
TendrilStaller: Block Delay Attack in Bitcoin

Matthew Walck, Ke Wang, Hyong S.Kim
Carnegie Mellon University

mwalck@andrew.cmu.edu, kewang1@andrew.cmu.edu, kim@ece.cmu.edu

Abstract—We present TendrilStaller, an eclipse attack
targeting at Bitcoin’s peer-to-peer network. TendrilStaller enables
an adversary to delay block propagation to a victim for 10
minutes. The adversary thus impedes the victim from getting the
latest blockchain state. It only takes as few as one Bitcoin full node
and two light weight nodes to perform the attack. The light weight
nodes perform a subset of the functions of a full Bitcoin node. The
attack exploits a recent block propagation protocol introduced in
April 2016. The protocol prescribes a Bitcoin node to select 3
neighbors that can send new blocks unsolicited. These neighbors
are selected based on their recent performance in providing blocks
quickly. The adversary induces the victim to select 3 attack nodes
by having attack nodes send valid blocks to the victim more
quickly than other neighbors. For this purpose, the adversary
deploys a handful of light weight nodes so that the adversary itself
receives new blocks faster. The adversary then performs the
attack to delay blocks propagated to the victim. We implement the
attack on top of current default Bitcoin protocol We deploy the
attack nodes in multiple locations around the globe and randomly
select victim nodes. Depending on the round-trip time between the
adversary and the victim, 50%-85% of the blocks could be delayed
to the victim. We further show that the adoption of light weight
nodes greatly increases the attack probability by 15% in average.
Finally, we propose several countermeasures to mitigate this
eclipse attack.

Keywords—Bitcoin, eclipse attack, block propagation, peer-to-
peer network, security analysis, countermeasure

I. INTRODUCTION
Bitcoin is the most widely adopted cryptocurrency with

more than 17 million Bitcoins in circulation and 76 billion USD
market capitalization as of March 2019. Bitcoin’s underlying
technology, the blockchain, is considered for applications in
smart contract [1], health care [2], supply chain [3], review
system [4] and data storage system [5].

Earlier works have analyzed the security and reliability of
Bitcoin. Nakamoto [14] shows that Bitcoin is fundamentally
broken if a single party possesses more than 51% of the total
mining power. Selfish mining [6] enables attackers to command
only 33% of the total mining power to gain significant advantage.
Double-spending attack [7, 8], block withholding attack [9, 10]
and denial of service attack [11] all exploit Bitcoin’s weaknesses
for profit. Most of these studies assume blocks in the Bitcoin
network are almost immediately available to the majority of the
miners.

Network-plane attacks [12,19,21] target Bitcoin’s peer-to-
peer network. Victims of network-plane attacks may not receive
the latest blockchain state in a timely manner, inducing them to
waste their mining power on stale blocks. Consequently, the
adversary in [6-11] could gain even more of an advantage
[12,22]. Heilman et al propose an eclipse attack on Bitcoin’s
peer to peer network [19]. The attack allows the adversary to
isolate the victim node from the rest of the network. An
adversary needs to control a large number of IP addresses and
operate a large number of attack nodes. The attack nodes
continuously initiate connections to the victim, and send crafted
addr messages to the victim. The victim’s table of future
neighbors would be populated with IP addresses controlled by
the adversary. After the victim’s restart, all of its neighbors will
be controlled by the adversary, with high probability. The
adversary then tampers with the messages sent to the victim to
manipulate its view of the blockchain.

Apostolaki et al propose a BGP hijacking attack [21] that
similarly causes a partition of the Bitcoin network leading to the
isolation of a certain victim. This attack leverages BGP
hijacking to intercept the connections of the victim nodes. An
Autonomous-System (AS) level adversary sends rogue route
advertisement. Traffic destined for, or originated from, the
victims is sent to the wrong locations. The adversary isolates the
victim nodes by dropping the traffic. The adversary could also
delay information sent to the victim by manipulating a small
number of Bitcoin messages.

The above two attacks are suitable for AS-level adversaries
with sufficient IP resources or network bandwidth. The cost of
a successful attack could be expensive. The attack in [19]
requires the adversary to operate large number of Bitcoin nodes
with distinct public IP address. The attack in [21] requires the
adversary to receive and then relay all of the internet traffic (not
necessarily Bitcoin related) of the entire hijacked AS (not only
the victim node). Unlike [19, 21], our attack only requires as few
as 3 bitcoin nodes to perform the attack. These attack nodes do
not need to have distinct public IP addresses. The attack could
be performed from nodes behind a firewall.

Gervais et al [12] propose a block delay attack. An adversary
can delay the propagation of blocks to specific nodes for a
considerable amount of time without causing a network
partition. The attack exploits a historical block propagation
protocol. Bitcoin nodes broadcast the advertisements of new
blocks. When a node receives multiple advertisements of the
same block, it only requests the block from the first neighbor

 2

that sends the advertisement. Attack nodes in [12] thus try to be
the earliest one to send the advertisement of new blocks to the
victim. Once the victim requests the block from an attack node,
the victim temporarily abstains from requesting the same block
from other neighbors. The victim will not get the new block until
the attack node actually sends the block. The timeout for a
getdata request was 20 minutes. The adversary thus could delay
the delivery of new blocks to the victim by 20 minutes. This
attack is effective for victim nodes running Bitcoin software
with versions up to v0.10. Bitcoin has evolved over the years. A
new block propagation protocol has been adopted which makes
the attack in [12] obsolete.

