
The Honey Badger of BFT Protocols

Andrew Miller
University of Maryland, College Park

Yu Xia
Tsinghua University

Kyle Croman
Cornell University

Elaine Shi
Cornell University

Dawn Song
University of California, Berkeley

Abstract

The surprising success of cryptocurrencies has
led to a surge of interest in deploying large scale,
highly robust, Byzantine fault tolerant (BFT) proto-
cols for mission-critical applications, such as finan-
cial transactions. Although the conventional wisdom
is to build atop a (weakly) synchronous protocol such
as PBFT (or a variation thereof), such protocols rely
critically on network timing assumptions, and only
guarantee liveness when the network behaves as ex-
pected. We argue these protocols are ill-suited for this
deployment scenario.

We present an alternative, HoneyBadgerBFT,
the first practical asynchronous BFT protocol, which
guarantees liveness without making any timing as-
sumptions. We base our solution on a novel atomic
broadcast protocol that achieves optimal asymptotic
efficiency. We present an implementation and ex-
perimental results to show our system can achieve
throughput of tens of thousands of transactions per
second, and scales to over a hundred nodes on a
wide area network. We even conduct BFT experi-
ments over Tor, without needing to tune any parame-
ters. Unlike the alternatives, HoneyBadgerBFT sim-
ply does not care about the underlying network.

1 Introduction

Distributed fault tolerant protocols are promis-
ing solutions for mission-critical infrastructure, such
as financial transaction databases. Traditionally, they
have been deployed at relatively small scale, and typ-
ically in a single administrative domain where adver-
sarial attacks might not be a primary concern. As
a representative example, a deployment of Google’s
fault tolerant lock service, Chubby [14], consists of
five nodes, any tolerates up to two crash faults.

In recent years, a new embodiment of
distributed systems called “cryptocurrencies” or
“blockchains” have emerged, beginning with Bit-
coin’s phenomenal success [40]. Such cryptocur-

rency systems represent a surprising and effective
breakthrough [12], and open a new chapter in our un-
derstanding of distributed systems.

Cryptocurrencies systems challenge our tra-
ditional belief about the deployment environment
for fault tolerance protocols. Unlike the classic “5
Chubby nodes within Google” environment, cryp-
tocurrencies have revealed and stimulated a new de-
mand for consensus protocols over a wide area net-
work, among a large number of nodes that are mutu-
ally distrustful, and moreover, network connections
can be much more unpredictable than the classical
LAN setting, or even adversarial. This new setting
poses interesting new challenges, and calls upon us
to rethink the design of fault tolerant protocols.

Robustness is a first-class citizen. Cryptocurren-
cies demonstrate the demand for and viability of an
unusual operating point that prioritizes robustness
above all else, even at the expense of performance.
In fact, Bitcoin provides terrible performance by dis-
tributed systems standards: a transaction takes on
average 10 minutes to be committed, and the sys-
tem as a whole achieves throughput on the order of
10 transactions per second. However, in comparison
with traditional fault tolerant deployment scenarios,
cryptocurrencies thrive in a highly adversarial envi-
ronment, where well-motivated and malicious attacks
are expected (if not commonplace). For this reason,
many of Bitcoin’s enthusiastic supporters refer to it
as the “Honey Badger of Money” [38]. We note that
the demand for robustness is often closely related to
the demand for decentralization — since decentral-
ization would typically require the participation of a
large number of diverse participants in a wide-area
network.

Favor throughput over latency. Most existing
works on scalable fault tolerance protocols [6, 46]
focus on optimizing scalability in a LAN environ-
ment controlled by a single administrative domain.

1

Since bandwidth provisioning is ample, these works
often focus on reducing (cryptographic) computa-
tions and minimizing response time while under con-
tention (i.e., requests competing for the same object).

In contrast, blockchains have stirred interest in
a class of financial applications where response time
and contention are not the most critical factors, e.g.,
payment and settlement networks [1]. In fact, some
financial applications intentionally introduce delays
in committing transactions to allow for possible roll-
back/chargeback operations.

Although these applications are not latency
critical, banks and financial institutions have ex-
pressed interest in a high-throughput alternative of
the blockchain technology, to be able to sustain high
volumes of requests. For example, the Visa pro-
cesses 2,000 tx/sec on average, with a peak of 59,000
tx/sec [1].

1.1 Our Contributions

Timing assumptions considered harmful. Most ex-
isting BFT implementations, even those called “ro-
bust,” assume some variation of weak synchrony,
where, roughly speaking, messages are guaranteed
to be delivered after a certain bound ∆, but ∆ may
be time-varying or unknown to the protocol designer.
We argue that protocols based on timing assumptions
are unsuitable for decentralized, cryptocurrency-like
settings, where network links can be unreliable, net-
work speeds change rapidly, and network delays may
even be adversarially induced.

First, the liveness properties of weakly syn-
chronous protocols can fail completely when the ex-
pected timing assumptions are violated (e.g., due to
a malicious network adversary). To demonstrate this,
we explicitly construct an adversarial “intermittently
synchronous” network that violates the assumptions,
such that existing weakly synchronous protocols such
as PBFT [20] would grind to a halt (Section 3).

Second, even when the weak synchrony as-
sumptions are satisfied in practice, weakly syn-
chronous protocols degrade significantly in through-
put when the underlying network is unpredictable.
Ideally, we would like a protocol whose throughput
closely tracks the network’s performance even un-
der rapidly changing network conditions. Unfortu-
nately, weakly asynchronous protocols require time-
out parameters that are finicky to tune, especially in
cryptocurrency-like application settings; and when
the chosen timeout values are either too long or too
short, throughput can be hampered. As a concrete ex-

ample, we show that even when the weak synchrony
assumptions are satisfied, such protocols are slow to
recover from transient network partitions (Section 3).

Practical asynchronous BFT. We propose Honey-
BadgerBFT, the first BFT protocol to provide opti-
mal asymptotic efficiency in the asynchronous setting,
where messages are eventually delivered but no other
timing assumption is made. Unlike existing weakly
synchronous protocols where parameter tuning can
be finicky, HoneyBadgerBFT does not care. Regard-
less of how network conditions fluctuate, HoneyBad-
gerBFT’s throughput always closely tracks the net-
work’s available bandwidth. Imprecisely speaking,
HoneyBadgerBFT eventually makes progress as long
as messages eventually get delivered; moreover, it
makes progress as soon as messages are delivered!

We formally prove the security and liveness of
our HoneyBadgerBFT protocol, and show that it pro-
vides better throughput than the classical PBFT pro-
tocol [20] even in the optimistic case.

Implementation and large-scale experiments. We
provide a full-fledged implementation of HoneyBad-
gerBFT, which will we release as free open source
software in the near future. We demonstrate exper-
imental results from an Amazon AWS deployment
with more than 100 nodes distributed across 5 con-
tinents. To demonstrate its versatility and robust-
ness, we also deployed HoneyBadgerBFT over the
Tor anonymous relay network without changing any
parameters, and present throughput and latency re-
sults.

Technical highlights. We construct an asynchronous
atomic broadcast protocol, where clients can submit
transactions, and honest nodes agree on a totally or-
dered log of transactions, as long as more than 2

3 frac-
tion of the nodes are honest. Our protocol guaran-
tees fairness, i.e., a polynomially bounded adversary
cannot significantly delay an honest party’s request
from being committed. To achieve this, we invent a
novel reduction from atomic broadcast to the asyn-
chronous common subset primitive, achieving high
efficiency by splitting the workload evenly among all
the nodes. We also show how to efficiently instanti-
ate ACS by combining existing but overlooked tech-
niques (reliable broadcast using erasure codes [18],
and an ACS protocol from the multi-party computa-
tion literature). Our result is a significant improve-
ment over prior-known asynchronous atomic broad-
cast protocols, decreasing the worst-case overhead
from O(N3) to O(N) for large batch sizes.

2

HoneyBadgerBFT’s design is optimized for a
cryptocurrency-like deployment scenario where net-
work bandwidth is the scarce resource, and compu-
tation is relatively ample. This allows us to take ad-
vantage of cryptographic building blocks that would
be considered too expensive in classical fault-tolerant
database works where the primary goal is to mini-
mize response time even under contention. For exam-
ple, we show how to leverage an efficient threshold
public-key encryption schemes such that an adver-
sary cannot selectively censor specific transactions,
thus attaining increased fairness without sacrificing
efficiency.

1.2 Suggested Deployment Scenarios

Among numerous conceivable applications, we
highlight two likely deployment scenarios that are
sought after by banks, financial institutions, as well
as advocates for fully decentralized cryptocurrencies.

Confederation cryptocurrencies. The success of
decentralized cryptocurrencies such as Bitcoin has
inspired banks and financial institutions to inspect
their transaction processing and settlement infraus-
truture with a new light. “Confederation cryptocur-
rency” is an oft-cited vision [23,24,44], where a con-
glomerate of financial institutions jointly contribute
to a Byzantine agreement protocol to allow fast and
robust settlement of transactions. Passions are run-
ning high that this approach will streamline today’s
slow and clunky infrastructure for inter-bank settle-
ment. As a result, several new open source projects
aim to build a suitable BFT protocol for this setting,
such as IBM’s Open Blockchain and the Hyperledger
project by the Linux foundation [37].

A confederation cryptocurrency would require
a BFT protocol deployed over the wide-area network,
possibly involving hundreds to thousands of consen-
sus nodes. In this setting, enrollment can easily be
controlled, . such that the set of consensus nodes are
known a priori — often referred to as the “permis-
sioned” blockchain. Clearly HoneyBadgerBFT is a
natural candidate for use in such confederation cryp-
tocurrencies.

Applicability to permissionless blockchains. By
contrast, decentralized cryptocurrencies such as Bit-
coin and Ethereum opt for a “permissionless”
blockchain, where enrollment is open to anyone,
and nodes may join and leave dynamically and fre-
quently. To achieve security in this setting, known
consensus protocols rely on proofs-of-work to defeat
Sybil attacks, and pay an enormous price in terms of

throughput and latency, e.g., Bitcoin commits trans-
actions every ∼ 10 min, and its throughput limited
by 7 tx/sec even when the current block size is max-
imized. Several recent works have suggested the
promising idea of leveraging either a slower, exter-
nal blockchain such as Bitcoin or economic “proof-
of-stake” assumptions involving the underlying cur-
rency itself [32,34] to bootstrap faster BFT protocols,
by selecting a random committee to perform BFT in
every different epoch. These approaches promise to
achieve the best of both worlds, security in an open
enrollement, decentralized network, and the through-
put and response time matching classical BFT proto-
cols. Here too HoneyBadgerBFT is a natural choice
since the randomly selected committee can be geo-
graphically heterogenous.

