
i∈P∗

pi(j) +
∑
i∈P∗

pi,j(j)

(c) For j ∈ P∗, calculate
Tj ..= p(j) ·G

and send (accept, j, Tj) to Pi for all i ∈ P∗ on behalf of FRDL,n
Com-ZK.

(d) For all i ∈ P∗, receive (decom-proof) from Pi on behalf of FRDL,n
Com-ZK.

(e) Abort.

6. Send (init) to the Fn,tECDSA functionality and receive (public-key, pk) in
response.

7. For j ∈ P∗, calculate

Tj ..=
pk

λ
{j}∪P∗

j (0)
−
∑
i∈P∗

λ
{j}∪P∗

i (0)

λ
{j}∪P∗

j (0)
· p(i) ·G

and send (accept, j, Tj) to Pi for all i ∈ P∗ on behalf of FRDL,n
Com-ZK.

8. For all i ∈ P∗, receive (decom-proof) from Pi on behalf of FRDL,n
Com-ZK.

9. If Ti = p(i) ·G for all i ∈ P∗, then output p(i) as Pi’s extracted secret
key share and, after Step 10, terminate successfully. Otherwise, abort.
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Auxiliary Setup:

10. Receive message (init) from the adversary on behalf of Fn,tInv , and for
all i ∈ P∗, receive message (init) from Pi on behalf of F`2PMul. Send
(init-complete) to Pi as appropriate.

Hybrid H1 . This hybrid experiment is the same asH0, except that Sn,t,P
∗

ECDSA-Setup
is completely implemented, replacing all components derived from the invocation
of πn,tECDSA-Setup in the transcripts of all corrupted parties. The polynomials of
the honest parties are uniformly sampled in both H0 and H1. Following the
reception of the corrupted parties’ polynomial points, there are two cases H1,
defined by the abort condition in Step 5 of Sn,t,P∗ECDSA-Setup. In the first case, there
exists x ∈ [1, n− t− 1] such that∑

j∈Jx

λJx

j (0) · Tj 6=
∑

j∈Jx+1

λJx+1

j (0) · Tj

and the simulation aborts. It is trivially true that πn,tECDSA-Setup also aborts in
this case, since the honest parties perform exactly the same test in Step 6 of
πn,tECDSA-Setup, and because the simulator follows the protocol’s instructions exactly
in this case, the messages it sends are identically distributed to their counterparts
in H0. In the second case,∑

j∈Jx

λJx

j (0) · Tj =
∑

j∈Jx+1

λJx+1

j (0) · Tj (39)

for all x ∈ [1, n − t − 1], no abort occurs in either H1 or H0, and the views
of the corrupted parties are characterized by the values Tj for j ∈ P∗. Note
that in both hybrids, Equation 39 implies that these values are completely
constrained by Ti for i ∈ P∗ and pk. In H0, we know that pk is uniform by
virtue of containing an additive, uniform contribution from at least one honest
party. In H1, Sn,t,P

∗

ECDSA-Setup retrieves a uniform pk from Fn,tECDSA, and uses Lagrange
interpolation to reconstruct the appropriate values of Tj . Thus H1 and H0 are
identically distributed.

D.2 Simulating Signing
In this subsection, as in our proof of Theorem 4.1, we make the additional
simplifying assumption that the t − 1 parties corrupted by the adversary are
chosen such that during the signing procedure, P∗ ⊂ P, and only a single honest
party with index h remains.

Before we give a formal description of our simulator and hybrids, we informally
outline our argument, which is structurally similar to our argument for Fn,tInv and
πn,tInv . The adversary’s view is characterized by the values Γ 2

h , Γ
3
h , and sigh, along

with the pattern of aborts. Because the simulator plays the roles of Fn,tInv and
F`2PMul, it can observe the adversary’s inputs and outputs in the Multiplication
and Inversion phase of πn,t,PECDSA-Sign and use this information to choose one of two
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simulation strategies for the subsequent phases. If the adversary’s behavior is
consistent with an honest execution of πn,t,PECDSA-Sign, then the simulator queries
Fn,tECDSA for the nonce R, and because the adversary has behaved honestly, Γ 2

h

and Γ 3
h can be calculated as linear functions of its outputs from Fn,tInv and F`2PMul.

