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Abstract—Address clustering tries to construct the one-to-many
mapping from entities to addresses in the Bitcoin system.
Simple heuristics based on the micro-structure of transactions
have proved very effective in practice. In this paper we describe
the primary reasons behind this effectiveness: address reuse,
avoidable merging, super-clusters with high centrality, and
the incremental growth of address clusters. We quantify their
impact during Bitcoin’s first seven years of existence.

1. Introduction

Bitcoin is a double-edged sword for financial privacy. It
allows anyone to conduct financial transactions with anyone
else in the world without having to divulge identifying
information to intermediaries. However, it requires those
transactions to be broadcast to the world. The contents of the
transactions, their relationship with other transactions, and
the very act of broadcasting the transactions themselves may
unintentionally disclose information about the transactors
to interested third parties. In fact, many interested third
parties systematically gather and analyse this information
for reasons such as market research, competitor analysis,
compliance, and law enforcement.

Address clustering is a cornerstone of this analysis. It
partitions the set of addresses observed in Bitcoin trans-
actions into maximal subsets of addresses that are likely
controlled by the same entity. Each subset in the partition
is an address cluster. When combined with address tagging
(associating real-world identities with addresses) and graph
analysis, it is an effective means of analysing Bitcoin activity
at both the micro- and macro-levels, see, e.g., [1]–[8].
Experimental analysis has shown that a single heuristic (the
multi-input heuristic) can identify more than 69% of the
addresses in the wallets stored by lightweight clients.

As a token of its effectiveness, consider Fig 1. This is a
graphical summary of the most significant flows of bitcoin
between the largest address clusters during Bitcoin’s first
five years in existence. Using publicly available information,
we can identify all but the gray vertices: the red vertices are
darknet markets; the purple vertices are gambling services;
the green vertices are exchanges and the blue vertices are
mining pools. The labels for the exchanges and mining
pools, although known, are omitted to avoid indiscriminately

linking their identities to darknet markets without fully
presenting the methodology behind this summary and the
definitions for “most significant flows” and “largest address
clusters”. However, it is based on the methodologies pre-
sented in the papers above and relies on address clustering
at its core.

This paper considers the reasons behind the effectiveness
of address clustering using the multi-input heuristic [9]. This
heuristic assumes that the addresses in transaction outputs
redeemed in a multi-input transaction were controlled by
the same entity. Although not true in the general case, it
is a useful heuristic in practice. In Sect. 2 we briefly list
some related work. In Sections 3 and 4 we study address
cluster counts and sizes. We quantify the levels of address
reuse and cluster merging. We observe “super-clusters” and
analyse their centrality. We study the formation and structure
of address clusters in Sect. 5. We conclude with some future
work in Sect. 6.

2. Related Work

Address clusters are the fundamental building-blocks on
which many high-level blockchain analyses are performed.
They can be constructed using the multi-input heuristic
as noted by Bitcoin’s creator [9]. Reid and Harrigan [1]
considered the impact of address clusters on anonymity. This
approach can be augmented with change heuristics [2], [3],
[6], temporal behaviour [5], [10] and transaction fingerprint-
ing [7]. Although the analyses in the present paper are based
on the multi-input heuristic only, they can be extended to
any combination of heuristics.

Nick [11] analysed the performance of several clustering
heuristics by exploiting a vulnerability in connection Bloom
filtering used by lightweight clients. He found that the multi-
input heuristic can identify more than 69% of the addresses
in the vulnerable wallets.

Ober et al. [4] studied the sizes and lifespans of address
clusters and showed that the sizes of the address clusters fol-
low a scale-free distribution. Lischke and Fabian [8] showed
that major darknet markets, gambling services, exchanges
and mining pools were major hubs in the address cluster
graph (similar to Fig. 1 but not limited to the largest address
clusters) during Bitcoin’s first four years of existence.
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Figure 1. A graphical summary of the most significant flows of bitcoin between the largest address clusters during Bitcoin’s first five years in existence.
The vertices correspond to address clusters: red vertices are darknet markets; purple vertices are gambling services; green vertices are exchanges and blue
vertices are mining pools. The gray vertices are not immediately identifiable using publicly available information.

Maxwell described CoinJoin [12], a protocol for trust-
less centralised Bitcoin mixing. This causes the multi-input
heuristic to produce false positives. CoinJoin is a centralised
mixing protocol; it requires a third-party or CoinJoin server
to operate. Other protocols in this category include Mix-
coin [13] and Blindcoin [14]. Decentralised mixing pro-
tocols do not require any third-party, trusted or trustless.
Protocols in this category include CoinSwap [15], Coin-
Shuffle [16] and CoinParty [17]. Shentu and Yu [18] review
several trustless Bitcoin protocols.

Möser et al. [19], [20] considered the implications of
blockchain analyses, including address clustering, for anti-
money laundering. Imwinkelreid [21] discussed its implica-
tions for digital forensics.

3. Counting Address Clusters

The following analyses were performed when the block
at the tip of the Bitcoin blockchain was at height 396 577
and the last eight hexadecimal digits of the block hash were
900a6f4c.