2 Background and Related Work

Our overall goal is to build a replicated state
machine, where clients generate and submit trans-
actions and a network of nodes receives and pro-
cesses them. Abstracting away from application spe-
cific details (such as how to represent state and com-
pute transitions), it suffices to build a totally globally-
consistent, totally-ordered, append-only transaction
log. Traditionally, such a primitive is called to-
tal order or atomic broadcast [15]; in modern
cryptocurrency-inspired parlance (as we’ll discuss
shortly), we’d call it a blockchain.

Fault tolerant state machine replication proto-
cols provide strong safety and liveness guarantees, al-
lowing a distributed system to provide correct service
in spite of network latency and the potential for some
nodes to fail. Vast body of work, performance trade-
offs, tolerating different forms of failures and attacks,
and making varying assumptions about the underly-
ing network.

2.1 Robust BFT Protocols

While Paxos [33], Raft [42], and many other
well-known protocols tolerate crash faults, Byzantine
fault tolerant protocols (BFT), beginning with PBFT
[20], tolerate even arbitrary (e.g., maliciously) cor-
rupted nodes. Many subsequent protocols offer im-
proved performance, often through optimistic execu-
tion that provides excellent performance when there
are no faults, clients do not contend much, and the
network is well-behaved, and at least some progress
otherwise [2, 5, 30, 36, 48].

In general, BFT systems are evaluated in de-
ployment scenarios where latency and CPU are the
bottleneck [46], thus the most effective protocols re-

3

duce the number of rounds and minimize expensive
cryptographic operations.

Clement et al. [22] initiated a recent line of
work [4, 6, 10, 21, 22, 47] by advocating improve-
ment of the worst-case performance, providing ser-
vice quality guarantees even when the system is un-
der attack — even if this comes at the expense of per-
formance in the optimistic case. However, although
the “Robust BFT” protocols in this vein gracefully
tolerate compromised nodes, they still rely on tim-
ing assumptions about the underlying network. Our
work takes this approach further, guaranteeing good
throughput even in a fully asynchronous network.

2.2 Randomized Agreement

Deterministic asynchronous protocols are im-
possible for most tasks [27]. While the vast majority
of practical BFT protocols steer clear of this impossi-
bility result by making timing assumptions, random-
ness (and, in particular, cryptography) provides an
alternative route. Indeed we know of asynchronous
BFT protocols for a variety of tasks such as binary
agreement, reliable broadcast, and more [13, 15, 16].

Our work is most closely related to SIN-
TRA [17], a system implementation based on the
asynchronous atomic broadcast protocol from Cachin
et al. (CKPS01) [15]. This protocol consists of a
reduction from atomic broadcast (ABC) to common
subset agreement (ACS), as well as a reduction from
ACS to multi-value validated agreement (MVBA). 1

The key invention we contribute is a novel re-
duction from ABC to ACS that provides better effi-
ciency (by an O(N) factor) through batching, while
using threshold encryption to preserve fairness (See
Section 4.4). We also obtain better efficiency by
cherry-picking from the literature improved instanti-
ations of subcomponents. In particular, we sidestep
the expensive MVBA primitive by using an alterna-
tive ACS [9] along with an efficient reliable broadcast
(RBC) [18] as explained in Section 4.4.

Table 1 summarizes the asymptotic perfor-
mance of HoneyBadgerBFT with several other
atomic broadcast protocols. Here “Comm. compl.”
denotes the expected communication complexity
(i.e., total bytes transferred) per committed transac-
tion. Since PBFT relies on weak synchrony assump-
tions, it may therefore fail to make progress at all in
an asynchronous network. Protocols KS02 [31] and
RC05 [43] are optimistic, falling back to an expen-
sive recovery mode based on MVBA. As mentioned
the protocol of Cachin et al. (CKPS01) [15] can

Table 1: Asymptotic communication complexity (per
transaction, expected) for atomic broadcast protocols

Async?
Comm. compl.
Optim. Worst

PBFT no O(N) ∞

KS02 [31] yes O(N2) O(N3)

RC05 [43] yes O(N) O(N3)

CKPS01 [15] yes O(N3) O(N3)

CKPS01 [15]+ [9, 18] yes O(N2) O(N2)
HoneyBadgerBFT (this work) yes O(N) O(N)

be improved using a more efficient ACS construc-
tion [9, 18]. We also obtain another O(N) improve-
ment through our novel reduction.

Finally, King and Saia [28, 29] have re-
cently developed agreement protocols with less-than-
quadratic number of messages by routing commu-
nications over a sparse graph. However, extending
these results to the asynchronous setting remains an
open problem.

3 The Gap Between Asynchronous and Weakly
Synchronous Network Models

Almost all modern BFT protocols rely on tim-
ing assumptions (such as partial or weak synchrony)
to guarantee liveness. Purely asynchronous BFT pro-
tocols have received considerably less attention in re-
cent years. Consider the following argument, which,
if it held, would justify this narrowed focus:

[X] Weak synchrony assumptions are unavoidable,
since in any network that violates these assump-
tions, even asynchronous protocols would pro-
vide unacceptable performance.

In this section, we present make two counter-
arguments that refute the premise above. First, we
illustrate the theoretical separation between the asyn-
chronous and weakly synchronous network mod-
els. Specifically we construct an adversarial net-
work scheduler that violates PBFT’s weak synchrony
assumption (and indeed causes it to fail) but under
which any purely asynchronous protocol (such as
HoneyBadgerBFT) makes good progress. Second,
we make a practical observation: even when their as-
sumptions are met, weakly synchronous protocols are
slow to recover from a network partition once it heals,
whereas asynchronous protocols make progress as
soon as messages are delivered.

3.1 Many Forms of Timing Assumptions

Before proceeding we review the various stan-
dard forms of timing assumptions. In an asyn-

4

chronous network, the adversary can deliver mes-
sages in any order and at any time, but nonetheless
must eventually deliver every message sent between
correct nodes. Nodes in an asynchronous network ef-
fectively have no use for “real time” clocks, and can
only take actions based on the ordering of messages
they receive.

The well-known FLP [27] result rules out the
possibility of deterministic asynchronous protocols
for atomic broadcast and many other tasks. A deter-
ministic protocol must therefore make some stronger
timing assumptions. A convenient (but very strong)
network assumption is synchrony: a ∆-synchronous
network guarantees that every message sent is deliv-
ered after at most a delay of ∆ (where ∆ is a measure
of real time).

Weaker timing assumptions come in several
forms. In the unknown-∆ model, the protocol is un-
able to use the delay bound as a parameter. Alterna-
tively, in the eventually-synchronous model, the mes-
sage delay bound ∆ is only guaranteed to hold after
some (unknown) instant, called the “Global Stabiliza-
tion Time.” Collectively, these two models are re-
ferred to as partial synchrony [26]. Yet another varia-
tion is weak synchrony [26], in which the delay bound
is time varying, but eventually does not grow faster
than a polynomial function of time [20].

In terms of feasibility, the above are all equiva-
lent — a protocol that succeeds in one setting can be
systematically adapted for another. In terms of con-
crete performance, however, adjusting for weak syn-
chrony means gradually increasing the timeout pa-
rameter over time (e.g., by an “exponential back-off”
policy). As we show later, this results in delays when
recovering from transient network partitions.

Protocols typically manifest these assumptions
in the form of a timeout event. For example, if parties
detect that no progress has been made within a cer-
tain interval, then they take a corrective action such
as electing a new leader. Asynchronous protocols do
not rely on timers, and make progress whenever mes-
sages are delivered, regardless of actual clock time.

Counting rounds in asynchronous networks. Al-
though the guarantee of eventual delivery is decou-
pled from notions of “real time,” it is nonetheless
desirable to characterize the running time of asyn-
chronous protocols. The standard approach (e.g., as
explained in [19]) is for the adversary to assign each
message a virtual round number, subject to the condi-
tion that every (r−1)-message between correct nodes
must be delivered before any (r+1)-message is sent.

3.2 When Weak Synchrony Fails

We now proceed to describe why weakly syn-
chronous BFT protocols can fail (or suffer from per-
formance degradations) when network conditions are
adversarial (or unpredictable). This motivates why
such protocols are unsuited for the cryptocurrency-
oriented application scenarios described in Section 1.

A network scheduler that thwarts PBFT. We use
Practical Byzantine Fault Tolerance (PBFT) [20],
the classic leader-based BFT protocol, a representa-
tive example to describe how an adversarial network
scheduler can cause a class of leader-based BFT pro-
tocols [4, 6, 10, 22, 30, 47] to grind to a halt.

At any given time, the designated leader is re-
sponsible for proposing the next batch of transac-
tions. If progress isn’t made, either because the leader
is faulty or because the network has stalled, then the
nodes attempt to elect a new leader. The PBFT proto-
col critically relies on a weakly synchronous network
for liveness. We construct an adversarial scheduler
that violates this assumption, and indeed prevents
PBFT from making any progress at all, but for which
HoneyBadgerBFT (and, in fact, any asychronous pro-
tocol) performs well.

The intuition behind our scheduler is simple.
First, we assume that a single node has crashed.
Then, the network delays messages whenever a cor-
rect node is the leader, preventing progress and caus-
ing the next node in round-robin order to become
the new leader. When the crashed node is the next
up to become the leader, the scheduler immediately
heals the network partition and delivers messages
very rapidly among the honest nodes; however, since
the leader has crashed, no progress is made here ei-
ther.

This attack violates the weak synchrony as-
sumption because it must delay messages for longer
and longer each cycle, since PBFT widens its time-
out interval after each failed leader election. On the
other hand, it provides larger and larger periods of
synchrony as well. However, since these periods of
synchrony occur at inconvenient times, PBFT is un-
able to make use of them. Looking ahead, Honey-
BadgerBFT, and indeed any asynchronous protocol,
would be able to make progress during these oppor-
tunistic periods of synchrony.

To confirm our analysis, we implemented this
malicious scheduler as a proxy that intercepted and
delayed all view change messages to the new leader,
and tested it against a 1200 line Python implemen-

5

tation of PBFT. The results and message logs we
observed were consistent with the above analysis;
our replicas became stuck in a loop requesting view
changes that never succeeded. In the Appendix A we
give a complete description of PBFT and explain how
it behaves under this attack.