The new block propagation protocol allows a node ! to
select up to 3 High-Bandwidth (HB) mode neighbors [13]. The
list of HB neighbors are referred to as the HB-Neighbor (HBN)
list. HB neighbors do not send advertisements of new blocks;
instead , they send a new, unsolicited block to ! as soon as they
receive it. This change mitigates the original attack. Even if the
attack node " manages to be the first to send the advertisement
to !, and then delays the response to !’s getdata request, one of
the !’s non-attack HB neighbors could later send the block to
!, unsolicited. ! still receives the new block without significant
delay despite "’s delay.

Figure 1 shows the setup of TendrilStaller. We define attack
nodes as nodes controlled by the adversary, and non-attack
nodes as all other nodes in the public Bitcoin network. The
adversary deploys two type of attack nodes, i.e., full attack nodes
and light weight attack nodes. The full attack nodes establish

connections to the victim and perform the actual attack. The
light weight attack nodes operate in either of the two modes. In
Mode 1, light weight attack nodes do not connect to the victim.
They serve as a proxy for the full attack nodes to receive new
blocks faster. In Mode 2, light weight attack nodes also
participate in the attack. Figure 1 and Figure 2 describe the
attack with light weight attack nodes operating in Mode 1. There
are 3 full attack nodes, referred to as #1, #2 and #3. The attack
consists of two phases. Each full attack node initiates a
connection to the victim node ! . In Phase 1, the adversary
induces the victim to select all 3 full attack nodes as its HB
neighbors. Node ! selects its HB neighbors according to the
most-recent-sent-block rule. If a neighbor sends a new valid
block to !, ! adds that neighbor to the HBN list. If there are
already 3 existing HBN neighbors, the oldest one is removed
from the HB list. #1, #2 and #3 keep sending new, valid blocks
to the victim, until victim’s HBN list consists of 3 full attack
nodes, as shown in Figure 2.a and Figure 2.b. In Phase 2, the full
attack nodes behave similarly to the attack in [12]. Since no non-
attack neighbor sends unsolicited blocks to ! in Phase 2, full
attack nodes delay the block propagation to the victim.

We make the following contributions in the paper.

• We present TendrilStaller, a block delay attack that could
delay the block propagation to a victim for considerable
time. We implement the attack code as published in Github
[17].

• We validate the attack algorithm in the public Bitcoin
network. We demonstrate that as many as 50-85% of blocks
could be delayed to the victim during the attack. We further
show that the adoption of light-weight nodes increases the
attack probability by 15% on average.

• We propose several countermeasures to mitigate
TendrilStaller. We show that these countermeasures could
make the block delay attack infeasible.

The rest of the paper is organized as follows. In Section II,
we briefly present the background of Bitcoin and its blockchain.
We also describe the old block propagation protocol and the
existing block delay attack in [12]. In Section III, we describe
the new protocol adopted by Bitcoin and its impact on the attack
in [12]. We formally present our attack algorithm and describe
various optimizations for the attack in Section IV. We validate
our findings through experiments in Section V. We discuss the
impact of the attack and propose a few countermeasures in
Section VI. Finally, conclusion is drawn in Section VII.

 Figure 2.a Figure 2.b Figure 2.c

Figure 2 Two phases of the attack

Figure 1 TendrilStaller setup

 3

II. HISTORICAL MECHANISM OF BLOCK PROPAGATION AND
BLOCK DELAY ATTACK

A. Bitcoin
Bitcoin implements a blockchain protocol to record and

serialize transactions among users. Figure 3 shows how each
block is related to the previous one, with each block containing
the hash of the prior one. Computing nodes, or miners, compete
with each other to be the first to build a new block by finding a
satisfactory nonce. Miners are interconnected by a peer-to-peer
network, through which the newly built blocks are broadcast.
Miners then verify blocks independently and start working on
the next block. We use miners and nodes interchangeably in the
rest of the paper. Each miner keeps a local copy of the
blockchain, referred to as the view perceived by the miner.
Miners may have different views of the blockchain due to the
block propagation delay. Different views of the blockchains
contain different sets of transactions in different orders. If a
miner does not receive the latest block in a timely manner, its
view will differ from those of the majority of miners. This miner
would waste its mining power, as even if it succeeds in building
a new block, with high probability, that block will not be
accepted by other miners and no reward will be given for the
block.

B. Bitcoin peer-to-peer network
Bitcoin nodes connect to each other over TCP/IP. Each node

maintains a tried and new table to store public IPs. The tried
table stores the IP addresses of neighbors to whom the node has
recently established a connection. The new table stores the
addresses of nodes to whom a future connection may be
established. The new table is initially populated with
information from a DNS server when the node first joins the
network. Nodes also exchange IP addresses of known nodes via
addr messages to update their new table periodically. The node
randomly selects from the two tables when it needs to setup a
new connection. In the default configuration [15], a Bitcoin node
picks at most 8 nodes from the two tables randomly to establish
connections, referred to as outgoing connections. A node also
accepts connections initiated by other nodes, referred to as
incoming connections. One node can have at most 125
connections in total.

