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Abstract—We present TendrilStaller, an eclipse attack 
targeting at Bitcoin’s peer-to-peer network. TendrilStaller enables 
an adversary to delay block propagation to a victim for 10 
minutes. The adversary thus impedes the victim from getting the 
latest blockchain state. It only takes as few as one Bitcoin full node 
and two light weight nodes to perform the attack. The light weight 
nodes perform a subset of the functions of a full Bitcoin node. The 
attack exploits a recent block propagation protocol introduced in 
April 2016. The protocol prescribes a Bitcoin node to select 3 
neighbors that can send new blocks unsolicited. These neighbors 
are selected based on their recent performance in providing blocks 
quickly. The adversary induces the victim to select 3 attack nodes 
by having attack nodes send valid blocks to the victim more 
quickly than other neighbors. For this purpose, the adversary 
deploys a handful of light weight nodes so that the adversary itself 
receives new blocks faster. The adversary then performs the 
attack to delay blocks propagated to the victim. We implement the 
attack on top of current default Bitcoin protocol We deploy the 
attack nodes in multiple locations around the globe and randomly 
select victim nodes. Depending on the round-trip time between the 
adversary and the victim, 50%-85% of the blocks could be delayed 
to the victim. We further show that the adoption of light weight 
nodes greatly increases the attack probability by 15% in average. 
Finally, we propose several countermeasures to mitigate this 
eclipse attack.  

Keywords—Bitcoin, eclipse attack, block propagation, peer-to-
peer network, security analysis, countermeasure 

I. INTRODUCTION  
Bitcoin is the most widely adopted cryptocurrency with 

more than 17 million Bitcoins in circulation and 76 billion USD 
market capitalization as of March 2019. Bitcoin’s underlying 
technology, the blockchain, is considered for applications in 
smart contract [1], health care [2], supply chain [3], review 
system [4] and data storage system [5]. 

Earlier works have analyzed the security and reliability of 
Bitcoin. Nakamoto [14] shows that Bitcoin is fundamentally 
broken if a single party possesses more than 51% of the total 
mining power. Selfish mining [6] enables attackers to command 
only 33% of the total mining power to gain significant advantage. 
Double-spending attack [7, 8], block withholding attack [9, 10] 
and denial of service attack [11] all exploit Bitcoin’s weaknesses 
for profit. Most of these studies assume blocks in the Bitcoin 
network are almost immediately available to the majority of the 
miners. 

Network-plane attacks [12,19,21] target Bitcoin’s peer-to-
peer network. Victims of network-plane attacks may not receive 
the latest blockchain state in a timely manner, inducing them to 
waste their mining power on stale blocks. Consequently, the 
adversary in [6-11] could gain even more of an advantage 
[12,22]. Heilman et al propose an eclipse attack on Bitcoin’s 
peer to peer network [19]. The attack allows the adversary to 
isolate the victim node from the rest of the network. An 
adversary needs to control a large number of IP addresses and 
operate a large number of attack nodes. The attack nodes 
continuously initiate connections to the victim, and send crafted 
addr messages to the victim. The victim’s table of future 
neighbors would be populated with IP addresses controlled by 
the adversary. After the victim’s restart, all of its neighbors will 
be controlled by the adversary, with high probability. The 
adversary then tampers with the messages sent to the victim to 
manipulate its view of the blockchain. 

Apostolaki et al propose a BGP hijacking attack [21] that 
similarly causes a partition of the Bitcoin network leading to the 
isolation of a certain victim. This attack leverages BGP 
hijacking to intercept the connections of the victim nodes. An 
Autonomous-System (AS) level adversary sends rogue route 
advertisement. Traffic destined for, or originated from, the 
victims is sent to the wrong locations. The adversary isolates the 
victim nodes by dropping the traffic. The adversary could also 
delay information sent to the victim by manipulating a small 
number of Bitcoin messages. 

The above two attacks are suitable for AS-level adversaries 
with sufficient IP resources or network bandwidth. The cost of 
a successful attack could be expensive. The attack in [19] 
requires the adversary to operate large number of Bitcoin nodes 
with distinct public IP address. The attack in [21] requires the 
adversary to receive and then relay all of the internet traffic (not 
necessarily Bitcoin related) of the entire hijacked AS (not only 
the victim node). Unlike [19, 21], our attack only requires as few 
as 3 bitcoin nodes to perform the attack. These attack nodes do 
not need to have distinct public IP addresses. The attack could 
be performed from nodes behind a firewall. 