Slow recovery from network partitions. Even if the
weak synchrony assumption is eventually satisfied,
protocols that rely on it may also be slow to recover
from transient network partitions. Consider the fol-
lowing scenario, which is simply a finite prefix of the
attack described above: one node is crashed, and the
network is temporarily partitioned for a duration of
2D∆. Our scheduler heals the network partition pre-
cisely when it is the crashed node’s turn to become
leader. Since the timeout interval at this point is now
2D+1∆, the protocol must wait for another 2D+1∆ in-
terval before beginning to elect a new leader, despite
that the network is synchronous during this interval.

The tradeoff between robustness and responsive-
ness. Such behaviors we observe above are not spe-
cific to PBFT, but rather are fundamentally inher-
ent to protocols that rely on timeouts to cope with
crashes. Regardless of the protocol variant, a prac-
titioner must tune their timeout policy according to
some tradeoff. At one extreme (eventual synchrony),
the practitioner makes a specific estimate about the
network delay ∆. If the estimate is too low, then the
system may make no progress at all; too high, and it
underutilizes the available bandwidth. At the other
extreme (weak synchrony), the practitioner avoids
specifying any absolute delay, but nonetheless must
choose a “gain” that affects how quickly the system
tracks varying conditions. An asynchronous protocol
avoids the need to tune such parameters.

4 The HoneyBadgerBFT Protocol

In this section we present HoneyBadgerBFT,
the first asynchronous atomic broadcast protocol to
achieve optimal asymptotic efficiency.

4.1 Problem Definition: Atomic Broadcast

We first define our network model and the
atomic broadcast problem. Our setting involves a
network of N designated nodes, with distinct well-
known identities (P0 through PN−1). The nodes re-
ceive transactions as input, and their goal is to reach
common agreement on an ordering of these trans-
actions. Our model particularly matches the de-
ployment scenario of a “permissioned blockchain” or
“distributed ledger” submitted by arbitrary clients.

The atomic broadcast primitive allows us to ab-
stract away any application-specific details, such as
how transactions are to be interpreted (to prevent re-
play attacks, for example, an application might de-
fine a transaction to include signatures and sequence
numbers). For our purposes, transactions are sim-
ply unique strings. In practice, clients would gen-
erate transactions and send them to nodes, and con-
sider them committed after collecting signatures from
a majority of nodes. To simplify our presentation,
we do not explicitly model clients, but rather assume
that transactions are chosen by the adversary and pro-
vided as input to the nodes. Likewise, a transaction is
considered committed once it is output by a node.

Our system model makes the following as-
sumptions:

• (Purely asynchronous network) We assume each
pair of nodes is connected by a reliable authen-
ticated point-to-point channel that does not drop
messages. The delivery schedule is entirely deter-
mined by the adversary, but every message sent be-
tween correct nodes must eventually be delivered.
We will be interested characterizing the running
time of protocols based on the number of asyn-
chronous rounds (as described in Section 2). As the
network may queue messages with arbitrary delay,
we also assume nodes have unbounded buffers and
are able to process all the messages they receive.

• (Static Byzantine faults) The adversary is given
complete control of up to f faulty nodes, where
f is a protocol parameter. Note that 3 f + 1 ≤ N
(which our protocol achieves) is the lower bound
for broadcast protocols in this setting.

• (Trusted setup) We assume that nodes may inter-
act with a trusted dealer during an initial protocol-
specific setup phase, which we will use to establish
public keys and secret shares.

The assumption that nodes are designated in
advance and interact with a trusted dealer is a rather
strong assumption, since it effectively implies a
trusted central administrator. However, as mentioned
earlier in Section 1.2, several works have suggested
the possibility of bootstrapping an instance of “per-
missioned” consensus from a “permissionless” envi-
ronment without such trusted setup assumptions.

Definition 1. An atomic broadcast protocol must sat-
isfy the following properties, all of which should hold
with high probability in an asynchronous network
and in spite of an arbitrary adversary:

• (Agreement) If any correct node outputs a transac-
tion tx, then every correct node outputs tx.

6

• (Total Order) If one correct node has output the se-
quence of transactions {tx0, tx1, ...tx j} and another
has output {tx′0, tx′1, ...tx′j}, then txi = tx′i for i≤ j.

• (Validity) If a transaction tx is input to N− f correct
nodes, then it is eventually output by every correct
node.

The validity property could also be called Cen-
sorship Resilience, since it precludes an adversary
from preventing even a single transaction from being
committed.

Performance metrics. We will primarily be inter-
ested in analyzing the efficiency and fairness of our
atomic broadcast protocol.

• (Efficiency) Assume that the input buffers of each
honest node are sufficiently full Ω(poly(N,λ)).
Then efficiency is the expected communication cost
for each node amortized over all committed trans-
actions.

The above definition of efficiency assumes the net-
work is under load, reflecting that our primary goal to
sustain high throughput while fully utilizing the net-
work’s available bandwidth. Since we achieve good
throughput by batching, our system uses more band-
width per committed transaction during periods of
low demand when transactions arrive infrequently. A
stronger definition without this qualification would
be appropriate if our goal was to minimize costs (e.g.,
for usage-based billing).

In practice, network links have limited capac-
ity, and if more transactions are submitted than the
network can handle, a guarantee on confirmation time
cannot hold in general. Therefore we define fairness
below relative to the number of transactions that have
been input ahead of the transaction in question.

• (Fairness) Suppose an adversary passes a transac-
tion tx as input to N− f correct nodes. Let T be the
difference between the total number of transactions
previously input to any correct node and the num-
ber of transactions that have been committed. Then
fairness is the expected number of asynchronous
rounds before tx is output by every correct node.

4.2 Overview and Intuition

In HoneyBadgerBFT, nodes receive transac-
tions as input and store them in their (unbounded)
buffers. The protocol proceeds in epochs, where af-
ter each epoch, a new batch of transactions is ap-
pended to the committed log. At the beginning of
each epoch, nodes choose a subset of the transactions

in their buffer (by a policy we’ll define shortly), and
provide them as input to an instance of a randomized
agreement protocol. At the end of the agreement pro-
tocol, the final set of transactions for this epoch is
chosen.

At this high level, our approach is similar to ex-
isting asynchronous atomic broadcast protocols, and
in particular to Cachin et al. [15], the basis for a large
scale transaction processing system (SINTRA). Like
ours, Cachin et al.’s protocol is centered around an in-
stance of the Asynchronous Common Subset (ACS)
primitive. 2 Roughly speaking, the ACS primitive
allows each node to propose a value, and guarantees
that every node node outputs a common vector con-
taining the inputs values of at least N − 2 f correct
nodes. It is trivial to build atomic broadcast from
this primitive — each node simply proposes a subset
of transactions from the front its queue, and outputs
the union of the elements in the agreed-upon vector.
However, there are two important challenges.

Challenge 1: Achieving fairness. The cost of ACS
depends directly on size of the transaction sets pro-
posed by each node. Since the output vector contains
at least N − f such sets, we can therefore improve
the overall efficiency by ensuring that nodes propose
mostly disjoint sets of transactions, thus committing
more distinct transactions in one batch for the same
cost. Therefore instead of simply choosing the first
element(s) from its buffer (as in CKPS01 [15]), each
node in our protocol proposes a randomly-chosen
sample, such that each transaction is, on average, pro-
posed by only one node.

However, implemented naı̈vely, this optimiza-
tion would compromise fairness, since the ACS prim-
itive allows the adversary to choose which nodes’
proposals are ultimately included. The adversary
could selectively censor a transaction excluding
whichever node(s) propose it. We avoid this pitfall
by using threshold encryption, which prevents the
adversary from learning which transactions are pro-
posed by which nodes, until after agreement is al-
ready reached. The full protocol will be described
in Section 4.3.

Challenge 2: Practical throughput. Although
the theoretical feasibility of asynchronous ACS and
atomic broadcast have been known [9, 15, 17], their
practical performance is not. To the best of our
knowledge, the only other work that implemented
ACS was by Cachin et al. [15], who showed that they
could attain a throughput of 0.4 tx/sec over a wide
area network. Therefore, an interesting question is

7

Thresh.
Enc. O(1)

Common Subset O(N2)

ABA O(1)RBC O(N)

Atomic Broadcast O(N)

Figure 1: Construction stack for HoneyBadgerBFT

whether such protocols can attain high throughput in
practice.

In this paper, we show that by stitching together
a carefully chosen array of sub-components, we can
efficiently instantiate ACS and attain much greater
throughput both asymptotically and in practice. No-
tably, we improve the asymptotic cost (per node) of
ACS from O(N2) (as in [15, 17]) to O(1). Since
the components we cherry-pick have not been pre-
sented together before (to our knowledge), we pro-
vide a self-contained description of the whole con-
struction in Section 4.4.

Modular Protocol Composition. We are now ready
to present our constructions formally. Before doing
so, we make a remark about the style of our presen-
tation. We define our protocols in a modular style,
where each protocol may run several instances of
other (sub)protocols. The outer protocol can provide
input to and receive output from the subprotocol. A
node may begin executing a (sub)protocol even be-
fore providing it input (e.g., if it receives messages
from other nodes).

It is essential to isolate such (sub)protocol in-
stances to ensure that messages pertaining to one in-
stance cannot be replayed in another. This is achieved
in practice by associating to each (sub)protocol in-
stance a unique string (a session identifier), tagging
any messages sent or received in this (sub)protocol
with this identifier, and routing messages accord-
ingly. We suppress these message tags in our protocol
descriptions for ease of reading. We use brackets to
distinguish between tagged instances of a subproto-
col. For example, RBC[i] denotes an ith instance of
the RBC subprotocol.

To distinguish different message types sent be-
tween parties within a protocol, we use a label in
typewriter font (e.g., VAL(m) indicates a message
m of type VAL).

Our overall construction stack is depicted in
Figure 1.

4.3 Constructing HoneyBadgerBFT from Asyn-
chronous Common Subset

Building block: ACS. Our main building block
is a primitive called asynchronous common sub-
set (ACS). The theoretical feasibility of constructing
ACS has been demonstrated in several works [9, 15].
In this section, we will present the formal definition
of ACS and use it as a blackbox to construct Honey-
BadgerBFT. Later in Section 4.4, we will show that
by combining several constructions that were some-
what overlooked in the past, we can instantiate ACS
efficiently!

More formally, an ACS protocol satisfies the
following properties:

• (Validity) If a correct node outputs a set v, then
|v| ≥ N − f and v contains the inputs of at least
N−2 f correct nodes.

• (Agreement) If a correct process outputs v, then ev-
ery process outputs v.

• (Totality) If N− f correct processes receive an in-
put, then all correct processes produce an output.