C. Mining pools
Being the first to mine a block occurs only with a small

probability. The payoff for individual miners are bursty. Miners
therefore form mining pools. Members of a pool do not establish

connections with nodes from outside the pool. Instead, they only
receive information from the pool manager. A mining pool
deploys a number of pool gateway nodes to connect the mining
pool with the public Bitcoin network. Pool gateway nodes are
known to have many more connections than a default node [23],
as they must ensure low-latency relay of blocks and transactions
for the mining pool.

D. Historical block relay model
Bitcoin protocol implements various methods to minimize

the bandwidth consumption. First, Bitcoin adopts an
advertisement based block relay mechanism as shown in Figure
4. When a node " learns about the new block, either by mining
a new block itself or receiving one from its neighbor, it
broadcasts an inv message to its other neighbors to announce the
existence of the new block. For neighbor $, if it does not
already have that block, it sends a getdata message to " to
request the block. Node " then responds with the actual block
to $. Compared to directly sending a new block upon receiving
it, the advertising-first approach reduces redundant block
transmissions of blocks the neighbors already have. A block can
be as large as 1MB, whereas an inv message only contains the
hash of the block of 40 bytes. Second, a node only responds to
the first advertisement it receives. It temporarily stops
requesting the same block from other neighbors until the
previous getdata request times out. This saves the outbound
bandwidth of the neighbors. Finally, Bitcoin adopts a timeout of
20 minutes for getdata request (now reduced to 10 minutes).
Bitcoin nodes are provisioned with different network bandwidth
[16]. Nodes with limited outbound bandwidth takes longer time
to transmit a block. A longer timeout avoids unnecessary block
retransmissions in case of slow network or network congestion.

E. Original block delay attack
The block delay attack in [12] is carried out as follows. An

attacker " first manages to be the first node to send the
advertisement of a block ℬ (inv message) to the victim !. The
attack node implements two methods in order to be the first to
send the advertisement.

• First, an attack node establishes more connections than a
default Bitcoin node. More connections enable the attack
node to learn about a new block faster when it is mined.

• Second, the attack node advertises the new block
immediately after receiving it, without verifying its
correctness.

Default Bitcoin nodes fully validate the new block before
announcing it to the neighbors. The validation prevents
malformed block propagation in the network. The validation
process involves a series of steps and takes considerable time. It

Figure 3 Blockchain

Figure 4. Advertisement based propagation

 4

checks whether the block contains a correct proof of work,
whether the mining difficulty of this block is set correctly and
so on. For each transaction in the block, the validation also
checks whether the transaction format is correct and whether all
the inputs of the transactions are valid, unspent transaction
outputs (UTxO) [20]. It is reported in [12] that the validation
takes on average 174 milliseconds on an Amazon EC2 dual-core
instance. Bypassing the validation process gives the attacker 174
milliseconds advantage on average.

If the attack node succeeds in being the first to send the inv
message, the victim ! then sends a getdata request to ", and
temporarily holds back from requesting ℬ from other neighbors.
Attacker " waits sufficiently long after receiving the getdata
message from the victim. The timeout for a getdata request used
to be 20 minutes. An attacker can delay the block delivery to the
victim for at least 20 minutes. In average, a block is mined every
10 minutes. By the time the victim receives the block, it will be
2 blocks behind the longest chain.

III. NEW MODEL OF BLOCK PROPAGATION
Bitcoin protocol has evolved over the years. New block

propagation protocols have been adopted to make the network
more scalable. Four new measures are of interest to us.

A. New measure 1: direct-headers announcement
Since version v0.10.0 in 2015, a node only requests a block

if it has received a valid header of that block. The message flow
to relay a new block in Figure 3 changes to that in Figure 5.1.
Upon receiving an inv message, node $ first sends a getheaders
message to request the header of that block. After $ receives
and validates the headers message, it sends the getdata request.
A valid headers message should contain the block header that
has the correct proof-of-work and is built on top of the current
blockchain. The previous 1.5 round trip time (RTT) increases to
2.5 RTT. To reduce the propagation delay, direct-headers
announcement is proposed and added to Bitcoin protocol since
version v0.12.0. As shown in Figure 5.2, node " directly sends
a headers message when it learns about a new block. Round trip
time is reduced to 1.5 RTT as before.

B. New measure 2: compact block relay
Block relay causes significant outbound bandwidth spikes

for nodes which receive a block before their neighbors [13]. A
node receiving block earlier than its neighbors needs to send the
new block multiple times, one to each neighbor. Such bandwidth
spikes delay the transmission of blocks. Combining with the fact
that a node only requests the same block from one neighbor at a
time, the block propagation time would increase.

Compact block relay is proposed in [13] to save bandwidth.
A full block as large as 1 MB contains a small header of 80 bytes
and a list of transactions. Most of these transactions are already
available to other nodes before the block propagation. Instead of
sending the full block, a node could send a compact version of
the block. A compact block consists of a block header, a list of
transaction IDs and a small set of prefilled transactions.