Gervais et al [12] propose a block delay attack. An adversary 
can delay the propagation of blocks to specific nodes for a 
considerable amount of time without causing a network 
partition. The attack exploits a historical block propagation 
protocol. Bitcoin nodes broadcast the advertisements of new 
blocks. When a node receives multiple advertisements of the 
same block, it only requests the block from the first neighbor 
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that sends the advertisement. Attack nodes in [12] thus try to be 
the earliest one to send the advertisement of new blocks to the 
victim. Once the victim requests the block from an attack node, 
the victim temporarily abstains from requesting the same block 
from other neighbors. The victim will not get the new block until 
the attack node actually sends the block. The timeout for a 
getdata request was 20 minutes. The adversary thus could delay 
the delivery of new blocks to the victim by 20 minutes. This 
attack is effective for victim nodes running Bitcoin software 
with versions up to v0.10. Bitcoin has evolved over the years. A 
new block propagation protocol has been adopted which makes 
the attack in [12] obsolete. 

The new block propagation protocol allows a node !  to 
select up to 3 High-Bandwidth (HB) mode neighbors [13]. The 
list of HB neighbors are referred to as the HB-Neighbor (HBN) 
list. HB neighbors do not send advertisements of new blocks; 
instead , they send a new, unsolicited block to ! as soon as they 
receive it. This change mitigates the original attack. Even if the 
attack node " manages to be the first to send the advertisement 
to !, and then delays the response to !’s getdata request, one of 
the !’s non-attack HB neighbors could later send the block to 
!, unsolicited. ! still receives the new block without significant 
delay despite "’s delay. 

Figure 1 shows the setup of TendrilStaller. We define attack 
nodes as nodes controlled by the adversary, and non-attack 
nodes as all other nodes in the public Bitcoin network. The 
adversary deploys two type of attack nodes, i.e., full attack nodes 
and light weight attack nodes. The full attack nodes establish 

connections to the victim and perform the actual attack. The 
light weight attack nodes operate in either of the two modes. In 
Mode 1, light weight attack nodes do not connect to the victim. 
They serve as a proxy for the full attack nodes to receive new 
blocks faster. In Mode 2, light weight attack nodes also 
participate in the attack. Figure 1 and Figure 2 describe the 
attack with light weight attack nodes operating in Mode 1. There 
are 3 full attack nodes, referred to as #1, #2 and #3. The attack 
consists of two phases. Each full attack node initiates a 
connection to the victim node ! . In Phase 1, the adversary 
induces the victim to select all 3 full attack nodes as its HB 
neighbors. Node !  selects its HB neighbors according to the 
most-recent-sent-block rule. If a neighbor sends a new valid 
block to !, ! adds that neighbor to the HBN list. If there are 
already 3 existing HBN neighbors, the oldest one is removed 
from the HB list. #1, #2 and #3 keep sending new, valid blocks 
to the victim, until victim’s HBN list consists of 3 full attack 
nodes, as shown in Figure 2.a and Figure 2.b. In Phase 2, the full 
attack nodes behave similarly to the attack in [12]. Since no non-
attack neighbor sends unsolicited blocks to ! in Phase 2, full 
attack nodes delay the block propagation to the victim. 

We make the following contributions in the paper. 

•  We present TendrilStaller, a block delay attack that could 
delay the block propagation to a victim for considerable 
time. We implement the attack code as published in Github 
[17]. 

•  We validate the attack algorithm in the public Bitcoin 
network. We demonstrate that as many as 50-85% of blocks 
could be delayed to the victim during the attack. We further 
show that the adoption of light-weight nodes increases the 
attack probability by 15% on average. 

•  We propose several countermeasures to mitigate 
TendrilStaller. We show that these countermeasures could 
make the block delay attack infeasible. 

The rest of the paper is organized as follows. In Section II, 
we briefly present the background of Bitcoin and its blockchain. 
We also describe the old block propagation protocol and the 
existing block delay attack in [12]. In Section III, we describe 
the new protocol adopted by Bitcoin and its impact on the attack 
in [12]. We formally present our attack algorithm and describe 
various optimizations for the attack in Section IV. We validate 
our findings through experiments in Section V. We discuss the 
impact of the attack and propose a few countermeasures in 
Section VI. Finally, conclusion is drawn in Section VII. 

 
                              Figure 2.a                                                   Figure 2.b                                                   Figure 2.c 

Figure 2 Two phases of the attack 

 
Figure 1 TendrilStaller setup 
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II. HISTORICAL MECHANISM OF BLOCK PROPAGATION AND 
BLOCK DELAY ATTACK 

A. Bitcoin 
Bitcoin implements a blockchain protocol to record and 

serialize transactions among users. Figure 3 shows how each 
block is related to the previous one, with each block containing 
the hash of the prior one. Computing nodes, or miners, compete 
with each other to be the first to build a new block by finding a 
satisfactory nonce. Miners are interconnected by a peer-to-peer 
network, through which the newly built blocks are broadcast.  
Miners then verify blocks independently and start working on 
the next block. We use miners and nodes interchangeably in the 
rest of the paper. Each miner keeps a local copy of the 
blockchain, referred to as the view perceived by the miner. 
Miners may have different views of the blockchain due to the 
block propagation delay. Different views of the blockchains 
contain different sets of transactions in different orders. If a 
miner does not receive the latest block in a timely manner, its 
view will differ from those of the majority of miners. This miner 
would waste its mining power, as even if it succeeds in building 
a new block, with high probability, that block will not be 
accepted by other miners and no reward will be given for the 
block. 