Building block: threshold encryption. A threshold
encryption scheme TPKE is a cryptographic primi-
tive that allows any party to encrypt a message to a
master public key, such that the network nodes must
work together to decrypt it. Once f +1 correct nodes
compute and reveal decryption shares for a cipher-
text, the plaintext can be recovered; until at least
one correct node reveals its decryption share, the at-
tacker learns nothing about the plaintext. A threshold
scheme provides the following interface:

• TPKE.Setup(1λ)→ PK,{SKi} generates a public
encryption key PK, along with secret keys for each
party SKi

• TPKE.Enc(PK,m)→C encrypts a message m
• TPKE.DecShare(SKi,C) → σi produces the ith

share of the decryption (or ⊥ if C is malformed)
• TPKE.Dec(PK,C{i,σi}) → m combines a set of

decryption shares to obtain the plaintext m (or ⊥,
unless C the set contains at least f +1 valid shares
and C is valid).

Decryption is also robust, in the sense that even
for an adversarially generated ciphertext C, at most
one plaintext (besides ⊥) can be recovered. Note
that TPKE.Dec effectively discards invalid decryp-
tion shares among the set. Finally, the scheme satis-
fies the obvious correctness properties, as well as a
threshold version of the IND-CCA game. In our con-

8

crete instantiation, we use the threshold encryption
scheme of Baek and Zheng [7].

Atomic broadcast from ACS. We now describe in
more detail our atomic broadcast protocol, defined in
Figure 2.

As mentioned, this protocol is centered around
an instance of ACS. In order to obtain scalable ef-
ficiency, we choose a batching policy. We let B be
a batch size, and will commit O(B) transactions in
each epoch. Each node proposes B/N transactions
from its queue. To ensure that nodes propose mostly
distinct transactions, we randomly select these trans-
actions from the first B in each queue.

As we will see in Section 4.4, our ACS instan-
tiation has a total communication cost of O(N2|v|+
λN3 logN), where |v| bounds the size of any node’s
input. We therefore choose a batch size B =
O(λN2 logN) so that the contribution from each node
(B/N) absorbs this additive overhead.

In order to prevent the adversary from influ-
encing the outcome we use a thershold encryption
scheme, as described below. In a nutshell, each node
chooses a set of transactions, and then encrypts it.
Each node then passes the encryption as input to the
ACS subroutine. The output of ACS is therefore a
vector of ciphertexts. The ciphertexts are decrypted
once the ACS is complete. This guarantees that the
set of transactions is fully determined before the ad-
versary learns the particular contents of the proposals
made by each node. This guarantees that an adver-
sary cannot selectively prevent a transaction from be-
ing committed once it is in the front of the queue at
enough correct nodes.

4.4 Instantiating ACS Efficiently

Cachin et al. present a protocol that (implic-
itly) reduces ACS to multi-valued validated Byzan-
tine agreement (MVBA) [15]. Roughly speaking,
MVBA allows nodes to propose values satisfying a
predicate, one of which is ultimately chosen. The re-
duction is simple: the validation predicate says that
the output must be a vector of signed inputs from at
least N− f parties. Unfortunately, the MVBA prim-
itive agreement becomes a bottleneck, because the
only construction we know of incurs an overhead of
O(N3|v|).

We avoid this bottleneck by using an alternative
instantiation of ACS that sidesteps MVBA entirely.
The instantiation we use is due to Ben-Or, et al. [9]
and has, in our view, been somewhat overlooked. In

Algorithm HoneyBadgerBFT (for process Pi)
Let B = O(λN2 logN) be the batch size parame-
ter.
Let PK be the public key received from the
TPKE.Setup (executed by a trusted dealer), and
let SKi be the secret key for Pi.
Let buf := [] be a FIFO queue of input transac-
tions.
Proceed in consecutive epochs numbered r:

// Step 1: Random selection and encryption
– let proposed be a random selection of bB/Nc

transactions from the first B elements of buf
– encrypt x := TPKE.Enc(PK,proposed)

// Step 2: Agreement on ciphertexts
– pass x as input to ACS[r]
– receive {v j} j∈S, where S⊂ [1..N], from ACS[r]

// Step 3: Decryption
– for each j ∈ S:

let e j := TPKE.DecShare(SKi,v j)

multicast DEC(r, j, i,e j)

wait to receive at least t + 1 messages of the
form DEC(r, j,k,e j,k)

decode y j := TPKE.Dec(PK,{(k,e j,k)})
– let blockr := sorted(∪ j∈S{y j}), such that

blockr is sorted in a canonical order (e.g., lexi-
cographically)

– set buf := buf−blockr

Figure 2: HoneyBadgerBFT.

fact, it predates CKPS01 [15], and was initially de-
veloped for a mostly unrelated purpose (as a tool for
achieving efficient asynchronous multi-party compu-
tation [9]). This protocol is a reduction from ACS
to reliable broadcast (RBC) and asynchronous bi-
nary Byzantine agreement (ABA). Only recently do
we know of efficient constructions for these subcom-
ponents, which we explain shortly.

At a high level, the ACS protocol proceeds in
two main phases. In the first phase, each node Pi uses
RBC to disseminate its proposed value to the other
nodes, followed by ABA to decide on a bit vector that
indicates which RBCs have successfully completed.

We now briefly explain the RBC and ABA con-
structions before explaing the Ben-Or protocol in
more detail.

9

Algorthm RBC (for party Pi, with sender
PSender)

• upon input(v) (if Pi = PSender):
let {s j} j∈[N] be the blocks of an (N− 2 f ,N)-
erasure coding scheme applied to v
let h be a Merkle tree root computed over {s j}
send VAL(h,b j,s j) to each party P j, where b j
is the jth Merkle tree branch

• upon receiving VAL(h,bi,si) from PSender,
multicast ECHO(h,bi,si)

• upon receiving ECHO(h,b j,s j) from party P j,
check that b j is a valid merkle branch for root
h and leaf s j, and otherwise discard

• upon receiving valid ECHO(h, ·, ·) messages from
N− f distinct parties,
– interpolate {s′j} from any N − 2 f leaves re-

ceived
– recompute Merkle root h′ and if h′ 6= h then

abort
– if READY(h) has not yet been sent, multicast
READY(h)

• upon receiving f + 1 matching READY(h) mes-
sages, if READY has not yet been sent, multicast
READY(h)

• upon receiving 2 f + 1 matching READY(h) mes-
sages, wait for N− 2 f ECHO messages, then de-
code v

Figure 3: Reliable broadcast algorithm, adapted from
Bracha’s broadcast [13], with erasure codes to im-
prove efficiency [18]

Communication-Optimal Reliable Broadcast. An
asynchronous reliable broadcast channel satisfies the
following properties:

• (Agreement) If any two correct nodes deliver v and
v′, then v = v′.

• (Totality) If any correct node delivers v, then all
correct nodes deliver v

• (Validity) If the sender is correct and inputs v, then
all correct nodes deliver v

While Bracha’s [13] classic reliable broadcast
protocol requires O(N2|v|) total communications for
a message of size |v|, Cachin and Tessaro [18] ob-
served that erasure coding can reduce this cost to
merely O(N|v|+λN2 logN), even in the worst case.
This is a significant improvement for large messages
(i.e., when |v| � λN logN), which, (looking back to
Section 4.3) guides our choice of batch size. The use
of erasure coding here induces at most a small con-
stant factor of overhead, equal to N

N−2 f < 3.

If the sender is correct, the total running time
is three (asynchronous) rounds; and in any case, at
most two rounds elapse between when the first cor-
rect node outputs a value and the last outputs a value.
The reliable broadcast algorithm from [18] is shown
in Figure 3.

Binary Agreement. Binary agreement is a standard
primitive that allows nodes to agree on the value of a
single bit. More formally, binary agreement guaran-
tees three properties:

• (Agreement) If any correct node outputs the bit b,
then every correct node outputs b.

• (Termination) If all correct nodes receive input,
then every correct node outputs a bit.

• (Validity) If any correct node outputs b, then at least
one correct node received b as input.

The validity property implies unanimity: if all of the
correct nodes receive the same input value b, then b
must be the decided value. On the other hand, if at
any point two nodes receive different inputs, then the
adversary may force the decision to either value even
before the remaining nodes receive input.

We instantiate this primitive with a protocol
from Moustefaoui et al. [39], which is based on a
cryptographic common coin. We defer explanation
of this instantiation to the Appendix. Its expected
running time is O(1), and in fact completes within
O(k) rounds with probability 1− 2−k. The commu-
nication complexity per node is O(Nλ), which is due
primarily to threshold cryptography used in the com-
mon coin.

Agreeing on a subset of proposed values. Putting
the above pieces together, we use a protocol from
Ben-Or, et al. [9] to agree on a set of values contain-
ing the entire proposals of at least N− f nodes.

At a high level, this protocol proceeds in two
main phases. In the first phase, each node Pi uses
Reliable Broadcast to disseminate its proposed value
to the other nodes. In the second stage, N concurrent
instances of binary Byzantine agreement are used to
agree on a bit vector {b j} j∈[1..N], where b j = 1 indi-
cates that P j’s proposed value is included in the final
set.

Actually the simple description above conceals
a subtle challenge, for which Ben-Or provide a clever
solution.

A naı̈ve attempt at an implementation of the
above sketch would have each node to wait for the

10

RBC2 RBC3

RBC1

BA1 BA2

BA3

Yes No
V1

Coin

Coin

Coin

Coin

Coin

Coin

Coin

Yes

(a) Normal

YesV2

(b) Wait for slow broadcast (c) Broadcast fails

No

….

….

Ti
m
e

Figure 4: Each execution of our protocol involves
running N concurrent instances of reliable broadcast
(RBC), as well as N of byzantine agreement (BA),
which in turn use an expected constant number of
common coins. We illustrate several possible ex-
amples of how these instances play out (possibly all
within the same run), from the viewpoint of Node 0.
(a) In the ordinary case, Node 0 receives value V1
(Node 1’s proposed value) from the reliable broadcast
at index 1. Node 0 therefore provides input “Yes” to
BA1, which outputs “Yes.” (b) RBC2 takes too long
to complete, and Node 0 has already received (N− f)
“Yes” outputs, so it votes “No” for BA2. However,
other nodes have seen RBC2 complete successfully,
so BA2 results in “Yes” and Node 0 must wait for
V2. (c) BA3 concludes with “No” before RBC3 com-
pletes.

first (N− f) broadcasts to complete, and then propose
1 for the binary agreement instances corresponding to
those and 0 for all the others. However, correct nodes
might observe the broadcasts complete in a different
order. Since binary agreement only guarantees that
the output is 1 if all the correct nodes unaninimously
propose 1, it is possible that the resulting bit vector
could be empty.

