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Abstract

In this paper we analyze the technology used as a backbone of iota (a cryp-
tocurrency for Internet-of-Things industry). This technology naturally suc-
ceeds the blockchain technology as its next evolutionary step and comes out
with features required for micropayments conducted on a global scale.

1 General description of the system

The rise and success of Bitcoin during the last six years proved the value of blockchain
technology. However, this technology also has a number of drawbacks, which prevent
it to be used as a one and only global platform for cryptocurrencies. Among these
drawbacks, an especially notable one is the impossibility of making micro-payments,
which have increased importance for the rapidly developing Internet-of-Things in-
dustry. This justifies a search for solutions essentially different from the blockchain
technology, on which the Bitcoin and many other cryptocurrencies are based. In the
present whitepaper we propose a cryptocurrency system called iota, that can be used
for creation of world-wide money for Internet-of-Things using existing hardware.

In general, iota works in the following way. As mentioned before, there is no global
blockchain; on its place there is a DAG (directed acyclic graph), also called tangle.
The transactions issued by nodes constitute the site set of this DAG. Its edge set is
obtained in the following way: when a new transaction arrives, it must approve two
previous transactions; these approvals are represented by directed edges, as shown
on Figure 1 and others (on the pictures, times always goes from left to right). If
there is a directed path of length at least two from transaction A to transaction B,
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we say that A indirectly approves B. The idea is that, as a transaction gets more
and more (direct or indirect) approvals, it becomes more accepted by the system; in
other words, it becomes more difficult (or even practically impossible) to make the
system accept a double-spending transaction.

In the subsequent sections, we discuss algorithms for choosing the two transac-
tions to accept, the rules for measuring the overall transaction’s approval (Section 3
and especially Section 3.1), and possible attack scenarios (Section 4). Also, in the
unlikely event that the reader is scared by the formulas, (s)he can jump directly to
the “conclusions” part in the end of corresponding section.

Also, it should be noted that the ideas about usage of DAGs in the cryptocurrency
context were around for some time, see e.g. [1, 2, 3]. Especially, observe that in the
work [2] a solution similar to ours was proposed.

2 Weights and more

Here, we define the (own) weight of a transaction and related concepts. The weight
of a transaction is proportional to the amount of work that the issuing node invested
into it; in practice, the weight may assume only values 3n, where n is positive integer
and belongs to some nonempty interval of acceptable values.

This algorithm of cumulative weights calculation is illustrated on Figure 1. The
boxes represent transactions; the small numbers in the SE corner stand for the
own weights of the transactions, while the (bigger) bold numbers are the cumula-
tive weights. For example, the transaction F is approved, directly or indirectly, by
the transactions A,B,C,E. The cumulative weight of F is 9 = 3 + 1 + 3 + 1 + 1, the
sum of the weight of F and the weights of A,B,C,E.

On the top picture, the only unapproved transactions (the “tips”) are A and C.
When the new transaction X comes and approves A and C, it becomes the only tip;
the cumulative weight of all other transactions increases by 3 (which is the weight
of X).

For the discussion of approval algorithms, we need also to introduce some other
variables. First, for a site (i.e., a transaction) of the tangle, we introduce its

• height, as the length of the longest oriented path to the genesis;

• depth, as the length of the longest reverse-oriented path to some tip.

For example, on Figure 2, G has height 1 and depth 3 (because of the reverse path
F,B,A), while D has height 2 and depth 2. Also, let us introduce the notion of the
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Figure 2: On the calculation of scores (circled)

score. By definition, the score of a transaction is sum of own weights of all transactions
approved by this transaction plus the own weight of the transaction See Figure 2.
Again, the only tips are A and C. Transaction A approves (directly or indirectly)
transactions B,D, F,G, so the score of A is 1 + 3 + 1 + 3 + 1 = 9. Analogously, the
score of C is 1 + 1 + 1 + 3 + 1 = 7.