B. Bitcoin peer-to-peer network 
Bitcoin nodes connect to each other over TCP/IP. Each node 

maintains a tried and new table to store public IPs. The tried 
table stores the IP addresses of neighbors to whom the node has 
recently established a connection. The new table stores the 
addresses of nodes to whom a future connection may be 
established. The new table is initially populated with 
information from a DNS server when the node first joins the 
network. Nodes also exchange IP addresses of known nodes via 
addr messages to update their new table periodically. The node 
randomly selects from the two tables when it needs to setup a 
new connection. In the default configuration [15], a Bitcoin node 
picks at most 8 nodes from the two tables randomly to establish 
connections, referred to as outgoing connections. A node also 
accepts connections initiated by other nodes, referred to as 
incoming connections. One node can have at most 125 
connections in total. 

C. Mining pools 
Being the first to mine a block occurs only with a small 

probability. The payoff for individual miners are bursty. Miners 
therefore form mining pools. Members of a pool do not establish 

connections with nodes from outside the pool. Instead, they only 
receive information from the pool manager. A mining pool 
deploys a number of pool gateway nodes to connect the mining 
pool with the public Bitcoin network. Pool gateway nodes are 
known to have many more connections than a default node [23], 
as they must ensure low-latency relay of blocks and transactions 
for the mining pool. 

D. Historical block relay model 
Bitcoin protocol implements various methods to minimize 

the bandwidth consumption. First, Bitcoin adopts an 
advertisement based block relay mechanism as shown in Figure 
4. When a node " learns about the new block, either by mining 
a new block itself or receiving one from its neighbor, it 
broadcasts an inv message to its other neighbors to announce the 
existence of the new block. For neighbor $ , if it does not 
already have that block, it sends a getdata message to "  to 
request the block. Node " then responds with the actual block 
to $. Compared to directly sending a new block upon receiving 
it, the advertising-first approach reduces redundant block 
transmissions of blocks the neighbors already have. A block can 
be as large as 1MB, whereas an inv message only contains the 
hash of the block of 40 bytes. Second, a node only responds to 
the first advertisement it receives. It temporarily stops 
requesting the same block from other neighbors until the 
previous getdata request times out. This saves the outbound 
bandwidth of the neighbors. Finally, Bitcoin adopts a timeout of 
20 minutes for getdata request (now reduced to 10 minutes). 
Bitcoin nodes are provisioned with different network bandwidth 
[16]. Nodes with limited outbound bandwidth takes longer time 
to transmit a block. A longer timeout avoids unnecessary block 
retransmissions in case of slow network or network congestion. 

E. Original block delay attack 
The block delay attack in [12] is carried out as follows. An 

attacker "  first manages to be the first node to send the 
advertisement of a block ℬ (inv message) to the victim !. The 
attack node implements two methods in order to be the first to 
send the advertisement. 

•  First, an attack node establishes more connections than a 
default Bitcoin node. More connections enable the attack 
node to learn about a new block faster when it is mined. 

•  Second, the attack node advertises the new block 
immediately after receiving it, without verifying its 
correctness.  

Default Bitcoin nodes fully validate the new block before 
announcing it to the neighbors. The validation prevents 
malformed block propagation in the network. The validation 
process involves a series of steps and takes considerable time. It 

 
Figure 3 Blockchain 

 

 
Figure 4. Advertisement based propagation 
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checks whether the block contains a correct proof of work, 
whether the mining difficulty of this block is set correctly and 
so on. For each transaction in the block, the validation also 
checks whether the transaction format is correct and whether all 
the inputs of the transactions are valid, unspent transaction 
outputs (UTxO) [20]. It is reported in [12] that the validation 
takes on average 174 milliseconds on an Amazon EC2 dual-core 
instance. Bypassing the validation process gives the attacker 174 
milliseconds advantage on average. 

If the attack node succeeds in being the first to send the inv 
message, the victim ! then sends a getdata request to ", and 
temporarily holds back from requesting ℬ from other neighbors. 
Attacker " waits sufficiently long after receiving the getdata 
message from the victim. The timeout for a getdata request used 
to be 20 minutes. An attacker can delay the block delivery to the 
victim for at least 20 minutes. In average, a block is mined every 
10 minutes. By the time the victim receives the block, it will be 
2 blocks behind the longest chain. 

III. NEW MODEL OF BLOCK PROPAGATION 
Bitcoin protocol has evolved over the years. New block 

propagation protocols have been adopted to make the network 
more scalable. Four new measures are of interest to us. 