• Block header contains 80 bytes, the same as in a regular
block.

• Transaction ID is the hash of a transaction. When receiving
a compact block, the receiver is expected to look up the
actual transaction from receiver’s own in-memory
transaction table.

• Prefilled transactions are regular transactions. When
constructing a compact block, if the sender believes certain
transactions have not been seen by the receiver, the sender
will put the actual transactions into the compact block
instead of the transaction hash.

The intention of compact block relay is to send minimum
data while providing enough information for the receiver to
reconstruct the block. If a certain transaction ID is unknown to
the receiver and that transaction is not in the set of prefilled
transactions, the receiver subsequently requests that specific
transaction. In the optimal case it only takes 0.5 RTT to relay a
block. In the worst case when there are missing transactions in
the compact block, one extra roundtrip is required. It takes 1.5
RTT in total, the same as direct-headers announcement, but with
much less bandwidth consumption. Compact blocks are sent
either in response to getdata requests or unsolicitedly as in HB
mode (next section).

Figure 5.1 modified inv message flow

Figure 5.2 direct-headers announcement

Figure 6.1 HB neighbor &

Figure 6.2 Non-HB neighbor '

 5

C. New measure 3: High bandwidth (HB) mode neighbor
A node selects 3 neighbors as High Bandwidth (HB)

neighbors. We refer to the list of HB neighbors as HBN list. A
node $ instructs its HB neighbors to send compact blocks
unsolicitedly. We refer to such blocks as unsolicited compact
blocks. When a neighbor is added to the HBN list, $ sends a
sendcmpct(true) message to that neighbor. Similarly, if a
neighbor is removed from the HBN list, $ sends a
sendcmpct(false) message to the evicted neighbor to instruct it
to stop sending unsolicited compact blocks. Limiting HBN list
to only 3 neighbors reduces the bandwidth consumption.
Selecting m HB neighbors results in transmitting m-1 redundant
compact blocks, as all the HB neighbors send a new compact
block when receiving it.

As shown in Figure 6.1, the HB neighbor " relays new
blocks to $ by sending compact blocks directly. If necessary,
node $ further sends a getblocktxn message to request missing
transactions.	" then responds with blocktxn messages. Node $
validates the block and then updates "’s last-block-sent time.
The last-block-sent timestamp records the last time when 	"
sends a new valid block to node $. This timestamp is used to
determine which of the HB neighbors will be evicted in the case
that a new HB neighbor is added to the list.

As shown in Figure 6.2, when a non-HB neighbor ℬ learns
about a new block, the following sequence of events happen.

1. ℬ sends the headers message to advertise the new block.
2. If node $ has not heard about this header before, $

subsequently sends a getdata request requesting the
compact block.

3. 	ℬ responds with the compact block.

4. getblocktxn/blocktxn messages are exchanged if node $
misses certain transactions in the compact block.

5. 	$ updates its HBN list to include node ℬ. A previous HB
neighbor is evicted from the list according to its last-block-
sent timestamp.

In addition, an HB neighbor " only sends a compact block
to its neighbor $ if the following additional requirements are
met.

• R1: Node " believes $ does not have the current block.
For example, $ must not have advertised this block to ".
This is to avoid sending unnecessary compact blocks.

• R2: Node " believes that the previous block of the current
block is known to node $. For example, node $ has
announced the previous block to node ", or node " has
also sent the previous block to node $ before. This is to
make sure node $ is able to validate and reconstruct the
actual block when receiving the compact block.

D. New measure 4: shorter block download timeout
Bitcoin protocol has shortened the block download timeout

since version v0.10.5. The base timeout value is 10 minutes. The
timeout increases 5 minutes for each additional getdata request
in parallel. This is to prevent timing out peers due to the node’s
own downstream link being saturated.

E. Impact on original attack
The block delay attack described in [12] is not possible with

the new block propagation protocol. The attack node does not
know whether the victim has picked its HB neighbors. In the
common case, where there are HB neighbors that send compact
blocks unsolicited to the victim !, the attack fails. As in Figure
7, attack node " manages to be the first to send a headers
message and then delays the response to victim’s getdata request.
An HB neighbor $ later sends an unsolicited compact block to
victim ! . The victim still receives the new block without a
significant delay. The attack only succeeds in the rare case
where no neighbors are able to send compact blocks directly, i.e.,
none of victim !’s HB neighbors satisfies requirements R1 and
R2 at the same time. This only happens when ! has recently
joined the network.

The attack in [12] was also able to delay the block for
extended time, exceeding the timeout of the getdata request. It
is impossible in the new Bitcoin block propagation protocol,
neither. Once victim ! sends a getdata request to the attack
node, while ! does not respond to subsequent headers messages,
it records who has sent these headers messages. If attack node
" delays the block by more than 10 minutes, victim !
disconnects from ". ! then picks a neighbor on an outgoing
connection that has sent the headers message for the same block.
! picks the neighbor according to the time an outgoing
connection is established. The neighbor connected the earliest is
picked. Since the attack nodes are on !’s incoming connections
and the adversary does not know the order of the established
time of !’s outgoing connections, with high probability ! picks
a non-attack node and receives the block from that neighbor
soon after. It is therefore impossible to delay the block by more
than the timeout of getdata request.