3 Stability of the system, and cutsets

Let L(t) be the total number of tips (i.e., unapproved transactions) in the system
at time t. One, of course, expects that the stochastic process L(t) remains stable
(more precisely, positive recurrent). Intuitively, L(t) should fluctuate around a con-
stant value, and not escape to infinity (thus leaving a lot of unapproved transactions
behind).

To analyze the stability properties of L(t), we need some assumptions. Let λ
be the rate of the input (Poisson) flow of transactions; for simplicity, let us assume
for now that it remains constant. Assume that all devices have approximately the
same computing power, and let h(L,N) be the average time a device needs to do
the calculations necessary to issue a transaction in the situation when there are L
tips and the total number of transactions is N . First, we consider the strategy when,
to issue a transaction, a node just chooses two tips at random and approves them.
In this case, one may assume that the Poisson flows of approvals to different tips
are independent, and have rate λ/L (this follows e.g. from Proposition 5.2 of [4]).
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Therefore,

P[nobody approves a given tip during time h(L,N)] = exp
(
− λh(L,N)

L

)
. (1)

This means that the expected increment of the total number of tips at the moment
when our device issues a transaction equals to

1− 2 exp
(
− λh(L,N)

L

)
(2)

(in the above formula, “1” corresponds to the new tip created by the transaction,
and the second term is the expected number of “erased” tips). Now, L(t) is in fact a
continuous-time random walk on N = {1, 2, 3, . . .}, with nearest-neighbor transitions.
Indeed, if the two chosen transactions were already approved by others, then the
process jumps one unit to the left, if both chosen transactions were not approved,
then the process jumps one unit to the right, and in the last possible case it remain
on the same place.

Now, to understand the typical behavior of the process, observe that the drift
in (2) is positive for small L and negative (at least in the case when h(L,N) = o(L) as
L→∞; or just assuming that the main contribution to the computation/propagation
time does not come from handling the tips) for large L. The “typical” value of L
would be where (2) vanishes, that is, L0 such that

L0 ≈
λh(L0, N)

ln 2
≈ 1.44 · λh(L0, N). (3)

Clearly, L0 defined above is also the typical size of the set of tips. Also, the expected
time for a transaction to be approved for the first time is around L0/λ.

Also, observe that (at least in the case when the nodes try to approve tips) at any
fixed time t the set of transactions that were tips at some moment s ∈ [t, t+h(L0, N)]
typically constitutes a cutset, in the sense that any path from a transaction issued at
time t′ > t to the genesis must pass through this set. It is important that the size of
the cutsets becomes small at least occasionally; one may then use the small cutsets
as checkpoints, for possible DAG pruning and other tasks.

Now, the above “purely random” strategy is not very good in practice, because
it does not encourage approving tips: a “lazy” user could just always approve a fixed
couple of very old transactions (and therefore not contributing to approval of more
recent transactions) without being punished for such behavior. To discourage the
behavior of this sort, one has to adopt a strategy which is biased towards the tips
with higher score.

5



Figure 3: The tangle and its typical tip sets (shaded) in low load and high load
regimes. Observe that in the latter case some transactions may have to wait a lot
until approved for the first time.

An example of such a strategy can be the following. Fix a parameter α ∈ (0, 1);
then, choose the two transactions to approve between the top αL (with respect to
their score). The same considerations as above imply that the typical size of the set
of tips will be

L
(α)
0 ≈

λh(L0, N)

α ln 2
≈ 1.44 · α−1λh(L0, N). (4)

As for the expected time for a transaction to be approved for the first time, the
situation a bit more complicated. We can distinguish essentially two regimes (see
Figure 3):

• low load: the flow of transactions is slow enough, so that, even in the case when
the number of tips is small, it is not probable that several different transactions
approve the same tip;

• high load: the flow of transactions is big enough, so that typically the number
of tips remains large.