A. New measure 1: direct-headers announcement 
Since version v0.10.0 in 2015, a node only requests a block 

if it has received a valid header of that block. The message flow 
to relay a new block in Figure 3 changes to that in Figure 5.1. 
Upon receiving an inv message, node $ first sends a getheaders 
message to request the header of that block. After $ receives 
and validates the headers message, it sends the getdata request. 
A valid headers message should contain the block header that 
has the correct proof-of-work and is built on top of the current 
blockchain. The previous 1.5 round trip time (RTT) increases to 
2.5 RTT. To reduce the propagation delay, direct-headers 
announcement is proposed and added to Bitcoin protocol since 
version v0.12.0. As shown in Figure 5.2, node " directly sends 
a headers message when it learns about a new block. Round trip 
time is reduced to 1.5 RTT as before. 

B. New measure 2: compact block relay 
Block relay causes significant outbound bandwidth spikes 

for nodes which receive a block before their neighbors [13]. A 
node receiving block earlier than its neighbors needs to send the 
new block multiple times, one to each neighbor. Such bandwidth 
spikes delay the transmission of blocks. Combining with the fact 
that a node only requests the same block from one neighbor at a 
time, the block propagation time would increase. 

Compact block relay is proposed in [13] to save bandwidth. 
A full block as large as 1 MB contains a small header of 80 bytes 
and a list of transactions. Most of these transactions are already 
available to other nodes before the block propagation. Instead of 
sending the full block, a node could send a compact version of 
the block. A compact block consists of a block header, a list of 
transaction IDs and a small set of prefilled transactions. 

•  Block header contains 80 bytes, the same as in a regular 
block. 

•  Transaction ID is the hash of a transaction. When receiving 
a compact block, the receiver is expected to look up the 
actual transaction from receiver’s own in-memory 
transaction table.  

•  Prefilled transactions are regular transactions. When 
constructing a compact block, if the sender believes certain 
transactions have not been seen by the receiver, the sender 
will put the actual transactions into the compact block 
instead of the transaction hash. 

The intention of compact block relay is to send minimum 
data while providing enough information for the receiver to 
reconstruct the block. If a certain transaction ID is unknown to 
the receiver and that transaction is not in the set of prefilled 
transactions, the receiver subsequently requests that specific 
transaction. In the optimal case it only takes 0.5 RTT to relay a 
block. In the worst case when there are missing transactions in 
the compact block, one extra roundtrip is required. It takes 1.5 
RTT in total, the same as direct-headers announcement, but with 
much less bandwidth consumption. Compact blocks are sent 
either in response to getdata requests or unsolicitedly as in HB 
mode (next section). 

 
Figure 5.1 modified inv message flow 

 
Figure 5.2 direct-headers announcement 

 
Figure 6.1 HB neighbor & 

 
Figure 6.2 Non-HB neighbor ' 
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C. New measure 3: High bandwidth (HB) mode neighbor 
A node selects 3 neighbors as High Bandwidth (HB) 

neighbors. We refer to the list of HB neighbors as HBN list. A 
node $ instructs its HB neighbors to send compact blocks 
unsolicitedly. We refer to such blocks as unsolicited compact 
blocks. When a neighbor is added to the HBN list, $ sends a 
sendcmpct(true) message to that neighbor. Similarly, if a 
neighbor is removed from the HBN list, $  sends a 
sendcmpct(false) message to the evicted neighbor to instruct it 
to stop sending unsolicited compact blocks. Limiting HBN list 
to only 3 neighbors reduces the bandwidth consumption. 
Selecting m HB neighbors results in transmitting m-1 redundant 
compact blocks, as all the HB neighbors send a new compact 
block when receiving it. 

As shown in Figure 6.1, the HB neighbor "  relays new 
blocks to $ by sending compact blocks directly. If necessary, 
node $ further sends a getblocktxn message to request missing 
transactions.	" then responds with blocktxn messages. Node $ 
validates the block and then updates "’s last-block-sent time. 
The last-block-sent timestamp records the last time when 	" 
sends a new valid block to node $. This timestamp is used to 
determine which of the HB neighbors will be evicted in the case 
that a new HB neighbor is added to the list. 

As shown in Figure 6.2, when a non-HB neighbor ℬ learns 
about a new block, the following sequence of events happen. 

1.  ℬ sends the headers message to advertise the new block. 
2.  If node $  has not heard about this header before, $ 

subsequently sends a getdata request requesting the 
compact block. 

3. 	ℬ responds with the compact block.  

4.  getblocktxn/blocktxn messages are exchanged if node $ 
misses certain transactions in the compact block. 

5. 	$ updates its HBN list to include node ℬ. A previous HB 
neighbor is evicted from the list according to its last-block-
sent timestamp. 

In addition, an HB neighbor " only sends a compact block 
to its neighbor $ if the following additional requirements are 
met. 

•  R1: Node " believes $ does not have the current block. 
For example, $ must not have advertised this block to ". 
This is to avoid sending unnecessary compact blocks. 

•  R2: Node " believes that the previous block of the current 
block is known to node $ . For example, node $  has 
announced the previous block to node ", or node " has 
also sent the previous block to node $ before. This is to 
make sure node $ is able to validate and reconstruct the 
actual block when receiving the compact block. 