To avoid this problem, nodes abstain from
proposing 0 until it is certain that the final vector will
have at least N− f bits set. To provide some intuition
for the flow of this protocol, we narrate several pos-
sible scenarios in Figure 4. The algorithm from Ben-
Or et al. [9] is given in Figure 5. The running time is
O(logN) in expectation, since it must wait for all bi-
nary agreement instances to finish. 3 When instanti-
ated with the reliable broadcast and binary agreement
constructions described above, the total communica-
tion complexity is O(N2|v|+λN3 logN) assuming |v|
is the largest size of any node’s input.

Algorithm ACS (for party Pi)
Let {RBCi}N refer to N instances of the reliable
broadcast protocol, where Pi is the sender of RBCi.
Let {BAi}N refer to N instances of the binary
byzantine agreement protocol.
• Upon receiving input vi, input vi to RBCi.
• Upon delivery of v j from RBC j, if input has not

yet been provided to BA j, then provide input 1 to
BA j

• Upon delivery of value 1 from at least N− f in-
stances of BA, provide input 0 to each instance of
BA that has not yet been provided input

• Once all instances of BA have completed, let C⊂
[1..N] be the indexes of each BA that delivered
1. Wait for {v j} for each j ∈ C where v j is the
output of RBC j. Finally output ∪ j∈Cv j.

Figure 5: Common Subset Agreement protocol
(from Ben-Or, et al. [9])

4.5 Analysis

First we observe that the agreement and total
order properties follow immediately from the defini-
tion of ACS and robustness of the TPKE scheme.

Theorem 1. (Agreement and total order). The Hon-
eyBadgerBFT protocol satisfies the agreement and
total order properties, except for negligible probabil-
ity.

Proof. ACS guarantees that all process agree on a set
of ciphertexts, and the robustness of TPKE guaran-
tees that all nodes decrypt ciphertexts to consistent
values.

Theorem 2 (Complexity). Assuming a batch size
B = O(λN2 logN), the running time for each Honey-
BadgerBFT epoch is O(logN) in expectation, and the
total expected communication complexity is O(B).

Proof. The cost and running time of ACS is ex-
plained in Section 4.4. The N instances of threshold
decryption incur one additional round and an addi-
tional cost of O(λN2), which is absorbed.

The HoneyBadgerBFT protocol may commit
up to B transactions in a single epoch. However, the
actual number may be less than this, since some cor-
rect nodes may propose overlapping transaction sets,
others may respond too late, and corrupted nodes may
propose an empty set. Fortunately, we prove (in the
Appendix) that assuming each correct node’s queue
is full, then B/4 serves as a lower bound.

11

Theorem 3. (Efficiency). Assuming each correct
node’s queue contains at least B distinct transactions,
then the expected number of transactions committed
in an epoch is at least B

4 , resulting in constant effi-
ciency.

Finally, we prove (in the Appendix) that the ad-
versary cannot significantly delay the commit of any
transaction.

Theorem 4. (Fairness). Suppose an adversary
passes a transaction tx as input to N − f correct
nodes. Let T be the size of the “backlog”, i.e. the
difference between the total number of transactions
previously input to any correct node and the number
of transactions that have been committed. Then tx is
commited within O(T/B+λ) epochs except for neg-
ligible probability.

5 Implementation and Evaluation

In this section we carry out several experi-
ments and performance measurements using a proto-
type implementation of the HoneyBadgerBFT proto-
col. Unless otherwise noted, numbers reported in this
section are by default for the optimistic case where all
nodes are behaving honestly.

First we demonstrate that HoneyBadgerBFT is
indeed scalable by performing an experiments in a
wide area network, including up to 128 nodes in five
continents. Even under these conditions, HoneyBad-
gerBFT can reach peak throughputs of thousands of
transactions per second. Furthermore, by a com-
parison with PBFT, a representative partially syn-
chronous protocol, HoneyBadgerBFT performs only
a small constant factor worse. Finally, we demon-
strate the feasibility of running asynchronous BFT
over the Tor anonymous communication layer.

Implementation details. We developed a prototype
implementation of HoneyBadgerBFT in Python, us-
ing the gevent library for concurrent tasks.

For instantiating the common coin primitive,
we implement Boldyreva’s pairing-based threshold
signature scheme [11]. For threshold encryption
of transaction payloads, we use Baek and Zheng’s
scheme [7] to encrypt an 256-bit ephemeral key, fol-
lowed by AES-256 in CBC mode over the actual pay-
load. We implement these threshold cryptography
schemes using the Charm [3] Python wrappers for
PBC library [35]. For threshold signatures, we use
the MNT224 curve, resulting in signatures (and sig-
nature shares) of only 65 bytes, and heuristically pro-
viding 112 bits of security [41]. Our threshold en-

cryption scheme requires a symmetric bilinear group:
we therefore use the SS512 group, which heuristi-
cally provides 80 bits of security [41]. For deter-
ministic erasure coding, we use the zfec library [49],
which implements Reed-Solomon codes.

5.1 Bandwidth Breakdown and Evaluation

We first analyze the bandwidth costs of our sys-
tem. In all experiments, we assume a constant trans-
action size of mT = 250 bytes each, which would ad-
mit an ECDSA signature, two public keys, as well
as a comfortably sized transaction payload (i.e., ap-
proximately the size of a typical Bitcoin transaction).
Our experiments use the parameter N = 4 f , and each
party proposes a batch of B/N transactions. To model
the worst case scenario, nodes begin with identical
queues of size B. We record the running time as the
time from the beginning of the experiment to when
the (N− f)-th node outputs a value.

Bandwidth and breakdown findings. The overall
bandwidth consumed by each node consists of a fixed
additive overhead as well as a transaction dependent
overhead. For all parameter values we considered,
the additive overhead is dominated by an O(λN2)
term resulting from the threshold cryptography in the
ABA phases and the decryption phase that follows.
The ABA phase involves each node transmitting 4N2

signature shares in expectation. Only the RBC phase
incurs a transaction-dependent overhead, equal to the
erasure coding expansion factor r = N

N−2 f . The RBC

phase also contributes N2 logN hashes to the over-
head because of Merkle tree branches included in the
ECHO messages. The total communication cost (per
node) is estimated as:

mall = r(BmT+NmE)+N2((1+logN)mH+mD+4mS)

where mE and mD are respectively the size of a ci-
phertext and decryption share in the TPKE scheme,
and mS is the size of a TSIG signature share.

The system’s effective throughput increases as
we increase the proposed batch size B, such that the
transaction-dependent portion of the cost dominates.
As Figure 6 shows, for N = 128, for batch sizes up to
1024 transactions, the transaction-independent band-
width still dominates to overall cost. However, when
when the batch size reaches 16384, the transaction-
dependent portion begins to dominate — largely re-
sulting from the RBC.ECHO stage where nodes trans-
mit erasure-coded blocks.

12

100 101 102 103 104 105

Batch size (Tx) in log scale

10-2

10-1

100

101

102

C
o
m

m
u
n
ic

a
ti

o
n
 c

o
st

 p
e
r

n
o
d
e
 (

M
B

)

Nodes / Tolerance

8/2

16/4

32/8

64/16

128/32

ideal

Figure 6: Estimated communication Cost (per node)
over varying batch sizes. For small batch sizes, the
fixed grows with O(N2 logN). At saturation, the
overhead factor approaches N

N−2 f < 3.

103 104 105 106

Batch size (Tx) in log scale

103

104

T
h
ro

u
g
h
p
u
t

(T
x
 p

e
r

se
co

n
d
)

in
 l
o
g
 s

ca
le

Nodes / Tolerance

4/1
8/2
16/4
32/8

Figure 7: Throughput (transactions committed per
second) vs number of transactions proposed, for dif-
ferent parameterizations.

5.2 Experiments on Amazon EC2

To see how practical our design is, we deployed
our protocol on Amazon EC2 services and compre-
hensively tested its performance. We ran Honey-
BagderBFT on 8, 16, 32, 64 and 128 Amazon EC2
t2.medium instances uniformly distributed through-
out its 8 regions spanning 5 continents. In our exper-
iments, we varied the batch size such that each node
proposed 256, 512, 1024, 2048, 4096, 8192, 16384,
32768, 65536, or 131072 transactions.

Throughput. Throughput is defined as the number of
transactions committed per unit of time. In our exper-
iment, we use “confirmed transactions per second” as
our measure unit if not specified otherwise.

Figure 7 shows the relationship between
throughput and total number of transactions proposed
by all N parties for N = 8,16,32,64,128. The fault
tolerance parameter is set to be f = N/4.

0 5000 10000 15000 20000 25000
Throughput (Tx per second)

101

102

La
te

n
cy

 (
S
e
co

n
d
s)

Nodes / Tolerance

4/1
8/2
16/4
32/8
64/16
128/32

Figure 8: Latency vs. throughput for experiments
over a wide area networks.

Findings. From Figure 7 we can see for each
setting, the throughput increases as the number of
proposed transactions increases. We achieve through-
puts exceeding 20,000 transactions per second for
medium size networks ranging from 8 to 64 nodes.
For a large 128 node network, we attain more than
7,000 transactions per second. Given an infinite batch
size, all network sizes would eventually converge to
a common upper bound, limited only by available
bandwidth. Although the total bandwidth consumed
in the network increases (linearly) with each addi-
tional node, the additional nodes also contribute ad-
ditional bandwidth capacity.

Throughput vs. latency tradeoff. Latency is de-
fined as the time interval between the the time the first
node receives a client request and when the (N− f)-
th node finishes the consensus protocol. This is rea-
sonable because the (N − f)-th node finishing the
protocol implies the accomplishment of the consen-
sus for the honest parties.

Figure 8 shows the relationship between la-
tency and throughput for different choices of N and
f = N/4. The positive slopes indicate that we have
not yet fully saturated the available bandwidth, and
would attain better throughput even with larger batch
sizes. Figure 8 also shows that latency increases
as the number of nodes increases, largely stemming
from the ABA phase of the protocol. In fact, at
N = 128, for the range of batch sizes we tried, our
system is CPU bound rather than bandwidth bound
because our implementation is single threaded and
must verify O(N2) threshold signatures. Regardless,
our largest experiment with 128 nodes completes in
under 3 minutes.

Comparison with PBFT. Figure 9 shows a compar-
ison with the PBFT protocol, a classic BFT proto-

13

8 nodes 16 nodes 32 nodes 64 nodes

0

0.5

1

1.5

2
·104

M
ax

im
um

T
hr

ou
gh

pu
t(

T
x

pe
rs

ec
on

d)

BadgerBFT
PBFT

Figure 9: Comparison with PBFT on EC2s

col for partially synchronous networks. We use the
Python implementation from Croman et al. [23], run-
ning on 8,16,32,64 nodes evenly distributed among
Amazon AWS regions. Batch sizes were chosen to
saturate the network’s available bandwidth.