IV. TENDRILSTALLER ATTACK ALGORITHM
TendrilStaller could operate with or without light weight

attack nodes. We thus first describe TendrilStaller with only full
attack nodes. We then introduce the light weight attack nodes
and discuss the full operations of TendrilStaller.

A. Attack with full attack nodes only
TendrilStaller requires as few as 3 attack nodes. The attack

consists of two phases. In Phase 1, attack nodes try to be selected
as the victim’s HB neighbors. Three distinct attack nodes
establish connections to the victim. Each attack node keeps
sending new compact blocks unsolicited to the victim, even if it
is not yet in the victim’s HBN list. According to the Bitcoin

Figure 7. Original attack fails

 6

source code, when a node ! receives an unsolicited compact
block from a non-HB neighbor, ! still tries to reconstruct the
block if the following two conditions are met.

• Condition C1: ! has not seen the block before.

• Condition C2: ! has already received all the transactions in
this compact block before.

We observe that C2 holds most of the time for any victim !
that has joined the peer-to-peer network long enough to observe
a few newly mined blocks. If the reconstructed block is valid,
the victim adds the sending attack node to the HBN
list.	The	victim sends a sendcmpct(true) message to the sender.
Attack nodes implement three methods to increase their chance
to be the first node to send the new compact block to the victim.

• Method O1: attack nodes establish more outgoing
connections than the default 8 connections defined in the
protocol. As long as any of its neighbors receives the new
block, the attack nodes will also receive the block shortly
afterwards. Attack nodes are thus likely to get the newly
mined blocks faster with more neighbors.

• Method O2: attack nodes instruct all of its neighbors to send
compact blocks unsolicited. Attack nodes does not limit the
size of its own HBN list. The attack nodes are more likely
to receive new blocks faster.

• Method O3: upon receiving a new compact block, the attack
nodes send it to the victim without fully validating the block.
Similar to the attack in [12], bypassing the validation
process allows attack nodes to reduce tens of milliseconds
in propagating new blocks to the victim.

Attack nodes receive the sendcmpct(true/false) messages
from the victim. When an attack node receives a sendcompact
message, it informs all other attack nodes. Each attack node is
thus aware of which attack nodes are currently in the victim’s
HBN list. An attack node that is not yet in !’s HBN list keeps
sending compact blocks to ! until it is added to the list. Once an
attack node is added to the list, it does not relay compact blocks
to ! thus giving other attack nodes a better chance to be added
to the HBN list. When there are three attack nodes in the HBN

list, all the attack nodes proceed to Phase 2. Each attack node
acts independently according to a state transition graph as shown
in Figure 8.

In Phase 2, the attack nodes perform the actual block delay
attack. Attack nodes try to be the first to send the advertisement
of new blocks (headers messages) to the victim ! . Upon
receiving a new compact block, the attack node extracts the
header and sends it to the victim without the validation process.
If ! responds with a getdata request, it implies the attack node’s
advertisement is indeed the first one received and accepted by
!. The attack node then delays sending the block by 10 minutes.
If no attack node receives the getdata request from the victim, it
implies that a non-attack node has sent the headers message to
! before the attack nodes. The victim subsequently requests the
new block from the non-attack node. As a result, that non-attack
node will be added to victim’s HBN list and one of the attack
nodes is removed from the list. Attack nodes monitor the
sendcmpct(false) messages from the victim. Once at least one
attack node is removed from the HBN list, the attack transitions
back to Phase 1, as shown in Figure 8. Attack nodes start sending
compact blocks again.

B. Light weight attack nodes
Light weight attack nodes consume less CPU, bandwidth

and disk space and are cheaper to deploy in the cloud
environment. Specifically, a light weight attack node does not
store any transaction or block data on the disk. It does not
perform the initial block download process as opposed to a full
Bitcoin node. The disk size requirement for a light weight attack
node can be less than 1G. In contrast, a full Bitcoin node needs
to store at least 230G of data and the amount of stored data
grows with every new block. Additionally, the light weight
attack nodes do not perform block validation, significantly
reducing the necessary computational power. They do not
maintain any blockchain state. A lightweight attack node can
operate in either of the two modes. In Mode 1, a light weight
attack node implements a minimum subset of functions of a full
Bitcoin node. In Mode 1, a light weight attack node performs
only one major operation: when it receives a new compact block
from its neighbors, it sends the compact block immediately to
the full attack nodes. Similar to the full attack nodes, a light
weight attack node instruct all of its neighbors to send
unsolicited compact blocks. Additionally, light weight attack
nodes also perform basic routines such as responding to
heartbeat messages from the neighbors to keep the connections
alive. They also exchange addresses with neighbors to
periodically update the address table.

Light weight attack nodes in Mode 1 act as a proxy for the
full attack nodes. Each light weight attack node connects to a

Figure 9. light weight attack node relaying getdata request

 12: Phase 1, keep sending compact blocks;
 13: Wait for other attack nodes;
 14: Proceed to Phase 2;

Figure 8. Single-node attack state

 7

random, and at least partly distinct, subset of public Bitcoin
nodes. Light weight attack nodes also relay a compact block
directly to the full attack node without validating the blocks.
Combining the neighbors of all the light weight attack nodes, a
large group of Bitcoin nodes are only one hop away from the full
attack nodes. Consequently, full attack nodes could receive
newly mined blocks earlier on average.