Likewise, the expected values of Γ 2
i and Γ 3

i for i ∈ P∗ can be calculated, and
the simulator aborts if unexpected ones are received. Finally, the simulator
queries Fn,tECDSA for the signature, and sigh is computed as a linear function of its
response and values already known. Thus, when the adversary is honest in the
Multiplication and Inversion phase of πn,t,PECDSA-Sign, the simulation is perfect.

On the other hand, when the adversary behaves dishonestly in the Mul-
tiplication and Inversion phase of πn,t,PECDSA-Sign, the simulator samples its own
instance key without querying Fn,tECDSA, and then aborts unconditionally in the
Consistency Check phase. The simulator effectively runs the code of an honest
party, and so the messages it sends before it aborts are distributed identically to
those of an honest party. The simulation is thus distinguishable from the real
world only if the adversary can behave dishonestly and yet avoid an abort in the
real world. We argue that achieving this is as hard as solving the Computational
Diffie-Hellman Problem.

This simulator can be generalized to the case of acting on behalf of multiple
honest parties via the same transformation we gave for Sn,t,P∗Inv : for each additional
honest party, the simulator runs an instance of the code in πn,t,PECDSA-Sign that
interacts with the corrupt parties, and for the purpose of simulating party h,
these virtual parties are treated adversarially.

Simulator 6. t-of-n ECDSA Signing against P∗
(
Sn,t,P∗ECDSA-Sign

)
:

This simulator interposes between an evaluation of the πn,t,PECDSA-Sign protocol
involving the group of t − 1 malicious parties indexed by P∗ and the ideal
functionality Fn,tECDSA. It acts on behalf of a single honest party Ph, who
interacts with the functionality. Sn,t,P∗ECDSA-Sign receives as input a message m, the
signature id idsig, the public key pk, and Pi’s share of the secret key p(i) for
all i ∈ P∗; it extracts and returns the signature output shared by all parties.
It is parameterized by the elliptic curve (G, G, q) and the statistical security
parameter s, and it plays the roles of FnCom and F`2PMul in their interactions
with the parties indexed by P∗, and the role of Fn,tInv in its interactions with
the adversary.

Multiplication and Inversion:

1. On behalf of Fn,tInv , receive (inv, idinv,P, u∗) from the adversary, and define
h such that P = {h} ∪P∗.

2. Send (get-instance-key, idsig) to Fn,tECDSA on behalf of each Pi for i ∈ P∗

and in response receive (instance-key, idsig, R). Send (exp-output, idinv, R)
to the corrupted parties on behalf of Fn,tInv .

3. Receive either (inv-release, idinv) or (inv-zero, idinv) from the adversary
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on behalf of Fn,tInv . If (inv-zero, idinv) is received, set v∗ ..= 0. Otherwise,
sample v∗ ← Zq. Regardless, send (inv-output, idinv, v∗) to the adversary
on behalf of Fn,tInv .

4. On behalf of F`2PMul, perform the appropriate preprocessing steps for
two party multiplication between Ph and each party Pi for i ∈ P∗.
Next, receive (input, idmul

i,2 , {ski, vi}) from each party Pi and respond with
(output, idmul

i,2 , {w
h,1
i , wh,2i }) where wh,1i ← Zq and wh,2i ← Zq.

5. Compute the true joint secret key and the joint output share of the
corrupt parties

sk∗ ..=
∑
i∈P∗

λ
{h}∪P∗

i (0) · p(i)

w∗ ..= sk∗ · v∗ +
∑
i∈P∗

(
wh,1i + wh,2i

)
and then use the former value to compute the error terms

esk ..=
∑
i∈P∗

ski − sk∗

ev ..=
∑
i∈P∗

vi − v∗

If either esk or ev is nonzero, then abort in Step 7.

Consistency Check:

6. Send (committed, idcomh ) to every party Pi for i ∈ P∗ on behalf of FnCom
and wait for (commit, idcomi ,

(
Γ 2
i ,Γ

3
i

)
,P) such that h ∈ P in response.

7. If either of the error terms esk or ev is nonzero, then abort via the following
procedure. Continue to Step 8 only if both of these terms are zero.