Fundamentally, while PBFT and our protocol
have the same asymptotic communication complex-
ity in total, our protocol distributes this load evenly
among the network links, whereas PBFT bottlenecks
on the leader’s available bandwidth. Thus PBFT’s
attainable throughput diminishes with the number of
nodes, while HoneyBadgerBFT’s remains roughly
constant.

Note that this experiment reflects only the op-
timistic case, with no faults or network interruptions.
Even for small networks, HoneyBadgerBFT provides
significantly better robustness under adversarial con-
ditions as noted in Section 3. In particular, PBFT
would achieve 0 throughput against an adversarial
asynchronous scheduler, whereas HoneyBadgerBFT
would complete epochs at a regular rate.

5.3 Experiments over Tor

Tor is a popular anonymous relay network [25].
Running consensus nodes over Tor gives better ro-
bustness against targeted attacks, since it allows
nodes to conceal their IP addresses and to avoid cen-
sorship by oppressive governments. We therefore
conducted experiments over Tor using hidden ser-
vices. As far as we know, this is the first instance of a
fault tolerant protocol experiment carried out over an
anonymous network!

Brief background on Tor. The Tor network consists
of approximately 6,500 relays, which are listed in
a public directory service. Tor enables “hidden ser-
vices”, which are servers that accept connections via
Tor in order to conceal its location. When a client

establishes a connection to a hidden service, both
the client and the server construct 3-hop circuits to a
common “rendezvous point.” Thus each connection
to a hidden service routes data through 5 randomly
chosen relays, which . Tor provides a means for relay
nodes to advertise their capacity and utilization, and
these self-reported metrics are aggregated by the Tor
project. According to these metrics, 4 the total ca-
pacity of the network is ∼145Gbps, and the current
utilization is ∼65Gbps.

Tor experiment setup. We design our experiment
setup such that we could run all N HoneyBadgerBFT
nodes on a single desktop machine running the Tor
daemon software, while being able to realistically re-
flect Tor relay paths. To do this, we run all N Honey-
BadgerBFT nodes on a single desktop machine run-
ning a single instance of the Tor daemon software,
configured to listen on N hidden services (one ser-
vice per node). Since each HoneyBadgerBFT node
forms a connection to each other node, we manually
construct a total of N2 Tor circuits per experiment,
beginning and ending with our machine, and passing
through 5 random relays. In summary, all pairwise
overlay links traverse real Tor circuits consisting of
random relay nodes, and therefore the performance
we obtain is representative of typical consensus per-
formance over Tor (despite all nodes running on a sin-
gle machine).

Since Tor provides a critical public service for
many users, it is important to ensure that research ex-
periments conducted on the live network do not ad-
versely impact it. We formed connections from only
a single vantage point (and thus avoid receiving), and
ran experiments of short duration (several minutes)
and with small parameters (only 256 circuits formed
in our largest experiment). In total, our experiments
involved the transfer of approximately five gigabytes
of data through Tor – less than a 1E-5 fraction of its
daily utilization.

Figure 10 shows how latency changes with
throughput. In contrast to our EC2 experiment where
nodes have ample bandwidth, Tor circuits are limited
by the slowest link in the circuit. We attain a maxi-
mum throughput of over 800 transactions per second
of Tor.

In general, messages transmitted over Tor’s re-
lay network tends to have significant and highly vari-
able latency. For instance, during our experiment on
8 parties proposing 16384 transactions per party, a
single message can be delayed for 316.18 seconds
and the delay variance is over 2208 while the average

14

10-1 100 101 102 103

Throughput (Tx / s)

100

101

102

La
te

n
cy

 (
se

c)

4/1

8/2

16/4

Figure 10: Latency vs throughput for experiments
running HoneyBadgerBFT over Tor.

delay is only 12 seconds. We stress that our protocol
did not need to be “tuned” for such network condi-
tions, as would a traditional eventually synchronous
protocol.

6 Conclusion

We have presented HoneyBadgerBFT, the first
efficient and high-throughput asynchronous BFT pro-
tocol. Through our implementation and experimen-
tal we demonstrate that HoneyBadgerBFT can be
a suitable component for incipient cryptocurrency-
inspired deployments of fault tolerant transaction
processing systems. More generally, we believe our
work demonstrates the promise of building depend-
able and transaction processing systems based on
asynchronous protocol.

Acknowledgements. We thank Jay Lorch, Jonathan
Katz, and Emin Gün Sirer for helpful suggestions,
and especially Dominic Williams for several ex-
cellent discussions that inspired us to tackle this
problem. This work is supported in part by NSF
grants CNS-1314857, CNS-1453634, CNS-1518765,
CNS-1514261, CNS-1518899, a Packard Fellowship,
a Sloan Fellowship, two Google Faculty Research
Awards, and a VMWare Research Award. This work
was done in part while a subset of the authors were
visiting the Simons Institute for the Theory of Com-
puting, supported by the Simons Foundation and by
the DIMACS/Simons Collaboration in Cryptography
through NSF grant CNS-1523467.

References

[1] How a Visa transaction works. http://web.

archive.org/web/20160121231718/http:

//apps.usa.visa.com/merchants/

become-a-merchant/how-a-visa-

transaction-works.jsp, 2015.

[2] Michael Abd-El-Malek, Gregory R Ganger,
Garth R Goodson, Michael K Reiter, and Jay J
Wylie. Fault-scalable byzantine fault-tolerant
services. ACM SIGOPS Operating Systems Re-
view, 39(5):59–74, 2005.

[3] Joseph A Akinyele, Christina Garman, Ian
Miers, Matthew W Pagano, Michael Rushanan,
Matthew Green, and Aviel D Rubin. Charm:
a framework for rapidly prototyping cryptosys-
tems. Journal of Cryptographic Engineering,
3(2):111–128, 2013.

[4] Yair Amir, Brian Coan, Jonathan Kirsch, and
John Lane. Prime: Byzantine replication un-
der attack. Dependable and Secure Computing,
IEEE Transactions on, 8(4):564–577, 2011.

[5] Yair Amir, Claudiu Danilov, Danny Dolev,
Jonathan Kirsch, John Lane, Cristina Nita-
Rotaru, Josh Olsen, and David Zage. Stew-
ard: Scaling byzantine fault-tolerant replication
to wide area networks. Dependable and Secure
Computing, IEEE Transactions on, 7(1):80–93,
2010.

[6] Pierre-Louis Aublin, Sonia Ben Mokhtar, and
Vivien Quéma. Rbft: Redundant byzantine fault
tolerance. In Distributed Computing Systems
(ICDCS), 2013 IEEE 33rd International Con-
ference on, pages 297–306. IEEE, 2013.

[7] Joonsang Baek and Yuliang Zheng. Simple and
efficient threshold cryptosystem from the gap
diffie-hellman group. In Global Telecommu-
nications Conference, 2003. GLOBECOM’03.
IEEE, volume 3, pages 1491–1495. IEEE, 2003.

[8] Michael Ben-Or and Ran El-Yaniv. Resilient-
optimal interactive consistency in constant time.
Distributed Computing, 16(4):249–262, 2003.

[9] Michael Ben-Or, Boaz Kelmer, and Tal Rabin.
Asynchronous secure computations with opti-
mal resilience. In Proceedings of the thirteenth
annual ACM symposium on Principles of distri-
buted computing, pages 183–192. ACM, 1994.

[10] Alysson Bessani, João Sousa, and Eduardo EP
Alchieri. State machine replication for the
masses with bft-smart. In Dependable Systems
and Networks (DSN), 2014 44th Annual IEEE/I-
FIP International Conference on, pages 355–
362. IEEE, 2014.

[11] Alexandra Boldyreva. Threshold signatures,
multisignatures and blind signatures based on

15

http://web.archive.org/web/20160121231718/http://apps.usa.visa.com/merchants/become-a-merchant/how-a-visa-transaction-works.jsp
http://web.archive.org/web/20160121231718/http://apps.usa.visa.com/merchants/become-a-merchant/how-a-visa-transaction-works.jsp
http://web.archive.org/web/20160121231718/http://apps.usa.visa.com/merchants/become-a-merchant/how-a-visa-transaction-works.jsp
http://web.archive.org/web/20160121231718/http://apps.usa.visa.com/merchants/become-a-merchant/how-a-visa-transaction-works.jsp
http://web.archive.org/web/20160121231718/http://apps.usa.visa.com/merchants/become-a-merchant/how-a-visa-transaction-works.jsp

the gap-diffie-hellman-group signature scheme.
In Public key cryptographyPKC 2003, pages
31–46. Springer, 2002.

[12] Joseph Bonneau, Andrew Miller, Jeremy Clark,
Arvind Narayanan, Joshua Kroll, and Ed-
ward W. Felten. Research perspectives on bit-
coin and second-generation digital currencies.
In 2015 IEEE Symposium on Security and Pri-
vacy. IEEE, 2015.

[13] Gabriel Bracha. Asynchronous byzantine
agreement protocols. Information and Compu-
tation, 75(2):130–143, 1987.

[14] Mike Burrows. The chubby lock service for
loosely-coupled distributed systems. In Pro-
ceedings of the 7th symposium on Operating
systems design and implementation, pages 335–
350. USENIX Association, 2006.

[15] Christian Cachin, Klaus Kursawe, Frank Pet-
zold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In Advances
in Cryptology – Crypto 2001, pages 524–541.
Springer, 2001.

[16] Christian Cachin, Klaus Kursawe, and Victor
Shoup. Random oracles in constantipole: Prac-
tical asynchronous byzantine agreement using
cryptography. In Proceedings of the Nine-
teenth Annual ACM Symposium on Principles of
Distributed Computing, pages 123–132. ACM,
2000.

[17] Christian Cachin, Jonathan Poritz, et al. Se-
cure intrusion-tolerant replication on the inter-
net. In Dependable Systems and Networks,
2002. DSN 2002. Proceedings. International
Conference on, pages 167–176. IEEE, 2002.

[18] Christian Cachin and Stefano Tessaro. Asyn-
chronous verifiable information dispersal. In
Reliable Distributed Systems, 2005. SRDS
2005. 24th IEEE Symposium on, pages 191–
201. IEEE, 2005.

[19] Ran Canetti and Tal Rabin. Fast asynchronous
byzantine agreement with optimal resilience.
In Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 42–
51. ACM, 1993.

[20] Miguel Castro, Barbara Liskov, et al. Practical
byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999.