In the low load regime, the situation is relatively simple: the first approval happens
in average time of order λ−1, since already the first (or one of the first) incoming
transactions will approve our transaction.

Let us now consider the high load regime. First, if the transaction did not make it
into the top αL, then this waiting time can be quite large, of order exp(cL

(α)
0 ) (since
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there is a drift towards L
(α)
0 for smaller values of L and the size of the tip set needs to

become much smaller than L
(α)
0 for that transaction to be considered for approval).

Therefore, a good strategy for the owner of such a transaction would be to issue
an additional empty transaction referencing the first one, and hope that this new
transaction enters into the top αL. Also, similarly to the above, if the transaction is
one of the top αL, then with constant probability it will have to wait around L0/λ

time units to be approved for the first time (observe that αL
(α)
0 = L0). However, if

that did not happen, then the transaction may fall below the top αL, and then a
good strategy will be to promote it with an additional empty transaction.

Another easy strategy would be to pick, say, five random tips (among all of them),
and approve the top two between these five. Again, if your transaction was not
approved during time Θ(L0/λ) = Θ(h(L0, N)), it is a good idea to promote it with
an additional empty transaction.

We also notice that the approval strategy may be further modified, for example,
to prevent spamming. For example, the nodes might prefer tips with bigger own
weight, making it more difficult for the spammer to have his transactions approved.

Now, it turns out that the approval strategies based on heights and scores may
be vulnerable to a specific type of attacks, see Section 4.1. We will discuss more
elaborated strategies to defend against such attacks in that section. Nevertheless, it
is still worth considering the simplest tip selection strategy (“approve two random
tips”), since it is the easiest to analyse, and therefore may give some insight about
the qualitative and quantitave behavior of the system.

Conclusions:

1. We distinguish between two regimes, low load and high load, as depicted on
Figure 3.

2. In the low load regime, usually there are not many tips (say, one or two), and
a tip gets approved for the first time in Θ(λ−1), where λ is the rate of the
incoming flow of transactions.

3. In the high load regime, the typical number of tips depends on the approval
strategy (i.e., how the new transaction chooses the other two transactions for
approval).

4. For the “approve two random tips” strategy, the typical number of tips is given
by (3). It can be shown that this strategy is optimal with respect to the typical
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number of tips; however, it is not practical to adopt it because it does not
encourage approving tips.

5. For the strategy “approve two random tips among top αL(t)” (which does not
have the above disadvantage), the typical number of tips is given by (4).

6. however, more elaborated strategies are needed; a family of such strategies will
be described in Section 4.1.

7. In the high load regime, the typical time until a tip is approved is Θ(h), where h
is the average computation/propagation time for a node. However, if the first
approval did not occur in the above time interval, it is a good idea (for the
issuer/receiver) to promote that transaction with an additional empty transac-
tion.

3.1 How fast the cumulative weight typically grow?

In the low load regime, after our transaction gets approved several of times, its
cumulative weight will grow with speed λw, where w is the average weight of a
generic transaction, since essentially all new transactions will indirectly reference our
transaction.

As for the high load regime, as observed earlier in this section, if a transaction is
old enough and with big cumulative weight, then the cumulative weight grows with
speed λw for the same reasons. Also, we saw that in the beginning the transaction
may have to wait for some time to be approved, and it is clear that its cumulative
weight behaves in a random fashion at that time. To see, how fast does the cumulative
weight grow after the transaction gets several approvals, let use denote (for simplicity,
we start counting time at the moment when our transaction has been created) by H(t)
the expected cumulative weight at time t, and by K(t) the expected number of tips
that approve our transaction at time t (or simply “our tips”). Let us also abbreviate
h := h(L0, N). Also, we make a simplifying assumption that the overall number of
tips remains roughly constant (equal to L0) in time. We work with the “approve two
random tips” strategy here; it is expected that the result will be roughly the same
for the strategy “approve two random tips in top αL(t)”.