D. New measure 4: shorter block download timeout 
Bitcoin protocol has shortened the block download timeout 

since version v0.10.5. The base timeout value is 10 minutes. The 
timeout increases 5 minutes for each additional getdata request 
in parallel. This is to prevent timing out peers due to the node’s 
own downstream link being saturated. 

E. Impact on original attack 
The block delay attack described in [12] is not possible with 

the new block propagation protocol. The attack node does not 
know whether the victim has picked its HB neighbors. In the 
common case, where there are HB neighbors that send compact 
blocks unsolicited to the victim !,  the attack fails. As in Figure 
7, attack node "  manages to be the first to send a headers 
message and then delays the response to victim’s getdata request. 
An HB neighbor $ later sends an unsolicited compact block to 
victim ! . The victim still receives the new block without a 
significant delay. The attack only succeeds in the rare case 
where no neighbors are able to send compact blocks directly, i.e., 
none of victim !’s HB neighbors satisfies requirements R1 and 
R2 at the same time. This only happens when ! has recently 
joined the network. 

The attack in [12] was also able to delay the block for 
extended time, exceeding the timeout of the getdata request. It 
is impossible in the new Bitcoin block propagation protocol, 
neither. Once victim !  sends a getdata request to the attack 
node, while ! does not respond to subsequent headers messages, 
it records who has sent these headers messages. If attack node 
"  delays the block by more than 10 minutes, victim ! 
disconnects from ". ! then picks a neighbor on an outgoing 
connection that has sent the headers message for the same block. 
!  picks the neighbor according to the time an outgoing 
connection is established. The neighbor connected the earliest is 
picked. Since the attack nodes are on !’s incoming connections 
and the adversary does not know the order of the established 
time of !’s outgoing connections, with high probability ! picks 
a non-attack node and receives the block from that neighbor 
soon after. It is therefore impossible to delay the block by more 
than the timeout of getdata request. 

IV. TENDRILSTALLER ATTACK ALGORITHM 
TendrilStaller could operate with or without light weight 

attack nodes. We thus first describe TendrilStaller with only full 
attack nodes. We then introduce the light weight attack nodes 
and discuss the full operations of TendrilStaller. 

A. Attack with full attack nodes only 
TendrilStaller requires as few as 3 attack nodes. The attack 

consists of two phases. In Phase 1, attack nodes try to be selected 
as the victim’s HB neighbors. Three distinct attack nodes 
establish connections to the victim. Each attack node keeps 
sending new compact blocks unsolicited to the victim, even if it 
is not yet in the victim’s HBN list. According to the Bitcoin 

 
Figure 7. Original attack fails 
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source code, when a node ! receives an unsolicited compact 
block from a non-HB neighbor, ! still tries to reconstruct the 
block if the following two conditions are met. 

•  Condition C1: ! has not seen the block before. 

•  Condition C2: ! has already received all the transactions in 
this compact block before. 

We observe that C2 holds most of the time for any victim ! 
that has joined the peer-to-peer network long enough to observe 
a few newly mined blocks. If the reconstructed block is valid, 
the victim adds the sending attack node to the HBN 
list.	The	victim sends a sendcmpct(true) message to the sender. 
Attack nodes implement three methods to increase their chance 
to be the first node to send the new compact block to the victim. 

•  Method O1: attack nodes establish more outgoing 
connections than the default 8 connections defined in the 
protocol.  As long as any of its neighbors receives the new 
block, the attack nodes will also receive the block shortly 
afterwards. Attack nodes are thus likely to get the newly 
mined blocks faster with more neighbors. 

•  Method O2: attack nodes instruct all of its neighbors to send 
compact blocks unsolicited. Attack nodes does not limit the 
size of its own HBN list. The attack nodes are more likely 
to receive new blocks faster. 

•  Method O3: upon receiving a new compact block, the attack 
nodes send it to the victim without fully validating the block. 
Similar to the attack in [12], bypassing the validation 
process allows attack nodes to reduce tens of milliseconds 
in propagating new blocks to the victim. 

Attack nodes receive the sendcmpct(true/false) messages 
from the victim. When an attack node receives a sendcompact 
message, it informs all other attack nodes. Each attack node is 
thus aware of which attack nodes are currently in the victim’s 
HBN list. An attack node that is not yet in !’s HBN list keeps 
sending compact blocks to ! until it is added to the list. Once an 
attack node is added to the list, it does not relay compact blocks 
to ! thus giving other attack nodes a better chance to be added 
to the HBN list. When there are three attack nodes in the HBN 

list, all the attack nodes proceed to Phase 2. Each attack node 
acts independently according to a state transition graph as shown 
in Figure 8. 