[21] Allen Clement, Manos Kapritsos, Sangmin Lee,
Yang Wang, Lorenzo Alvisi, Mike Dahlin, and
Taylor Riche. Upright cluster services. In Pro-
ceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 277–
290. ACM, 2009.

[22] Allen Clement, Edmund L Wong, Lorenzo
Alvisi, Michael Dahlin, and Mirco Marchetti.
Making byzantine fault tolerant systems toler-
ate byzantine faults. In NSDI, volume 9, pages
153–168, 2009.

[23] Kyle Croman, Christian Decker, Ittay Eyal,
Adem Efe Gencer, Ari Juels, Ahmed Kosba,
Andrew Miller, Prateek Saxena, Elaine Shi,
Emin Gun Sirer, Dawn Song, and Roger Wat-
tenhofer and. On scaling decentralized
blockchains — a position paper. Manuscript,
2015.

[24] George Danezis and Sarah Meiklejohn. Cen-
trally banked cryptocurrencies. arXiv preprint
arXiv:1505.06895, 2015.

[25] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion
router. Technical report, DTIC Document,
2004.

[26] Cynthia Dwork, Nancy Lynch, and Larry Stock-
meyer. Consensus in the presence of par-
tial synchrony. Journal of the ACM (JACM),
35(2):288–323, 1988.

[27] Michael J Fischer, Nancy A Lynch, and
Michael S Paterson. Impossibility of distribu-
ted consensus with one faulty process. Journal
of the ACM (JACM), 32(2):374–382, 1985.

[28] Valerie King and Jared Saia. From almost ev-
erywhere to everywhere: Byzantine agreement
with o(n3/2) bits. In Distributed Computing,
pages 464–478. Springer, 2009.

[29] Valerie King and Jared Saia. Breaking the o(n2)
bit barrier: scalable byzantine agreement with
an adaptive adversary. Journal of the ACM
(JACM), 58(4):18, 2011.

[30] Ramakrishna Kotla, Lorenzo Alvisi, Mike
Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: speculative byzantine fault tolerance.
In ACM SIGOPS Operating Systems Review,
volume 41, pages 45–58. ACM, 2007.

16

[31] Klaus Kursawe and Victor Shoup. Opti-
mistic asynchronous atomic broadcast. In
in the Proceedings of International Colloqium
on Automata, Languages and Programming
(ICALP05)(L Caires, GF Italiano, L. Monteiro,
Eds.) LNCS 3580. Citeseer, 2001.

[32] Jae Kwon. TenderMint: Consensus without
Mining, August 2014.

[33] Leslie Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS),
16(2):133–169, 1998.

[34] Loi Luu, Viswesh Narayanan, Kunal Baweja,
Chaodong Zheng, Seth Gilbert, and Prateek
Saxena. Scp: A computationally-scalable
byzantine consensus protocol for blockchains.
Cryptology ePrint Archive, Report 2015/1168,
2015. http://eprint.iacr.org/.

[35] Ben Lynn. On the implementation of pairing-
based cryptography. The Department of Com-
puter Science and the Committee on Graduate
Studies of Stanford University, 2007.

[36] Yanhua Mao, Flavio Paiva Junqueira, and Keith
Marzullo. Mencius: building efficient repli-
cated state machines for wans. In OSDI, vol-
ume 8, pages 369–384, 2008.

[37] Robert McMillan. Ibm bets big on bitcoin
ledger. Wall Street Journal.

[38] Robert McMillan. How bitcoin became
the honey badger of money. Wired Maga-
zine, http://www.wired.com/2013/12/

bitcoin_honey/, 2013.

[39] Achour Mostefaoui, Hamouma Moumen, and
Michel Raynal. Signature-free asynchronous
byzantine consensus with t¡ n/3 and o (n 2) mes-
sages. In Proceedings of the 2014 ACM sym-
posium on Principles of distributed computing,
pages 2–9. ACM, 2014.

[40] Satoshi Nakamoto. Bitcoin: A peer-to-peer
electronic cash system. http://bitcon.org/
bitcoin.pdf, 2008.

[41] NIST. Sp 800-37. Guide for the Security Certifi-
cation and Accreditation of Federal Information
Systems, 2004.

[42] Diego Ongaro and John Ousterhout. In search
of an understandable consensus algorithm. In
Proc. USENIX Annual Technical Conference,
pages 305–320, 2014.

[43] HariGovind V Ramasamy and Christian
Cachin. Parsimonious asynchronous byzantine-
fault-tolerant atomic broadcast. In OPODIS,
pages 88–102. Springer, 2005.

[44] David Schwartz, Noah Youngs, and Arthur
Britto. The Ripple Protocol Consensus Algo-
rithm, September 2014.

[45] Victor Shoup. Practical threshold signatures. In
EUROCRYPT, pages 207–220. Springer, 2000.

[46] Atul Singh, Tathagata Das, Petros Maniatis, Pe-
ter Druschel, and Timothy Roscoe. Bft pro-
tocols under fire. In Proceedings of the 5th
USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI’08, pages 189–
204, Berkeley, CA, USA, 2008. USENIX Asso-
ciation.

[47] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, and Lau Cheuk Lung.
Spin one’s wheels? byzantine fault tolerance
with a spinning primary. In Reliable Distribu-
ted Systems, 2009. SRDS’09. 28th IEEE Inter-
national Symposium on, pages 135–144. IEEE,
2009.

[48] Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, and Lau Cheuk Lung.
Ebawa: Efficient byzantine agreement for wide-
area networks. In High-Assurance Systems En-
gineering (HASE), 2010 IEEE 12th Interna-
tional Symposium on, pages 10–19. IEEE, 2010.

[49] Zooko Wilcox-O’Hearn. Zfec 1.4. 0. Open
source code distribution: http://pypi.

python.org/pypi/zfec, 2008.

Notes

1 The decomposition of Atomic Broadcast by way of ACS is
not explicit in Cachin et al. [15], though it is easily seen. For com-
pleteness, we present this decomposition in the Appendix.

2The decomposition of Cachin et al.’s protocol into Asyn-
chronous Common Subset is not explicit, although quite easy to
see. To be self-contained, we present the protocol this way in the
Appendix.

3The expected running time can be reduced to O(1) by [8] run-
ning several instances in parallel, though this comes at the expense
of throughput.

4From https://metrics.torproject.org/bandwidth.

html on Nov 10, 2015

A Attacking PBFT

PBFT. The PBFT protocol consists of two main
workflows: a “fast path” that provides good perfor-

17

http://eprint.iacr.org/
http://www.wired.com/2013/12/bitcoin_honey/
http://www.wired.com/2013/12/bitcoin_honey/
http://bitcon.org/bitcoin.pdf
http://bitcon.org/bitcoin.pdf
http://pypi.python.org/pypi/zfec
http://pypi.python.org/pypi/zfec
https://metrics.torproject.org/bandwidth.html
https://metrics.torproject.org/bandwidth.html

mance in optimistic case (when the network is syn-
chronous and the leader functions correctly), and a
“view-change” procedure to change leaders.

The fast path consists of three rounds of com-
munication: PRE PREPARE, PREPARE, and COMMIT.
The leader of a given view is responsible for totally
ordering all requests. Upon receiving a client request,
the leader multicasts a PRE PREPARE message speci-
fying the request and a sequence number to all other
replicas, who respond by multicasting a correspond-
ing PREPARE message. Replicas multicast a COMMIT

message on receipt of 2 f prepare messages and the
PREPARE message, and execute the request on receipt
of 2 f +1 COMMIT messages (including their own).

Replicas increment their view number and mul-
ticast a VIEW CHANGE message to elect a new leader
when a request takes too long to execute (i.e., longer
than a timeout interval), a previously initiated view
change has taken too long, or it receives f + 1
VIEW CHANGE messages with a higher view number.
The leader of the next view is determined by the view
number modulo the number of replicas (thus, lead-
ership is transferred in a round-robin manner). The
new leader multicasts a NEW VIEW message once it
receives 2 f +1 VIEW CHANGE messages and includes
them as proof of a valid view. A replica accepts the
NEW VIEW mesage if its number is equal to or greater
than its own current view number, and resumes pro-
cessing messages as normal; however messages with
lower view numbers are ignored. The timeout inter-
val is initialized to a fixed value (∆), but increases
by a factor of 2 with each consecutive unsuccessful
leader election.

An intermittently synchronous network that
thwarts PBFT. The scheduler does not drop or re-
order any messages, but simply delays delivering
messages to whichever node is the current leader.
In particular, whenever the current leader is a faulty
node, this means that messages among all honest
nodes are delivered immediately. In the Appendix,
we provide a detailed illustration of the PBFT proto-
col behaves under our attack.

To confirm our analysis, we implemented this
malicious scheduler as a proxy that intercepted and
delayed all view change messages to the new leader,
and tested it against a 1200 line Python implemen-
tation of PBFT. The results and message logs we
observed were consistent with the above analysis;
our replicas became stuck in a loop requesting view
changes that never succeeded.

 0 (faulty) 1 2 3

0Δ ⚫ Req*

⚪ PP 0

view:0

⚫ Req*

view:0

⚫ Req*

view:0

⚫ Req*

view:0

1Δ ⚪ V 1
⚫ V 1 *

view:1

⚪ V 1

⚫ PP 0 X

view:1

⚪ V 1

⚫ PP 0 X

⚫ V 1 *

view:1

⚪ V 1

⚫ PP 0 X
⚫ V 1 *

view:1

3Δ ⚪ V 2

⚫ N 1 ,PP 1 X
⚫ V 2 *

view:2

⚫ V 1
⚪ N 1 ,PP 1 *
⚫ V 2 **
⚪ V 2

view:1/2

⚪ V 2

⚫ N 1 ,PP 1 X

view:2

⚪ V 2

⚫ N 1 ,PP 1 X

⚫ V 2 *

view:2

7Δ ⚪ V 3

⚫ N 2 ,PP 2 X
⚫ V 3 *

view:3

⚪ V 3

⚫ N 2 ,PP 2 X
⚫ V 3 *

view:3

⚫ V 2
⚪ N 2 ,PP 2 *
⚫ V 3 **
⚪ V 3

view:2/3

⚪ V 3
⚫ N 2 ,PP 2 X

view:3

T

im
e

Replicas

* Start timer
** Increment view
⚫ Message delivered
⚪ Message sent
X Message ignored by protocolSend withheld

Nn New View with view n
Vn View change for view n
PPn Pre-prepare from replica n
Req Client request

Delayed receive Rapid message delivery
between all honest parties

Figure 11: An intermittently synchronous scheduler
that violates PBFT’s assumptions and indeed pre-
vents it from making progress. Only the first four
phases are shown - the behavior continues to repeat
indefinitely. In the pink regions, messages to the
leader are delayed (for longer than the timeout ∆,
thus violating the eventual-synchrony assumption).
However, all other messages are delivered at the or-
dinary rate between honest parties, hence “intermit-
tently synchronous.”