Observe that a transaction coming to the system at time t typically chooses the
two transactions to approve based on the state of the system at time t − h. It is
not difficult to obtain that the probability that it approves at least one “our” tip is
K(t−h)
L0

(
2− K(t−h)

L0

)
. We can then write the following differential equation (analogously
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e.g. to Example 6.4 of [4]):

dH(t)

dt
= wλ

K(t− h)

L0

(
2− K(t− h)

L0

)
. (5)

In order to be able to use (5), we need first to calculate K(t). It is not immediately
clear how to do this, since a tip at time t − h may not already be a tip at time t,
and, in the case when the newly coming transaction approves such a tip, the overall
number of tips approving the original transaction increases by 1. Now, the crucial
observation is that the probability that a tip at time t − h remains a tip at time t
is approximately 1/2, recall (1) and (3). So, at time t essentially a half of K(t − h)
“previous” our tips remain to be tips, while the other half will be already approved
at least once. Let us denote by A the set of those (approximately) K(t−h)/2 tips at
time t−h that remained tips at time t, and the set of other K(t−h)/2 tips (that were
already approved) will be denoted by B. Let p1 be the probability that the newly
arrived transaction approves at least 1 transaction from B and does not approve any
transactions from A. Also, let p2 be the probability that both approved transactions
belong to A. Clearly, p1 and p2 are, respectively, the probabilities that the current
number of “our” tips increases or decreases by 1 upon arrival of the new transaction.
Again, some elementary considerations show that

p1 =
K(t− h)

L0

(
1− K(t− h)

2L0

)
−
(K(t− h)

2L0

)2
,

p2 =
(K(t− h)

2L0

)2
.

Analogously to (5), the differential equation for K(t) then writes:

dK(t)

dt
= (p1 − p2)λ = λ

K(t− h)

L0

(
1− K(t− h)

L0

)
. (6)

It is difficult to solve (6) exactly, so we make further simplifying assumptions. First
of all, we observe that, after the time when K(t) reaches level εL0 for a fixed ε > 0,
it will grow very quickly almost to L0. Now, when K(t) is small with respect to L0,
we can drop the last factor in the right-hand side of (6). Also, substituting K(t− h)

by K(t)− hdK(t)
dt

, we obtain a simplified version of (6) (recall that λh
L0

= ln 2):

dK(t)

dt
≈ λ

1 + ln 2

K(t)

L0

≈ 0.59 · λK(t)

L0

, (7)
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with boundary condition K(0) = 1. This differential equation solves to

K(t) ≈ exp
( t ln 2

(1 + ln 2)h

)
≈ exp

(
0.41

t

h

)
. (8)

So, taking logarithms in (8), we find that the time when K(t) reaches εL0 is roughly

t0 ≈
(
1 + (ln 2)−1

)
h×

(
lnL0 − ln ε−1

)
. 2.44 · h lnL0. (9)

Turning back to (5) (and, as before, dropping the last term in the right-hand side)
we obtain that during the “adaptation period” (i.e., t ≤ t0 with t0 as in (9)), it holds
that

dH(t)

dt
≈ 2wλ

L0 exp
(

ln 2
1+ln 2

)K(t)

≈ 2wλ

L0 exp
(

ln 2
1+ln 2

) exp
( t ln 2

(1 + ln 2)h

)
,

and so

H(t) ≈ 2(1 + ln 2)w

exp
(

ln 2
1+ln 2

) exp
( t ln 2

(1 + ln 2)h

)
≈ 2.25 · w exp

(
0.41

t

h

)
. (10)

Let us remind the reader that, as discussed above, after the adaptation period the
cumulative weight H(t) grows essentially linearly with speed λw. We stress that the
“exponential growth” (as in (10)) does not mean that the cumulative weight grows
“very quickly” during the adaptation period; rather, the behavior is as shown on
Figure 4.