Light weight attack nodes can also operate in Mode 2, where
they participate in the attack and connect to the victims. Light
weight attack nodes implement the same two-phase attack logic
as a full attack node. Additionally, since a light weight attack
node does not store any block, it needs to implement the logic to
relay getdata requests from the victim to the full attack nodes,
and the corresponding response from the full attack nodes back
to the victim. As shown in Figure 9, if a light weight attack node
5 succeeds in Phase 2 to send a headers message first, the
victim replies with a getdata request. As we do not want to
actually delay the block to the victim, 5 needs to respond
promptly with the actual block. For this purpose, 5 relays the
request to the full attack node " . " responds accordingly,
sending the actual block to 5. Finally, 5 relays the response
back to the victim.

When light weight attack nodes operate in Mode 2, the
adversary could substitute original full attack nodes by light
weight nodes, leaving only one full attack node. It is cheaper to
deploy light weight nodes in the cloud than a full attack node.
We demonstrate the cost reduction in Section V.C.

V. EXPERIMENT
In Section V.A, we setup 3 full attack nodes in the cloud with

different geographic locations to show the feasibility of the
attack. We randomly select victims around the globe and
perform “partial” attack on them. We demonstrate that the attack
is more effective as attack nodes are closer to the victims. In
Section V.B, we perform attack with 3 full attack nodes and a
group of light weight attack nodes. The light weight attack nodes
operate in Mode 1 as a proxy for the full attack nodes. We
demonstrate that higher percentage of blocks could be delayed
with the adoption of light weight attack nodes than otherwise. In
Section V.C, we perform the attack with one full attack node and
multiple light weight nodes operating in Mode 2. We
demonstrate that the attack could be more cost-effective
compared to the attack with full attack nodes only.

A. Attack with full attack nodes only
We show that as long as the victim is moderately close to the

attack nodes, the attack could succeed with high probability. We
setup 3 full attack nodes, each connecting to 200 neighbors. The
three attack nodes are deployed in the Google Cloud Platform.
We repeat the experiments in 3 different regions, US East,
Europe and Asia respectively. This is to remove any
geographical bias of the attack. We randomly select victims
around the globe and perform “partial attack” on the selected
victims without actually delaying the blocks. We limit our
experiment to a “partial attack” to validate our attack without
actually impacting the operation of Bitcoin nodes. In attack
Phase 2, when an attack node manages to send a headers
message first and receive the getdata request from the victim,
the attack node responds to the request with no delay. We treat
each getdata request in Phase 2 as validation of a successful
attack. We implement the attack in a way that attack nodes could
carry out attack targeting at multiple victims in parallel. The
node maintains a separate attack state shown in Figure 8 for each
victim. When receiving a new block, the node takes
corresponding action independently for each victim.

We define the success rate as the percentage of delayed
blocks during the attack. Figure 10 shows the success rate with
different round-trip time between the attack nodes and the victim.
Each data point represents a trial containing from 150 to 200
blocks. The measurement starts from the first block after the
attack is launched and ends at a block when an attack node is
removed from victim’s HBN list. Table 1 summarizes the result
in each individual region. As attack nodes are closer to the
victims, the attack could be more effective with higher success
rate. When the round-trip time is less than 80ms, the success rate
can be as high as 85%. Considering the wide availability of
cloud providers over the globe, TendrilStaller could be easily
deployed.

We also observe a notable difference in the result even when
two victims have similar round-trip delay to the attack nodes. As
we do not have access to the victim nodes, we conjecture the
reasons as follows. First, the number of connections varies
across the victims. Some victims may only connect to few nodes,
while other victims establish many more connections. Attacking
a node with more connections are harder, as the attack nodes
need to compete with more non-attack nodes in the attack Phase
2. Second, certain victims may be closer to the sources of new
blocks on average. They seem to be connected to pool gateways.

 Figure 10. P_delay with link latency

 Percentage of delayed blocks
Attack location US Europe Asia

US 0.60 0.11 0.03
Europe 0.15 0.65 0.02

Asia 0.11 0 0.60
Table 1.a. Average Pdelay

 Link latency (ms)

Attack location US Europe Asia
US 39.4 112.8 211.4

Europe 130.1 27.7 232.6
Asia 231.7 309.5 33.5

Table 1.b. Average link latency

 8

In such scenario, the victims receive newly mined blocks much
more promptly. It is harder for the attack to succeed. Third, the
victim may not follow the default protocol. For example, victims
may increase its HBN list size, or never evicts any neighbor from
its HBN list.