(a) Sample uh and vh uniformly subject to

uh + u∗ =
1

vh + v∗

(b) Compute the check values

Γ 2
h

..=
(
w∗ + sk∗ · ev − vh · esk

)
·G− (v∗ + ev) · pk
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Γ 3
h

..= (1 + ev · (uh + u∗)) · pk +
(
vh · esk − sk∗ · ev − w∗

)
·R

and send (decommitted, idcomh ,
(
Γ 2
h ,Γ

3
h

)
) to every Pi for i ∈ P∗ on

behalf of FnCom.
(c) Abort by sending (abort, idsig) to Fn,tECDSA.

8. Compute the check values

Γ 2
h

..= w∗ ·G− v∗ · pk
Γ 3
h

..= pk− w∗ ·R

and send (decommitted, idcomh ,
(
Γ 2
h ,Γ

3
h

)
) to every P∗i for i ∈ P∗ on behalf

of FnCom.

9. If ∑
j∈{h}∪P∗

Γ 2
j 6= 0 or

∑
j∈{h}∪P∗

Γ 3
j 6= pk

then abort by sending (abort, idsig) to Fn,tECDSA.

Signing:

10. Send (proceed, idsig, i) to Fn,tECDSA on behalf of each Pi for i ∈ P∗ and
receive (signature, idsig, sig) in response.

11. Compute Ph’s share of the final signature

sig∗
..= H(m) · v∗ + rx · w∗

sigh
..= sig − sig∗

and send sigh to every Pi for i ∈ P∗ on behalf of Ph, and halt successfully.

Hybrid H2 . This hybrid implements Steps 1 through 6 of Sn,t,P∗ECDSA-Sign, as well
as Step 7, but conditioned only on esk 6= 0, replacing Ph’s instructions in Steps 1
through 4 of πn,t,PECDSA-Sign, and replacing Step 5 in the case that an abort is
triggered. Apart from the partial implementation of Step 7 of Sn,t,P∗ECDSA-Sign, these
changes are purely syntactical, and so this hybrid differs from H1 according to
the fact that it aborts unconditionally when∑

i∈P∗

ski 6= sk∗

and according to the distributions of the values Γ 2
h and Γ 3

h when an abort is
actually triggered via this condition. We argue first that the distributions of
the latter two values are identical between H2 and H1, and then show how
an adversary who avoids an abort when esk 6= 0 can be used to solve the
Computational Diffie-Hellman Problem.
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Recall that in H1, per Step 5 of πn,t,PECDSA-Sign, Ph computes

Γ 2
h = vh · pk− wh ·G (40)

and that according to Step 4 of πn,t,PECDSA-Sign we have

wh = skh · vh +
∑
i∈P∗

(
wi,1h + wi,2h

)
(41)

and that per Step 3 of πn,t,PECDSA-Sign and the specification of F`2PMul, for i ∈ P∗,

wi,1h + wi,2h = skh · (v∗i + evi ) + (sk∗i + eski ) · vh − wh,1i − wh,2i (42)

where sk∗i is Pi’s additive share of sk as calculated from the known value of p(i),
v∗i is Pi’s additive share of the adversary’s output v∗ from Fn,tInv , and evi and eski
are additive error terms that Pi can freely choose to include in their inputs to
F`2PMul. If we define

esk =
∑
i∈P∗

eski and ev =
∑
i∈P∗

evi

then via substitution of Equations 41 and 42 into Equation 40,

Γ 2
h = vh · pk−

skh · vh +
∑
i∈P∗

(
wi,1h + wi,2h

) ·G
=

vh · sk∗ −∑
i∈P∗

(
wi,1h + wi,2h

) ·G

=


vh · sk∗ − skh ·

∑
i∈P∗

(v∗i + evi )

− vh ·
∑
i∈P∗

(
sk∗i + eski

)
+
∑
i∈P∗

(
wh,1i + wh,2i

)
 ·G

=

∑
i∈P∗

(
wh,1i + wh,2i

)
− skh · (v∗ + ev)− vh · esk

 ·G (43)