In Phase 2, the attack nodes perform the actual block delay 
attack. Attack nodes try to be the first to send the advertisement 
of new blocks (headers messages) to the victim ! . Upon 
receiving a new compact block, the attack node extracts the 
header and sends it to the victim without the validation process. 
If ! responds with a getdata request, it implies the attack node’s 
advertisement is indeed the first one received and accepted by 
!. The attack node then delays sending the block by 10 minutes. 
If no attack node receives the getdata request from the victim, it 
implies that a non-attack node has sent the headers message to 
! before the attack nodes. The victim subsequently requests the 
new block from the non-attack node. As a result, that non-attack 
node will be added to victim’s HBN list and one of the attack 
nodes is removed from the list. Attack nodes monitor the 
sendcmpct(false) messages from the victim. Once at least one 
attack node is removed from the HBN list, the attack transitions 
back to Phase 1, as shown in Figure 8. Attack nodes start sending 
compact blocks again. 

B. Light weight attack nodes 
Light weight attack nodes consume less CPU, bandwidth 

and disk space and are cheaper to deploy in the cloud 
environment. Specifically, a light weight attack node does not 
store any transaction or block data on the disk. It does not 
perform the initial block download process as opposed to a full 
Bitcoin node. The disk size requirement for a light weight attack 
node can be less than 1G. In contrast, a full Bitcoin node needs 
to store at least 230G of data and the amount of stored data 
grows with every new block. Additionally, the light weight 
attack nodes do not perform block validation, significantly 
reducing the necessary computational power. They do not 
maintain any blockchain state.  A lightweight attack node can 
operate in either of the two modes. In Mode 1, a light weight 
attack node implements a minimum subset of functions of a full 
Bitcoin node. In Mode 1, a light weight attack node performs 
only one major operation: when it receives a new compact block 
from its neighbors, it sends the compact block immediately to 
the full attack nodes. Similar to the full attack nodes, a light 
weight attack node instruct all of its neighbors to send 
unsolicited compact blocks. Additionally, light weight attack 
nodes also perform basic routines such as responding to 
heartbeat messages from the neighbors to keep the connections 
alive. They also exchange addresses with neighbors to 
periodically update the address table. 

Light weight attack nodes in Mode 1 act as a proxy for the 
full attack nodes. Each light weight attack node connects to a 

 
Figure 9. light weight attack node relaying getdata request 

 
                12: Phase 1, keep sending compact blocks; 
                13: Wait for other attack nodes; 
                14: Proceed to Phase 2; 

Figure 8. Single-node attack state 
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random, and at least partly distinct, subset of public Bitcoin 
nodes. Light weight attack nodes also relay a compact block 
directly to the full attack node without validating the blocks. 
Combining the neighbors of all the light weight attack nodes, a 
large group of Bitcoin nodes are only one hop away from the full 
attack nodes. Consequently, full attack nodes could receive 
newly mined blocks earlier on average. 

Light weight attack nodes can also operate in Mode 2, where 
they participate in the attack and connect to the victims. Light 
weight attack nodes implement the same two-phase attack logic 
as a full attack node. Additionally, since a light weight attack 
node does not store any block, it needs to implement the logic to 
relay getdata requests from the victim to the full attack nodes, 
and the corresponding response from the full attack nodes back 
to the victim. As shown in Figure 9, if a light weight attack node 
5  succeeds in Phase 2 to send a headers message first, the 
victim replies with a getdata request. As we do not want to 
actually delay the block to the victim, 5  needs to respond 
promptly with the actual block. For this purpose, 5 relays the 
request to the full attack node " . "  responds accordingly, 
sending the actual block to 5. Finally, 5 relays the response 
back to the victim. 

When light weight attack nodes operate in Mode 2, the 
adversary could substitute original full attack nodes by light 
weight nodes, leaving only one full attack node. It is cheaper to 
deploy light weight nodes in the cloud than a full attack node. 
We demonstrate the cost reduction in Section V.C.  

V. EXPERIMENT 
In Section V.A, we setup 3 full attack nodes in the cloud with 

different geographic locations to show the feasibility of the 
attack. We randomly select victims around the globe and 
perform “partial” attack on them. We demonstrate that the attack 
is more effective as attack nodes are closer to the victims. In 
Section V.B, we perform attack with 3 full attack nodes and a 
group of light weight attack nodes. The light weight attack nodes 
operate in Mode 1 as a proxy for the full attack nodes. We 
demonstrate that higher percentage of blocks could be delayed 
with the adoption of light weight attack nodes than otherwise. In 
Section V.C, we perform the attack with one full attack node and 
multiple light weight nodes operating in Mode 2. We 
demonstrate that the attack could be more cost-effective 
compared to the attack with full attack nodes only. 