Also, we comment that the calculations in this section can be easily adapted to
the situation when a node references s > 1 transactions in average. For this, one
just need to replace 2 by s in (2) (but not in (5)!), and ln 2 by ln s in (3)–(4) and in
(7)–(10).

Conclusions:

1. In the low load regime, after our transaction gets approved several of times, its
cumulative weight will grow with speed λw, where w is the mean weight of a
generic transaction.
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Figure 4: On the cumulative weight growth

2. In the high load regime, again, after our transaction gets approved several
of times, first its cumulative weight H(t) grows with increasing speed during
the so-called adaptation period according to the formula (10), and after the
adaptation period is over, it grows with speed λw, see Figure 4. In fact, for any
reasonable strategy the cumulative weight will grow with this speed after the
end of the adaptation period, because essentially all newly coming transactions
will indirectly approve our transaction.

3. One can think of the adaptation period as the time until most of the current
tips (indirectly) approve our transaction. The typical length of the adaptation
period is given by (9).

4 Possible attack scenarios

Let us describe an attack scenario:

1. the attacker pays to the merchant, and receives the goods after the merchant
considers that the transaction got already a sufficiently large cumulative weight;

2. the attacker issues a double-spending transaction;
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3. the attacker issues a lot of small transactions (very aggressively, with all his
computing power) that do not approve the original one directly or indirectly,
but approve the double-spending transaction;

4. observe that the attacker may have a lot of Sybil identities, and also is not
required to necessarily approve tips;

5. alternatively to item 3, the attacker may use all his computing power to issue
a “big” double-spending transaction (i.e., with a very large own weight) that
approves a couple of transactions prior to the legitimate one (the one used to
pay to the merchant);

6. he hopes that his “sub-DAG” overweights the main one, so that the DAG
continues growing from the double-spending transaction, and the legitimate
branch is discarded (see Figure 5).

In fact, we will see below that that the strategy of one big double-spending trans-
action increases the attacker chances. Even more, in the “ideal” situation of this
mathematical model, this attack always succeeds.

Indeed, let W (n) be the time needed to obtain a nonce which gives weight at
least 3n to the double-spending transaction. One may assume that W (n) is an Ex-
ponentially distributed random variable with parameter µ3−n (i.e., with expectation
µ−13n), where µ measures the computing power of the attacker.

Assume that the merchant accepts the legitimate transaction when its cumula-
tive weight becomes at least w0 (and this happens t0 time units after the original
transaction), and then it is reasonable to expect that the cumulative weight grows
with linear speed λw, where λ is the overall arrival rate of transactions to the system
(issued by honest users) and w is the mean weight of a generic transaction. Denote
w1 = λwt0, the typical total weight of the legitimate branch at that time.

Being dxe the smallest integer greater than or equal to x, define n0 =
⌈
lnw1

ln 3

⌉
, so

that 3n0 ≥ w1 (in fact, 3n0 ≈ w1 if w1 is large). If during the time interval of length t0
the attacker managed to obtain a nonce that gives weight at least 3n0 , then the attack
succeeds. The probability of this event is

P[W (n0) < t0] = 1− exp(−t0µ3−n0) ≈ 1− exp(−t0µw−11 ) ≈ t0µ

w1

(at least in the case when t0µ
w1

is small, which is a reasonable assumption). Then, if
this “immediate” attack did not succeed, the attacker may continue to look for the
nonce that gives weight 3n for n > n0, and hope that at the moment he finds it, the

12



legitimate transaction

double-spending

Figure 5: The “large weight” attack

total weight of the legitimate branch is smaller than 3n. Now, the probability of this
is

P[λwW (n) < 3n] = 1− exp
(
− µ3−n0 × (3n0/λw)

)
= 1− exp(−µ/λw) ≈ µ

λw
.