B. Attack with light weight attack nodes in Mode 1
We now perform attacks with light weight attack nodes

operating in Mode 1. In each region we set up 3 full attack nodes
and 5 light weight attack nodes. We choose to deploy light
weight nodes in the same region to minimize latency between
the full attack nodes and its light weight counterparts. These
light weight nodes are set to connect to 200 random nodes in the
network, and instruct all their neighbors to only send compact
blocks. They relay the compact blocks on to the three attack
nodes upon receipt. Justified by the result from Section V.A, we
only select victims from the same geographical region as the
attack nodes. Again, we perform a partial attack where the
response to the victim’s getdata request is not delayed. We treat
the victim’s getdata request as an indicator of the successful
attack. We demonstrate that full attack nodes can receive new
blocks faster with the help of light weight attack nodes.
Consequently, more blocks could be delayed to the victim.

As in Figure 11, there is a marked improvement on the
success rate in all of the three regions. As the light weight nodes
act as a proxy, the success rate increases by 13%, 20% and 13%
in the three regions. We further validate this by recording the
first senders of the new blocks received by the full attack nodes.
As shown in Table 2, around 59%, 49% and 58% percent of the
new blocks are relayed by the light weight nodes respectively.
These blocks would have been received at a later time if not for
the adoption of the light weight nodes.

This increase in efficacy is achievable through minimal
increase in resources, due to the low-cost nature of the light
weight nodes, as we demonstrate in Section V.C.

C. Attack with light weight attack nodes in Mode 2
We now perform attacks with light weight attack nodes

operating in Mode 2. We demonstrate that the (partial)
substitution of the full attack nodes with light weight attack
nodes could reduce the cost of attack while achieving the same
attack success rate. We set up two light weight attack nodes and

one full attack node in each region. The victims are randomly
selected nodes in the same geographical region as the attackers.

Figure 12 shows that the attack success rate is 56%, 68% and
58% respectively, which is comparable to that of the 3-full-
attack-node scenario in Section V.A. This demonstrates that we
can use light weight attack nodes in conjunction with a full
attack node to effectively delay blocks while utilizing fewer
resources. Table 3 compares the resource consumption of the
full attack node and light weight attack node. As light weight
attack nodes do not store the blocks, operation requires much
less disk space. Light weight attack nodes do not verify
transaction/blocks, which leads to the reduced CPU
consumption. We also configure the light weight nodes not to
relay any blocks to the neighbors other than the full attack node
and victims. Consequently, the outbound bandwidth
consumption is lower.

The reduced cost for the attack indicates that the adversary
could deploy light weight attack nodes on smaller, cheaper-
priced instances. For the same resource cost, the adversary could
setup more nodes and attack more victims simultaneously. This
would allow malicious entities to attack larger sections of the
network than possible with the same resource consumption.

D. Impact of the block delay attack
The block delay attack effectively reduces the victim’s

mining power. The victim node could not mine on the newest
block. The percentage of non-effective mining power can be
calculated as follows. Assuming the worst case where each
newly mined block is delayed by 10 minutes. The time interval
between two blocks follows an exponential distribution and the
average block interval is 10 minutes [14]. The expected time that
a victim could mine on the newest block is:

T = 7 (9 − 10)>?@ABC9
D

EF

Where > = 0.1	HIJ@E. This is 36.7% of the total mining power
of the victim. The attack also encourages miners to form mining
pools, making the problem of centralization of mining power
even worse. Pool gateway nodes are known to operate modified
Bitcoin source code for enhanced security and faster block relay.
For example, pool gateway nodes often establish many more

 Figure 11. Light weight attack nodes in Mode 1 Figure 12. Light weight attack nodes in Mode 2

Attack location US Europe Asia
Percentage 0.590 0.491 0.578

Table 2. Blocks relayed by light weight attack nodes

 CPU Disk Bytes sent
Full attack node 71.3% >235G 88.4 kbps

Light weight node 40.3% <1G 7.4 kbps
Table 3. Resource consumption comparison

 9

connections [23]. Based on the observations in Section V.A, the
attack success rate would be lower for nodes with more
connections or not following the default Bitcoin behavior, such
as pool gateway nodes. On the other hand, when a miner joins a
mining pool, it only establishes connections with the pool
manager. The TendrilStaller attack is thus not feasible on these
miners. Given these observations, an individual miner would
prefer to join the mining pool to avoid TendrilStaller attack.

VI. COUNTERMEASURES
Some of the countermeasures proposed in [12] are already

integrated into current Bitcoin protocol such as the headers-first
announcement. A node only sends a getdata request if it has
received a valid header of the new block. In this paper, we
propose a few countermeasures that can improve the reliability
of the newly introduced compact block propagation protocol.

A. Partially-random selection of HB neighbors
According to the current protocol, a node by default selects

its HB neighbors if that neighbor has sent a valid block recently.
This gives attack nodes the chance to manipulate victim’s HBN
list, as in our proposed attack algorithm. To limit the impact of
attack nodes on the HBN list, a Bitcoin node could only select 2
HB neighbors according to the most-recent-sent-block rule and
select the one remaining HB neighbor randomly. Attack nodes
then could not fully control the victim’s HBN list and with high
probability there will always be a non-attack node that can send
compact blocks unsolicitedly to the victim.

B. HB neighbor on outgoing connections
Similarly, a Bitcoin node could select HB neighbors only

from the nodes on outgoing connections. Since attack nodes
usually initiate the connections to the victim, they will not be
selected as HB neighbors. Attack nodes could then induce the
victim to connect to them, though. For example, the adversary
could perform complex operations to manipulate the victim’s
address tables as in the eclipse attack in [19]. Such process is
both resource and time consuming.