Observe next that in H2, per Step 5 of Sn,t,P∗ECDSA-Sign,∑
i∈P∗

(
wh,1i + wh,2i

)
= w∗ − sk∗ · v∗ (44)

Thus via substitution of Equation 44 into Equation 43, we have

Γ 2
h =

(
w∗ − sk∗ · v∗ − skh · (v∗ + ev)− vh · esk

)
·G

=
(
w∗ − skh · ev − vh · esk

)
·G− v∗ · pk
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=
(
w∗ + sk∗ · ev − vh · esk

)
·G− (v∗ + ev) · pk (45)

which is exactly how Γ 2
h is calculated in H2 per Step 7 of Sn,t,P∗ECDSA-Sign. Thus Γ 2

h

is distributed identically in H2 and H1. Now consider the distribution of Γ 3 in
H1. Specifically, recall that per Step 5 of πn,t,PECDSA-Sign, Ph computes

Γ 3
h = wh ·R (46)

which, via substitution of Equations 41 and 42 yields

Γ 3
h =

skh · vh +
∑
i∈P∗

(
wi,1h + wi,2h

) ·R

=


skh · vh + skh ·

∑
i∈P∗

(v∗i + evi )

+ vh ·
∑
i∈P∗

(
sk∗i + eski

)
−
∑
i∈P∗

(
wh,1i + wh,2i

)
 ·R

=

skh · vh + skh · (v∗ + ev)

+ vh ·
(
sk∗ + esk

)
−
∑
i∈P∗

(
wh,1i + wh,2i

) ·R (47)

Now recall that in H2, Equation 44 holds, and that per the specification of Fn,tInv ,

(vh + v∗) ·R = G (48)

and so by substitution of Equations 44 and 48 into Equation 47 we have

Γ 3
h =

(
skh · vh + skh · (v∗ + ev) + vh ·

(
sk∗ + esk

)
+ sk∗ · v∗ − w∗

)
·R

= (skh + sk∗) ·G+
(
skh · ev + vh · esk − w∗

)
·R

= pk +
(

(sk− sk∗) · ev + vh · esk − w∗
)
·R

= (1 + ev · (uh + u∗)) · pk +
(
vh · esk − sk∗ · ev − w∗

)
·R (49)

which is exactly how Γ 3
h is calculated in H2 per Step 7 of Sn,t,P∗ECDSA-Sign. Thus

Γ 3
h is also distributed identically in H2 and H1, and the two hybrids can be

distinguished only by their distributions of aborts.
Consider the distinguishing case: that the adversary uses inputs in H1 such

that it would be the case in H2 that esk 6= 0, and yet avoids an abort. Avoidance
of an abort implies that ∑

i∈P∗

Γ 2
i = −Γ 2

h

which, via substitution of Equation 45, yields∑
i∈P∗

Γ 2
i = (v∗ + ev) · pk +

(
vh · esk − w∗ − sk∗ · ev

)
·G
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from which, by rearrangement, we derive

vh ·G =
1

esk

(w∗ + sk∗ · ev) ·G− (v∗ + ev) · pk +
∑
i∈P∗

Γ 2
i

 (50)

Notice that the right hand side is well defined and computable inH2, and recall
that R = G/(vh + v∗) per the specification of Fn,tInv . Thus, given a distinguisher
for H2 and H1 and a uniform challenge X = x ·G, where x is unknown, we can
generate the views of the corrupt parties as per H2, programming R ..= X+v∗ ·G,
and then retrieve G/x via Equation 50. Doerner et al. [DKLs18] (Corollary F.2.1)
show that if there exists an algorithm to compute G/x given a random challenge
X = x ·G which succeeds with probability ε, then there exists a reduction that
solves the Computational Diffie-Hellman Problem with probability ε6. Thus,
under the Computational Diffie-Hellman Assumption, H2 is computationally
indistinguishable from H1.

Hybrid H3 . Implement Step 7 of Sn,t,P∗ECDSA-Sign completely. The only difference
between this hybrid and H2 is that this hybrid aborts with certainty when ev 6= 0,
whereas H2 aborts according to the instructions in Step 7 of πn,t,PECDSA-Sign; values
in the view of the adversary are identical are identically distributed, even in the
case of an abort.