That is, although µ
λw

should be typically small, at each “level” n the attack suc-
ceed with a constant probability. Therefore, it will eventually succeed a.s.. In fact,

the typical time until it succeeds is roughly 3
λw
µ . Although this quantity may be

very large, still the probability that even the “first” (i.e., during the time t0) attack
succeeds, is not very small. We thus arrive to the following conclusion: we need
countermeasures. For example, limit the own weight from above, or even set it to
constant (as mentioned in Section 3, the latter may be not the best solution, since it
does not offer enough protection from spam).

Now, let us discuss the situation when the maximal weight is capped, say, by m,
and estimate the probability that the attack succeeds.

In view of the above discussion (and also using some general intuition from the
Theory of Large Deviations [5]), if the attacker wants to catch up with the main chain,
he should produce only transactions with maximal allowed weight. Assume that a
given transaction gained cumulative weight w0 in t0 time units after the moment when
it was issued. Assume also that the adaptation period for that transaction is over, and
so its cumulative weight increases linearly with speed λw. Now, the attacker wants
to double-spend on this transaction; for that, at the time1 when the first transaction
was issued, he secretly prepares the double-spending transaction, and starts gener-
ating other transactions with weight m that approve the double-spending one. If at

1or even before; it can be proved, however, that this latter strategy is worse, since the attacker
would only be able to build on some older transactions.
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some moment (after the merchant decides to accept the legitimate transaction) the
attacker’s subtangle overweights the legitimate subtangle, then the double-spending
attack would be successful. If that does not happen, then the double-spending trans-
action will not be approved by others (because the legitimate transaction will acquire
more cumulative weight and essentially all new tips would indirectly approve it), and
so it will be orphaned.

As before, let µ stand for the computing power of the attacker. Let G1, G2, G3, . . .
denote i.i.d. Exponential random variables with parameter µ/m (i.e., with expected
value m/µ), and denote also Vk = µ

m
Gk, k ≥ 1. Clearly, V1, V2, V3, . . . are i.i.d.

Exponential random variables with parameter 1.
Suppose that at time t0 the merchant decided to accept the transaction (recall that

it has cumulative weight w0 at that time). Let us estimate the probability that the
attacker successfully double-spends. Let M(θ) = (1−θ)−1 be the moment generating
function (see Section 7.7 of [6]) of the Exponential distribution with parameter 1. It
is known (besides the general book [5], see also Proposition 5.2 in Section 8.5 of [6],
even though it does not explain why the inequality should be, in fact, an approximate
equality) that for α ∈ (0, 1) it holds that

P
[ n∑
k=1

Vk ≤ αn
]
≈ exp

(
− nϕ(α)

)
, (11)

where ϕ(α) = − lnα + α − 1 is the Legendre transform of lnM(−θ). Observe that,
as a general fact, it holds that ϕ(α) > 0 for α ∈ (0, 1) (recall that the expectation of
an Exp(1) random variable equals 1).

Assume also that µt0
w0

< 1 (otherwise, the probability that the double-spend suc-
ceeds would be close to 1). Now, to outweight w0 at time t0, the attacker needs to
be able to issue at least w0/m (for simplicity, we drop the integer parts) transactions
with maximal weight m during time t0. Therefore, using (11), we obtain that the
probability of double-spend at time t0 is roughly

P
[ w0/m∑
k=1

Gk < t0

]
= P

[ w0/m∑
k=1

Vk <
µt0
m

]
= P

[ w0/m∑
k=1

Vk <
w0

m
× µt0
w0

]
≈ exp

(
− w0

m
ϕ
(
µt0
w0

))
. (12)
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That is, for the above probability to be small, we typically need that w0

m
is large

and ϕ
(
µt0
w0

)
is not very small.