Since this scheduler is intermittently syn-
chronous, any purely asynchronous protocol (includ-
ing HoneyBadgerBFT) would make good progress
during periods of synchrony, regardless of preceding
intervals .

How PBFT behaves under attack. In Figure 11,
we illustrate our attack on PBFT. The scheduler does
not drop or reorder any messages, but simply delays
delivering messages to whichever node is the current
leader. In particular, whenever the current leader is
a faulty node, this means that messages among all
honest nodes are delivered immediately.

We abbreviate client requests as “Req,”
NEW VIEW messages as “N,” VIEW CHANGE messages
as “V,” and PRE PREPARE messages as “PP.” The sub-

18

script on a message indicates the view in which it was
sent. Here, © followed by a message indicates that
this message has been broadcast to all other nodes
(called replicas) by the replica specified by the col-
umn number, at the time specified by the row number
multiplied by the fixed timeout interval ∆. Similarly,
• followed by a message indicates that this message
has been delivered to the replica specified by the col-
umn number, at the time specified by the row. As
multiple VIEW CHANGE messages for a given view are
sent to each individual node, •Vn indicates the deliv-
ery of all VIEW CHANGE messages with view number
n. A red “X” appended to a delivered message indi-
cates that the messages is ignored because the view
number does not match that replica’s current view. A
“*” indicates that a timer has been started as a re-
sult of the delivered message. “**” indicates that a
replica’s view number has incremented as a result of
the delivered message(s). A red region indicates that
all broadcast operations from this replica at this time
will be delayed by ∆. A pink region indicates that the
receipt of all messages will be delayed by ∆.

In this example, the faulty replica 0 is ini-
tially the leader and withholds a PRE PREPARE mes-
sage for longer than the timeout period ∆. This trig-
gers all nodes to increment their view counter and
multicast a VIEW CHANGE message for view num-
ber 1. The scheduler then delays the delivery of
all VIEW CHANGE messages to replica 1 (the leader
in view 1). The view change operation for the re-
maining nodes times out, as they do not receive a
valid NEW VIEW message from replica 1. Nodes 0,2,
and 3 then increment their view counters to 2, and
multicast another VIEW CHANGE message. At this
point, the VIEW CHANGE messages for view 1 are de-
livered to replica 1, which responds by multicasting
a NEW VIEW and a PRE PREPARE message in view 1.
These messages are then delivered and subsequently
ignored by all other nodes, as they have progressed
to view number 2. Replica 1 will then receive the
VIEW CHANGE messages for view 2, and increments
its view counter accordingly. The scheduler then de-
lays the delivery of all VIEW CHANGE messages to
replica 2, ensuring that the view change operation of
all other nodes times out again. This process will
continue until the faulty replica 0 is again elected
leader, at which point the scheduler will deliver all
messages at an accelerated rate while replica 0 with-
holds the corresponding NEW VIEW and PRE PREPARE

messages to trigger another view change and repeat
this cycle. The cycle may continue indefinitely so
long as the scheduler withholds VIEW CHANGE mes-
sages from the intended non-faulty leader for longer

than the (exponentially increasing) timeout interval,
preventing any view changes from succeeding and
stopping the protocol from making any progress, de-
spite the fact that at time intervals where replica 0 is
the leader (0∆,8∆,64∆...) all non-faulty replicas are
able to communicate without any interference.

Intermittently synchronous networks. To more
clearly illustrate the difference between asyn-
chronous networks, we introduce a new network
performance assumption, ∆-intermittently synchrony,
which is strictly weaker than even weak synchrony.
The idea is that a ∆-intermittently synchronous net-
work approximates a ∆-synchronous network in the
sense that on average it delivers messages at a rate
of 1/∆. However, the delivery rate may be unevenly
distributed in time (e.g., “bursty”), delivering no mes-
sages at all during some time intervals and delivering
messages rapidly during others.

Definition 2. A network is ∆-intermittently syn-
chronous if for any initial time T0, and for any du-
ration D, there exists an interval [T0,T1] such that
T1−T0 ≥ D and the number of asynchronous rounds
advanced during [T0,T1] is at least (T1−T0)/∆.

It is clearly the case that every ∆-synchronous
network is also ∆-intermittently synchronous, since
for every interval of duration ∆, messages sent prior
to that interval are delivered by the end of that in-
terval. It is also clear that any intermittently syn-
chronous network guarantees eventual delivery (i.e.,
it is no weaker than the asynchronous model).

Asynchronous protocols make progress when-
ever rounds of messages are delivered. Since an
intermittently-synchronous network guarantees mes-
sages are delivered on average within ∆, this means
any asynchronous protocol also makes progress at an
average rate of ∆.

B Asynchronous Binary Byzantine Agreement

Realizing binary agreement from a common coin.
Binary agreement allows nodes to agree on the value
of a single bit. More formally, binary agreement
guarantees three properties:

• (Agreement) If any correct node outputs the bit b,
then every correct node outputs b.

• (Termination) If all correct nodes receive input,
then every correct node outputs a bit.

• (Validity) If any correct node outputs b, then at least
one correct node received b as input.

19

The validity property implies unanimity: if all
of the correct nodes receive the same input value b,
then b must be the decided value. On the other hand,
if at any point two nodes receive different inputs, then
the adversary may force the decision to either value
even before the remaining nodes receive input.

We instantiate this primitive with a protocol
based on cryptographic common coin, which essen-
tially act as synchronizing gadgets. The adversary
only learns the value of the next coin after a majority
of correct nodes have committed to a vote — if the
coin matches the majority vote, then that is the de-
cided value. The adversary can influence the majority
vote each round, but only until the coin is revealed.

The Byzantine agreement algorithm from
Moustefaoui et al. [39] is shown in Figure 12. Its
expected running time is O(1), and in fact completes
within O(k) rounds with probability 1− 2−k. When
instantiated with the common coin defined below, the
total communication complexity is O(λN2), since it
uses a constant number of common coins.

Realizing a common coin from a threshold signa-
ture scheme. A common coin is a protocol that sat-
isfies the following properties:

• If f +1 parties call GetCoin(), then all parties even-
tually receive a common value, s.

• The value s is uniformly sampled in the range
{0,1}λ , and cannot be influenced by the adversary.

• Until at least one party calls GetCoin(), no infor-
mation about s is revealed to the adversary.

Following [16], a common coin can be real-
ized from a unique threshold signature scheme. An
(N, f)-threshold signature scheme involves distribut-
ing shares of a signing key ski to each of N parties.
Given a message, a party using secret key ski can
compute a signature share on an arbitrary message
m. Given f +1 such signature shares for message m,
anyone can combine the shares to produce a valid sig-
nature, which verifies under the public key pk. With
fewer than f +1 shares, (i.e., unless at least one hon-
est party deliberately computes and reveals a share),
the adversary learns nothing. We rely on an addi-
tional uniqueness property, which guarantees that for
a given public key pk, there exists exactly one valid
signature on each message m.

The idea of Cachin et al. [16] is simply to use
the threshold signature as a source of random bits, by
signing a string that serves as the “name” of the coin.
This naturally allows the protocol to be used to gener-

Algorithm BA (for party Pi)
• upon receiving input binput, set est0 := binput and

proceed as follows in consecutive epochs, with
increasing labels r:
– multicast BVALr(estr)

– bin valuesr := {}
– upon receiving BVALr(b) messages from f +1

processes, if BVALr(b) has not been sent, mul-
ticast BVALr(b)

– upon receiving BVALr(b) messages from 2 f +1
processes, bin valuesr := bin valuesr ∪{b}

– wait until bin valuesr 6=, then

* multicast AUXr(w) where w ∈ bin valuesr

* wait until at least (N − f) AUXr messages
have been received, such that the set of val-
ues carried by these messages, vals are a
subset of bin valuesr (note that bin valuesr
may continue to change BVALr messages are
received, thus this condition may be trig-
gered upon arrival of either an AUXr or a
BVALr message)

* s← Coinr.GetCoin()

* if vals= {b}, then
· estr+1 := b
· if (b = s%2) then output b

* else estr+1 := s%2
• continue looping until both a value b is output in

some round r, and the value Coinr′ = v for some
round r′ > r

Figure 12: Binary Byzantine Agreement from a
Common Coin. Note that in the algorithm, b ranges
over {0,1}. This protocol makes use of a sequence
of common coins, labeled Coinr.

ate a sequence (or random-access table) of coins, and
makes it convenient to use in modular subprotocols.

We assume that ThresholdCombine is robust,
in the sense that if it is run with a set of more than
f +1 signature shares, it rejects any invalid ones. In
particular, if 2 f + 1 shares are provided, certainly a
valid subset of f +1 is among them. In practice, any
incorrect shares detected this way can be used as evi-
dence to incriminate a node.

Concretely, we use an efficient threshold
scheme [11] based on bilinear groups and the Gap
Diffie Hellman assumption. We use TSIG to refer
to this scheme. The common coin requires only one
asynchronous round to complete, and the communi-
cation cost is O(Nλ) per node.

20

Algorithm Coinsid for party Pi

sid is assumed to be a unique nonce that serves as
“name” of this common coin

• (Trusted Setup Phase): A trusted dealer runs
pk,{ski} ← ThresholdSetup to generate a com-
mon public key, as well as secret key shares {ski},
one for each party (secret key ski is distributed to
party Pi).

• on input GetCoin, multicast
ThresholdSignpk(ski,sid)

• upon receiving at least f + 1 shares, attempt to
combine them into a signature:
sig← ThresholdCombinepk({ j,s j})
if ThresholdVerifypk(sid) then deliver sig

Figure 13: A common coin based on threshold sig-
natures [45]

21

	Introduction
	Our Contributions
	Suggested Deployment Scenarios

	Background and Related Work
	Robust BFT Protocols
	Randomized Agreement

	The Gap Between Asynchronous and Weakly Synchronous Network Models
	Many Forms of Timing Assumptions
	When Weak Synchrony Fails

	The HoneyBadgerBFT Protocol
	Problem Definition: Atomic Broadcast
	Overview and Intuition
	Constructing HoneyBadgerBFT from Asynchronous Common Subset
	Instantiating ACS Efficiently
	Analysis

	Implementation and Evaluation
	Bandwidth Breakdown and Evaluation
	Experiments on Amazon EC2
	Experiments over Tor

	Conclusion
	Attacking PBFT
	Asynchronous Binary Byzantine Agreement