A. Attack with full attack nodes only 
We show that as long as the victim is moderately close to the 

attack nodes, the attack could succeed with high probability. We 
setup 3 full attack nodes, each connecting to 200 neighbors. The 
three attack nodes are deployed in the Google Cloud Platform. 
We repeat the experiments in 3 different regions, US East, 
Europe and Asia respectively. This is to remove any 
geographical bias of the attack. We randomly select victims 
around the globe and perform “partial attack” on the selected 
victims without actually delaying the blocks. We limit our 
experiment to a “partial attack” to validate our attack without 
actually impacting the operation of Bitcoin nodes. In attack 
Phase 2, when an attack node manages to send a headers 
message first and receive the getdata request from the victim, 
the attack node responds to the request with no delay. We treat 
each getdata request in Phase 2 as validation of a successful 
attack. We implement the attack in a way that attack nodes could 
carry out attack targeting at multiple victims in parallel. The 
node maintains a separate attack state shown in Figure 8 for each 
victim. When receiving a new block, the node takes 
corresponding action independently for each victim. 

We define the success rate as the percentage of delayed 
blocks during the attack. Figure 10 shows the success rate with 
different round-trip time between the attack nodes and the victim. 
Each data point represents a trial containing from 150 to 200 
blocks. The measurement starts from the first block after the 
attack is launched and ends at a block when an attack node is 
removed from victim’s HBN list. Table 1 summarizes the result 
in each individual region. As attack nodes are closer to the 
victims, the attack could be more effective with higher success 
rate. When the round-trip time is less than 80ms, the success rate 
can be as high as 85%. Considering the wide availability of 
cloud providers over the globe, TendrilStaller could be easily 
deployed.  

We also observe a notable difference in the result even when 
two victims have similar round-trip delay to the attack nodes. As 
we do not have access to the victim nodes, we conjecture the 
reasons as follows. First, the number of connections varies 
across the victims. Some victims may only connect to few nodes, 
while other victims establish many more connections. Attacking 
a node with more connections are harder, as the attack nodes 
need to compete with more non-attack nodes in the attack Phase 
2.  Second, certain victims may be closer to the sources of new 
blocks on average. They seem to be connected to pool gateways. 

 
                     Figure 10. P_delay with link latency 

 Percentage of delayed blocks 
Attack location US Europe Asia 

US 0.60 0.11 0.03 
Europe 0.15 0.65 0.02 

Asia 0.11 0 0.60 
Table 1.a. Average Pdelay 

 
 Link latency (ms) 

Attack location US Europe Asia 
US 39.4 112.8 211.4 

Europe 130.1 27.7 232.6 
Asia 231.7 309.5 33.5 

Table 1.b. Average link latency 
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In such scenario, the victims receive newly mined blocks much 
more promptly. It is harder for the attack to succeed. Third, the 
victim may not follow the default protocol. For example, victims 
may increase its HBN list size, or never evicts any neighbor from 
its HBN list. 

B. Attack with light weight attack nodes in Mode 1 
We now perform attacks with light weight attack nodes 

operating in Mode 1. In each region we set up 3 full attack nodes 
and 5 light weight attack nodes. We choose to deploy light 
weight nodes in the same region to minimize latency between 
the full attack nodes and its light weight counterparts. These 
light weight nodes are set to connect to 200 random nodes in the 
network, and instruct all their neighbors to only send compact 
blocks. They relay the compact blocks on to the three attack 
nodes upon receipt. Justified by the result from Section V.A, we 
only select victims from the same geographical region as the 
attack nodes. Again, we perform a partial attack where the 
response to the victim’s getdata request is not delayed. We treat 
the victim’s getdata request as an indicator of the successful 
attack. We demonstrate that full attack nodes can receive new 
blocks faster with the help of light weight attack nodes. 
Consequently, more blocks could be delayed to the victim.  

As in Figure 11, there is a marked improvement on the 
success rate in all of the three regions. As the light weight nodes 
act as a proxy, the success rate increases by 13%, 20% and 13% 
in the three regions. We further validate this by recording the 
first senders of the new blocks received by the full attack nodes. 
As shown in Table 2, around 59%, 49% and 58% percent of the 
new blocks are relayed by the light weight nodes respectively. 
These blocks would have been received at a later time if not for 
the adoption of the light weight nodes. 

This increase in efficacy is achievable through minimal 
increase in resources, due to the low-cost nature of the light 
weight nodes, as we demonstrate in Section V.C. 

C. Attack with light weight attack nodes in Mode 2 
We now perform attacks with light weight attack nodes 

operating in Mode 2. We demonstrate that the (partial) 
substitution of the full attack nodes with light weight attack 
nodes could reduce the cost of attack while achieving the same 
attack success rate. We set up two light weight attack nodes and 

one full attack node in each region. The victims are randomly 
selected nodes in the same geographical region as the attackers.  

Figure 12 shows that the attack success rate is 56%, 68% and 
58% respectively, which is comparable to that of the 3-full-
attack-node scenario in Section V.A. This demonstrates that we 
can use light weight attack nodes in conjunction with a full 
attack node to effectively delay blocks while utilizing fewer 
resources. Table 3 compares the resource consumption of the 
full attack node and light weight attack node. As light weight 
attack nodes do not store the blocks, operation requires much 
less disk space. Light weight attack nodes do not verify 
transaction/blocks, which leads to the reduced CPU 
consumption. We also configure the light weight nodes not to 
relay any blocks to the neighbors other than the full attack node 
and victims. Consequently, the outbound bandwidth 
consumption is lower. 