C. Shorter block download timeout
We observe that as of Dec 2018, the 90-percentile block

propagation time has reduced significantly to less than 4 seconds
as measured in [18]. This indicates that the network bandwidth
provisioned to the Bitcoin nodes has dramatically increased.
This also makes the current 10-minute timeout of the getdata
request obsolete. Reducing the block download timeout reduces
the impact of the attack. Given a k-minute timeout, the reduced
mining power due to the block delay attack is ?@AK . If the
download timeout is shortened to 1 minute, an attack node
succeeding delaying every block to the victim can only reduce
the victim’s mining power to 90.4% of its original.

VII. CONCLUSION
We present TendrilStaller, an attack targeting Bitcoin’s peer-

to-peer network. Our attack allows an adversary to delay block
propagation to a victim for 10 minutes. We propose and
implement the new attack algorithm and demonstrate that the
attack success rate can be as high as 85%. Furthermore, the
adoption of light weight attack nodes can either increase the
attack success rate (in Mode 1) or reduce the resource

consumption of an attack (in Mode 2). Moreover, we showed
that a successful attack could reduce the victim’s mining power
to 36.7%. This allows the adversary to gain much higher mining
advantage. We further propose several countermeasures to
mitigate this TendrilStaller attack.

REFERENCES
[1] https://www.ethereum.org
[2] Mettler, M., 2016, September. Blockchain technology in healthcare: The

revolution starts here. In e-Health Networking, Applications and Services
(Healthcom), 2016 IEEE 18th International Conference on (pp. 1-3).
IEEE.

[3] Su, S., Wang, K. and Kim, H.S., 2018, July. SmartSupply: Smart contract
based validation for supply chain blockchain. In The 2018 IEEE
International Conference on Blockchain. IEEE.

[4] Wang, K., Zhang Z., and Kim, H.S., 2018, July. ReviewChain: Smart
contract based review system with multi-blockchain gateway. In The
2018 IEEE International Conference on Blockchain. IEEE.

[5] Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K. and Njilla, L.,
2017, May. Provchain: A blockchain-based data provenance architecture
in cloud environment with enhanced privacy and availability.
In Proceedings of the 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (pp. 468-477). IEEE Press.

[6] Eyal, I. and Sirer, E.G., 2018. Majority is not enough: Bitcoin mining is
vulnerable. Communications of the ACM, 61(7), pp.95-102.

[7] M. Rosenfeld, “Analysis of hashrate-based double spending,” Tech. Rep.,
2012 [Online]. Available: https://bitcoil.co.il/Doublespend.pdf

[8] Ghassan O. Karame, Elli Androulaki, Marc Roeschlin, Arthur Gervais,
and Srdjan Cˇapkun. Misbehavior in bitcoin: A study of double-spending
and accountability. ACM Trans. Inf. Syst. Secur., 18(1):2:1–2:32, May
2015.

[9] Vector67. (2011). Fake Bitcoins? [Online]. Available: https://bitcointalk.
org/index.php?topic=36788.msg463391\#msg463391

[10] Nicolas T. Courtois and Lear Bahack. On subversive miner strategies and
block withholding attack in bitcoin digital currency. CoRR,
abs/1402.1718, 2014.

[11] corbixgwelt. (2011, May). Timejacking & Bitcoin [Online]. Available:
http://culubas.blogspot.de/2011/05/timejacking-bitcoin_802.html.

[12] Gervais, A., Ritzdorf, H., Karame, G.O. and Capkun, S., 2015, October.
Tampering with the delivery of blocks and transactions in bitcoin. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (pp. 692-705). ACM.

[13] https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
[14] Nakamoto, S., 2008. Bitcoin: A peer-to-peer electronic cash system.
[15] https://github.com/bitcoin/bitcoin
[16] Gencer, A.E., Basu, S., Eyal, I., van Renesse, R. and Sirer, E.G., 2018.

Decentralization in bitcoin and ethereum networks. arXiv preprint
arXiv:1801.03998

[17] https://github.com/kewangcmu/block_delay_attack
[18] https://dsn.tm.kit.edu/bitcoin/index.html
[19] Heilman, E., Kendler, A., Zohar, A. and Goldberg, S., 2015, August.

Eclipse Attacks on Bitcoin's Peer-to-Peer Network. In USENIX Security
Symposium (pp. 129-144).

[20] https://bitcoin.org/en/glossary/unspent-transaction-output
[21] Apostolaki, M., Zohar, A. and Vanbever, L., 2017, May. Hijacking

bitcoin: Routing attacks on cryptocurrencies. In Security and Privacy
(SP), 2017 IEEE Symposium on (pp. 375-392). IEEE

[22] Nayak, K., Kumar, S., Miller, A. and Shi, E., 2016, March. Stubborn
mining: Generalizing selfish mining and combining with an eclipse
attack. In Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on (pp. 305-320). IEEE.

[23] Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N. and
Bhattacharjee, B., 2015. Discovering bitcoin’s public topology and
influential nodes. et al.