Analogously, the probability of successful double-spend at time t ≥ t0 is roughly

exp
(
− w0 + wλ(t− t0)

m
ϕ
(

µt
w0+wλ(t−t0)

))
. (13)

Observe that, typically, we have µt0
w0
≥ µ

wλ
(since, during the adaptation period, the

cumulative weight grows with speed less than λw). Anyhow, it can be shown that
the probability of achieving a successful double spend is of order

exp
(
− w0

m
ϕ
(
µt0
w0
∨ µ

wλ

))
, (14)

where a ∨ b := max(a, b). For example, let m = w = 1, µ = 2, λ = 3 (so that
the attacker’s power is only a bit less that that of the rest of the network). Assume
that the transaction got cumulative weight 32 by time 12. Then, µt0

w0
∨ µ

wλ
= 3

4
,

ϕ
(
3
4

)
≈ 0.03768, and (14) then gives the upper bound approximately 0.29. If we

assume, however, that µ = 1 (and keep other parameters intact), then µt0
w0
∨ µ

wλ
= 3

8
,

ϕ
(
3
8

)
≈ 0.3558, and (14) gives approximately 0.00001135, quite a change indeed.

From the above discussion it is important to observe that, for the system to be
secure, it should be true that λw > µ (otherwise, the estimate (14) would be useless);
i.e., the input flow of “honest” transactions should be large enough compared to
the attacker’s computational power. This indicates the need for additional security
measures (i.e., checkpoints) during the early days of iota.

4.1 A parasite chain attack

Consider the following attack (Figure 6): an attacker secretly builds a chain/subtangle,
occasionally referencing the main tangle to gain more score (note that the score of
good tips is roughly the sum of all own weights in the main tangle, while the score
of the attacker’s tips also contains the sum of all own weights in the parasite chain).
Also, since the network latency is not an issue to someone with a sufficiently strong
computer who builds the chain alone, the attacker might be able to give more height
to the parasite tips. Finally, the number of attacker’s tips can be artificially increased
at the moment of the attack, in case the honest nodes use some selection strategy
that involves a simple choice between available tips.

To defend against this attack, we are going to use the fact that the main tangle
is supposed to have more (active) hashing power, and therefore manages to give
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more cumulative weight to more transactions than the attacker. The idea is to use a
MCMC (Markov Chain Monte Carlo) algorithm to select the two tips to reference.

Let Hx be the current cumulative weight of a site (i.e., a transaction represented
on the tangle graph). For simplicity, assume that all own weights are equal to 1; so,
the cumulative weight of a tip is always 1, and the cumulative weight of other sites
is at least 2.

The algorithm is then described in the following way:

1. consider all transactions with cumulative weight between L and (say) 2L (where
L is large, to be chosen);

2. place N particles independently there (N is not so big, say, 10 or so);

3. these particles will perform discrete-time random walks “towards the tips” (i.e.,
transition from x to y is possible if and only if y approves x);

4. the two random walks that reach the tip set first will indicate our two tips to
approve;

5. the transition probabilities of the walks are defined in the following way: if y
approves x (we denote this y  x), then the transition probability Pxy is
proportional to exp

(
− α(Hx −Hy)

)
, that is

Pxy = exp
(
− α(Hx −Hy)

)( ∑
z:z x

exp
(
− α(Hx −Hz)

))−1
, (15)

where α > 0 is a parameter to be chosen (one can start e.g. with α = 1).

In patricular, note that this algorithm is “local”, one need not go to all the way to
the genesis to calculate things.

To see that the algorithm works as intended, consider first the “lazy tips” (those
that intentionally approve some old transactions to avoid doing verification), see
Figure 6. Observe that, even if the particle is in a site approved by such a tip, it
is not probable that the lazy tip would be selected, since the cumulative weights
difference will be very large, look at (15).