Figure 2 compares the monthly counts of transactions
(red line) with the monthly counts of new addresses (blue
line). The number of new addresses has grown in line with
the number of transactions. The monthly counts of address
clusters (green line) with at least two addresses has grown
at a much slower rate.

We consider the relationship between these counts in
Fig. 3. We plot the number of new addresses observed per
transaction (purple line) and the number of newly merged
address clusters created per transaction (orange line). To
adjust for the rapid growth in transactions in Bitcoin’s recent
history, we replace the horizontal time axis with ordinal
transaction numbers: this compresses low-activity periods
and expands high-activity periods. We observe that both
ratios have been relatively stable for the past two years and

Figure 2. A plot of the monthly counts of transactions (red line), new
addresses (blue line) and address clusters (green line) with at least two
addresses. For the past two years, the monthly number of new addresses
is greater than the monthly number of transactions.

that the former is an order of magnitude larger than the
latter.

Can we establish upper bounds for the two ratios?
Nakamoto [9] suggested that “a new key pair should be
used for each transaction to keep them from being linked
to a common owner.” This is from the perspective of the
payee(s) only; if the payer requires additional transaction
outputs, say, for change, they should also use a new ad-
dress. For transaction outputs that contain Pay-to-PubKey
and Pay-to-PubKey-Hash scripts, the number of transaction
outputs per transaction is an upper bound for the number
of new addresses per transaction. This can be adjusted for
transaction outputs that contain OP_RETURN scripts, multi-



Figure 3. A plot of the ratios of new addresses per transaction (purple line)
and newly merged address clusters per transaction (orange line). The max-
imum addresses per transaction (brown line) and non-trivial transactions
per transaction (pink line) are respective upper bounds.

signature scripts and Pay-to-Script-Hash scripts where the
redemption script is known (brown line). The gap between
the brown and purple lines is a measure of the level of
address reuse; the wider the gap the greater the level of
address reuse.

Similarly, the fraction of transactions that spend at least
two transaction outputs assigned to different addresses (pink
line) is an upper bound for the number of newly merged ad-
dress clusters per transaction. We refer to these transactions
as being non-trivial. If every transaction output created a
new address then every non-trivial transaction would create
a newly merged address cluster. The gap between the pink
and orange lines is a measure of the level of cluster merging;
the wider the gap the greater the level of cluster merging.
Even in the presence of address reuse, this gap could be
narrowed through the use of merge avoidance [22], [23].

The existence of both gaps is significant. New key pairs
are not being generated for every transaction allowing the
multi-input heuristic to link addresses to a common owner.
This is one reason that address clustering is unreasonably
effective. There is considerable reuse of addresses and merg-
ing of address clusters. We will discuss a second reason in
the next section.

4. Measuring Cluster Sizes

The address clusters with at least two addresses are
binned by size in Fig. 4. Both the horizontal and the vertical
axes use logarithmic scales. We observe the presence of
“super-clusters”: there are 1955 address clusters with at least
1000 addresses but less than 10 million addresses. They
cover 22% of all of the addresses represented in Fig. 4 and

Figure 4. A histogram showing the number of address clusters with at least
two addresses in each size range.

16% of all of the addresses observed at the time of the
analysis.

We exclude the single address cluster with greater than
10 million addresses. This address cluster originally be-
longed to the Mt. Gox exchange that, for a time, allowed
users to import private-keys directly from their wallets. This
feature causes the multi-input heuristic to produce false
positives and requires more advanced heuristics to separate
the Mt. Gox addresses. We will discuss this issue in Sect. 5.

The super-clusters are not only large in terms of the
number of addresses they contain, they are also hubs in
terms of the number of transactions they are involved in.
At the time of the analysis, the 107 million transactions
created 319 million transaction outputs and redeemed 285
million of those through transaction inputs. Of those, the
super-clusters were responsible for 72 million or 23% of the
transaction outputs and 51 million or 18% of the transaction
inputs. If we can link identities to the super-clusters then we
can identify at least one of the transactors in a considerable
number of transactions.

Lischke and Fabian [8] made a related finding – they
analysed the degree centrality of the vertices in a network
similar to the one in Fig. 1 but not limited to the largest
address clusters, and found that the vertices representing
the major darknet markets, gambling services, exchanges
and mining pools had the highest degree centralities.

The existence and centrality of super-clusters is another
reason that address clustering is unreasonably effective.
Many of the major services reuse addresses and generate
super-clusters thereby identifying much of their on-chain
activity. Furthermore, this identifies much of the activity
between the service and their users: deposits and with-
drawals can be easily identified. This can be exploited
to produce “wallet explorers” such as WalletExplorer.com.
It also makes the services vulnerable to re-identification
attacks [2].

WalletExplorer.com


Figure 5. A plot of the q − 1th q-quantiles for q =
100, 1000, 10000, 100000 of the distributions of the increases in
cluster size due to merging for every 250 000 transactions. The increases
are heavily concentrated around median values of one. For the past 30
million transactions, the 99th percentiles are also at one.