The reduced cost for the attack indicates that the adversary 
could deploy light weight attack nodes on smaller, cheaper-
priced instances. For the same resource cost, the adversary could 
setup more nodes and attack more victims simultaneously. This 
would allow malicious entities to attack larger sections of the 
network than possible with the same resource consumption. 

D. Impact of the block delay attack 
The block delay attack effectively reduces the victim’s 

mining power. The victim node could not mine on the newest 
block. The percentage of non-effective mining power can be 
calculated as follows. Assuming the worst case where each 
newly mined block is delayed by 10 minutes. The time interval 
between two blocks follows an exponential distribution and the 
average block interval is 10 minutes [14]. The expected time that 
a victim could mine on the newest block is: 

T = 7 (9 − 10)>?@ABC9
D

EF
 

Where > = 0.1	HIJ@E. This is 36.7% of the total mining power 
of the victim. The attack also encourages miners to form mining 
pools, making the problem of centralization of mining power 
even worse. Pool gateway nodes are known to operate modified 
Bitcoin source code for enhanced security and faster block relay. 
For example, pool gateway nodes often establish many more 

                 
         Figure 11. Light weight attack nodes in Mode 1                                Figure 12. Light weight attack nodes in Mode 2 

Attack location US Europe Asia 
Percentage 0.590 0.491 0.578 

Table 2. Blocks relayed by light weight attack nodes 

 CPU Disk Bytes sent 
Full attack node 71.3% >235G 88.4 kbps 

Light weight node 40.3% <1G 7.4 kbps 
Table 3. Resource consumption comparison 
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connections [23]. Based on the observations in Section V.A, the 
attack success rate would be lower for nodes with more 
connections or not following the default Bitcoin behavior, such 
as pool gateway nodes. On the other hand, when a miner joins a 
mining pool, it only establishes connections with the pool 
manager. The TendrilStaller attack is thus not feasible on these 
miners. Given these observations, an individual miner would 
prefer to join the mining pool to avoid TendrilStaller attack. 

VI. COUNTERMEASURES 
Some of the countermeasures proposed in [12] are already 

integrated into current Bitcoin protocol such as the headers-first 
announcement. A node only sends a getdata request if it has 
received a valid header of the new block. In this paper, we 
propose a few countermeasures that can improve the reliability 
of the newly introduced compact block propagation protocol. 

A. Partially-random selection of HB neighbors 
According to the current protocol, a node by default selects 

its HB neighbors if that neighbor has sent a valid block recently. 
This gives attack nodes the chance to manipulate victim’s HBN 
list, as in our proposed attack algorithm. To limit the impact of 
attack nodes on the HBN list, a Bitcoin node could only select 2 
HB neighbors according to the most-recent-sent-block rule and 
select the one remaining HB neighbor randomly. Attack nodes 
then could not fully control the victim’s HBN list and with high 
probability there will always be a non-attack node that can send 
compact blocks unsolicitedly to the victim. 

B. HB neighbor on outgoing connections 
Similarly, a Bitcoin node could select HB neighbors only 

from the nodes on outgoing connections. Since attack nodes 
usually initiate the connections to the victim, they will not be 
selected as HB neighbors. Attack nodes could then induce the 
victim to connect to them, though. For example, the adversary 
could perform complex operations to manipulate the victim’s 
address tables as in the eclipse attack in [19]. Such process is 
both resource and time consuming.  

C. Shorter block download timeout 
We observe that as of Dec 2018, the 90-percentile block 

propagation time has reduced significantly to less than 4 seconds 
as measured in [18]. This indicates that the network bandwidth 
provisioned to the Bitcoin nodes has dramatically increased. 
This also makes the current 10-minute timeout of the getdata 
request obsolete. Reducing the block download timeout reduces 
the impact of the attack. Given a k-minute timeout, the reduced 
mining power due to the block delay attack is ?@AK . If the 
download timeout is shortened to 1 minute, an attack node 
succeeding delaying every block to the victim can only reduce 
the victim’s mining power to 90.4% of its original. 

VII. CONCLUSION 
We present TendrilStaller, an attack targeting Bitcoin’s peer-

to-peer network. Our attack allows an adversary to delay block 
propagation to a victim for 10 minutes. We propose and 
implement the new attack algorithm and demonstrate that the 
attack success rate can be as high as 85%. Furthermore, the 
adoption of light weight attack nodes can either increase the 
attack success rate (in Mode 1) or reduce the resource 

consumption of an attack (in Mode 2). Moreover, we showed 
that a successful attack could reduce the victim’s mining power 
to 36.7%. This allows the adversary to gain much higher mining 
advantage. We further propose several countermeasures to 
mitigate this TendrilStaller attack.  
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