Consider the distinguishing case: that the adversary uses inputs such that
ev 6= 0, and yet avoids an abort. Avoidance of an abort implies that∑

i∈P∗

Γ 3
i = pk− Γ 3

h

and by substitution of Equation 49, we have∑
i∈P∗

Γ 3
i =

(
w∗ + sk∗ · ev − vh · esk

)
·R− ev · (uh + u∗) · pk

which, by rearrangement, yields

(uh + u∗) · pk =
1

ev
·

(w∗ + sk∗ · ev − vh · esk
)
·R−

∑
i∈P∗

Γ 3
i

 (51)

Notice that the right hand side is well defined and computable in H3, and
recall that R = (uh + u∗) · G per the specification of Fn,tInv . Thus, given a
distinguisher for H3 and H2 and a uniform challenge (X,Y ) such that X = x ·G
and Y = y ·G for unknown values of x and y, we can generate the corrupt parties’
views as per H2, programming pk ..= X and R ..= Y , and then retrieve x · y ·G
via Equation 51, solving the Computational Diffie-Hellman Problem for X and
Y with no loss in probability relative to the success of the distinguisher. Thus,
under the Computational Diffie-Hellman Assumption, H3 is computationally
indistinguishable from H2.
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Hybrid H4 . This hybrid implements the remaining instructions in Sn,t,P∗ECDSA-Sign
(i.e. Steps 8 through 11), replacing the instructions in Steps 5 through 9 of
πn,t,PECDSA-Sign. Note that this hybrid differs from H3 only when the abort conditions
in 7 of Sn,t,P∗ECDSA-Sign are not triggered, and thus our argument considers this case
only. The view of the adversary is characterized by the values Γ 2

h , Γ
3
h , and sigh,

as well as the abort condition in Step 9 of Sn,t,P∗ECDSA-Sign. We know that when an
abort is not triggered in Step 7 of Sn,t,P∗ECDSA-Sign, esk = 0 and ev = 0.

Per Step 8 of Sn,t,P∗ECDSA-Sign, we have in H4 that

Γ 2
h = w∗ ·G− v∗ · pk and Γ 3

h = pk− w∗ ·R

and via Steps 3 through 5 of Sn,t,P∗ECDSA, the specification of Fn,tInv and F`2PMul, and
the facts that esk = 0 and ev = 0, we know that

w∗ = (skh + sk∗) · (vh + v∗)− wh
G = (wh + w∗) ·R

and so, by substituting the latter two equations into the previous two, we have

Γ 2
h = vh · pk− wh ·G and Γ 3

h = wh ·R

which is exactly the pair of equations used to calculate the check values in H3,
per Step 5 of πn,t,PECDSA-Sign. Thus, these values are distributed identically in H4

and H3. Because the abort conditions in Step 7 of πn,t,PECDSA-Sign and Step 9 of
Sn,t,P∗ECDSA-Sign depend only upon these values, the distribution of aborts is identical
between the two hybrids as well. Finally, we must consider the distribution of
sigh. In H4, per Step 11,

sigh = sig −H(m) · v∗ − rx · w∗

We know that in H3, per Steps 8 and 9,

sig = H(m) · (vh + v∗) + rx · (wh + w∗)

and by substituting this into the previous equation we derive

sigh = H(m) · vi + rx · wi

which is exactly how sigh is computed in H3, per Step 9 of πn,t,PECDSA-Sign. Thus H4

is distributed identically to H3.
Because Sn,t,P∗ECDSA-Setup and Sn,t,P∗ECDSA-Sign are completely implemented, we have

H4 =
{
IDEALFn,tECDSA,(Sn,t,P

∗
ECDSA ,AP∗ ),Z (z)

}
z∈{0,1}∗,
P∗⊂P:|P∗|=t−1

and by the foregoing sequence of hybrids, H4
c≡ H0; in other words, the view

of a static adversary corrupting t − 1 parties in the real world is computa-
tionally indistinguishable from a simulated execution of the same set of pro-
tocol instances under the Computational Diffie-Hellman Assumption in the
(Fn,tInv ,F`2PMul,FRDL,n

Com-ZK,FnCom)-hybrid model, and Theorem 5.1 is proved.
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