Next, consider the following attack: the attacker secretly builds a chain (a “par-
asite chain”) containing a transaction that empties his account to another account
under his control (indicated as the leftmost red circle on Figure 6). At some point the
attacker issues a transaction in the main tangle (indicated as the other red circle),
and waits until the merchant accepts it. The parasite chain occasionally references
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main tangle

parasite chain

good tips

lazy tips

Figure 6: On the tip selection algorithm. The two red circles indicate an attempted
double-spend.

the main tangle (hence the name) and so its sites have good height/score (even bet-
ter than those of the main tangle), although the cumulative weight is not so big in
that chain. Note also that it cannot reference the main tangle after the merchant’s
transaction. Also, the attacker might try to artificially inflate the number of “his”
tips at the moment of the attack, as shown on the picture. The attacker’s idea is to
make the nodes reference the parasite chain, so that the “good” tangle would become
orphaned.

Now, it is easy to see why the MCMC selection algorithm with high probability
will not select one of the attacker’s tips. Basically, the reason is the same as why the
algorithm doesn’t select the lazy tips: the sites of the parasite chain will have a much
smaller cumulative weight than the main tangle’s sites they reference. Therefore, it
is not probable that the random walk will ever jump to the parasite chain (unless it
begins there, but this is not very probable too, since the main tangle contains more
sites).

Also, it is not set in stone that the transition probabilities should necessarily
be defined as in (15). Instead of the exponent, one can take some other rapidly
decreasing function, such as e.g. f(s) = s−3.

Conclusions:

1. We considered some attack strategies, when the attacker tries to double-spend
by “outpacing” the system.

2. The “large weight” attack means that, in order to double-spend, the attacker
tries to give a very big weight to the double-spending transaction, so that alone
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it would outweight the legitimate subtangle. This strategy would be indeed
a menace to the network in case the allowed own weight is unbounded. As a
solution, we may limit the own weight of a transaction from above, or even set
it to constant.

3. In the situation when the maximal own weight of a transaction is m, the best
attacker’s strategy is to generate always transactions with the maximal own
weight that reference the double-spending transaction. When the input flow of
“honest” transactions is large enough compared to the attacker’s computational
power, the probability of successful double-spend can be estimated using the
formula (14) (see also examples below (14)).

4. The attack based on building a “parasite chain” makes the approval strategies
based on height or score obsolete, since the attacker will get higher values of
those than the legitimate tangle. On the other hand, the MCMC tip selection
algorithm described in Section 4.1 seems to protect well against this kind of
attack.

5. As a bonus, it also offers protection against the “lazy nodes”, i.e., those that
just approve some old transactions to avoid doing the calculations necessary for
validating the tangle.

4.2 Resistance to quantum computations

It is known that a (today still hypothetic) sufficiently large quantum computer can
be very efficient for handling problems where only way to solve it is to guess answers
repeatedly and check them. The process of finding a nonce in order to generate a
Bitcoin block is a good example of such a problem. As of today, in average one must
check around 268 nonces to find a suitable hash that allows to generate a block. It
is known (see e.g. [7]) that a quantum computer would need Θ(

√
N) operations to

solve a problem of the above sort that needs Θ(N) operations on a classical computer.
Therefore, a quantum computer would be around

√
268 = 234 ≈ 17 billion times more

efficient in Bitcoin mining than a classical one. Also, it is worth noting that if
blockchain does not increase its difficulty in response to increased hashing power,
that would lead to increased rate of orphaned blocks.

Observe that, for the same reason, the “large weight” attack described above
would also be much more efficient on a quantum computer. However, capping the
weight from above (as suggested in Section 4) would effectively fence off a quantum
computer attack as well, due to the following reason. In iota, the number of nonces
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that one needs to check in order to find a suitable hash for issuing a transaction
is not so huge, it is only around 38. The gain of efficiency for an “ideal” quantum
computer would be therefore of order 34 = 81, which is already quite acceptable (also,
remember that Θ(

√
N) could easily mean 10

√
N or so). Also, the algorithm is such

that the time to find a nonce is not much larger than the time needed for other tasks
necessary to issue a transaction, and the latter part is much more resistant agains
quantum computing.

Therefore, the above discussion suggests that the tangle provides a much better
protection against an adversary with a quantum computer compared to the (Bitcoin)
blockchain.
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