Major services can avoid creating super-clusters. For ex-
ample, Coinbase, the Bitcoin exchange and wallet provider,
does not create a super-cluster that identifies all activity
between the service and their users. They are notably absent
from many high-level blockchain analyses. This is not to
say that they do not create any large clusters. It simply
means that the multi-input heuristic alone is insufficient for
identifying all of their on-chain activity.

5. Formation and Structure

The address clustering heuristics listed in Sect. 2 cause
address clusters to merge. We are not aware of any published
heuristics that cause address clusters to split, e.g. to counter
the mixing protocols in Sect. 2 or to partition the Mt. Gox
address cluster in Sect. 4. When address clusters merge,
we can measure the increases in size of the newly merged
cluster. For example, suppose a transaction causes four
address clusters of sizes 1, 1, 2 and 10 to merge. This
can be represented by increases of 1, 1 and 2. Consider-
ing the multi-input heuristic only, the distribution of these
increases is heavily concentrated around a median value
of one. Figure 5 plots the 99th percentile, 999th permille,
9999th 10 000-quantile and 99 999th 100 000-quantile for
every 250 000 transactions. We observe that large increases
in address cluster sizes are rare. The multi-input heuristic
usually merges at most one large address cluster with one or
more small address clusters, but rarely merges two or more
large address clusters.

This behaviour can be visualised as follows. Consider
a bipartite graph for each address cluster generated using
the multi-input heuristic where each vertex represents either
an address (an address vertex) or a transaction (a trans-
action vertex) and each edge between an address vertex

Figure 6. A bipartite graph representing the structure of an address cluster:
white vertices are addresses; gray vertices are transactions; edges connect
transaction vertices to address vertices when the corresponding transac-
tion spends transaction outputs that were assigned to the corresponding
addresses.

and a transaction vertex represents the transaction spending
a transaction output that was controlled by the address.
Figure 6 is the bipartite graph for a typical address cluster1.
The white vertices are the address vertices. The address
vertices that correspond to addresses with non-zero balances
are annotated with their current and all-time maximum
balances. The majority of addresses have zero balances. The
gray vertices are the transactions – they connect together
the addresses to form the address cluster. Address vertices
that are connected through multiple independent paths have
multiple independent sets of transactions indicating that they
are part of the same address cluster.

This graph was formed by small address clusters (the
singleton address vertices along the periphery) merging with
the large address cluster, through transaction vertices that
connected the singleton address vertices to address vertices
with non-zero balances. It is rare for such a graph to form
as two large disconnected components, each containing at
least one address vertex with a non-zero balance, and then
to merge into a single connected component.

Address clusters that form when two large address clus-
ters merge can be flagged as exhibiting unusual merging
activity. This can be extended to a heuristic for splitting
address clusters that may not be controlled by the same
entity. For example, if we identify the 0.01% of transactions
that resulted in the largest increases in cluster size during

1. The address cluster contains the address
1H7RNFmAbtMgVJzK72hNFerGBfKuRekTMU: it received bitcoins
from a mining pool (DeepBit), sent bitcoins to exchanges (Mt. Gox and
Bitcoin.de) and purchased goods through a Bitcoin payment processor
(BitPay).

Bitcoin.de


the lifetime of the Mt. Gox exchange (July 2010 to February
2014), then the majority of those transactions spend trans-
action outputs that were controlled by the Mt. Gox address
cluster. This is likely due to their private-key import feature.

The incremental growth of address clusters is beneficial
for many high-level blockchain analyses. The address clus-
tering is relatively stable over time. It is a rarity for two large
address clusters to merge, thereby drastically changing the
results of an earlier analysis. If fact, if two large address
clusters do merge, it may indicate that the multi-input
heuristic has produced a false positive. Furthermore, the
address clustering is suitable for real-time analyses. Small
address clusters merge with large address clusters early in
their lifetime and the large address clusters are more likely
to have identifying information associated with them.

6. Conclusion and Future Work

We have enumerated and analysed the primary reasons
behind the effectiveness of address clustering using Bitcoin’s
blockchain. These are the high-levels of address reuse and
avoidable merging; the existence of super-clusters with high
centrality, and the incremental growth of address clusters.

The results can inform and help blockchain analysts.
For example, the super-clusters are primary targets for re-
identification attacks. The technique at the end of Sect. 5
can flag address clusters that may include addresses from
more the than entity.

The opposing camp, those seeking to hinder blockchain
analysis, can also benefit from these results. For exam-
ple, the adoption and impact of privacy-enhancing tech-
niques such as merge avoidance and Elliptic Curve Diffie-
Hellman-Merkle (ECDHM) address schemes, e.g. stealth
addresses [24], reusable payment codes (BIP47) [25] and
out of band address exchange (BIP75) [26], can be measured
indirectly through the gap between the number of non-trivial
transactions and the number of address clusters created or
merged per transaction (see Sect. 3).

Our future work revolves around the internal structure
of address clusters, à la the bipartite graph in Fig. 6. This
representation shows the structure of an address cluster
beyond a simple set of addresses and may provide further
insight into its formation and behaviour.
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